

* Programming massively parallel systems

Beyond Programmable Shading 2

= Programming massively parallel systems

= Parallelizing algorithms

Beyond Programmable Shading 3

Parallelism

= Programming massively parallel systems

= Parallelizing algorithms

= OQur research on 3 key components:
1. Stream compaction

2. Prefix Sum
3. Sorting

Parallelism

= Programming massively parallel systems

= Parallelizing algorithms

= OQur research on 3 key components:

1. Stream compaction 3x faster than any other implementation
we know of

2. Prefix Sum - 30% faster than CUDPP 1.1
3. Sorting - faster than newest CUDPP 1.1 July 2009

Parallelism

= Programming massively parallel systems
= Parallelizing algorithms

= OQur research on 3 key components:
1. Stream compaction

4 5 6 7 8 9 10 11 12 13 14 15
B C D E F G H

il

8§ 9 10 11 12 13 14 15

Parallelism

= Programming massively parallel systems

= Parallelizing algorithms

= OQur research on 3 key components:

2. Prefix Sum

input

output

W w
[QRES

8 9 10 11 12 13 14 15
D E F|G|H

© pDe——>Pp
= o

N O_|_

w U:|—

| M -

Ul | T -

0 1

4

13

15

@) =

I -

8 9 10 11 12 13 14 15

Each output element is sum of all preceding input elements

Parallelism

= Programming massively parallel systems

= Parallelizing algorithms

12 13 14
F G|H

e
EEN]
0 w
(@R
X wm

o
PSRN

©
O o
* o

=

= OQur research on 3 key components:

@) =
I <
X
X
X
X
X

X X

5 6 7 8 9 10 11 12 13 14

© pDPe——Pp @
T -

=@
N O
w O
BT~

input |1 [3 |9 [4 |2 |s |7 |1 |8 |4 |5 |09

3. Sorting

output | o |1 [4 |13] 15

19 5100 1 63 79

<

1 5 19 63 79 100

1. Stream Compaction

= Used for:
— Load balancing & load distribution
— Alternative to global task queue
— Parallel Tree Traversal
— Collision Detection - Horn, GPUGems 2, 2005.1

Each processor

———>f | [handles one node

and outputs nodes
for continued

: : : traversal
Stream compaction — removing nil elements

'Stream reduction operations for GPGPU applications, Horn, GPU Gems 2, 2005.

Beyond Programmable Shading 9

1. Stream Compaction

» Used for:

— Load balancing & load distribution
— Alternative to global task queue

— Parallel Tree Traversal
— Collision Detection - Horn, GPUGems 2, 2005.

— Constructing spatial hierarchies

- Lauterbach, Garland, Sengupta, Luebke, Manocha,
Fast BVH Construction on GPUs, EGSR 2009

— Radix Sort

— Satish, Harris, Garland, Designing efficient sorting algorithms for
manycore GPUs, IEEE Par. & Distr. Processing Symp., May 2009

— Ray Tracing

- Aila and Laine, Understanding the Efficiency of Ray Traversal on GPUs,
HPG 2009

- Roger, Assarsson, Holzschuch, 2Whitted Ray-Tracing for Dynamic
Scenes using a Ray-Space Hierarchy on the GPU, EGSR 2007.

1. Stream Compaction - shadows

Alias Free Hard Shadows
— Resolution Matched Shadow Maps, by Aaron Lefohn,
Shubhabrata Sengupta, John Owens, Siggraph 2008
= Prefix sum, stream compaction, sorting

- Sample Based Visibility for Soft Shadows using Alias-

free Shadow Maps, by Erik Sintorn, Elmar Eisemann, Ulf
Assarsson, EGSR 2008

= Prefix sum

2. Prefix Sum

input1394257184593

Output o |1 |4 |13]15

Each output element is sum of all preceding input elements

= Good for
— Solving recurrence equations
— Sparse Matrix Computations
— Tri-diagonal linear systems
- Stream-compaction

3. Sorting

Radix Sort:

— Nadathur Satish, Mark Harris, Michael Garland

Designing Efficient Sorting Algorithms for Manycore GPUSs,
IEEE Parallel & Distributed Processing Symposium, May 2009.

— Markus Billeter, Ola Olsson, Ulf Assarsson

Efficient Stream Compaction on Wide SIMD Many-Core
Architectures”, HPG, 20009.

= Parallel algorithms often targets unlimited #proc
and have complexity O (n log n)

E.g.: 1a

X

C

X

X

X

F

X

X

Evaluate Predicate => Flag Array

0

1

1

1

0

0

0

1

0

0

Exclusive Prefix Sum

2

2

3

4

5

5

5

5

6

6

Scatter/Gather Valid Elements

F

G

= But actual #proc are far from unlimited

Beyond Programmable Shading

14

Stream Compaction
= More efficient option (~Blelloch 1990):

Split input among processors and work sequentially on each part

E.g.: Each stream processor sequentially compacts one part of stream

StreamProc 0 StreamProc 1 StreamProc 2 . .

N A AN
s Y Y N

Input

...removing the unwanted
elements inside each part

StreamProc 0 ... ~— ——
A

4 N

| | | |

...then concatenate parts

Output] [] |

Stream Compaction

= BUT:

= Naively treating each SIMD-lane as one processor gives
horrible memory access pattern

StreamProc 0 StreamProc 1 StreamProc 2 ...
A A A

Input ;II Y_Il Y_Il _II

Mem read 0

. Mar{y versions of algorithms improving access pattern
= We suggest treating hardware as a

— Limited number of processors with a specific SIMD width
— GTX280: 30 processors, logical SIMD width = 32 lanes
(CUDA 2.1/2.2 APT)

Stream Compaction

= Qur basic idea:

Split input among processors and work sequentially on each part

Each (multi-)processor sequentially compacts one part of stream
Proc 0 Proc 1 Proc 2

A N N
s Y Y N

Start by computing
output offsets for
each processor

Proc 0 —~ —

N
4 N

| | |

...removing the unwanted
elements inside each part

...then concatenate parts

Stream Compaction

= Computing the processors’ output offsets:

— Each processor counts its number of valid elements
(i.e., output length)

— Compute Prefix Sum array for all counts
— This array tells the output position for each processor

Proc 0 Proc 1 Proc 2
A A A
4 Y Y N
Input:
Counts = { #valids, #valids, #valids, #valids }

#valids for #valids for #valids for #valids for)

Prefix sum={ 0 , , .
/ / Po W PotP 1P, Pot---Pyp.-1

Output: |2 Fr = =] |

b —] ———
Stream Compaction a

v

= Computing the processors’ output offsets:

— Each processor counts its number of valid elements
(i.e., output length)

— Compute Prefix Sum array for all counts
— This array tells the output position for each processor

Proc 0 Proc 1 Proc 2
A A A
4 Y Y N
Input:
Counts = { #valids, #valids, #valids, #valids }

#valids for #valids for #valids for #valids for)

Prefix sum={ O , , .
/ / Po W PotP 1P, Pot---Pyp.-1

Output: |2 F & =] |

Stream Compaction

= Each processor counts its number of valid elements

w = SIMD width
Proc 0 N Proc 1
4 '
w elems w elems

= Each processor:

— Loop through its input list:
- Reading w elements each iteration
— Perfectly coalesced (i.e., each thread reads 1 element)

- Each lane (thread / stream processor) increases its counter if its element is
valid

- Finally, sum the w counters

Stream Compaction

= Qur basic idea:

Split input among processors and work sequentially on each part

Each processor sequentially compacts one part of stream
Proc 0 Proc 1 Proc 2

A N N
s Y Y N

...removing the unwanted

Compact each o
g elements inside each part

processor’s list

Proc 0 —~ ——

N
4 N

|] | |

...then concatenate parts

V

Stream Compaction

= Compacting the input list for each SIMD-processor

w = SIMD width
Proc 0 Proc 1
a A Y
Input: || W elems w elems

Output.

= Each processor:

— Loop through its input list:
P) P POPC

— Reading w elements each iteration SSE-Movmask
— Perfectly coalesced (i.e., each thread reads 1 element) Any/All
- Use a standard parallel compaction for w elements

— Write to output list and update output position by #valid elements

Stream compaction with
— Optimal coalesced reads

— Good write pattern

0.9

0.85

Stream Compaction (4M elements — 32bit)

—<— Buffered
—©&— Staged
—+&— Scatter
—#— Selective

30 40
Proportion of valid elements (%)

50

60

70

80 90

100

23

Steam Compaction

= [n reality we use:

- GTX280:

= P = 480 to increase occupancy and hide mem latency

— 30x4 blocks a 4 warps a 32 threads
— Hardware specific

= Highest memory bandwidth if each lane fetches 32 bit
data in 64 bit units (i.e., 2 floats instead of 1).

— Hardware specific

m 32 bit fetches 64 bit fetches 128 bit fetches

Bandwidth (GB/s) 77.8 102.5 73.4

Beyond Programmable Shading

24

Stream Compaction

= Qur Trick:

= Avoiding algorithms designed for unlimited #processors

= Sequential algorithm - very simple

= Split input into many independent pieces, apply sequential
algorithm to each piece and combine the results later
— Divide work among independent processors

- Use SIMD-sequential algorithm on a processor
i.e., fetch block of w elements
Use parallel algorithm when working with the w elements
- Work in fast shared memory

Stream Compaction

= The evolution of stream compaction algorithms:

shaders

CUDA

Algorithm 4M elements | NVIDIA

" Horn (2005) 60 ms

— ..modified with Blelloch’s prefix sum 37.2 ms

Roger, Assarsson, Holzschuch (2007) 13.7 ms
Ziegler, Tevs, Theobalt, Seidel (2006) 3.56

2.54 ms
CUDPPI (2009) 1.81 ms
Billeter, Olsson, Assarsson (2009) 0.56 ms

" What will be next... ?

Geforce 8800
Geforce 8800
Geforce 8800

Geforce 8800
GTX280
GTX280

GTX280

'CUDPP: Mark Harris, John D. Owens, Shubhabrata Sengupta,

Yao Zhang, Andrew Davidson.

 Harris, Sengupta, and Owens. "Parallel Prefix Sum (Scan) with CUDA". GPU Gems 3, 2007.

» Sengupta, Harris, Zhang, and Owens. "Scan Primitives for GPU Computing". Graphics

Hardware 2007.

Our Stream Compaction

Markus Billeter, Ola Olsson, Ulf Assarsson, “Efficient Stream Compaction on Wide
SIMD Many-Core Architectures”, HPG, 20009.

Code downloadable here: www.cse.chalmers.se/~billeter/pub/pp

Stream Compaction

CUDPP - 32 bit
—<&— Geometry Shader
—6— Our - 32 bit

Our - 64 bit
—*— Our - 128 bit

Time (ms)

10M 20M 30M 40M
Number of elements
The error bars display variations in time as the proportion of valid elements is changed.

The graphs represent the average time for varying proportions of valid elements. Also
shown are curves for compaction of 64 bit and 128 bit elements.

Making a fast Prefix Sum

= Simple modification:
Split input among processors

Proc 0 Proc 1 Proc 2
A A A
4 Y Y N
Sum= { 2, 2, 2, ... 2}
Prefix Sum= { 2p,, 2Po+1 » 2Po+142 2P0+ 1+...+p-1

1. Each processor computes the sum of all its elements

2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

= Simple modification:
Split input among processors

Proc 2
A A A
4 Y Y N
Sum= { 2, 2, 2, ... 2}
Prefix Sum= { 2p,, 2Po+1 » 2Po+142 2P0+ 1+...+p-1

1. Each processor computes the sum of all its elements

2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

= Simple modification:
Split input among processors

Proc 2
A A A
4 Y Y N
Sum= { 2, 2, z, .. 2}
Prefix Sum= { 2p,, 2Po+1 » 2Po+142 2P0+ 1+...+p-1

1. Each processor computes the sum of all its elements
2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

= Simple modification:
Split input among processors

Proc 2
A A A
s ' ' R
Sum= { =, 5, 5, ... 5)
Prefix Sum = { Zpo y Zp0+1) Zpo+1+2) ZpO+1+...+#p-1

1. Each processor computes the sum of all its elements
2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

= Simple modification:
Split input among processors

Proc 0 Proc 1 Proc 2 »
A A A
4 Y~ h'd N\
EEEEE.
Sum= { 2, 2, 2, ... 2}
Prefix Sum = { Zpo y Zp0+1) zpo+1+2) Zpo+1+...+#p-‘l

1. Each processor computes the sum of all its elements
2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

= Simple modification:

Split input among processors
Proc 0 Proc 1 Proc 2

A
4 Y

Sum= { X, 2}

Prefix Sum = { po ’ ZpO+1+...+#p-‘I

1. Each processor computes the sum of all its elements
2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

= Simple modification:
Split input among processors

A N N
4 Y Y N

Sum= { I, 5 . 5)

Prefix Sum= { 2p,, 2Po+1 » 2Po+142 2P0+ 1+...+p-1

1. Each processor computes the sum of all its elements

2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

1. Each processor computes sum of its elements:

w = SIMD width
Proc 0 N Proc 1
4 '
w elems w elems

= Each processor:

— Loop through its input list:

- Reading w elements each iteration
- Perfectly coalesced (i.e., each thread reads 1 element)

— Each lane adds its element to its own counter
- Finally, sum the w counters

Making a fast Prefix Sum

= Simple modification:
Split input among processors

A N N
4 Y Y N

Sum= { I, 5 . 5)

Prefix Sum = { Zpo y Zp0+1) Zpo+1+2) Zpo+1+...+#p-1

1. Each processor computes the sum of all its elements
2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

= Simple modification:
Split input among processors
Proc 2

A N\
EEERND
2, ...

A A
4 Y Y

Sum= { X, >, 2 }

Prefix Sum= { 2p,, 2Po+1 » 2Po+142 2P0+ 1+...+p-1

1. Each processor computes the sum of all its elements
2. Compute a prefix sum over the p sums

3. Each proc executes a SIMD-sequential prefix sum for its
elements

— and simultaneously adds the sum in all previous sublists

Making a fast Prefix Sum

3. Each processor executes a SIMD-sequential prefix sum of
all its elements:

w = SIMD width
Proc 0 Proc 1
a A Y
Input: | W elems w elems

Output.

= Each processor:

— Loop through its input list:
— Reading w elements each iteration
— Perfectly coalesced (i.e., each thread reads 1 element)
— Compute a standard parallel prefix sum for w elements

— Write to output list
— Perfectly coalesced

Results: Prefix Sum

= Easier than compaction
— Number of output elements is equal to inputs
= perfect coalescing when reading and writing!

5_

» Results: 32bit elements

451

[
"g’ 25
|_
4M elements: 2t
Our GTX280 3.7 ms 1 -~
CUDPP GTX280 5.3 ms 0.5r — CUDPP|

5M 10M 15M 20M 25M 30M
Elements

Radix Sort

= "Stream split”

— Like compaction
— Place invalid elements in second half of the output buffer

= Radix Sort
— Apply stream split once for each bit in the key

Radix Sort

= Radix sorting a stream of n 32-bits elements:

S = Stream of n elements
For i=0..31

S Elements in S
with bit<i> =0

Elements in S
with bit<i> =1

Using stream split

Only 32 invocations of the stream split function

— Internal order of valid/invalid elements must be preserved in each

split

Result: sorting 4M 32-bits elements (key/value) in 29 ms,

GTX280.

Time (ms)

32bit keys only 32bit key/value pairs
180
250
160
140_ 200_
120+
100 2 150)
£
80 =
50 CUDPP 1001
?)DK —PTédleon CUDPP
40+ ur - Man 50l SDK - RadixSort
20+ Our
4M 8M 12M 16M 20M 24M 28M 4M 8M 12M 16M 20M 24M 28M
Elements # Elements

Code downloadable here: www.cse.chalmers.se/~billeter/pub/pp

Beyond Programmable Shading 42 42

Mirrors Edge

THE J
.] - l”J

an
(1]IHF

FRRRR My
TRRER
FERAREN
f'ARNN
I“TRARNGN
EERARC"!
I"NPRARNEL

]
o
!

s
FAa™RO
IFATne
IFAFNN
IRRATAE

Electronic Arts / DICE

: ! a Wl Iﬁg
uum Ay 5’ q
NP LI

-
ﬂ “...J--'-‘ JJ

o -

R
:: ‘-_‘..J.-‘“"‘ '.

e .--'-
:

|
e : 1
M ey |
-1““--..-.- e

-~-=§;§.,“g“‘r{i

-ua- qgj]gi
ﬂ’**.“"“ﬂ"]

u.- -

an wnn-n

Hair Rendering - state of the art (realtime)

In recent games In recent research

State of the art (realtime)

A few hundred Half a million individual line
textured polygons segments

Hair Rendering

» Refreshed version of:

— Erik Sintorn, UIf Assarson. Real-Time Approximate
Sorting for Self Shadowing and Transparency in Hair

Rendering. 13D 2008.

Hair Rendering

= Hair is challenging to render in realtime
because:

— For realistic results, hair 1geometry must be _
hundreds of thousands of very thin primitives (in
realtime, lines)

— Good looking images have been produced using
textured patches, but these look bad when
animated (viewed from the wrong angle)

- The often subpixel sized, fairly transparent,
primitives must be alpha blended

- The self shadowing effects are crucial to realism,
and cannot be handled by standard _
shadowmapping / stencil shadow techniques

Real time hair rendering

Two main challenges

Self shadowing

» Standard shadowing techniques fail
« Shadow Maps => aliasing at sillhouette edges
« Shadow Volumes => overdraw proportional to the
number of sillhouette edges
« Hair is ALL sillhouette edges

* Neither technique handles transparency

ST =

==~ Transparency

1« Each strand should contribute very little to a pixel
(~1%)

I Hair strands are actually refractive and at least some
transparency effect is required

 Alpha blending works very well to handle this

7
e

N
|
S
B
»
S
2
&

NZSRSZaZ
ZARNENS

Aliasing

A
z<|
A
<

=

L
bt
C
SN
v

[
J/J//

AR

7".
/A/

T

7 LA

OIS

|
1]
v
Bl
L]

Ne
e
Tl
\o
N

AN

\‘\' o.
N

AN ZED7
Vbl RO/

NTE
I
=AY
2

| 11/

(a) (b)

Figure 2: Variance contributions to stratified sampling. (a) When a
single silhouette edge passes through the filter region, O(N 1/ 2) sam-
ples contribute to the variance. (b) When the filter region is covered
with fine geometry, all N samples contribute to the variance, resulting
in a much larger expected error.

From: Tom Lokovic and Erich Veach, “Deep Shadow Maps”, pp
385-392, Siggraph 2000.

Importance of Shadows

Images from: Tom Lokovic and Erich Veach, “Deep Shadow Maps”,
pp 385-392, Siggraph 2000.

Beyond Programmable Shading

51

Importance of Shadows

» The need for selfshadowing

Importance of Shadows

With hair self shadowing

Without hair self shadowing

Importance of Transparency

= Hair is sub-pixel sized and transparent, alpha blending is absolutely
necessary

Without alpha blending With alpha blending

B e —

o

Importance of Transparency

Hair rendered without alpha blending. Hair rendered with alpha blending (= 0.2).

Beyond Programmable Shading 55

For shadows, we want to know

how much the hair fragments, For alpha blending, we need
in front, blocks the light the fragments sorted on their
- Can be solved by sorting depth

Related Work

KAJIYA AND KAY. Rendering fur with threedimensional textures, SIGGRAPH 1989.

LOKOVIC AND VEACH. 2000. Deep shadow maps. In SIGGRAPH 2000.

MARSCHNER, JENSEN, CAMMARANO, WORLEY, AND HANRAHAN. Light scattering from human hair
fibers. ACM Trans. Graph. 2003.

MERTENS, KAUTZ, BEKAERT, AND REETH. A self-shadow algorithm for dynamic hair using density
clustering. In SIGGRAPH 2004 Sketches. 2004.

ZINKE, SOBOTTKA, AND WEBER. Photorealistic rendering of blond hair. In Vision, Modeling, and
Visualization (VMV04), 2004.

NGUYEN AND DONELLY. Hair animation and rendering in the nalu demo. GPU Gems 2. 2005.

WARD, BERTAILS, KIM, MARSCHNER, CANI, AND LIN. A survey on hair modeling: Styling, simulation, and
rendering. IEEE Transactions on Visualization and Computer Graphics 2007.

SINTORN, E., AND ASSARSSON, U. 2008. Real-time approximate sorting for self shadowing and
transparency in hair rendering. In 13D 2008.

ZINKE, YUKSEL, WEBER, AND KEYSER. Dual scattering approximation for fast multiple scattering in hair.
ACM Trans. Graph. 2008.

Related Work

= Opacity Shadow Maps

- by Tae-yong Kim and Ulrich Neumann, Rendering
Techniques 2001

= Deep Opacity Maps
- by Cem Yuksel and John Keyser, Eurographics 2008

Opacity Maps

» Build a 3d texture where each slice represents the
hair opacity at a certain distance from light

= Each texel = amount of shadow
= Two classic options

— Advance far plane per slice

— Advance both near + far
plane and copy result from
previous slice.

Essentially a 3D-texture with

shadow values.
Each slice: 512x512 texels

256 slices

Opacity Maps

» Build a 3d texture where each slice represents the
hair opacity at a certain distance from light

= Each texel = amount of shadow
= Two classic options
- Advance far plane per slice

— Advance both near + far
plane and copy result from
previous slice.

Essentially a 3D-texture with

shadow values.
Each slice: 512x512 texels

256 slices

Opacity Maps

» Build a 3d texture where each slice represents the
hair opacity at a certain distance from light

= Each texel = amount of shadow
= Two classic options
— Advance far plane per slice

- Advance both near + far
plane and copy result from
previous slice.

Essentially a 3D-texture with

shadow values.
Each slice: 512x512 texels

256 slices

Opacity Maps

» Build a 3d texture where each slice represents the
hair opacity at a certain distance from light

= Each texel = amount of shadow
= Two classic options

— Advance far plane per slice

— Advance both near + far
plane and copy result from
previous slice.

= Disadvantage

— All geometry sent for
rendering for each slice

Essentially a 3D-texture with

shadow values.
Each slice: 512x512 texels

256 slices

Opacity Maps

» Build a 3d texture where each slice represents the
hair opacity at a certain distance from light

= Each texel = amount of shadow
= Wish:

— Know which hair strands
that should be rendered
into which slice

= Advantage

— All hair strands just
rendered once.

Opacity Maps

= In NVIDIA’s Nalu demo, an implementation is
suggested that renders 16 slices in one pass,
by:
— rendering opacity to
four channels of four
rendertargets.

Beyond Programmable Shading

= In general, 16 slices is not enough:

» Today 32 rendertargets possible

— But generates 32 writes per hair

fragment which is slow!

Beyond Programmable Shading 65

Partial-Radixsort of hair strands

= Our original method used a partial quicksort
algorithm based on geometry shaders

» Partial radix sort is much faster...
— Sort on the lines’ center points. Divide into 256 buckets

Partial-Radixsort

= Quick sort would require n-1 stream split calls
— (not feasible)

— Partial quick sort into 256 buckets requires 255 calls
= Still quite expensive

= Radix sort of 32 bit numbers requires 32 stream
split calls

= Partial radix sort into 256 buckets requires 8 calls
— Fast

Building the Opacity Map Texture

= Now, it is easy to build the opacity map texture by:

— Enabling additive
blending

— Set up camera from lights
viewpoint

— For each slice s

e Render bucket s into the
texture-slice

e Copy the texture-slice to
texture-slice s+1

Building the Opacity Map Texture

weakBar

Show Light ON
Draw plane OFF
Show opacity .. ON
Blur opacity OFF
Camera speed -0.200
Light speed -0.2
Zoom speed -0.100
Shading

Hair Ks 0.400
Hair p 20
Hair Ks2 0.
Hair p2 50.0
Hair shift 0.100
Hair alpha 0.072
Hair shadow w.. 0.014
Line width 2
Colors

ZBackground C.. []

Alpha Sorting

= With radix sorting, alpha blending is easy

= Simply sort geometry into sublists for each slice of the
viewing frustrum from the cameras viewpoint

» This time, sort back to front
= Render the generated VBO

\\

—~

\\\\\
(I

W -
N4 \ «\‘f

111U | _—

/

Results

About half a million line segments rendered with 256 Opacity Map slices and approximate alpha sorting
at 37 fps (GTX280)

Results

27 fps using 400k hair strands
(1.8M line segments)

Beyond Programmable Shading 73

Drawback

= Working memory consumtion:
- e.g. 512x512x256 = 64Mb
- independent of #objects

= Solutions
— NVIDIA" GDC-presentation 20009:

Advanced Visual Effects with Direct3D
for PC, Cem Cebenoyan, Sarah Tariq,
and Simon Green

Or

— Erik Sintorn, UIlf Assarson. Hair Self
Shadowing and Transparency Depth

Ordering Using Occupancy maps. 13D
20009.

Solution 1:

= Use only one sorting pass

— that sorts into slices along vector half way between
light and view direction

— This allows 2D-shadow texture instead of 3D-texture

(a) (b)

Image from: Volume Rendering Techniques, Milan Ikits, Joe Kniss, Aaron Lefohn, Charles
Hansen. Chapter 39, section 39.5.1, GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics(2004).

Solution 1: & + (1-a)b

= Alpha blending either back-to-front or front-to-back

— Render slices to screen using the 2D-shadow texture

- If 8<90°, in front-to-back order
- Else, in back-to-front order

— Render slice into shadow texture

(a) (b)

Image from: Volume Rendering Techniques, Milan Ikits, Joe Kniss, Aaron Lefohn, Charles
Hansen. Chapter 39, section 39.5.1, GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics(2004).

Solution 1: Caveat

= Possible caveat for rectangles and lines

Yrt order

/

Incorrect front-to-back order

But the sorting only needs to be approximate anyway

Solution 2:

= If all hair strands have identical alpha-
value:

— Erik Sintorn, UIlf Assarson. Hair Self
Shadowing and Transparency Depth

Ordering Using Occupancy maps. 13D
20009.

opacity

opacity

i& \
N
NN
N

N
AR

depth

Timings

Algorithm steps
Sorting -incl both:

Create key/value-
pairs

Sort into buckets
Shadows :

Create shadow-map
Create opacity maps
Render:

body with hair

hair with shadows
Total:

The End

Implementation of stream compaction,
prefix sum and radix sort available at

* http://www.cse.chalmers.se/~billeter/pub/pp

Thank you for your attention.

Questions?

These slides are available at:
http://www.cse.chalmers.se/~uffe/publications.htm

A
z<|
v
A
2<|

PN R R
TN SN
TSN [e
K NN T |- [
NIAR RN
N

S
b
X
N

NS e

NS
A
=

>

£

—_
N>

(a)

Figure 2: Variance contributions to stratified sampling. (a) When a
single silhouette edge passes through the filter region, O(N 1/ 2) sam-
ples contribute to the variance. (b) When the filter region is covered
with fine geometry, all N samples contribute to the variance, resulting
in a much larger expected error.

FPS: 3.607504 (277.200000 ms/frame) [496, 787]

TweakBar

Show Light

Draw plane

Show opacity m..

Blur opacity

Camera speed

Light speed

Zoom speed

Shading

Hair Ks

Hair p

Hair Ks2

Hair p2

Hair shift

Hair alpha

Hair shadow we..

Line width

Colors
ZIBackground Co..
ZIHair Color

Model another.e..

