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Abstract

Causality visualization is an important tool for many sci-
entific domains that involve complex interactions between
multiple entities (examples include parallel and distributed
systems in computer science). However, traditional vi-
sualization techniques such as Hasse diagrams are not
well-suited to large system executions, and users often have
difficulties answering even basic questions using them, or
have to spend inordinate amounts of time to do so. In
this paper we present the Growing Squares and Growing
Polygons methods, two sibling visualization techniques that
were designed to solve this problem by providing efficient 2D
causality visualization through the use of color, texture, and
animation. Both techniques have abandoned the traditional
linear timeline and instead map the time parameter to the
size of geometrical primitives representing the processes;
in the Growing Squares case, each process is a color-coded
square that receives color influences from other process
squares as messages reach it; in the Growing Polygons case,
each process is instead an n-sided polygon consisting of
triangular sectors showing color-coded influences from the
other processes. We have performed user studies of both
techniques, comparing them with Hasse diagrams, and they
have been shown to be significantly more efficient than
old techniques, both in terms of objective performance
as well as the subjective opinion of the test subjects (the
Growing Squares technique is, however, only significantly
more efficient for small systems).

Keywords: causal relations, information visualization, in-
teractive animation

1 Introduction

It is part of human nature to not simply accept things as
they are, but to search for reasons and to try and answer
the question “why?”. Thus, the concepts of cause and effect
have always fascinated human beings, and also lie at the
core of modern science. In order to fully understand the
workings of a system, a scientist often needs to ascertain
its underlying mechanisms by observing their visible effects.
Or, as Aristotle puts it in Physics II.3 [Aristotle 350 B.C.]:

Since we believe that we know a thing only when
we can say why it is as it is–which in fact means
grasping its primary causes (aitia)–plainly we
must try to achieve this [...] so that we may know
what their principles are and may refer to these
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Figure 1: Hasse diagram visualization with 3 processes.

principles in order to explain everything into which
we inquire.

Humans are particularly apt at inferring the cause for
simple physical processes merely by tracing its effects back-
wards, for instance by backtracking the path of a moving
billiard ball on a pool table to identify the cue ball that
struck it. However, as the number of action-reaction pairs
grows, the human mind reaches a point when it is no longer
able to cope. Continuing with the analogy above, fully com-
prehending the interactions, or causal relations, of all sixteen
balls moving and colliding on the billiard table is impossible
to do in real-time.

One way to allay this problem is to employ some kind
of graphical visualization that presents the information in
a more digestible format suitable for offline study. Sim-
ple directed-acyclic graphs (DAGs) or Hasse diagrams (also
known as time-space diagrams) offer an intuitive view of
these causal relations, but are unsuitable for studying the
node dependencies and information flow in a system, espe-
cially when the number of nodes and interactions grow.

In this paper, we present two novel visualization tech-
niques called Growing Squares and Growing Polygons, re-
spectively, that attack the problem of effective causality vi-
sualization through the use of animation, colors, and pat-
terns to provide an accessible overview of a system of causal
relations. Both techniques abandon the traditional linear
timeline of previous visualizations, and instead map the time
parameter onto the size of the geometrical entities represent-
ing the processes (squares versus n-sided polygons, respec-
tively). In the Growing Squares technique, we represent each
process in the system as a color-coded square, laid out in
a suitable way, and then intuitively “grow” these squares
as time progresses. Events that causally relate the pro-
cess squares influence their coloring, somewhat akin to how
color pools would spread out on a piece of paper (see Fig-



ure 5). The Growing Polygons technique, on the other hand,
is based on the idea of assigning each node in a system of n
processes not only a color and but also a triangular sector
in an n-sided polygon, and have each such process polygon
grow and be subsequently filled with the colors of the pro-
cesses influencing it. Since both the color and position of
each process sector are invariant, distinguishing between in-
dividual processes is easier than for the Growing Squares
technique and the visualization is therefore more scalable.

Chronologically, the Growing Squares method was devised
as a first alternative to Hasse diagrams, and the Grow-
ing Polygons method was later designed to address some
of the weak points of the Growing Squares. Both techniques
have been implemented and tested as part of a visualization
framework for causal relations we have developed, allowing
us to compare the new methods with each other as well as
with traditional techniques (see Figure 2). In addition, this
framework allows the user to dynamically select different
visualizations for the same system of causal relations, essen-
tially making it possible for the user to harness the strengths
of each technique dependent on the analysis task being per-
formed.

A formative evaluation, using a focus group consisting of
researchers working on distributed systems, was conducted
at the onset of the project in order to identify the tasks
associated with causal relations and to shape the design of
the visualizations. The insights gained through these discus-
sions were instrumental in guiding the development of both
methods. Furthermore, formal user studies of both visualiza-
tions were performed to ensure the validity of our findings.
The results from the Growing Squares study show that the
Growing Squares method is significantly faster and more ef-
ficient than Hasse diagrams for sparse data sets. However,
the new method is not significantly more efficient for dense
data sets. Test subjects clearly favored Growing Squares
over Hasse diagrams for all analysis tasks performed. Over-
all, the subjective ratings of the test subjects show that the
Growing Squares method is easier, feels more efficient, and
is more enjoyable to use than Hasse diagrams.

While the test subjects’ opinion of the Growing Squares
method were clearly favorable, the study revealed consider-
able room for improvement in the efficiency of the technique.
Fortunately, the results from our study of the Growing Poly-
gons method are much more positive: the improved method
is significantly faster and more efficient than Hasse diagrams
for both sparse and dense data sets when performing tasks
related to information flow in a system (i.e. not only for
sparse sets as for the Growing Squares method). In addi-
tion, subjects have a much higher correctness rate using our
technique to solve tasks than when using Hasse diagrams.
Furthermore, the subjective ratings of the subjects show
that the new method, just as the previous Growing Squares
method, is perceived as more efficient as well as easier and
more enjoyable to use than Hasse diagrams.

The structure of this paper is as follows: We first describe
the existing work in the field, followed by a background of
causal relations, how to visualize them, and our software
framework. Then, we describe the Growing Squares method,
including details on design and implementation, and present
the user study we conducted. After that, we introduce the
improved Growing Polygons method and go through its de-
sign, implementation, and the user study we performed on
it. The final sections of this paper deals with the results we
obtained and our interpretation of them.

2 Related Work

There has been surprisingly little work performed in the area
of causality visualization, and the prevalent visualization
method is still the traditional Hasse (also known as time-
space) diagram. Figure 1 shows an example of a time-space
diagram for a system comprised of three processes, where
the progress of each process is described by a directed hori-
zontal line, the process line. Time is assumed to move from
left to right. Events are symbolized by dots on the pro-
cess lines, according to their relative order of occurrence.
Messages are shown as arrows connecting send events with
their corresponding receive events. Visualizations of causal
relations in the form of such time-space diagrams are cur-
rently quite standard in visualization and debugging plat-
forms for parallel and distributed systems, and the num-
ber of such platforms is too large to allow discussing them
all; we will just focus on a few of the noteworthy systems.
One of the first of the new generation of visualization tools
to include the time-space diagram was the Voyeur [Socha
et al. 1989] system, which provided a framework for defining
various animation views for parallel algorithms. The TOP-
SYS [Bemmerl and Braum 1993] environment includes vari-
ous standard concurrency visualizations (called VISTOP) in-
tegrated with the debugging and performance analysis tools
of the system, with time-space visualization being one of
them. Using this process-based concurrency view, users can
identify synchronization and communication bugs. Going
one step further, the conceptual visualization model of the
VADE [Moses et al. 1998] system is based on the causal re-
lation notion. VADE is also geared towards more general
algorithm visualization, and supports not only communica-
tion events but also other algorithmic objects and events.
Also of interest is LYDIAN [Koldehofe et al. 1999], an ed-
ucational visualization system, which by default constructs
the time-space diagram for every algorithm implemented in
the system. Kraemer and Stasko [Kraemer and Stasko 1998]
describe the essential characteristics of toolkits for visual-
ization of concurrent executions, and introduce their own
system, called Parade. Parade also includes an animation
component called the Animation Choreographer that orders
display events from a trace file in much the same way as the
techniques described in this paper. Also, for the purpose of
our study, the Hasse visualization used in Figure 1 is very
similar to the time-space visualization view from the Para-
Graph system [Heath 1990; Heath and Etheridge 1991] and
its adaption in the PVaniM tool [Topol et al. 1998], as well
as the Feynman or Lamport views from the Polka animation
library [Stasko and Kraemer 1993].

While Hasse diagrams certainly are in widespread use,
they have a number of deficiencies that lower their useful-
ness for realistic systems. First of all, a Hasse diagram offers
only local dependency information for each process and not
the transitive closure of all interactions involving it, mak-
ing it difficult to gain an overview of the overall information
flow in the system; in essence, the user is forced to manu-
ally backtrace every single message and process affecting a
specific process to find its dependencies. Second, the fine
granularity of the visualization makes Hasse diagrams diffi-
cult to use for large systems of ten or more involved nodes;
the amount of intersecting message arrows simply becomes
too overwhelming for complex executions. And third, Hasse
diagrams are intrinsically static in nature and thus make
little use of the interactiveness of the computer medium; an-
imation and creative use of color are likely to be useful tools
in this kind of visualization.



Ware et al. [Ware et al. 1999] presented a new visual-
ization construct called a visual causality vector (VCV) that
represents the perceptual impression of a causal relation and
employed animation to emphasize this relation in a directed
acyclic graph. Three different VCVs were introduced based
on different metaphors: the pin-ball metaphor, where the
VCV is a ball that moves from the source to the destina-
tion node, striking the destination and making it oscillate;
the prod metaphor, where the VCV is a rod that extends
from the source to prod the destination; and finally a wave
metaphor, where the VCV accordingly is an animated wave
that moves towards the destination node. However, while
these constructs are certainly an improvement over a simple
DAG representation of causal relations, they do nothing to
battle the complexity of large systems with many nodes and
relations. In fact, Ware’s primary contribution is the inves-
tigation of timing concerns for the perception of causality for
users, not the visualization technique per se. It might still
be interesting to incorporate Ware’s VCVs into our system
in some form.

3 Background

In modern use, the notion of causality is associated with the
idea of something (the cause) producing or bringing about
something else (its effect). In general, the term “cause” has
a broader meaning, equivalent to an explanatory or reason-
ing tool. Identifying causal relations in a complex system
can be the first step towards understanding the underly-
ing mechanisms that determine the system’s laws. As such,
causal relations cover a wide variety of software domains
where causality are of importance.

More specifically, causal relations play a vital role in un-
derstanding how any kind of complex system works, espe-
cially those involving several concurrent processes interact-
ing with each other. Our interest originates mainly from
the viewpoint of distributed and parallel computing, where
causal relations are used extensively for example (i) in dis-
tributed database management to determine consistent re-
covery points; (ii) in distributed software systems for deter-
mining deadlocks; (iii) in distributed and parallel debugging
for detecting global predicates and detecting synchroniza-
tion errors; (iv) in monitoring and animation of distributed
and parallel programs to determine the sequence in which
events must be processed so that cause and effect appear
in the correct order; and (v) in parallel and distributed soft-
ware performance to determine the critical path abstraction:
the longest sequential thread, or chain of dependencies, in
the execution of a parallel or distributed program. Improv-
ing the graphical visualization of causal relations will thus
benefit all these activities.

In this section we give a brief background to the causality
visualization problem, including a brief formal introduction
to causal relations, a description of the various analysis tasks
involved when studying causal relations, and a presentation
of CausalViz, our software platform for causality visualiza-
tion.

3.1 Causal Relations

A causal relation is the relation that connects or relates two
items, called events, one of which is a cause of the other.
Obviously, for an event to cause another, it is not sufficient
that the second merely happens after the first; however, it
is well accepted to state that this is necessary, and temporal
order can be relied on to explain the asymmetrical direction

of causal relations1. All events connected in the causal rela-
tion are part of a set of processes, labelled P1, . . . , PN , each
of which can be thought of as a disjoint subset of the set of
all events in a system. Events performed by the same pro-
cess are assumed to be sequential; if not, we can split the
process into sub-processes. Thus, it is convenient to index
the events of a process Pi in the order in which they occur:
Ei = ei

1, e
i
2, e

i
3, . . .

For our purposes, it suffices to distinguish between two
types of events; external and internal events. Internal events
affect only the local process state. An internal event on pro-
cess Pi will causally relate to the next event on the same
process. External events, on the other hand, interconnect
events on different processes. Each external event can be
treated as a tuple of two events: a send event, and a corre-
sponding receive event. A send event reflects the fact that
an event, that will influence some other event in the future,
took place and its influence is “in transit”; a receive event
denotes the receipt of an influence-message together with the
local state change according to the contents of that message.
A send event and a receive event are said to correspond if the
same message m that was sent in the send event is received
in the receive event.

We now formally define the binary causal relation →

over all the events of the system E (→⊆ E × E) as the
smallest transitive closure that satisfies the following prop-
erties [Lamport 1978]:

1. If ei
k, ei

l ∈ Ei and k < l, then ei
k → ei

l.

2. If ei = send(m) and ej = receive(m), then ei
→ ej

where m is a message.

When e → e′, we say e causally precedes e′ or e caused e′.
Causal relations are irreflexive, asymmetric, and transitive.

3.2 Analysis Tasks

At the onset of our investigation into visualization of causal
relations, we organized a formative evaluation of these con-
cepts using a focus group consisting of researchers from our
university working on distributed systems. The evaluation
took the shape of a panel discussion on questions related
to causal relations and their use, and six researchers from
the Distributed Computing & Systems group at the Depart-
ment of Computing Science at Chalmers participated in the
session. These discussions allowed us to identify the typ-
ical analysis tasks a user is interested in when studying a
distributed system, and were vital in tailoring our visualiza-
tion to these tasks. Below follows a short overview of these
analysis tasks.

Lifecycle Analysis The lifecycle of individual processes are
often of great interest when analyzing a system of causal
relations. This includes aspects such as the duration of a
process as well as its starting and stopping times (both in
isolation as well as in relation to other processes), aspects
that are vital in understanding how a system works.

1It has been argued that not even this is necessary, and that
both simultaneous causation and “backwards causation” (effects
preceding their causes) are at least conceptually possible. This, on
the other hand, causes problems when considering the asymmetric
nature of causal relations.



Influence Analysis The analysis of influences and depen-
dencies in a distributed system was found to be one of the
most important analysis tasks when studying the flow of in-
formation in a system. Designing, debugging, or trying to
grasp the underlying mechanisms of a distributed system or
algorithm all involve this task.

Inter-Process Causal Relations Often, a practitioner
studying a system of causal relations needs to know whether
two nodes, Pi and Pj , in the system are causally related, i.e.
if there exists an event ei

∈ Ei and an event ej
∈ Ej such

that ei
→ ej . Of course, this causal relation can go through

several levels of transitive indirection, and is therefore quite
difficult to spot manually or by using Hasse diagrams (as we
will see).

3.3 The CausalViz Framework

In order to test the Growing Squares and Growing Polygons
techniques and to subsequently be able to perform user stud-
ies on their effectiveness, we implemented a general applica-
tion framework for the visualization of causal relations called
CausalViz (see Figure 2). The framework is implemented in
C++ on the Linux platform and uses the Gtk+/Gtk– widget
toolkits for user interface components as well as OpenGL for
graphical rendering.

Figure 2: The CausalViz application.

3.3.1 System Architecture

The architecture of the CausalViz application (see Figure 3)
is based around a single partially ordered set (poset) repre-
senting the execution data under study. A number of visu-
alization components observe this set and present graphical
representations of the data (potentially allowing for the set
to change during run-time). There currently exists three dif-
ferent visualizations, i.e. traditional Hasse diagrams, the 2D
Growing Squares, and the prototype 3D Growing Pyramids.

Central in the system architecture is the application man-
ager that creates all the other components, manages the
graphical user interface (GUI), and performs loading of data
files into the application (stored in a general XML format for

partially ordered sets). In order to allow for the animation
of events in the visualizations, there also exists a general an-
imation manager thread that the visualization components
can use to smoothly interpolate values in the poset with re-
spect to time.

Poset Animation
Manager

HasseViz

controls

GUIXML

usesrenders

creates

renders/uses

SquareViz PolygonViz

Application Manager

Figure 3: CausalViz system architecture.

Figure 4: CausalViz Hasse visualization.

3.3.2 Poset Management

System execution traces are stored in a general XML file
format for partially ordered sets. Here, a process Pi is rep-
resented by the subset Ei ⊆ E of all the events in the system
belonging to the process and a set of messages Mi. Messages
are partial orderings between events in different subsets (pro-
cesses), and can thus be represented by pairs of events, i.e.
Mi ⊆ E × E. It is then up to the application to compute
the minimal transitive closure for the poset.

In the CausalViz application, the transitive closure is com-
puted using a modified topological sort [Cormen et al. 2001].



The objective of the algorithm is two-fold: (i) to derive the
transitivity information for each event (i.e. the processes
which have influenced it so far) and (ii) to assign the event
to a discrete time slot. This is done by greedily consuming
sequential events in each subset (i.e. process) of the poset
until reaching an event with unresolved dependencies (i.e.
a partial ordering to a previously unvisited event). When
this happens, the algorithm moves on to the next process to
continue from where it last left off. This is repeated until all
events in the system have been visited. The current influ-
ence of each event is easily maintained and updated during
this process, and illegal cyclic dependencies are trivially de-
tected by checking whether the algorithm has cycled through
all process without visiting any new events.

4 Growing Squares

As described earlier, there is surprisingly little work on visu-
alizations of causal relations besides various implementations
of Hasse diagrams, a fact which is especially curious in light
of the shortcomings of Hasse diagrams for understanding a
distributed system. The fine granularity of Hasse diagrams
defeat their use as overview tools, and they transfer the bur-
den of maintaining transitive relations to the user herself.
This means that a user studying the information flow in a
distributed systems visualized using a Hasse diagram might
potentially have to backtrace every single message and pro-
cess in order to get a clear picture of the influences in the
system.

The Growing Squares visualization technique (first pre-
sented in [Elmqvist and Tsigas 2003b]) was designed to help
the user quickly get an overview of the causal relations in
a system by making use of animation, color and patterns
in an intuitive way. The visual metaphor of the technique
is that of “pools” of color spreading on a piece of paper as
time progresses, each color and pool representing a specific
process or node in the system. Messages in the system are
shown as “channels” from one pool to another. Each color
pool will start growing at the time its corresponding process
is started, and accordingly stop growing when the process
stops executing events. The channels representing messages
from one process to another intuitively carry the color of
its source with it, resulting in the destination pool receiv-
ing this color as well. However, like age rings on a tree, the
color of the new influencing process will only be present in
the destination process starting from when the message was
received.

Figure 5 gives an example of a system with two processes,
P0 and P1, colored blue and white, respectively. The color
pools are represented as 2D squares which grow over time.
At a certain time t, P0 sends a message to P1 (denoted by the
arrow in the figure), establishing a causal relation between
P1 and P0. For all times t′ > t, the color pool of process
P1 now shows this influence from the blue P0 by means of a
checkered pattern combining the two colors.

In order to visualize the transitive property of the causal
relation (see the previous section), a similar color pattern
scheme is used. In Figure 6, process P1 is sending a message
to P2 (colored red) after having been influenced by a message
from P0. Now, both the color of the source process (white
from P1 itself) and any of its existing influences at the time
of sending the message (blue from P0) are transferred to
P2, making its texture from this time and onwards be a
checkered pattern of all of the three colors. It is now easy
to see that P2 is causally related to both P0 and P1.

1P P0

Figure 5: Simple example of the Growing Squares technique
with two processes.

1P P2P 0

Figure 6: Transitivity property of causal relations using
Growing Squares.

Multiple influences from the same source process will in-
crease the amount of the source process’s color in the texture
of the destination process. Even if the checkered pattern
makes it difficult to see the exact ratio, this fact can never-
theless be used as a visual indication that multiple influences
have occurred.

Having foregone a traditional timeline, the Growing
Squares method is dependent on animation to allow the
user to view the entire execution of the system under study.
Starting at t = 0, the user can advance the time in the
system to observe the system execution in chronological or-
der, or choose to view the situation at specific points in
time. This is another radical difference from Hasse diagrams;
Hasse diagrams are static in nature and do not benefit much
from animation, whereas Growing Squares are dynamic and
rely on animation to present the full data set to the user.

Figure 14 shows an example sequence consisting of 5 pro-
cesses in a distributed system visualized using the Growing
Squares technique. The state of the visualization is here
shown for each discrete time unit (in practice, the anima-
tion is fluid and continuous between the time steps) starting
at t = 1 and ending at t = 5, the end of the execution. Pro-
cesses are laid out in a clock-wise fashion with P0 at the top.
Screenshot (a) at t = 1 shows how P1 sends a message to P0,
starting it (it has zero size up until this time), and (b) at
t = 2 depicts the two colors (green and black) in the process
square of P0. In the same screenshot, P4 sends a message to
P1, causing P1 in (c) at t = 3 to hold influences from both P4

as well as indirectly from P3 (i.e. an example of the visual-
ization of transitivity in the Growing Squares visualization).
In (d) at t = 4, two messages originating from the otherwise
isolated P2 reach P0 and P4, its blue color showing in the
outer square of these two processes in snapshot (e) at t = 5.



4.1 Design

In order for the Growing Squares visualization to be effec-
tive, users must be able to easily distinguish between the
individual process colors in the system under study. Select-
ing a suitable color scale is thus an important aspect of the
method, and we investigated the use of perceptually uniform
color scales such as LOCS [Levkowitz and Herman 1992;
Levkowitz et al. 1992] for this purpose. However, we found
that the continuous nature of LOCS was not well-suited to
our problem since it made distinguishing between adjacent
colors difficult, and the scale itself included an inordinate
amount of dark colors. Instead, we opted for a simple color
scale with the individual colors uniformly distributed over
the RGB spectrum2.

One of the central features of the presented visualization
technique is that it draws process squares with the checkered
patterns containing all the colors of the processes that have
influenced the process. If the number of influences is large,
the on-screen space allocated for each color will be very small
and thus hard to distinguish (see [Wyszecki and Stiles 1991]
for in-depth information on color perception). In order to
still allow the visualization to be effective, we need a zoom
function that allows the user to effortlessly view the graphi-
cal representation at different magnification levels. We have
implemented a simple continuous zoom mechanism for this
purpose; in the future, it may be extended to borrow tech-
niques from the Pad [Perlin and Fox 1993] zoomable user
interface and its descendants [Bederson et al. 1996; Beder-
son et al. 2000].

It might be argued that using circles instead of squares
would have been more in keeping with the metaphor of color
pools spreading on a piece of paper. Our original intention
was also to use circles, but we ultimately chose squares for a
number of reasons: (i) the larger area of squares facilitates
color recognition better than circles, (ii) the layout of pro-
cess squares into grids is easier (no wasted space), and (iii)
squares are faster to render and easier to texture map (be-
sides, we felt it was more logical to have checkered squares
rather than checkered circles).

The Growing Squares visualization makes use of anima-
tion to display the dynamic execution of the system under
study. While it certainly is possible to maintain all mes-
sage arrows and just draw the visualization at full time, this
would result in many of these messages coinciding (as in
Hasse diagrams) and thus being hard to separate from other
messages, as well as being impossible to associate with a spe-
cific time. Animation solves these issues in a natural way.

Another design aspect of the Growing Squares visualiza-
tion is finding suitable layout methods for arranging the in-
dividual processes. Many such layout strategies exist. For
instance, if the data set represents the execution of a dis-
tributed algorithm in a network, the geographical location
of the individual nodes can be used to position the squares
in the visualization. Other alternatives include simple grid
and circular layouts (see Figure 7) which may serve to mini-
mize the amount of coinciding message arrows to greater or
lesser extent. In this paper, we chose to ignore this aspect
and selected a simple circular layout scheme that has the
advantage of avoiding message arrows coinciding with each
other or passing over processes.

2The RGB color model was chosen for simplicity, while a color
model like HSV might be more suitable to human perception.

Figure 7: Growing Squares visualization with 20 processes.

4.2 User Study

Our hypothesis was that the Growing Squares technique is
faster and more efficient at quickly providing an overview
of the causal relations in a distributed system, and that the
new technique scales better with system size than traditional
methods. To test this, we conducted a formal comparative
user study of the old Hasse diagram visualization and our
new Growing Squares technique. The focus of this user study
was to evaluate user performance of the “overview tasks”, i.e.
tasks associated with the general comprehension of how a
system works. We also wanted to get a subjective assessment
of the two methods.

4.2.1 Subjects

Twelve users, four of which were female, participated in this
study. All users were carefully screened to have good com-
puter skills and basic knowledge of distributed systems and
general causal relations. In particular, knowledge of Hasse
diagrams was required. Subject ages ranged from 20 through
50 years old, and all had normal or corrected-to-normal vi-
sion.

4.2.2 Equipment

The study was run on a Intel Pentium III 866 MHz laptop
with 256 MB of memory and a 14-inch display. The ma-
chine was equipped with a NVidia Geforce 2 GO graphics
accelerator and ran Redhat Linux 7.2.

4.2.3 Procedure

The experiment was a two-way repeated-measures analysis
of variance (ANOVA) for independent variables “visualiza-
tion type” with two levels (Hasse diagrams versus Grow-
ing Squares), and “data density”, also with two levels. The
two levels of data density were “sparse” and “dense” with 5
processes sending 15 messages and 30 processes sending 90
messages, respectively. The visualization type was a within-
subjects factor, as was the data density. Each subject re-
ceived the various task sets in different order to avoid sys-
tematic effects of practice.



The same set of four different data sets were used for all
subjects. Two were geared at the sparse case with 5 pro-
cesses and 15 messages (one for each visualization type),
and two for the dense case with 30 processes and 90 mes-
sages (see Table 1). The traces were all generated using a
heuristic algorithm to avoid users taking advantage of special
knowledge about real system traces. In the case of deducing
inter-node causal relations, care was taken to ensure that
the complexity of this was equivalent for both task sets of
each density.

The evaluation procedure consisted of repeating overview
tasks using Hasse diagrams and Growing Squares for first the
sparse and then the dense data densities. The order of the
visualization types was different for each subject to minimize
the impact of a learning effect. The repeated tasks for each
density and visualization type is summarized in Table 2.
Prior to starting work on each task set, subjects were given
the chance to adjust the window size and placement to their
liking. Subjects were informed that they should solve the
tasks quickly and focus on using the visualization to get an
overview of the system trace. The completion of each task
was separately timed, except for the tasks Causality 1-3,
which were timed together.

We enforced an 8 minute (480 seconds) time cap on the
completion of each task in order to avoid excessive times
skewing the results of the user study. Uncompleted or
skipped tasks were set to the time cap for that particular
task.

Since we were targeting overview tasks, it was not neces-
sary for subjects to find a precise answer to each exercise.
Instead, it was deemed sufficient if subjects named one of
the processes in the top 20 %3 for each category; i.e. for 30
processes, it was enough to pick one of the six processes that
were most the influential, long-lived or influenced ones for
the answer to be counted as correct. Only the Causality 1-3
tasks required a totally accurate answer.

After having performed each task set for a density and
visualization type, subjects were asked to give a subjective
rating of the efficiency, ease-of-use, and enjoyability of the vi-
sualization technique. When all of the tasks were completed,
the subjects responded to a final questionnaire comparing
the two visualization techniques based on the previously-
stated criteria (see Table 3).

Each evaluation session lasted approximately one hour.
Subjects were given a training phase of ten minutes to fa-
miliarize themselves with the CausalViz application and the
two visualization techniques. During this time, subjects were
instructed in how to use the visualizations to solve various
simple tasks.

Data Density Processes Messages

Sparse 5 15
Dense 30 90

Table 1: Experimental design. Both density and visualiza-
tion factors were within subjects for all 12 subjects.

3This number was somewhat arbitrarily chosen, partly because
it was felt to be an acceptable margin of error, and partly because
20 % out of 5 processes for the sparse data set translates to finding
the single correct process for each task.

Task Comments Measure

Duration
Find the process with the
longest duration.

Time

Influence 1
Find the process that has
had the most influence on
the system.

Time

Influence 2 Find the process that has
been influenced the most.

Time

Causality 1-3
Is process x causally related
to process y?

Time

Q1
Rate the visualization w.r.t.
ease-of-use (1=very hard,
5=very easy).

Likert

Q2
Rate the visualization
w.r.t. efficiency (1=very
inefficient, 5=very efficient).

Likert

Q3
Rate the visualization w.r.t.
enjoyability (1=very boring,
5=very enjoyable).

Likert

Table 2: Repeated tasks for each density and visualization
type.

Task Comments

PQ1 Rank the visualizations w.r.t. ease of use.
PQ2 Rank the visualizations w.r.t. efficiency.
PQ3 Rank the visualizations w.r.t. enjoyability.

Table 3: Post-evaluation ranking questions.

4.3 Results

After having conducted the user study, we analyzed the re-
sulting test data. The results can be divided into two parts;
the objective performance measurement, and the subjective
ratings of the test subjects.

4.3.1 Performance

The mean times of performing a full task set (i.e. four tasks)
using the Hasse diagrams and the Growing Squares visual-
izations were 416.58 (s.d. 268.99) and 334.79 (s.d. 230.86)
seconds respectively. This, however, is not a significant dif-
ference (F (1, 11) = 2.54, p = .139). The main effect for den-
sity was strongly significant (F (1, 11) = 30.99, p < .001),
with means for the sparse and dense conditions of 222.96
(s.d. 77.24) and 528.42 (s.d. 272.94) seconds. Figure 8
summarizes the mean task results for the two visualizations
across the two densities; error bars show one standard de-
viation above and below the mean. The figure also shows
that the mean time for the task set was higher for the Hasse
method across all densities. For the sparse conditions the vi-
sualization type was significant (F (1, 11) = 15.82, p = .002),
with mean values of 259.50 (s.d. 75.23) and 186.42 (s.d.
62.46) seconds for the Hasse and Growing Squares visualiza-



tions. The Growing Squares method also gave better results
for dense conditions; the mean times in Hasse and Grow-
ing Squares were 573.67 (s.d. 302.96) versus 483.17 (s.d.
243.94) seconds. This, however was not a significant differ-
ence (F (1, 11) = 1.03, p = .332).

The only exception where Hasse diagrams performed bet-
ter than Growing Squares is the Duration subtask for dense
systems, while our technique performed better than Hasse
diagrams in all other subtasks across both densities. For
the Duration subtask, the mean completion times for the
sparse data set using Hasse diagrams were 30.92 seconds
(s.d. 9.99) versus 21.17 seconds (s.d. 17.93) for the Grow-
ing Squares method, while the mean times for the dense set
were 37.00 (s.d. 15.72) and 54.75 (s.d. 28.08), respectively.
This, however, was not a significant difference for this sub-
task (F (1, 11) = 0.492, p = 0.498). For the Influence 1 sub-
task the mean completion times for the sparse data set using
Hasse diagrams were 75.33 seconds (s.d. 50.71) versus 65.33
seconds (s.d. 35.93) for the Growing Squares method, while
the mean times for the dense set were 234.67 (s.d. 141.81)
and 157.17 (s.d. 66.85), respectively. The visualization type
did not have a significant effect on the completion time for
this subtask (F (1, 11) = 2.80, p = 0.122). Similarly, the
Influence 2 subtask yielded mean completion times of 76.17
(s.d. 31.94) versus 47.17 (s.d. 31.65) for the sparse data set,
and 165.58 (s.d. 159.21) versus 136.00 (s.d. 114.83) for the
dense case. Again, the type of visualization did not have
a significant effect to the completion time for this subtask
(F (1, 11) = 1.062, p = 0.325). Finally, the Causality 1-3
subtask resulted in sparse mean completion times of 77.08
(s.d. 31.04) for Hasse diagrams and 52.75 (s.d. 13.32) for
Growing Squares, whereas the dense means were 136.42 (s.d.
88.25) and 135.25 (s.d. 77.87), respectively. The type of vi-
sualization did not have a significant effect to the completion
time for this subtask (F (1, 11) = 0.707, p = 0.418).

The subjects’ comments revealed that one of the reasons
for the absence of a statistically significant difference be-
tween visualizations in the dense condition was because of
color similarities. Much time was spent by subjects match-
ing colors to each other and looking up process numbers in
the color legend.

Subjects made little use of the animation controls in the
Growing Squares visualization except to play it through once
at the beginning of each task to gain a picture of the data
set. Only a few of the subjects actively moved the timeline
back and forth to solve various subtasks, and most preferred
to leave the time setting at the end of the execution.

The fixed (circular) layout algorithm used in the user
study turned out to be limiting when it came to compar-
ing the size (i.e. duration) of individual processes. Users
remarked that it would have been useful to be able to click
and drag processes to arbitrary positions to facilitate com-
parison as well as to group processes into semantic clusters
(i.e. clusters of the same perceived type).

4.3.2 Subjective Ratings

The subjects consistently rated Growing Squares above
Hasse diagram with respect to efficiency, ease-of-use and en-
joyment. The mean response values to the five-point Likert-
scale questions are summarized in Figure 9. The complete
data analysis table is presented as Table 5.

The subjects’ responses to the efficiency question (Q2,
Table 5) showed a higher rating for the Growing Squares
visualization than Hasse diagrams in both sparse (means
3.83 (s.d. .39) and 2.75 (s.d. .97)) and dense data densities
(means 3.13 (s.d. .68) and 1.58 (s.d. .67)). Both higher

Figure 8: Mean task completion times for all tasks across
the Hasse and Growing Squares methods and across levels
of density. Error bars show standard deviations.

rating readings were significant (Friedman Tests, p = .0209
for the sparse case and p = .0039 for the dense case). The
subjects’ response to the ease-of-use question (Q1, Table 5)
also showed a higher rating for the Squares visualization
in both sparse (means 3.92 (s.d. .67) and 2.67 (s.d. .89))
and dense data densities (means 2.79 (s.d. .78) and 1.46
(s.d. .66)). Both higher rating readings were significant
(Friedman Tests, p = .0094 for the sparse case and p = .0015
for the dense case). The subjects’ response to the enjoyment
question (Q3, Table 5) also showed a higher rating for the
Squares visualization in both sparse (means 3.92 (s.d. .79)
and 3.00 (s.d. .43)), and dense data densities (means 3.25
(s.d. .85) and 1.92 (s.d. .67)). Both higher rating readings
were significant (Friedman Tests, p = .0094 for the sparse
case and p = .0015 for the dense case).

Figure 9 shows, not surprisingly, that the density of the
data set strongly influenced the subjects’ responses to each
question for both visualizations. This difference is reliable
for all but the enjoyability question (Friedman Tests). The
subjects’ response to this question (Q2, Table 5) when us-
ing the Growing Squares visualization shows a higher rating
when small data sets are considered (means 3.92 (s.d. .79)
for sparse sets and 3.25 (s.d. .75) for large sets), but on the
other hand, this is not a significant difference (p > .05).

The final ranking questionnaire shows that most subjects
preferred the Growing Squares technique over Hasse dia-
grams with regard to ease of use, efficiency, and enjoyment
(Table 4). Overall, the results from this ranking are very
favorable for the Growing Squares method.

Question Prefer GS?

PQ1 Rank visualizations w.r.t. ease-of-use. 92 %
PQ2 Rank visualizations w.r.t. efficiency. 83 %
PQ3 Rank visualizations w.r.t. enjoyability. 92 %

Table 4: Subject responses to ranking the two visualization.



Figure 9: Responses to Q1-Q3 5-point Likert-scale questions across sparse and dense data densities for the Hasse and Growing
Squares methods.

Question Hasse diagrams Growing Squares Reliability
sparse dense sparse dense Hasse/GS Density

Q1. Rate the visualization w.r.t. ease-of-use. 2.67 (.89) 1.46 (.66) 3.92 (.67) 2.79 (.78) yes yes
Q2. Rate the visualization w.r.t. efficiency. 2.75 (.97) 1.58 (.67) 3.83 (.39) 3.13 (.68) yes yes
Q3. Rate the visualization w.r.t. enjoyability. 3.00 (.43) 1.92 (.67) 3.92 (.79) 3.25 (.75) yes yes/no*

* Density does not significantly influence the enjoyability of the Growing Squares animation.

Table 5: Mean (standard deviation) responses to 5-point Likert-scale questions. Reliability is defined as being significant at
the .05 level.

5 Caveats of Growing Squares

The Growing Squares technique is based on animation, col-
ors and patterns to improve the perception of causality in
distributed systems, and the results from the user study
show that the technique is consistently faster and more effi-
cient than Hasse diagrams. This difference, however, is not
statistically significant for the general case, although it is
significant for the sparse data set case. While there clearly
is room for improvement, the Growing Squares visualization
technique is nevertheless an improvement over conventional
Hasse diagrams.

However, as indicated by the user study, the Growing
Squares technique has a number of issues. First and fore-
most, since the method is dependent on a simple color cod-
ing for each process in a system, it is often very difficult
to distinguish individual processes in a large system due to
the similarity of the colors. This problem is exacerbated by
the fact that Growing Squares presents the influences of a
single process as colored pixels in a checkered pattern on
each square, meaning that each influence can become ar-
bitrarily small due to limited screen space (this problem is
partially solved using a continuous zoom mechanism, how-
ever). And finally, a Growing Squares visualization does not
explicitly communicate the absolute timing of events or pro-
cess startup or shutdown; this must be manually deduced by
studying the animated execution of the system.

6 Growing Polygons

Visualizing the causal relations in a system consisting of n
processes using the Growing Polygons [Elmqvist and Tsi-
gas 2003a] technique is done by placing n-sided polygons
(so-called process polygons) representing the individual pro-

cesses on the sides of a large n-sided polygon (the layout
polygon). Instead of using a linear timeline, as in Hasse di-
agrams, the time parameter is mapped to the size of each
process polygon so that they grow from zero to maximum
size as time proceeds from the start to the end of the execu-
tion, just like in the Growing Squares technique. The visual-
ization is animated to allow the user to study the dynamics
of the execution, and the discrete time steps are shown as
dashed or greyed-out “age rings” in the interior of each poly-
gon. In addition to this, each process polygon is divided into
triangular sections, with every process in the system being
assigned a color and a specific sector in the polygon. This
sector also corresponds to the side where the process polygon
is positioned on the layout polygon. Whenever the process
represented by a particular polygon is active, the appropriate
time segments of the associated sector in the polygon will be
filled in with the process color. Messages between processes
in the system are shown as arrows travelling from the source
polygon to the destination, and will activate the correspond-
ing sector in the destination polygon with the color of the
source process. In other words, a message sent from process
A to process B will contaminate A’s sector in B starting
from the time the message was received.

Figure 10 shows an example of a simple 3-process system
(consisting of processes P0, P1, and P2) where each process is
represented by a triangle partitioned into three sections, and
with the process triangles positioned on the sides of a larger
layout triangle. For each process triangle, the process’s own
sector has been marked with a thick black outline, and the
internals of each polygon has also been segmented to show
the discrete time steps of the execution. In addition, the
processes have been assigned the colors red, green, and blue,
respectively. In this example, we see how P0 sends a message
to P1 at t = 0 that reaches the destination process at time
t = 1, establishing a causal relation between the two nodes.



Notice how for all times t ≥ 1, P0’s sector within P1’s process
triangle is now filled, signifying this influence. By studying
the polygons at t = tend, i.e. the end of the execution, we
can get a clear picture of the flow of information within the
system.

P1

P0P2

Figure 10: Growing Polygons visualization with n = 3 (i.e.
the process polygons are triangles).

As we ascertained earlier, causal relations are transitive,
so if A → B and B → C, then A → C. Figure 10 also shows
how this is expressed in the Growing Polygons visualization.
At time t = 2, process P2 receives a message from P1. P1

has already been influenced by P0 in the previous interaction
(in other words, there is already a causal relation between
P0 and P1). Thus, the process triangle of P2 now shows
causal influences in all of its process sectors, including the
transitive dependency to P0, not just the direct dependency
to P1 which sent the actual message.

The simple execution in Figure 10 also gives informa-
tion about the absolute lifecycles of the three processes. By
studying the filled segments of each process triangle’s own
sector, we note that only process P0 executed from the start
to the end of the system trace; processes P1 and P2 were
kickstarted by external messages at times t = 1 and t = 2,
respectively. In fact, unlike the Growing Squares technique,
the new method allows users to deduce the exact timing of
all events in a system since the age rings in the interior of
each polygon are fixed to absolute times.

Just like the Growing Squares technique, the Growing
Polygons technique offers a view of the transitive closure of
the node dependencies and influences, facilitating analysis
of global information flow in the system (and not just lo-
cally, as for Hasse diagrams). The visualization is animated
and can thus also avoid many of the message intersection
problems of Hasse diagrams. In addition to this, by assign-
ing not only a color but also a fixed polygon sector to each
process, the Growing Polygons method largely remedies the
difficulties of distinguishing colors that plague the Growing

Squares technique. Thus, the new method is considerably
more scalable than the old one since it is now enough that
two similar colors are not placed in adjacent sectors for a
user to be able to separate them.

Now let us study a full example to see the Growing Poly-
gons visualization in action. Figure 15 shows a sequence of
screenshots taken at the discrete time steps of the execution
of a 5-process system of (in the real visualization, these im-
ages are smoothly animated). The processes are laid out in
clockwise order with P0 at the top right. In (a), at t = 1, we
see that all processes except P0 are executing and sending
messages (the process sector of P0 is empty). However, a
message from P1 is just about to reach P0 and will activate
it starting from this point in time. Screenshot (b) shows the
subsequent situation at t = 2, where P0 now has begun exe-
cuting and exhibits a causal dependence to the green process
(P1) that started it, and where P4 similarly shows a depen-
dence to P3 (P3’s sector in P4’s process polygon is filled in
from time step 1 and onwards). Moving to t = 3 in (c),
we see more causal dependencies appearing in the process
polygons of the various nodes, the transitive dependencies
in both P1 (cyan from P3) and P3 (green from P1) being of
special interest. We can also observe that process P2 ap-
pears to have stopped executing since it is no longer filling
up its own process sector. Image (d) displays the situation
one time step later (t = 4), where the two messages from
the inactive P2 finally reach P0 and P4 respectively, and im-
age (e) shows the final situation at t = 5, with the causal
dependencies in the system plainly visible.

6.1 Design

One of the weaknesses of the original Growing Squares
method that limited its scalability was the difficulties of
distinguishing between different process colors. To remedy
this problem, the Growing Polygons technique also assigns
a unique triangular sector to each process. Nevertheless,
for our method to work efficiently, adjacent process sectors
should not have similar colors, or users can easily mistake
one process for another. Just like in the Growing Squares
case, we opted for a straightforward non-continuous distri-
bution of colors across the RGB spectrum.

While our new method does not exhibit the same conges-
tion of screen space that plagues Growing Squares, where a
much-influenced process square simply cannot convey all of
its influences in its limited screen space, there are instances
where even Growing Polygons fail at this. For example,
when visualizing a large system with many processes, the
angle (θ = 360◦/n) assigned to each process sector will be
small, making it difficult to distinguish events early on in
the execution. The same is also true if the time span of the
execution is long, since the layout algorithm will then have
to scale each time step to fit inside the allocated maximum
size of each polygon. To cope with these two situations,
the Growing Polygons visualization retains the simple con-
tinuous zoom mechanism of the Growing Squares technique,
allowing users to zoom in arbitrarily close in order to distin-
guish details in the visualization.

The decision to use animation in the Growing Polygons
technique was mainly grounded on the wish to avoid a maze
of cris-crossing message arrows (like in Hasse diagrams). At
the end of the system execution, no message arrows at all
are visible, facilitating easy study of the inter-process depen-
dendencies in the system. Animation allows the user to still
see the dynamic execution of the system in an intuitive way,
just like in the Growing Squares technique.



6.2 User Study

Our intention with the Growing Polygons technique was to
provide an efficient way of viewing the flow of information
and the node dependencies in a system of communicating
processes. In order to check whether our method performs
better than existing methods, we conducted a comparative
user study between Hasse diagrams and Growing Polygons.
The study involved test subjects that were deemed represen-
tative of the target audience, and consisted of having them
solve problems using the two techniques. Timing perfor-
mance and correctness were measured, as well as the subjec-
tive ratings of individual users.

6.2.1 Subjects

Twenty users, fifteen of which were male, participated in
this study. All users were screened to have good computer
skills and at least basic knowledge of distributed systems
and general causal relations. Subject ages ranged from 20
through 50 years old, and all had normal or corrected-to-
normal vision (one person claimed partial color blindness
but was still able to carry out the test). Ten of the subjects
had participated in our earlier user study of the Growing
Squares technique.

6.2.2 Equipment

We used the same equipment that was used for the Growing
Squares user study for this study as well.

6.2.3 Procedure

As before, the experiment was a two-way repeated-measures
analysis of variance (ANOVA) for the independent variables
“visualization type” (Hasse diagrams versus Growing Poly-
gons) and “data density” (sparse versus dense). The sparse
data density consisted of system executions involving 5 pro-
cesses and 15 messages, while the dense data density involved
20 processes and 60 messages. All subjects were given the
same four task sets split into the two density classes. The
system trace for each task set was generated using a sim-
ple randomized heuristic algorithm to avoid subjects taking
advantage of special knowledge about the behavior of a par-
ticular distributed system. In addition, care was taken to
ensure that the complexity of both system traces for a spe-
cific data density was roughly equivalent by removing am-
biguities and ensuring that the number of indirect relations
was the same.

The procedure consisted of solving two of the four task
sets using conventional Hasse diagrams, and the other two
using the Growing Polygons technique. Sparse task sets were
solved first, followed by the respective dense sets. In order to
minimize the impact of learning effects, half of the subjects
used the Hasse diagrams first, while the other half used the
Growing Polygons first. The task sets themselves consisted
of four tasks that were directly based on our previous user
study of Growing Squares (see Table 2 for an overview).
Subjects were given the opportunity to freely adjust win-
dow size and placement prior to starting work on each task
set. Furthermore, subjects were instructed to solve each task
quickly but thoroughly, and were allowed to ask questions
during the course of the procedure. Each individual task in a
task set was timed separately, except for the tasks Causality
1-3, which were timed together. In addition, answers were
checked and the correctness ratio was recorded for each task.

In order to avoid run-away times on troublesome tasks,
completion times were limited to 10 minutes (600 seconds).
If a test subject chose for some reason to skip a task, the
completion time for that task was set to this cap.

After each completed task set, each subject was given a
short questionnaire of three 5-point Likert-scale questions
asking for their personal opinion on the usability, efficiency,
and enjoyability of the visualization method they had just
used (see tasks Q1 to Q3 in Table 2). The purpose of this
questionnaire was to measure how users’ ratings of the vi-
sualizations changed depending on the data density. In ad-
dition, users also filled out a post-evaluation questionnaire
after having completed all of the task sets, where they were
asked to rank the two visualizations on the above criteria
(see Table 7).

Each evaluation session lasted approximately 45 minutes.
Prior to starting the evaluation itself, subjects were given a
training phase of up to ten minutes where they were given
instructions on how to use both visualization methods to
solve various simple tasks.

Data Density Processes Messages

Sparse 5 15
Dense 20 60

Table 6: Experimental design. Both density and visualiza-
tion factors were within subjects for all 20 subjects.

Task Comments

PQ1 Rank the visualizations w.r.t. ease of use.

PQ2
Rank the visualizations w.r.t. efficiency for solv-
ing the following tasks:
(a) Duration analysis
(b) Influence importance (most influential)
(c) Influence assessment (most influenced)
(d) Inter-node causal relations

PQ3 Rank the visualizations w.r.t. enjoyability.

Table 7: Post-evaluation ranking questions.

6.3 Results

The analysis of the results we obtained from the afore-
mentioned user study can be divided into the timing per-
formance, the correctness, and the subjective ratings of the
test subjects.

6.3.1 Performance

The mean times of solving a full task set (i.e. all four tasks)
using Hasse diagrams and the Growing Polygons visualiza-
tions were 433.90 (s.d. 378.59) and 251.85 (s.d. 174.88)
seconds respectively. This is also a statistically significant
difference (F (1, 19) = 20.118, p < .001). The main effect for
density was significant (F (1, 19) = 26.932, p < .001), with



means for the sparse and dense conditions of 191.80 (s.d.
87.57) and 493.95 (s.d. 359.35) seconds.

Figure 11 summarizes the mean task results for the two
visualizations across the two densities; error bars show the
standard deviation above and below the mean. The figure
also shows that the mean time for the task set was higher for
the Hasse method across all densities. For the sparse con-
dition, the mean completion times were 234.40 (s.d. 87.09)
and 149.20 (s.d. 65.85) seconds for the Hasse and Growing
Polygons visualizations. The Growing Polygons method also
gave better results for dense conditions, with mean values of
616.05 (s.d. 550.60) seconds for the Hasse visualization ver-
sus 354.50 (s.d. 190.41) seconds for Growing Polygons.

The one exception where Hasse diagrams performed bet-
ter than Growing Polygons was for the Duration subtask
across both densities, with sparse set mean times of 25.75
(s.d. 10.39) for Hasse diagrams versus 33.95 (s.d. 17.47) for
Growing Polygons, and for the dense set, 34.40 (s.d. 18.54)
versus 72.35 (s.d. 36.06) seconds. This difference was also
significant (F (1, 19) = 26.943, p < .001).

For the Influence 1 subtask, on the other hand, the mean
completion times for the sparse data set using Hasse dia-
grams was 58.50 seconds (s.d. 22.25) versus 36.65 seconds
(s.d. 17.93) for the Growing Polygons method, while the
mean times for the dense set were 270.60 (s.d. 180.XX) and
169.70 (s.d. 140.72), respectively. This was a significant
difference (F (1, 19) = 14.614, p = 0.001). Similarly, the In-
fluence 2 subtask yielded mean completion times of 77.64
(s.d. 53.58) versus 34.35 (s.d. 30.47) for the sparse data
set, and 184.10 (s.d. 207.05) versus 50.85 (s.d. 26.61) for
the dense case. Again, this was a significant difference in fa-
vor of the Growing Polygons method (F (1, 19) = 14.170,
p = 0.001). Finally, the Causality 1-3 subtask resulted
in sparse mean completion times of 72.50 (s.d. 29.28) for
Hasse diagrams and 44.25 (s.d. 19.68) for Growing Poly-
gons, whereas the dense means were 144.30 (s.d. 116.37)
and 61.60 (s.d. 40.88), respectively. This was also a signifi-
cant difference (F (1, 19) = 18.896, p < 0.001).

6.3.2 Correctness

The average number of correct answers when solving a full
task set (i.e. six tasks) using Hasse diagrams and the Grow-
ing Polygons visualization was 4.375 (s.d. 1.148) versus
5.625 (s.d. 0.667) correct answers, respectively. This is a
significant difference (F (1, 19) = 46.57, p < .001). For the
sparse data set, the mean correctness was 4.70 (s.d. 1.218)
for Hasse diagrams and 5.75 (s.d. 0.716) for Growing Poly-
gons, versus 4.05 (s.d. 0.999) and 5.50 (s.d. 0.607) for the
dense case. In fact, the mean correctness of the Growing
Polygons visualization is significantly better than for Hasse
diagrams for all individual subtasks except for the Dura-
tion subtask, where Hasse performs better with a correctness
ratios of 0.975 versus 0.950 for Growing Polygons. This,
however, is not a significant difference (F (1, 19) = 0.322,
p = .577).

6.3.3 Subjective Ratings

For the post-task questionnaire, the test subjects consis-
tently rated Growing Polygons above Hasse diagram in all
regards, including efficiency, ease-of-use and enjoyment. The
mean response values to the five-point Likert-scale questions
are summarized in Figure 13. See Table 8 for the complete
data analysis table.

The subjects’ response to the ease-of-use question (Q1,
Table 8) showed a higher rating for the Growing Polygons vi-

Figure 11: Mean task completion times for all tasks across
the Hasse and Growing Polygons methods and across levels
of density. Error bars show standard deviations.

sualization than Hasse diagrams in both sparse (means 4.20
(s.d. .70) and 2.75 (s.d. .85), respectively) and dense data
densities (means 3.75 (s.d. .79) and 1.90 (s.d. .91)). Both
higher ratings were significant (Friedman Tests, p < .001 for
both the sparse and dense cases). The subjects’ responses
to the efficiency question (Q2, Table 8) showed a higher rat-
ing for the Growing Polygons visualization in both sparse
(means 4.20 (s.d. .62) and 2.40 (s.d. .88)) and dense data
densities (means 3.95 (s.d. .51) and 1.55 (s.d. .51)). Both
higher ratings readings were significant (Friedman Tests,
p < .001 for the sparse case and p < .001 for the dense case).
The subjects’ response to the enjoyment question (Q3, Ta-
ble 8) also showed a higher rating for the Growing Polygons
visualization in both sparse (means 4.20 (s.d. .62) and 2.95
(s.d. .39)), and dense data densities (means 4.10 (s.d. .64)
and 2.00 (s.d. .73)). Both higher ratings were significant
(Friedman Tests, p < .001 for the sparse case and p < .001
for the dense case).

The results from the post-task summary questionnaire can
been found in Table 9, and clearly show that test subjects
regard the Growing Polygons technique as superior to Hasse
diagrams in all aspects except for duration analysis (task
PQ2 (a)). However, as can be seen from the this table, the
overall user rankings are very convincingly in favor of our
method.

7 Discussion

The results obtained from our user studies quite comfortably
show that the Growing Squares and the Growing Polygons
methods are both superior to Hasse diagrams in terms of per-
formance, correctness, and the subjective opinion of the test
subjects across all data densities (although Growing Squares
are only significantly more efficient to use for the sparse den-
sity). The test subjects consistently ranked both techniques



Figure 13: Responses to Q1-Q3 5-point Likert-scale questions across sparse and dense data densities for the Hasse and Growing
Polygons methods.

Question Hasse diagrams Growing Polygons Reliability
sparse dense sparse dense Hasse/GP

Q1. Rate the visualization w.r.t. ease-of-use. 2.75 (.85) 1.90 (.91) 4.20 (.70) 3.75 (.79) yes
Q2. Rate the visualization w.r.t. efficiency. 2.40 (.88) 1.55 (.51) 4.20 (.62) 3.95 (.51) yes
Q3. Rate the visualization w.r.t. enjoyability. 2.95 (.39) 2.00 (.73) 4.20 (.62) 4.10 (.64) yes

Table 8: Mean (standard deviation) responses to 5-point Likert-scale questions. Reliability is defined as being significant at
the .05 level.

Figure 12: Mean correctness for all tasks across the Hasse
and Growing Polygons methods and across levels of density.
Error bars show standard deviations.

before Hasse diagrams in all aspects except for measuring
process duration. Our findings show that users are signifi-
cantly more efficient and correct when using Growing Poly-
gons to analyze the influences and check inter-process causal
relations in a system (both sparse and dense).

The only subtask where Hasse diagrams perform signif-
icantly better is duration analysis, where users were asked
to find the most long-lived process in the system. However,
while the correctness for this subtask is also better using
Hasse diagrams, this is not a significant difference. The fact
that Hasse diagrams perform better in this regard is not sur-

Task Comment GP Hasse Undec.

PQ1 Ease-of-use 95 % 0 % 5 %
PQ2 Efficiency (avg) 80 % 11 % 9 %

(a) Duration 35 % 40 % 25 %
(b) Importance 90 % 5 % 5 %
(c) Assessment 95 % 0 % 5 %
(d) Causality 100 % 0 % 0 %

PQ3 Enjoyability 100 % 0 % 0 %

Table 9: Subject responses to ranking the two visualizations.

prising, given that the visual design of Hasse diagrams allows
for easy length comparison of the parallel process lines. This
fact is also reflected in the user rankings, where 40 % of the
subjects stated that they preferred Hasse diagrams whereas
only 35 % preferred Growing Polygons (no similar question
was asked in the Growing Squares study).

Our intention with the design of the Growing Squares and
Growing Polygons techniques was to provide better alter-
natives to causality visualization than existing techniques.
We used Hasse diagrams as the basis for our comparative
user study on the basis that it is still the standard way of
visualizing causal relations. However, the question is nat-
urally where the Growing Polygons and Growing Squares
techniques stand in relation to each other. While we have
not performed a direct comparison between the two tech-
niques, the Growing Polygons method is likely superior to
the Growing Squares method. First of all, the Growing
Polygons method achieves statistically significant improve-
ment over Hasse diagrams in all subtasks (except the dura-
tion analysis subtask, which the Growing Squares method



also failed at) and across all densities, something which the
Growing Squares method does not manage for dense data
sets. Second, the comments from the test subjects who also
participated in the previous user study clearly indicate that
the new method is significantly superior to the older one.
Unfortunately, the nature of the work we conducted means
that we cannot compare the two techniques directly.

We have already discussed how the the human eye’s lim-
ited capabilities of color distinction hampered the scalabil-
ity of the original Growing Squares method. Color is sim-
ilarly used to encode processes in the Growing Polygons
method, but here processes are also assigned a unique sector
in the process polygons, so this issue should be less of a con-
cern. However, we have not yet performed any stress tests
with very high numbers of involved processes to explore the
boundaries of the hybrid approach that the Growing Poly-
gons uses.

Scalability is a relative measure, and even if the results
from the Growing Polygons study are favorable, it is clear
that displaying every single involved process in a system will
not be feasible in the extreme cases. For very large sys-
tems of causal relations, some kind of hierarchical cluster-
ing scheme needs to be used to group sets of processes into
process groups, preferably in a dynamical and self-adjusting
way. In addition, executions spanning a long period of time
probably require a non-linear time scale to allow for efficient
visualization.

In our user studies, all test subjects were well-familiar
with Hasse diagrams prior to carrying out the experiments
whereas they knew nothing of the new visualizations in be-
forehand, yet performed consistently better using the new
techniques in almost all cases. This, we think, suggests that
the Growing Squares and Growing Polygons methods are
intuitive and easily accessible, and that the methods with
practice might become even more efficient to use. The sub-
jective ratings also support this belief.

Finally, the positive feedback that we have received from
the subjects suggests that these kinds of alternate visual-
ization methods of causal relations are indeed useful and
worthwhile avenues for future research. By combining them
with traditional methods such as Hasse diagrams, users will
be able to use the strengths of different methods to solve dif-
ferent problems. In addition, the ability to view systems of
causal relations from different perspectives will greatly aid
in understanding the mechanics of such a system.

8 Conclusions and Future Work

We have presented two visualization techniques for the
graphical representation of causal relations in systems of in-
teracting processes. The methods, called Growing Squares
and Growing Polygons, respectively, both abandon the linear
timeline of conventional methods such as Hasse diagrams,
and instead visualize the execution using color, texture, and
animation. The Growing Squares technique, on the one
hand, represents processes as color-coded squares that grow
in size as time progresses. Messages between processes carry
across the source color to the destination, thus showing the
casual influences of each process. The Growing Polygons
technique, on the other hand, uses n-sided polygons parti-
tioned into triangular sectors to represent processes, anal-
ogously allowing them to grow from zero to full size over
time. Each sector is assigned to a specific process and given
a unique color, and is filled in for each process polygon that
receives an influence from the process it represents. We have
performed comparative user studies of both techniques in

relation to traditional Hasse diagrams, and our results give
conclusive evidence that our methods not only are more effi-
cient and give better correctness, but that test subjects also
tend to prefer our methods over Hasse diagrams.

As mentioned earlier, while the Growing Polygons tech-
nique seems to perform well for small and medium-sized sys-
tem executions, we have yet to perform any form of stress
testing for very large systems (upwards of hundreds or even
thousands of processes potentially spanning a very long pe-
riod of time). In the future, we will explore hierarchical clus-
tering techniques as well as “time windows” and non-linear
time scales for adressing these concerns.
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Figure 14: Growing Squares visualization of the dynamic
execution of a 5-process distributed system.
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Figure 15: Growing Polygons visualization of the dynamic
execution of a 5-process distributed system.


