Thesis for the Degree of Doctor of Philosophy

Non-blocking Synchronization:
Algorithms and Performance Evaluation

Yi Zhang

CHALMERS | GOTEBORG UNIVERSITY

Department of Computing Science
Chalmers University of Technology and Goteborg University
SE-412 96 Goéteborg, Sweden

Goteborg, 2003

Non-blocking Synchronization: Algorithms and Performance Evaluation
Yi Zhang
ISBN 91-7291-299-5

© Yi Zhang, 2003.

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 1981
ISSN 0346-718X

Technical report 14D
ISSN 1651-4971
School of Computer Science and Engineering

Department of Computing Science

Chalmers University of Technology and Goteborg University
SE-412 96 Géteborg,

Sweden

Telephone + 46 (0)31-772 1000

Chalmers Reproservice
Goteborg, Sweden, 2003

ABSTRACT

The thesis investigates non-blocking synchronization in shared memory systems, in par-
ticular in high performance shared memory multiprocessors and real-time shared memory
systems. We explore the performance impact of non-blocking synchronization in high
performance shared memory multiprocessors and the applicability of non-blocking syn-
chronization in real-time systems.

The performance advantage of non-blocking synchronization over mutual exclusion in
shared memory multiprocessors has been advocated by the theory community for a long
time. In this work, we try to make non-blocking synchronization appreciated by appli-
cation designers and programmers through a sequence of results. First, we develop a
non-blocking FIFO queue algorithm which is simple and can be used as a building block
for applications and libraries. The algorithm is fast and scales very well in both symmetric
and non-symmetric shared memory multiprocessors. Second, we implement a fine-grain
parallel Quicksort using non-blocking synchronization. Although fine-grain parallelism has
been thought to be inefficient for computations like sorting due to synchronization over-
head, we show that efficiency can be achieved by incorporating non-blocking techniques for
sharing data and computation tasks in the design and implementation of the algorithm.
Finally, we investigate how performance and speedup of applications would be affected
by using non-blocking rather than blocking synchronization in parallel systems. We show
that for many applications, non-blocking synchronization leads to significant speedup for
a fairly large number of processors, while they never slow the applications down.

Predictability is the dominant factor in performance matrices of real-time systems and
a necessary requirement for non-blocking synchronization in real-time multiprocessors. In
this thesis, we propose two non-blocking data structures with predictable behavior and
present an inter-process coordination protocol that bounds the execution time of lock-
free shared data object operations in real-time shared memory multiprocessors. The first
data structure is a non-blocking buffer for real-time multiprocessors. The buffer gives a
way to concurrent real-time tasks to read and write shared data and allows multiple write
operations and multiple read operations to be executed concurrently and has a predictable
behavior. Another data structure is a special wait-free queue for real-time systems. We
present efficient algorithmic implementations for the queue. These queue implementations
can be used to enable communication between real-time tasks and non-real-time tasks in
systems. The inter-process protocol presented is a general protocol which gives predictable
behavior to any lock-free data structure in real-time multiprocessors. The protocol works
for the lock-free implementations in real-time multiprocessor systems in the same way as
the multiprocessor priority ceiling protocol (MPCP) works for mutual exclusion in real-
time multiprocessors. With the new protocol, the worst case execution time of accessing
a lock-free shared data object can be bounded.

i

List of Included Papers and Reports

This thesis is based on the following papers.

1.

Philippas Tsigas, Yi Zhang, “Non-blocking Data Sharing in Multiprocessor
Real-Time Systems”, in the Proceedings of the 6th International Conference
on Real-Time Computing Systems and Applications (RTCSA ’99), pages 247—
254. IEEE Computer Society Press, December 1999.

Philippas Tsigas, Yi Zhang, “Evaluating The Performance of Non-Blocking
Synchronisation on Shared-Memory Multiprocessors”, in the Proceedings of
the ACM SIGMETRICS 2001 /Performance 2001, pages 320-321. ACM press,
June 2001.

Philippas Tsigas, Yi Zhang, “A Simple, Fast and Scalable Non-Blocking Con-
current FIFO Queue for Shared Memory Multiprocessor Systems”, in the Pro-
ceedings of the 13th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’01), pages 134-143. ACM press, July 2001.

Philippas Tsigas, Yi Zhang, “Integrating Non-blocking Synchronisation in Par-
allel Applications: Performance Advantages and Methothologies”, in the Pro-
ceedings of the 3rd ACM Workshop on Software and Performance (WOSP’02),
pages 55—67. ACM press, July 2002.

Philippas Tsigas, Yi Zhang, “A Simple, Fast Parallel Implementation of Quick-
sort and its Performance Evaluation on SUN Enterprise 100007, In the Pro-
ceedings of the 11th Euromicro Conference on Parallel Distributed and Net-
work based Processing, pages 372-381. IEEE Computer Society Press, Febru-
ary 2003.

Philippas Tsigas, Yi Zhang, “Efficient Wait-Free Queue Algorithms for Real-
Time Synchronization”, Technical Report 2002-05, Department of Computing
Science, Chalmers University of Technology, 2002.

. Yi Zhang, Philippas Tsigas, “Lock-free Object-Sharing for Shared Memory

Multiprocessors”, Technical Report 2003-03, Department of Computing Sci-
ence, Chalmers University of Technology, 2003.

il

v

ACKNOWLEDGMENTS

I would like to thank my advisor Philippas Tsigas who always lets me pursue my
ideas and gives me stimulating advice. He has supported, inspired, and encouraged
me in many different ways through different stages. I feel so fortunate to have been
one of his students.

I also want to thank Marina Papatriantafilou for many insightful comments and
suggestions in the past five years and for her helpful comments on preliminary
drafts of this thesis. Thanks are also due to Sven-Arne Andreasson for serving on
my committee and for helpful suggestions.

I am grateful to the present and former members of the Distributed Computing
and System group. David Rutter, my previous office mate, helped me to correct
my English in several papers. Hkan Sundell drove me to several summer schools
organized by ARTES and had many helpful discussions together with me. Niklas
Elmqvist, Anders Gidenstam, Boris Koldehofe, Ha Hoai Phuong, gave me many
comments and feedback on my work.

It is wonderful to work at the Department of Computing Science of Chalmers,
where people are always friendly and helpful. I would like to thank the staff of the
Department of Computing Science for their administrative and technical help.

I am thankful to the system administrators of UNICC, Unix Numeric Intensive
Calculations at Chalmers, for providing me the valuable access to ORIGIN 2000
and SUN Enterprise 10000 for the experiments.

This work is partially funded by ARTES, a national Swedish strategic research
initiative in Real-Time Systems. I would like to especially thank Hans Hansson, the
program director of ARTES.

Last but not least, my thanks go to my family. I am eternally grateful for the
love, support, understanding, and encouragement of my parents and my sister. They
have seen me through all my years and have shared in all my hardship and success.
I also thank my parents-in-law for their love and support. I am very grateful to
Fang, my wife, for her love, supporting, helping and caring. Without them, I would
never have gotten this far.

vi

Contents

1 Introduction 1
1.1 High Performance Shared Memory Multiprocessors 1

1.2 Synchronization 3
1.2.1 Mutual Exclusiono 3

1.2.2 Non-blocking Synchronization 4

1.2.3 Performance of Synchronization)

1.3 Real-time Shared Memory Multiprocessors 7
1.4 Contributions 9

2 A Non-blocking Concurrent FIFO Queue 15
3 Integrating Non-blocking in Parallel Applications 41
4 A Fast Parallel Implementation of Quicksort 67
5 Non-blocking Sharing in Real-time Multiprocessors 91
6 Wait-free Queues for Real-time Systems 109
7 Lock-free for Real-time Multiprocessors 135
8 Conclusions 153

vil

viii

Chapter

Introduction

The focus of the thesis is on studying non-blocking synchronization in shared mem-
ory multiprocessors, in particular in high performance shared memory multiproces-
sors and real-time shared memory multiprocessors.

1.1 High Performance Shared Memory Multipro-
Cessors

A shared memory multiprocessor system consists of multiple processors, provides a
single address space for programming, and supports communication between proces-
sors through operations on shared memory. Applications running on such systems
can use more than one processor at the same time. Programs can increase their
execution speed by exploiting the parallelism available on such systems. Single ad-
dress space shared memory provides an easy programming model to programmers.
Shared memory operations can be implemented in hardware or software.

To programmers, programming for shared memory multiprocessors is similar to
traditional sequential programming for uniprocessor systems. Communication be-
tween processors in shared memory multiprocessors is implicit and transparent via
conventional memory access instructions, such as Read/Write, that are also used
in sequential programming. Therefore, programmers do not have to consider de-
tails of low-level communication between processors and can focus mainly on the
applications themselves. When an application is running on shared memory multi-
processors, all processes of the application share the same address space; traditional
sequential programming also treats memory as a single address space. Such simi-
larity in programming between shared memory multiprocessors and uniprocessors
makes shared memory multiprocessors attractive.

Processor Processor Processor Processor
1] 1 1

Cache I Cache I Cache I Cache I
]]]]
< Interconnection Network >
Memory I Memory I Memory I Memory I

Figure 1.1: A generic architecture for shared memory multiprocessors

Shared memory multiprocessors are ideal for high performance computing. The
shared memory communication mechanism supported by hardware provides low
latency and high bandwidth for communication between processors. Fast commu-
nication enables programmers to explore fine grain parallelism in programs. As
processors communicate with each other by conventional memory operations on
shared memory, it is easy to transfer sequential programs into parallel ones for
shared memory multiprocessors.

A generic architecture for shared memory multiprocessors is illustrated in Fig-
ure 1.1. A collection of processors and memory modules are connected through an
interconnect communication network. In such systems, all processors run at the
same speed and each processor executes its own instructions independently of the
others. Processors communicate with each other through shared memory. If the ac-
cess times are equal between any processor and any memory module, the machine is
called UMA, uniform memory access shared memory multiprocessor system. An ex-
ample of such a system is the SUN Enterprise family of multiprocessors. Otherwise
it is called NUMA, non-uniform memory access shared memory multiprocessor. An
example of such a system is the SGI Origin family of multiprocessors. Local cache
memories [10, 19] between processors and memory modules are almost always intro-
duced to reduce contention. When cache is introduced, a cache coherency scheme
is implemented within the interconnect communication network to ensure that data
held in memory is consistent on a system-wide basis.

Synchronization in high performance shared memory multiprocessors is discussed
in the next section. Then the structure of real-time shared memory multiprocessors
and the comparison between real-time multiprocessors and high performance mul-
tiprocessors will be discussed. Finally, we discuss issues related to synchronization

Introduction 3

in real-time systems.

1.2 Synchronization

Programming for shared memory multiprocessors introduces synchronization prob-
lems that sequential programming does not need to address. Processes in shared
memory multiprocessors communicate and coordinate with each other through read-
ing from and writing to shared memory locations. Such Read/Write operations on
memory can be executed simultaneously on several processors. The final results of
these operations depend on their interleaving. To maintain consistency, synchroniza-
tion is used to guarantee that only desired interleaving of operations can happen.
There are two ways to do synchronization in shared memory: mutual exclusion and
non-blocking synchronization.

1.2.1 Mutual Exclusion

Mutual exclusion ensures that certain sections of code will not be executed by more
than one process simultaneously. The standard solution to mutual exclusion at ker-
nel level in uniprocessor systems is to momentarily disable interrupts to guarantee
that the operation of a shared memory object will not be preempted before it com-
pletes. This solution is not feasible for uniprocessor systems at user level, where
users do not have the privilege to disable interrupts. In multiprocessor systems,
where processes execute on several processors, disabling interrupts at kernel level
is too costly. In such cases, locks are used to guarantee that only one process can
access a shared memory object: before a process accesses a shared memory object,
it must get a lock associate with the object; after accessing the object, it will re-
lease the lock. Only one lock protects an object. The part of code that the process
executes to access the object is called code in “critical section”. If a process cannot
get the lock of an object, then another process owns the lock and is working on the
object in the critical section.

There are many implementations of locks. The simplest and most popular im-
plementation is the spinlock, which is described with pseudo-code in Figure 1.2.
The lock function in the spinlock implementation repeatedly checks the content of
the shared variable “owned” and changes the content of “owned” to TRUFE if it is
FALSE in one atomic step with the hardware primitive Test-and-Set. If the old
value is FALSE, the lock is not owned by any other process. Then, the process
puts TRUFE in it and owns the lock. If the old value is not FFALSE, the process just
tries again. After a process finishes its critical section, it calls the unlock function
to release the lock by setting the content of “owned” to FALSFE.

shared boolean owned = FALSE;
void lock ()

{
do

{
/% if owned is FALSE, testéset will return

succeed and change owned to TRUE x/
rtn = Test—and—Set (owned);
} while(rtn != succeed);

}

void unlock () {
owned = FALSE;
}

Figure 1.2: The simple spinlock

For a detailed description of the mutual exclusion problem and recent research
on mutual exclusion algorithms, the readers are referred to [2].

1.2.2 Non-blocking Synchronization

Non-blocking synchronization is an alternative to mutual exclusion for implementing
shared data objects. Shared data objects with non-blocking synchronization do not
use mutual exclusion and do not require any communication with the kernel. Rather,
they rely on hardware atomic primitives such as Compare-and-Swap or the pair Load-
Link and Store-Conditional.

An implementation of a shared data object is called non-blocking if first it sup-
ports concurrency: several processes can perform operations on the shared data
object concurrently; and moreover if it ensures that at any point of time some/all
of the non-fault concurrent processes will complete their operations on the object
in a bounded time regardless of the speed or status of other processes. If an im-
plementation guarantees progress of some non-fault processes, it is called lock-free;
if it guarantees progress of all non-fault processes, it is called wait-free. This re-
quirement rules out the use of locks for non-blocking synchronization: if a process
crashes while holding a lock, no process waiting for the lock can make any progress.

Compared with mutual exclusion, non-blocking synchronization has the following
significant advantages:

1. it avoids lock convoying effects [13]: if a process holding a lock is preempted
or delayed, any other process waiting for the lock is unable to perform any

Introduction

useful work until the process holding the locks has finished its access to the
shared object.

2. it provides high fault tolerance. By the definition of non-blocking synchroniza-
tion, failures of processes should never corrupt the shared data objects. When
using mutual exclusion, a process which dies during modifying a shared object
in its critical section might leave the shared object in an invalid state. Some
kind of fault recovery technique must be used to recover the object then.

3. it eliminates deadlock scenarios, where two or more tasks are waiting for locks

held by the other.

4. it does not give priority inversion scenarios. A description of this problem is
present in section 1.3 later.

1.2.3 Performance of Synchronization

The performance of synchronization is one of the bottlenecks for the performance of
applications running on shared memory multiprocessors. The performance of appli-
cations depends on the parallelism of applications and the efficiency of communica-
tion between processes. In shared memory multiprocessors, processes communicate
through synchronized operations on shared memory. Thus the performance of syn-
chronization effects the efficiency of communication and determines consequently
the performance of parallel applications.

The performance of synchronization on high performance shared memory mul-
tiprocessors is effected mainly by two factors: contention in the communication
network and preemption.

For shared memory multiprocessors, contention in the communication network is
an inherent consequence of sharing and becomes a critical architectural bottleneck.
Contention happens when processors access the same memory location. Because
the bandwidth of the interconnect network is limited, the access time on a memory
location will increase dramatically when contention increases. Contention has been
considered as one of the main factors affecting the performance of shared memory
multiprocessors [9].

Results of many researchers [5, 11, 15] have shown that the performance of
spinlocks degrades dramatically in the presence of contention on shared memory
multiprocessors. The spin operation on a memory location is CPU intensive, per-
forms no useful work and moreover generates an overwhelming amount of network
traffic on shared memory multiprocessors.

A lot of efforts have been done to alleviate the detrimental effects of the spin
operation. Segall and Rudolph [23] proposed a test-and-test-and-set algorithm to

reduce network traffic on cache-coherent shared memory multiprocessors. Anderson
[5] and Agarwal and Cherian [1] independently proposed exponential backoff as a
way of reducing contention of synchronization. The basic idea is to have each waiting
process delay for some time between lock accesses in the spinlock algorithm.

Queuing the processes asking for the lock is another way to avoid network con-
tention generated by lock operations. Anderson [5], Graunke and Thakkar [11] and
Mellor-Crummey and Scott [17] independently proposed several queue lock algo-
rithms. Two queue-based lock algorithms are specially developed by Magnusson,
Landin and Hagersten [16] for cache coherent multiprocessor systems and have bet-
ter performance than previous ones on such systems. Comparing with spinlocks,
queue locks reduce the contention in interconnection networks significantly.

However, contention is not the only factor for the performance of synchronization
in shared memory multiprocessors; preemption also effects the performance. In
shared memory multiprocessors for high performance computing, parallel programs
are expected to be run in a multiprogramming environment. Processes are scheduled
with a UNIX time-sharing scheduling [7]. In a time-sharing scheduling, the process
priority, assigned by users, is used to determined how many time-slices the process is
able to run without relinquishing the processor [25, 26]. The scheduler in a system
with time-sharing scheduling will adjust priorities of all processes dynamically to
balance the response time of all the processes and improve the processor utilization.
Therefore, in a time-sharing scheduling, a process may relinquish the processor after
its time quota runs out even if its job is not finished. So a process which is assigned
a high priority by some user can be preempted and relinquishes the processor to a
process assigned a low priority. In such scheduling, processes with the same priority
will have the same time quotas and run usually in round-robin manner. Besides
running out of time quota, a process may be preempted at any point for other
reasons: some kernel processes run for periods of time, even if the machine is used
exclusively; background daemons run from time to time; or page faults and 1/0O
interrupts take place.

For mutual exclusion, preemptions are responsible for the lock convoying prob-
lems [13]: if a process holding a lock is preempted or delayed, any other process
waiting for the lock is unable to perform any useful work until the process holding
the locks has finished its access to the shared object. With lock-based synchro-
nization, a parallel program as a whole slows down when one process is slowed
because of the convoying effect. The performance of both spinlock and queue lock
implementations degrades significantly [12].

To avoid the performance problem with preemption, people advocate preemption-
safe and scheduler-conscious locks [12, 18] and non-blocking synchronization. Pre-
emption-safe and scheduler-conscious locks require cooperation between processes
and operating system kernels to avoid the problem of lock convoying. The differ-

Introduction

ence between preemption-safe locks and scheduler-conscious locks is that processes
involved in preemption-safe locks interact with the scheduler of operating system
with their own states; processes involved in scheduler-conscious locks can get the in-
formation of the state of both their own and others and modify them. Non-blocking
synchronization does not need such information available at the kernel level. Instead
of kernel support, they rely on advanced hardware atomic primitives. For computa-
tion with non-blocking synchronization, if a process is preempted, it will not block
any other process and will not slow down any other process.

1.3 Real-time Shared Memory Multiprocessors

Although performance is desired, real-time systems require mostly predictable be-
havior. The correctness of real-time systems depends not only on the correct com-
putational results but also on the timing of the computational results [14]. The
structure of real-time shared memory multiprocessors is the same as the one of
general high performance ones. The extra architectural requirement of real-time
systems is that they should provide predictable performance for computation, I1/0
bus throughput and memory bandwidth.

The main differences between shared memory systems for high performance com-
puting and ones for real-time computing are the scheduling policies that they use and
the characteristics of the task sets run on them. High performance systems mostly
use time-sharing scheduling; real-time systems use priority-based scheduling. In a
priority-based scheduling, a task will only be preempted by high priority tasks and
will only relinquish the processor after it finishes its computation. The characteris-
tics are different between tasks running on high performance shared memory systems
and real-time systems. Most tasks on high performance systems are aperiodic; most
tasks on real-time systems are periodic. In high performance systems, the users are
usually interested in the average execution times of tasks run on them; in real-time
systems, the worst case execution times of tasks are of interest to them. In high
performance systems, tasks do not have release times and deadlines; in real-time
systems, tasks do have deadlines and may have release times. All these characteris-
tics of tasks in real-time systems are required by the systems to deliver predictable
behavior.

Predictable behavior is also expected for synchronization in real-time shared
memory systems. However, without special consideration, synchronization can in-
troduce unbounded or unpredictable worst case behavior into real-time systems.

Priority inversion problem with mutual exclusion can introduce unpredictable
behavior into real-time systems. As an example, two tasks might share a resource
which is protected with a lock : one has a high priority and one low priority. When
the high priority task wants to get the lock and access the shared resource, it finds

High Priority Task :l W
Medium Priority Task ‘_ :l
Low Priority Task V V V/J
Tt t, ts t, ts ts Ty tg 'T

Figure 1.3: A scenario of priority inversion

that the lock is held by the low priority task. Then, the high priority task has
to relinquish the processor to the low priority task to finish its operation on the
shared resource. If at this time another medium priority task who does not need to
access the shared resource to finish its job comes, the low priority must relinquish
the processor to it because of priority scheduling policy. This is a priority inversion
problem scenario: the high priority task has to wait for a medium priority task, even
if they do not share any resources except the processor. The situation is depicted
in Figure 1.3.

At time t;, the low priority task is released and begins to execute. It enters
critical section at time t,. At time t3, the high priority task is released and pre-
empts the low priority task. At time t4, the high priority task tries to access the
critical section and finds that the lock is hold by the low priority task. The high
priority task relinquishes the processor to let the low priority task finish its opera-
tion inside the critical section. At time t5, the medium priority task is released. As
the current running task is the low priority task who has a lower priority than the
medium priority task, by priority scheduling policy, the medium priority preempts
the low priority task and in turn preempts the high priority task. The time that the
high priority task begin to access the critical section is determined by not only the
critical access time of the low priority task but also the number, the periods and
the execution times of all tasks who might preempt the low priority task.

A lot of research work has been performed in order to minimize the effect of pri-
ority inversion. The priority inheritance protocol (PIP) and priority ceiling protocol
(PCP) [8, 20, 24] are proposed for uniprocessor real-time systems. In [6], a stack-
based resource allocation policy for real-time systems is described by Baker. For
real-time multiprocessor systems, Rajkumar et al. have proposed the distributed
priority ceiling protocol (DPCP) [21] (for message passing systems) and the multi-
processor priority ceiling protocol (MPCP) [20] (for shared memory systems).

Non-blocking synchronization does not suffer from the priority inversion problem.
There are other problems associated with non-blocking synchronization when we
apply them in real-time systems, for example: the “enabled late-write” problem [22]
and unbounded retry loops of lock-free synchronization. The “enabled late-write”

Introduction

problem can happen when using only Read/Write memory operations to implement
non-blocking synchronization in priority based real-time systems. The problem was
defined by Ramamurthy, Moir and Anderson in [22]. The “enabled late-write”
problem arises when a low priority task A is preempted while it is about to write to
a memory position, and is preempted by other tasks that access and modify the same
memory position. When task A resumes running, it overwrites the previous “fresh”
value with an “old” one. To solve the “enabled late-write” problem, Anderson et al.
propose a majority voting scheme in [22]. Beside the “enabled late-write” problem,
we face other problems when applying lock-free synchronization in real-time systems.
Lock-free synchronization usually uses a retry loop of read-compute-modify cycle.
The number of loops for a process to finish its access on a shared object with
lock-free synchronization is potentially unbounded. The unbounded retry loops
lead to infinite execution times in the worst case, which make tasks infeasible for
scheduling. In [3, 4], Anderson, Ramamurthy and Jeffay addressed how to apply
lock-free synchronization into real-time uniprocessor systems.

1.4 Contributions

In this thesis, we explore the performance impact of non-blocking synchronization
in high performance shared memory multiprocessors and the applicability of non-
blocking synchronization in real-time systems.

For high performance systems, throughput and scalability are the main factors
in their performance matrices. We investigate how to design high performance non-
blocking share data structures and how to use non-blocking synchronization to gain
performance.

In chapter 2, we present a non-blocking concurrent FIFO queue algorithm for
shared memory multiprocessors. We introduce an algorithmic mechanism to restrict
contention on key variables generated by concurrent enqueue and/or dequeue oper-
ations; we also give a new solution to the pointer recycling problem. Experimental
results show that our algorithm considerably outperforms the previous best-known
non-blocking algorithms and lock-based algorithm in both UMA and ccNUMA
shared memory machines with respect to both dedicated and multiprogramming
workloads.

In chapter 3, we study the performance impact of different synchronization mech-
anisms on parallel applications running on modern cache-coherent shared memory
multiprocessors. We investigate how performance and speedup in high performance
shared memory applications would be affected by using non-blocking rather than
blocking synchronization and how to efficiently transform lock-based synchroniza-
tion mechanisms into non-blocking ones. Our results show that for certain applica-
tions non-blocking synchronization has significant performance advantage over mu-

10

tual exclusions; non-blocking synchronization never slows down applications; there
exist simple transformations between frequently used lock-based synchronization
mechanisms to non-blocking ones.

In chapter 4, we implement a parallel Quicksort algorithm with techniques that
improves the cache behavior of our implementation and at the same time supports
non-blocking synchronization. We believe that as the gap between the computation
speed of microprocessors and the access speed of memory becomes larger and larger,
we have to consider carefully the memory access and synchronization in algorithm
design for cache-coherent shared memory multiprocessors. Our experimental results
agree with our claim and show that parallel Quicksort can outperform Sample Sort
on cache-coherent shared memory multiprocessors, where Sample Sort has been long
thought to be the best, general parallel sorting algorithms.

In real-time systems, predictability is the dominant factor in performance ma-
trices. We investigate how to achieve predictability of non-blocking synchronization
in real-time systems.

We present a non-blocking data sharing scheme for multiprocessor real-time
systems in chapter 5. The scheme extends previous single-writer multiple-reader
schemes by allowing multiple writers. A simple efficient memory management
scheme is embedded to limit the number of retries of reader operations and has
efficient space utilization.

In chapter 6, we present algorithmic implementations of the wait-free queue
classes of the Real-time Specification for Java. These implementations are designed
to have the unidirectional nature of these queues in mind and they are more efficient,
with respect to space, compared to previous wait-free implementations, without
losing in time complexity. We also give a new solution to the “enabled late-write”
problem mentioned in Section 1.3. The wait-free queue classes proposed in the Real-
time Specification for Java are of general interest to any real-time synchronization
system where hard real-time tasks have to synchronize with soft or even non real-
time tasks.

In chapter 7, we address on the problem of retry loops of lock-free synchroniza-
tion, mentioned in Section 1.3. We analyze the cause of interference for lock-free
synchronization in real-time shared memory multiprocessors. We propose a retry-
level based protocol to bounds the execution time of operations on lock-free shared
data objects in real-time shared memory multiprocessors. We analyze the worst
case behaviors of the proposed methods. To the best of our knowledge, we are the
first to show how to apply lock-free synchronization in real-time shared memory
multiprocessors.

BIBLIOGRAPHY 11

Bibliography

1]

A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques. In
Proceedings of the 16th Annual International Symposium on Computer Archi-
tecture, pages 396—406. IEEE Computer Society Press, June 1989.

J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclu-
sion: Major research trends since 1986. Distributed Computing, special issue
celebrating the 20th anniversary of PODC, page to appear.

J. H. Anderson and S. Ramamurthy. Using lock-free objects in hard real-time
applications. In Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed Computing (PODC °95), pages 272-272. ACM, Aug. 1995.

J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-
free shared objects. ACM Transactions on Computer Systems, 15(1):134-165,
Feb. 1997.

T. Anderson. The performance implications of spin lock alternatives for shared-
memory multiprocessors. IEEE Transactions on Parallel and Distributed Sys-
tems, 1:6-16, Jan. 1990.

T. Baker. Stack-based scheduling of real-time processes. Real-Time Systems,
3(1), Mar. 1991.

J. M. Barton and N. Bitar. A scalable multi-discipline, multiple-processor
scheduling framework for IRIX. In IPPS’95 Workshop on Job Scheduling Strate-
gies for Parallel Processing, pages 45-69. Springer-Verlag, 1995. Lecture Notes
in Computer Science. vol. 949.

M.-I. Chen and K.-J. Lin. Dynamic priority ceilings: a concurrency control
protocol for real-time systems. Real-Time Systems, 2(4):325-346, 1990.

C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algo-
rithms. Journal of the ACM, 44(6):779-805, Nov. 1997.

A. Gottlieb, R. Grishman, C. P. Krukal, K. P. McAuliffe, L. Rudolph, and
M. Snir. The NYU ultracomputer — designing an MIMD shared memory parallel
computer. IEEE Transactions on Computers, C-32(2):175-190, Feb. 1983.

G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory
multiprocessors. Computer, 23(6):60-69, June 1990.

12

[12]

[13]

[16]

[18]

[19]

[21]

L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-conscious
synchronization. ACM Transactions on Computer Systems, 15(1):3-40, Feb.
1997.

H. Kopetz and J. Reisinge. The non-blocking write protocol NBW: A solution to
a real-time synchronisation problem. In Proceedings of the Real-Time Systems
Symposium, pages 131-137, Raleigh-Durham, NC, Dec. 1993. IEEE Computer
Society Press.

C. M. Krishna and K. G. Shin. Real-Time Systems. McGraw-Hill, 1997.

B.-H. Lim and A. Agarwal. Reactive synchronization algorithms for multipro-
cessors. In Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VI),
pages 25-35. ACM press, Oct. 1994.

P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent
multiprocessors. In Proceedings of the 8th International Symposium on Parallel
Processing, pages 165-171, Los Alamitos, CA, USA, Apr. 1994. IEEE Computer
Society Press.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Transactions on Computer
Systems (TOCS), 9(1):21-65, Feb. 1991.

M. M. Michael and M. L. Scott. Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared memory multiprocessors. Journal of
Parallel and Distributed Computing, 51(1):1-26, 25 May 1998.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder,
K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. The IBM research
parallel processor prototype (RP3): Introduction and architecture. In Pro-
ceedings of the 1985 International Conference on Parallel Processing, I[CPP’85,
pages 764-771, University Park, Pennsylvania, Aug. 1985. IEEE. IBM T. J.
Watson Research Center, Yorktown Heights, NY.

R. Rajkumar. Real-time synchronization protocols for shared memory multi-
processors. In Proceedings of the 10th International Conference on Distributed
Computing Systems, pages 116123, Paris (France), May—June 1990. IEEE,
IEEE Computer Society Press.

R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols
for multiprocessors. In Proceedings of the 1988 IEEE Real-Time Systems Sym-
posium, pages 259-269, 1988.

BIBLIOGRAPHY 13

[22] S. Ramamurthy, M. Moir, and J. H. Anderson. Real-time object sharing with
minimal system support. In Proceedings of the 15th Annual ACM Symposium
on Principles of Distributed Computing (PODC ’96), pages 233-242. ACM,
May 1996.

[23] Z. Segall and L. Rudolph. Dynamic decentralized cache schemes for mimd
parallel processors. In Proceeding of 11th Annual International Symposium on
Computer Architecture, pages 340-347. ACM Press, June 1984.

[24] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Computers,
39(9):1175-1185, Sept. 1990.

[25] Silicon Graphics, Inc. System Interface Guide. Silicon Graphics, Inc., 2000.

[26] Sun Microsystems, Inc. System Interface Guide. SUN Microsystems, Inc., 2000.

14

Chapter 2

A Simple, Fast and Scalable Non-Blocking

Concurrent FIFO Queue for Shared
Memory Multiprocessor Systems

This paper is an extended version of the paper appeared in the Proceedings of the
13th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA "01).

16

A Non-blocking Concurrent FIFO Queue

17

A Simple, Fast and Scalable Non-Blocking
Concurrent FIFO Queue for Shared Memory
Multiprocessor Systems*

Philippas Tsigas and Yi Zhang

Department of Computing Science,
Chalmers University of Technology,
SE-412 60, Gothenburg, Sweden

Abstract

A non-blocking FIFO queue algorithm for multiprocessor shared memory systems is
presented in this paper. The algorithm is very simple, fast and scales very well in both
symmetric and non-symmetric multiprocessor shared memory systems. Experiments
on a 64-node SUN Enterprise 10000 — a symmetric multiprocessor system — and on
a 64-node SGI Origin 2000 — a cache coherent non-uniform memory access multi-
processor system — indicate that our algorithm considerably outperforms the best
of the known alternatives in both multiprocessors in any level of multiprogramming.
This work introduces two new, simple algorithmic mechanisms. The first lowers
the contention to key variables used by the concurrent enqueue and/or dequeue
operations which consequently results in the good performance of the algorithm; the
second deals with the pointer recycling problem, an inconsistency problem that all
non-blocking algorithms based on the Compare-and-Swap synchronisation primitive
have to address. In our construction we selected to use Compare-and-Swap since
Compare-and-Swap is an atomic primitive that scales well under contention and either
is supported by modern multiprocessors or can be implemented efficiently on them.

1 Introduction

Concurrent FIFO queue data structures are fundamental data structures used in
many applications, algorithms and operating systems for multiprocessor systems. To

* This work is partially supported by: i) the national Swedish Real-Time Systems research
initiative ARTES (www.artes.uu.se) supported by the Swedish Foundation for Strategic

Research and ii) the Swedish Research Council for Engineering Sciences.

18

protect the integrity of the shared queue, concurrent operations that have been created
either by a parallel application or by the operating system have to be synchronised.
Typically, algorithms for concurrent data structures, including FIFO queues, use some
form of mutual exclusions (locking) to synchronise concurrent operations. Mutual
exclusions protect the consistency of the concurrent data structure by allowing only
one process (the holder of the lock of the data structure) at a time to access the data
structure and by blocking all the other processes that try to access the concurrent
data structure at the same time. Mutual exclusions and, in general, other solutions
that introduce blocking are penalised by locking that introduces priority inversion,
deadlock scenarios and performance bottlenecks. The time that a process spends
blocked while waiting to get access to the critical section can form a substantial
part of the algorithm execution time [5, 9, 10, 14]. There are two main reasons that
locking is so expensive. The first reason is the lock convoying effect that blocking
synchronisation suffers from: if a process holding the lock is preempted, any other
process waiting for the lock is unable to perform any useful work until that the
process holding the locks is scheduled. When we taking into account that the multi-
processor system running our program is used in a multiprogramming environment,
convoying effects can become even serious. The second is that locking tends to produce
a large amount of memory and interconnection network contention, locks become hot
memory spots. Researchers in the field first designed different lock implementations
that lower the contention when the system is in a high congestion situation, and
they give different execution times under different contention instances. But on the
other hand the overhead due to blocking remains. To address the problems that arise
from blocking researchers have proposed non-blocking implementations of shared data
structures. Non-blocking implementation of shared data objects is a new alternative
approach to the problem of designing scalable shared data objects for multiprocessor
systems. Non-blocking implementations allow multiple tasks to access a shared object
at the same time, but without enforcing mutual exclusion to accomplish this. Since
in non-blocking implementations of shared data structures one process is not allowed
to block another process, non-blocking shared data structures have the following
significant advantages over lock-based ones:

(1) they avoid lock convoys and contention points (locks).

(2) they provide high fault tolerance (processor failures will never corrupt shared
data objects) and eliminates deadlock scenarios, where two or more tasks are
waiting for locks held by the other.

(3) they do not give priority inversion scenarios.

Among all the innovative architectures for multiprocessor systems that have been
proposed the last forty years shared memory multiprocessor architectures are gaining
a central place in high performance computing. Over the last decade many shared
memory multiprocessors have been built and almost all major computer vendors de-
velop and offer shared memory multiprocessor systems nowadays. There are two main

19

A Non-blocking Concurrent FIFO Queue

(9] [

° 1-oooooooos 15 BS | o ‘

3 e ———— ‘ =3 ‘ i

a ¥ ¢ | B8 L

5 | System | | gt ot o

e =] Board 58 |

o _ o I |

< g L
s I
- ‘ I nterconnect Network ‘

(a) The architecture of the SUN (b) The architecture of the Origin
Enterprise 10000 2000

Figure 1: Architectures

classes of shared memory multiprocessors: the Cache-Coherent Nonuniform Memory
Access multiprocessors (ccNUMA) and the symmetric or Uniform Memory Access
(UMA) multiprocessors. Their differences come from the architectural philosophy
they are based on. In symimetric shared memory multiprocessors every processor has
its own cache and all the processors and memory modules attach to the same inter-
connect, which is a shared bus. ccNUMA is a relatively new system topology that
is the foundation for next-generation shared memory multiprocessor systems. As in
UMA systems, ccNUMA systems maintain a unified, global coherent memory and all
resources are managed by a single copy of the operating system. A hardware-based
cache coherency scheme ensures that data held in memory is consistent on a system-
wide basis. In contrast to symmetric shared memory multiprocessor systems in which
all memory accesses are equal in latency, in ccNUMA systems, memory latencies are
not all equal, or uniform (hence, the name - Non-Uniform Memory Access). Accesses
to memory addresses located on "far" modules take longer than those made to "local"
memory.

This paper addresses the problem of designing scalable, practical FIFO queues for
shared memory multiprocessor systems. First we present a non-blocking FIFO queue
algorithm. The algorithm is very simple, it algorithmically implements the FIFO
queue as a circular array and introduces two new algorithmic mechanisms that we
believe can be of general use in the design of efficient non-blocking algorithms for
multiprocessor systems. The first mechanism restricts contention to key variables
generated by concurrent enqueue and/or dequeue operations in low levels; contention
to shared variables degrades performance not only in memory banks where the vari-
ables are located but also in the processor-memory interconnection network. The
second algorithmic mechanism that this paper introduces is a mechanism that deals
with the pointer recycling (also known as ABA) problem, a problem that all non-
blocking algorithms based on the Compare-and-Swap primitive have to address. The
performance improvements are due to these two mechanisms and to its simplicity that
comes from the simplicity and richness of the structure of circular arrays. We have

20

selected to use the Compare-and-Swap primitive since it scales well under contention
and either is supported by modern multiprocessors or can be implemented efficiently
on them. Last, we evaluate the performance of our algorithm on a 64-node SUN En-
terprise 10000 multiprocessor and a 64-node SGI Origin 2000. The SUN system is
a Uniform Memory Access (UMA) multiprocessor system while the SGI system is a
Cache-Coherent Nonuniform Memory Access (ccNUMA) one; SUN Enterprise 10000
supports the Compare-and-Swap while SGI Origin 2000 does not. The experiments
clearly indicate that our algorithm considerably outperforms the best of the known
alternatives in both UMA and ¢ccNUMA machines with respect to both dedicated
and multiprogramming workloads. Second, the experimental results also give a bet-
ter insight into the performance and scalability of non-blocking algorithms in both
UMA and ccNUMA large scale multiprocessors with respect to dedicated and multi-
programming workloads, and they confirm that non-blocking algorithms can perform
better than blocking on both UMA and ccNUMA large scale multiprocessors, and
that their performance and scalability increases as multiprogramming increases.

Concurrent FIFO queue data structures are fundamental data structures used in
many multiprocessor programs and algorithms and, as can be expected, many re-
searchers have proposed non-blocking implementations for them. Lamport [6] intro-
duced a wait-free queue that does not allow more than one enqueue operation or
dequeue operation at a time. Herlihy and Wing in [4] presented an algorithm for a
non-blocking linearisable FIFO queue which requires an infinite array. Prakash, Lee
and Johnson in [11] presented a non-blocking and linearisable queue algorithm based
on a singly-linked list. Stone describes a non-blocking algorithm based on a circular
queue. Massalin and Pu [8] present a non-blocking array-based queue which requires
the Double-Word-Compare-and-Swap atomic primitive that is available only on some
members of the Motorola 68000 family of processors. Valois in [12] presents a non-
blocking queue algorithm together with several other non-blocking data structures,
his queue is an array-based one. Michael and Scott in [10] presented a nonblocking
queue based on a singly-link list, which is the most efficient and scalable non-blocking
algorithm compared with the other algorithms mentioned above.

The remainder of the paper is organised as follows. In Section 2 we give a brief
introduction to shared memory multiprocessors. Section 3 presents our algorithm
together with a proof sketch. In Section 4, the performance evaluation of our algorithm
is presented. The paper concludes with Section 5.

A Non-blocking Concurrent FIFO Queue 21

2 Shared Memory Multiprocessors: Architecture and
Synchronization

There are two main classes of shared memory multiprocessors: the Cache-Coherent
Nonuniform Memory Access (ccNUMA) multiprocessors and the symmetric multi-
processors. The most familiar design for shared memory multiprocessor systems is
the "fixed bus" or shared-bus multiprocessor system. The bus is a path, shared by all
processors, but usable only by one at a time to handle transfers from CPU to/from
memory. By communicating on the bus, all CPUs share all memory requests, and can
synchronise their local cache memories. Such systems include the Silicon Graphics
Challenge/Onyx systems, OCTANE, Sun’s Enterprise (300-6000), Digital’s 8400, and
many others - most server vendors offer such systems.

Central Crossbar Mainframes and supercomputers have often used a crossbar "switch"
to build shared multiprocessor systems with higher bandwidth than feasible with
busses, where the switch supports multiple concurrent paths to be active at once.
Such systems include most mainframes, the CRAY T90, and Sun’s new Enterprise
10000. Figure 1(a) graphically describes the architecture of the new SUN Enterprise
10000. Shared-bus and central crossbar systems are usually called UMASs, or Uniform
Memory Access systems, that is, any CPU is equally distant in time from all mem-
ory locations. Uniform memory access shared memory multiprocessors dominate the
server market and are becoming more common on the desktop. The price of these
systems rise quite fast as the number of processors increases.

Boolean Compare -and-Swap(WORD *mem, register WORD old, new)
{
WORD temp;
temp = *mem;
if (temp == old){
*mem = new,;
return TRUE;
Yelse
return FALSE;

Figure 2: The Compare-and-Swap primitive

ccNUMA is a relatively new system topology that is the foundation for many next-
generation shared memory multiprocessor systems. Based on "commodity" processing
modules and a distributed, but unified, coherent memory system, ccNUMA extends
the power and performance of shared memory multiprocessor systems while preserv-
ing the shared memory programming model. As in UMA systems, ccNUMA systems
maintain a unified, global coherent memory and all resources are managed by a sin-
gle copy of the operating system. A hardware-based cache coherency scheme ensures

22

LL(p; , 0) sc(pi,v,0)
{ {
Pset(0) := Pset(0) U {p;} if p; € Pset(0O)
return value (0) value (0):= v
} Pset(0) :=0
return TRUE
else

return FALSE
}

Figure 3: The Load-Linked/Store-Conditional primitives

that data held in memory is consistent on a system-wide basis. I/O and memory
scale linearly as processing modules are added, and there is no single backplane
bus. The nodes are connected by an interconnect, whose speed and nature varies
widely. Normally, the memory "near" a CPU can be accessed faster than memory
locations that are "further away". This attribute leads to the "Non" in Non-Uniform.
ccNUMA systems include the Convex Exemplar, Sequent NUMA-Q, Silicon Graph-
ics/CRAY S2MP (Origin and Onyx2). In the Silicon Graphics Origin 2000 system a
dual-processor node is connected to a router. The routers are connected with a fat
hypercube interconnect, Figure 1(b) graphically describes the architecture.

ccNUMA systems are expected to become the dominant systems on large high per-
formance systems over the next few years. The reasons are: i) they scale up to as
many processors as needed. ii) they support the cache-coherent globally addressable
memory model. iii) their entry level and incremental costs are relatively low.

A widely available hardware synchronisation primitive that can be found on many
common architectures is Compare-and-Swap, (CAS). The Compare-and-Swap primitive
takes as arguments the pointer to a memory location, and old and new values. As
it can be seen from Figure 2 that describes the specification of the Compare-and-
Swap primitive, it automatically checks the contents of the memory location that
the pointer points to, and if it is equal to the old value, updates the pointer to the
new value. In either case, it returns a boolean value that indicates whether it has
succeeded or not. The IBM System 370 was the first computer system that intro-
duced Compare-and-Swap. SUN Enterprise 10000 is one of the systems that support
this hardware primitive. Some newer architectures, SGI Origin 2000 included, intro-
duce the Load-Linked/Store-Conditional instruction which can be implemented by the
Compare-and-Swap primitive. The Load-Linked/Store-Conditional is comprised by two
simpler operations, the Load-Linked and the Store-Conditional one. The Load-Linked,
(LL) loads a word from the memory to a register. The matching Store-Conditional,
(SC) stores back possibly a new value into the memory word, unless the value at the
memory word has been modified in the meantime by another process. If the word
has not been modified, the store succeeds and a TRUE is returned. Otherwise the,
Store-Conditional fails, the memory is not modified, and a FALSE is returned. The

A Non-blocking Concurrent FIFO Queue

23

2

specification of this operation is shown in Figure 3. For more information on the
SGI Origin 2000 and the SUN ENTERPRISE the reader is referred to [2, 7] and [1],
respectively.

The Compare-and-Swap primitive though gives rise to the pointer recycling (also
known as ABA) problem. The ABA problem arises when a process p reads the value
A from a shared memory location, computes a new value based on A, and uses
Compare-and-Swap updates the same memory location after checking that the value
in this memory location is still A and mistakenly concluding that there was no oper-
ation that changed the value to this memory location in the meantime. But between
the read and the Compare-and-Swap operation, other processes may have changed the
context of the memory location from A to B and then back to A again. In this sce-
nario the Compare-and-Swap primitive fails to detect the existence of operations that
changed the value of the memory location; in many non-blocking implementations
of shared data structures this is something that we would like to be able to detect
without having to use the Read-Modify-Write operation that has very high latency
and creates high contention. A common solution to the ABA problem is to split the
shared memory location into two parts: a part for a modification counter and a part
for the data. In this way when a process updates the memory location, it also in-
crements the counter in the same atomic operation. There are several drawbacks of
such a solution. The first is that the real word-length decreases as the counter now
occupies part of the word. The second is that when the counter rounds there is a
possibility for the ABA scenario to occur, especially in systems with many, and with
fast processors such as the systems that we are studying. In this paper we present a
new, very simple efficient technique to overcome the ABA problem; the technique is
described in the next section together with the algorithm.

Boolean Compare -and-Swap(WORD *mem, register WORD old, new)
{

WORD temp;
do
{
temp = LL(mem);
if (temp != o0ld)

return FALSE;
}while (!SC(mem,new));
return TRUE;

Figure 4: Emulating Compare-and-Swap from Load-Linked/Store-Conditional

24

3 The Algorithm

3.1 Contention, consistency and non-blocking synchronisation

During the design phase of any efficient non-blocking data structure, a large effort
is spent on guaranteeing the consistency of the data structure without generating
many interconnection transactions. The reason for this is that the performance of
any synchronisation protocol for multiprocessor systems heavily depends on the in-
terconnection transactions that they generate. A high number of transactions causes
a degradation in the performance of memory banks and the processor/memory inter-
connection network.

As a first step, when designing the algorithm presented here, we tried to use simple
synchronisation instructions (primitives), with low latency, that do not generate a lot
of coherent traffic but are still powerful enough to support the high-level synchronisa-
tion needed for the non-blocking implementation of a FIFO queue. In the construction
described in this paper, we have selected to use the Compare-and-Swap atomic prim-
itive since it meets the three important goals that we were looking for. First, it is a
quite powerful primitive and when used together with simple read and write registers
is sufficient for building any non-blocking implementation of any "interesting" shared
data-structure [3]. Second, it is either supported by modern multiprocessors or can
be implemented efficiently on them. Finally, it does not generate a lot of coherent
traffic. The only problem with the Compare-and-Swap primitive is that, it gives rise to
the pointer recycling (also known as ABA) problem. As a second step, we have tried
when designing the algorithm presented here to use the Compare-and-Swap operation
as little as possible. The Compare-and-Swap operation is an efficient synchronisation
operation and its latency increases linearly with the number of processors that use it
concurrently, but still it is a transactional one that generates coherent traffic. On the
other hand Read or Write operations require a single message in the interconnection
network and do not generate much coherent traffic. As a third step, we propose a
simple new solution that overcomes the ABA problem that does not generate a lot of
coherent traffic and does not restrict the size of the queue.

Figure 6 and Figure 7 present commented pseudo-code for the new non-blocking
queue algorithm. The algorithm is simple and practical, and we were surprised not
to find it in the literature. The non-blocking queue is algorithmically implemented
as a circular array with a head and a tail pointer A ghost copy of NULL has been
introduced in order to help us to avoid the ABA problem as we are going to see at
the end of this section. During the design phase of the algorithm we realised that:
i) we could use the structural properties of a circular array to reduce the number of
Compare-and-Swap operations that our algorithm uses as well as to overcome more
efficiently the ABA problem and ii) all previous non-blocking implementations were

A Non-blocking Concurrent FIFO Queue

25

trying to guarantee that the tail and the head pointers always show the real head
and tail of the queue but by allowing the tail and head pointers to lag behind we
could even further reduce the number of Compare-and-Swap asymptotically close to
optimal. We assume that enqueue operations inserts data at the tail of the queue
and dequeue operations remove data from the head of the queue if the queue is not
empty. In the algorithm presented here we allow the head and the tail pointers to
lag at most m behind the actual head and tail of the queue, in this way only one
every m operations has to consistently adjust the tail or head pointer by performing
a Compare-and-Swap operation. Since we implement the queue as a circular array, each
queue operation that successfully enqueues or dequeues data knows the index of the
array where the data have been placed, or have been taken from, respectively; if this
index can be divided by m, then the operation will try to update the head/tail of the
queue, otherwise it will skip the step of updating the head/tail and let the head/tail
lag behind the actual head/tail. In this way, the amortised number of Compare-and-
Swap operations for an enqueue or dequeue operation is only 1 + 1/m compare-and-
swap operation per enqueue/dequeue operation is necessary. The drawback that such
a technique introduces is that each operation on average will need m/2 more read
operations to find the actual head or tail of the queue; but if we fix m so that the
latency of (m — 1)/m Compare-and-Swap operations is larger than the latency of
m/2 read operations, there will be a performance gain from the algorithm, and these
performance gains will increase as the number of processes increases.

It is definitely true that array-based queues are inferior to link-based queues, because
they require inflexible maximum queue size. But, on the other hand, they do not re-
quire memory management schemes that link-based queue implementations need and
they benefit from spatial locality significantly more than link-based queues. Taking
these into account and having a a simple, fast and practical implementation in mind
we decided to use a cyclical-array in our construction.

We have used the Compare-and-Swap primitive to atomically swing the head and tail
pointers from their current value to a new one. For the SGI Origin 2000 system we
had to emulate the Compare-and-Swap atomic primitive with the Load-linked/Store-
conditional instruction; this implementation is shown in Figure 4. However, using
Compare-and-Swap in this manner is susceptible to the ABA problem. In the past
researchers have proposed to attach a counter to each pointer, reducing in this way
the size of the memory that these pointers can point at efficiently. In this paper
we observe that the circular array itself works like a counter mod [where [is the
length of the cyclical array, and we can fix [to be arbitrary large. In this way by
designing the queue as a circular array we overcome the ABA problem on the head
and tail of the queue the same way the counters do but without having to attach
expensive counters to the pointers, that restrict the pointer size. From now on, when
an enqueue operation takes place, the tail changes in one direction and goes back to
zero when it reaches the end of the array. Henceforth, the tail will change back to the

26

2

4

6

8

10

12

14

16

18

same old value after the shared object finishes [enqueue operations and not after two
successive operations (exactly as when using a counter mod [). The same also holds
for the dequeue operations.

MAXNUM is [, the length of the cyclical
structure Queue

{
head: unsigned integer,
nodes: array[0..MAXNUM+1] of pointer,
tail: unsigned integer,

}

newQueue () : pointer to Queue

Queue *temp;

temp = (Queue *) malloc(sizeof (Queue));

temp->head = 0;

temp->tail 1;

for (i=0;i<=MAXNUM;i++)
#NULL (0) and NULL(1) mean empty
temp->nodes [i]=NULL (0) ;

temp->nodes [0] = NULL(1);

return temp;

Figure 5: Initialisation

The atomic operations on the array are other potential places where the ABA problem
can take place giving rise to the following scenario:

When the array is (almost) empty,

(1) The array location z is the actual tail of the queue and its content is Null*

(2) Processes a and b want to enqueue data and process ¢ want to do a dequeue
operation. Processes a and b find the actual tail.

(3) Process a enqueues data and updates the content of location x with Compare-
and-Swap. Since the content of z is Null, a succeeds

(4) Process ¢ dequeues data and updates the content of location = to Null, changing
also the pointer head

(5) Process b enqueues data and updates the contents of location = with Compare-
and-Swap. Since the content of x is Null, b incorrectly succeeds to enqueue a
non-active cell in the queue.

Or when the array is (almost) full,

(1) The array location z is the actual head of the queue and its content is C.

1 the cell is empty.

A Non-blocking Concurrent FIFO Queue

27

(2) Processes a and b want to do dequeue operations and process ¢ want to enqueue
data. Processes a and b find the actual head and read the content C of location
x out.

(3) Process a dequeues data and updates the content of location x to Null with the
use of Compare-and-Swap. Since the contents of = is C', a succeeds.

(4) Process ¢ comes and enqueues data C' and updates the content of location z to
C, changing also the pointer tail.

(5) Process b dequeues data and updates the contents of location z to Null with the
use of Compare-and-Swap. Since the content of = is C', b succeeds to dequeue a
data not in a FIFO order.

In order to overcome these specific ABA instances instead of using a counter with all
the negative side-effects, we introduce a new simple mechanism that we were surprised
not to find in the literature. The idea is very simple: we use one bit of each word as
a tag. When the tag bit is 0, the value is called normal copy. When the tag bit is 1,
we call the value is a ghost copy of original one. When using CAS, if the old value
is a normal copy of NULL, we will swap in a ghost copy of the new data; otherwise
a normal copy of the new data. If the old value is a normal copy of a non-NULL
value, a normal copy of NULL will be swap in; otherwise a ghost copy. Now let us
take the NULL as an example to demonstrate how to deal with the ABA problem.
Instead of using one value to describe that an entry in the array is empty, now we have
two, NULL(0), the normal copy, and NULL(1), the ghost copy. When a processor
dequeues an item, it will swap into the cell one of the two NULLs in such a way that
two consecutive dequeue operations on the same cell give different NULL values to
the cell.

Returning to the first ABA scenario described above, the scenario would now look
like this:

(1) Array location x is the actual tail and it’s content is NULL(0)

(2) Processes a and b find the actual tail, ie. location z and the old value of the
location, NULL(0).

(3) Process a enqueues data and updates the content of location x with a Compare-
and-Swap operation. Since z's content is NULL(0), a succeeds. The value swap
in by a is a ghost copy.

(4) Process ¢ dequeues data and updates the content of location z to NULL(1),
because the old value is a ghost copy.

(5) process b enqueues data and updates the content of location x with
Compare-and-Swap. As the content is NULL(1), b fails in this turn.

With this mechanism the ABA scenario that was taking place before, when a process
was preempted by only one other process, now changes to an ABA'B’A scenario. The
ABA'B'A scenario is still a pointer recycling problem, but in order to take place [

28

Enqueue (t: pointer to Queue, newnode: pointer to data type)

21o0p
te = t->tail; #tread the tail
4 #assume the tail points the actual tail
ate = te;
6 tt = t->nodes[ate];
#the next slot of the tail
8 temp = (ate + 1) & MAXNUM;
#Now we want to find the actual tail
10 while (tt !'= NULL(O) AND tt != NULL(1)) do
#check tail’s consistency
12 if (te !'= t->tail) break;
#if tail meet head, the queue is probably full.
14 if (temp == t->head) break;
#now check the next cell
16 tt = t->nodes[temp];
ate = temp;
18 temp = (ate + 1) & MAXNUM;
end while
20 #check the tail’s consistency
if (te != t->tail) continue;
22 ##tcheck whether Queue is full
if (temp == t->head)
24 ate = (temp + 1) & MAXNUM;
tt = t->nodes[ate];
26 #the cell after head is OCCUPIED
if (tt '= NULL(0) AND tt != NULL(1))
28 return FAILURE; #Queue Full
#help the dequeue to update head
30 cas (&t->head ,temp,ate);
#try enqueue again
32 continue;
end if
34 if (tt == NULL(1))
tnew = newnode | 0x80000000;
36 else
tnew = newnode;
38 #check the tail consistency
if (te !'= t->tail) continue;
40 #get the actual tail and try enqueue data
if (cas(&(t->nodes[ate]),tt,newnode))
42 if (temp%2==0) #enqueue has succed
cas (&(t->tail),te,temp);
44 return SUCCESS;
end if

46 endloop

Figure 6: The enqueue operation

:Boolean

A Non-blocking Concurrent FIFO Queue

29

dequeue operations are needed to take the system from A to B and subsequently to
A’, after that [more dequeue operations are needed in order to take the system from
A’ to B" and then to A. Moreover, all these operations have to take place while the
process that will experience the pointer recycling is preempted. Taking into account
that [is an arbitrary large number, the probability that the above ABA’B’A scenario
can happen can go as close to 0 as we want 2.

The above sketches a proof of the following lemma:

Lemma 1 The algorithm does not give rise to the pointer recycling problem, if an
enque or dequeue operation can not be preempted by more than | operations, | is an
arbitrary large number.

For the rest of this paper we assume that we have selected [to be large enough not
to give rise to the pointer recycling problem in our system.

Our queue is a concurrent non-blocking FIFO implementation. Enqueue operations
can overlap with other enqueue and dequeue operation of the same queue. We use
linearisability [4] as correctness criterion. The accessing of the shared object is mod-
elled by a history h. A history A is a finite (or not) sequence of operation invocation
and response events. Any response event is preceded by the corresponding invocation
event. For our case there are two different operations that can be invoked, an En-
queue operation or a Dequeue operation. An operation is called complete if there is
a response event in the same history h; otherwise, it is said to be pending. A history
is called complete if all its operations are complete. In a global time model each op-
eration ¢ “occupies" a time interval [s,, f,] on one linear time axis (s, < f,); we can
think of s, and f; as the starting and finishing time instants of ¢. During this time
interval the operation is said to be pending. There exists a precedence relation on op-
erations in history denoted by <j, which is a strict partial order: ¢; <; g2 means that
q1 ends before g, starts; Operations incomparable under < are called overlapping.
A complete history h is linearisable if the partial order <, on its operations can be
extended to a total order —,that respects the specification of the object [4].

We will prove that every execution of our implementation is linearisable and it is a
FIFO queue. In order to do so, we will show that any possible history (<), produced
by our implementation, can be extended to a total order (—y,) by using a “linearization
point” for each operation. The “linearization point” of an operation is an atomic point
on its execution, during which the operation takes effect. The “linearization point” for

2 We should point out that the technique of using 2 different NULL values can be extended
to k different values, with more tag bits, requiring more than k * [dequeue operations to
preempt an operation in order to cause the pointer recycling problem. We think that the
scheme with 2 *x NULL values is simple enough and sufficient for the systems that we are
looking at.

30

the enqueue operation is when statement 41 execute successfully and the “linearization
point” for the dequeue operation is when statement 32 execute successfully. With the
above “linearization points”, we can map any partial order of enqueue and dequeue
events into total order events. Furthermore any possible history, produced by our
implementation, can be mapped to a history where operations use an auxiliary array
that is not bounded on the right side. In order to simplify the proof we will use this
new auxiliary array.

Lemma 2 The proposed queue algorithm guarantees that enqueue operations enqueue
data at consecutive array entries from left to right on this array.

Proof: Assume that enqueue operations skip one entry of the array. There are two
cases: no enqueue operation find this empty entry or no enqueue operation updates
this entry successfully. Because the tail variable is always lag behind of the actual
tail of the queue and all enqueue operations look for an empty entry from the entry
pointed by the tail variable. So, the first case can not happen. Assume that enqueue
operations find the empty entry at the tail of the queue, but no one updates it
successfully. This is against the definition of CAS: at least one of the processes will
succeed. n

The same argument can be given us the following lemma.

Lemma 3 The proposed queue algorithm guarantees that dequeue operations dequeue
items from left to right consecutively.

To proof our queue is a FIFO one and satisfies the linearizability requirement, we
also need the following two lemma for our queue. The lemma below proves that our
queue implementation is a FIFO one and no element enqueued gets lost.

Lemma 4 In a complete history H, VEnqueue(z), Enqueue(y) € H such that
Enqueue(z) —p, Enqueue(y), if Dequeve(y) € H, then Dequeue(z) € H and
Dequeue(z) —p, Dequeue(y).

Proof: First we proof Dequeue(x) € H. Let’s assume Dequeue(z) ¢ H. It means
no process has execute CAS successfully. The content z is still in the array and the
location of x should not be empty. Because Enqueue(x) —y, Enqueuve(y), the location
of x should between the real head and the location of y before y is removed from the
queue. As point out before, the real head of the queue is lag behind the head pointer
of the queue. If a process A dequeue g, it must conclude that all locations in the array
between the head pointer and the location of y is empty. It is contradict with our
assumption.

With the same argument above, we can proof that Dequeue(r) —y, Dequeuve(y).

A Non-blocking Concurrent FIFO Queue

31

The lemma below proves that dequeue operations dequeue items that have really been
enqueued.

Lemma 5 In a complete history, YDequeue(x) € H, FEnqueue(z) € H and
Enqueue(x) —p, Dequeue(z).

Proof: The location in the array only changed by CAS with enqueue and dequeue
operations. If z is dequeue, it means the location contains . As the array is initialized
to be NULL. There must exists a CAS operation which change the content of the location
from NULL to z before the dequeue operation. 0

The above lemmas give us two properties of our queue implementation. According to
[4], we can conclude the following theorem.

Theorem 1 Qur queue algorithm is a linearizable FIFO concurrent queue.

3.2 Description of the algorithm

Figure 6 and figure 7 present commented pseudo-code for the new non-blocking queue
algorithm. The queue is implement as a circular array. If the value of one of the cells
of the array is NULL(0) or NULL(1), the cell is empty. All entries of the array are
initialised to be empty. In our algorithm, head and tail are used to indicate that the
actual head is in the scope of [head, ..., head + m| and [tail, ..., tail + m]. In this way,
we can reduce the number of atomic operations (m — 1)/m times and reduce the
average number of Compare-and-Swap for one queue operation from 2 to 1+ 1/m.

There is a tradeoff when choosing m. Large m's will cause low bus contention but
require more time to find the actual position of head or tail. Now most shared memory
system use cache coherence protocol. Usually, one cache line contains 64 or more
bytes; that means for a 64 bit machine, each line will contain 8 words (machine
word). When the processor fetches one word from the memory to cache, it also fetch
other 7 words or more together into the cache. This feature make the checking for the
real location of header or tail to operate in cache most times if m < 8. As we reduce
the bus contention in our algorithm, the performance for queue operation become
more scalable than other queue algorithms.

32

2

4

10

12

14

16

18

20

22

24

26

28

30

32

34

36

Dequeue (t: pointer to Queue, oldnode:
pointer of pointer to data type)
loop
th = t->head; #read the head
#here is the one we want to dequeue
temp = (th + 1) & MAXNUM;
tt = t->nodes[temp];
find the actual head after this 1loop

while (tt == NULL(O) OR tt == NULL(1)) do
#check the head’s consistency
if (th !'= t->head) break;
#two consecutive NULL means EMPTY return
if (temp == t->tail) return 1;

temp = (temp + 1) & MAXNUM; #next cell
tt = t->nodes[temp];

end while

#check the head’s consistenicy

if (th !'= t->head) continue;
#check whether the Queue is empty
if (temp == t->tail)

#help the enqueue to update end
cas (&t->tail ,temp, (temp+1) & MAXNUM);

continue ; #try dequeue again
end if
if (tt & 0x80000000)
tnull = NULL(1);
else
tnull = NULL(O);
#check the head’s consistency
if (th '= t->head) continue;

#Get the actual head, null value means empty
if (cas(&(t->nodes[templ),tt,tnull))
if ((temp%2)==0) cas(&(t->head),th,temp);
*0ldnode = tt & Ox7fffffff; #return the value
return O0;
end if
endloop

Figure 7: The dequeue operation

4 Performance Evaluation

We implemented our algorithm and conducted our experiments on a SUN Enterprise
10000 with 64 250MHz UltraSPARC processors and on a SGI Origin 2000 with 64
195MHz MIPS R10000 processors. The SUN multiprocessor is a symmetric multi-
processor while the SGI multiprocessor is a ccNUMA one. To ensure accuracy of the
results, we had exclusive access to the multiprocessors while conducting the experi-
ments. For the tests we compared the performance of our algorithm (new) with the

A Non-blocking Concurrent FIFO Queue

performance of the algorithm by Michael and Scott (MS) [10] because their algorithm
appears to be the best non-blocking FIFO queue algorithm. In our experiments, we
also included a solution based on locks (ordinary lock) to demonstrate the superiority
of non-blocking solutions over blocking ones.

4.1 Experiments on SUN Enterprise 10000

We have conducted 3 experiments on the SUN multiprocessor, in all of them we had
exclusive use. In the first experiment we measured the average time taken by all
processors to perform one million pairs of enqueue/dequeue operations. In this exper-
iment (Figure 8a) a process enqueues an item and then dequeues an item and then
it repeats. In the second experiment (Figure 8b) processes stay idle for some random
time between each two consecutive queue operations. In the third experiment we used
parallel quick-sort, that uses a queue data structure, to evaluate the performance of
the three queue implementations. Parallel quick-sort had to sort 10 million randomly
generated keys. The results of this experiment are shown in Figure 8c. The horizontal
axis in the figures represent the number of processors, while the vertical one represents
execution time normalised to that of Michael and Scott algorithm.

The first two experiments (on 58 processors), show that the new algorithm outper-
forms the MS algorithm by more than 30% and the spin-lock algorithm by more than
50%. The third experiment shows that the new queue implementation offers 40%
better response time to the sorting algorithm.

4.2 Experiments on the SGI multiprocessor

On the SGI machine, the first three experiments were basically the same experiments
that we performed on the SUN multiprocessor. The only difference is that on the SGI
machine we could select to use the system as a dedicated system (multiprogramming
level one) or as a multiprogrammed system with two and three processes per processor
(multiprogramming level two and three respectively). For the SUN multiprocessor this
was not possible. Figures 9, 10 and 11a show graphically the performance results.
What is very interesting is that our algorithm gives almost the same performance
improvements on both machines.

On the SGI multiprocessor, it was possible to use the radiosity from SPLASH-2
shared-address-space parallel applications [13]. Figure 11b shows the performance
improvement compared with the original SPLASH-2 implementation. The vertical
axis represents execution time normalised to that of the SPLASH-2 implementation.

34

normalized time

normalized time

normalized time

Figure

2
‘ ‘ ‘ " New Non-blocking ——
MS Non-blocking ---x---
" s, Qrdinany lock -
*’(Pf **x***%** * KK“*;‘*
* —
X** x
15+ o |
*
¥
Fx X'*
D e X
i
1+
05 | |
0 .) ‘ ‘ ‘
10 20 20 s =
number of processors
(a) on the SUN Starfire with full con-
tention
: T
New Non-blocking —+—
MS Non-blocking -~
AR HEEX % Ordinary lock ---3---
] B L
> e
15+ A]
*
X
IF Ve
¥ M
05 | |
0 L N)) ‘

10 20 30 40 50
number of processors

(b) on the SUN Starfire with random
waiting contention

j j j j New Non-blocking ——
14| MS Non-blocking -~
Ordinary lock -—---
12 F 4
¥ * *. ¥
1 *- % -
.*,
08 4
06
04l 4
02} 4
o
5 10 15 20 25 30

number of processors

(c) Quick-sort on SUN Starfire

8: Results on the SUN multiprocessor

A Non-blocking Concurrent FIFO Queue 35

2 T T T T T T T
New Non-bblocking —-—
MS Non-blocking —+-
18 Ordinary lock -5
o
E
B
2
T
E
5
s
0.4 | 4
0.2 B
5 10 1! 20 25 30 35
number of processors
(a) Level one
25 T T T
B New Non-bblocking —<—
o MS Non-blocking —+-
. .-Hordinary lock -g:
. - RS- R
N - .
- a 0
2+ Py o 1
) -
p
o 15+ B 1
E 3
b= -
= :
2 1
05 | B
5 10 15 20 30 35
number of processors
4 T T T T T T T
New Non-bblocking +—
MS Non-blocking —+-
as | Ordinary lock -0~
A, 3
o] 8 S
SN S o
3 - o q
gt - @ o
,'mv
25 Bo 4
o
£
B
N 2 o 4
o
£ =
S Fa
s .
150y B 4
' W
05 | B
5 10 30 35

15 20
number of processors

(c) Level 3

Figure 9: Results on the SGI multiprocessor with different multiprogramming levels
under full contention

36

35 T T T T T T T
New Non-bblocking ~—
MS Non-blocking +-
Ordinary lock -8
N 1
25 1
2 ;
E 2+ i 1
= B b
g : Ba.
g ; =)
s o888 g o =
g o ‘mg-oge
5 15f ; 1
] ;
a
L hgoEs
05 1
0
5 10 1 20 25 30 35
number of processors
(a) Level 1
45 g i i
New Non-bblocking ~—
MS Non-blocking +-
4t Ordinary lock -8+ |
35 ; 5, 1
,Bv S
3 : . 9
o B =]
g8 fcia e
£ ast i S 1
B ; -
N H
2 ;
E 2r ; 1
S [
15 @ 1
g
4
I BT o SN
05 1
0
5 10 15 20 30 35
number of processors
5 T 5 T T T T T
B New Non-bblocking ~—
3 MS Non-blocking +-
X Ordinary lock -8
o, o
s ; - o P 4
H A
a N
y e
o
N ! 1
2 ;
5
B ;
] s
2 2 b 1
)
o
v'El"
1
0
5 10 30 35

Figure 10: Results on the SGI multiprocessor with different multiprogramming levels

under random waiting contention

15 20
number of processors

(c) Level 3

A Non-blocking Concurrent FIFO Queue

37

T T
New Non-blocking <—
MS Non-blocking —+-

Ordinary lock -2--

normalized time
o]

I I I I
5 10 15 2 25 30
number of processors

(a) Quick-sort

Non-bblocking Queue —+—
Spinlock ---x---

15

normalized time
-

\'\\

05 |

| | | | | |
5 10 15 20 25 30
number of processors

(b) Radiosity
Figure 11: Applications on SGI

5 Conclusions

In this paper we presented a new bounded non-blocking concurrent FIFO queue
algorithm for shared memory multiprocessor systems. The algorithm is simple and
introduces two new simple algorithmic mechanisms that can be of general use in
the design of efficient non-blocking algorithms. The experiments clearly indicate that
our algorithm considerably outperforms the best of the known alternatives in both
UMA and ccNUMA machines with respect to both dedicated and multiprogramming
workloads. The experimental results also give a better insight into the performance

38

and scalability of non-blocking algorithms in both UMA and ccNUMA large scale
multiprocessors with respect to dedicated and multiprogramming workloads, and they
confirm that non-blocking algorithms can perform better than blocking on both UMA
and ccNUMA large scale multiprocessors.

Acknowledgements

We would like to thank David Rutter for his great help during the writing phase of
this paper. We are grateful to Carl Hallen, Andy Polyakov and Paul Waserbrot, they
made the impossible possible and at the end we could have exclusive access to our
heavily (thanks to our physics department) loaded parallel machines.

References

[1] A. Charlesworth. Starfire — extending the SMP envelope. IEEE Micro, 18(1):39-49,
1998.

[2] D. Cortesi. Origin 2000 and onyx2 performance tuning and optimization guide.
http://techpubs.sgi.com/library/, SGI Inc., 1998.

[3] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124-149, Jan. 1991.

[4] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492,
July 1990.

[5] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical studies of competitive
spinning for a shared-memory multiprocessor. In Proceedings of the Thirteenth ACM

Symposium on Operating Systems Principles Operating Systems Review (13th SOSP
1991), pages 41-55, Pacific Grove, CA, Oct. 1991.

[6] L. Lamport. Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems, 5(2):190-222, Apr. 1983.

[7] J. Laudon and D. Lenoski. The SGI origin: A ¢ccNUMA highly scalable server. In
Proceedings of the 24th Annual International Symposium on Computer Architecture
(ISCA-97), volume 25,2 of Computer Architecture News, pages 241-251, New YOrk,
June 2-4 1997. ACM Press.

[8] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report CUCS-
005-91, Columbia University, 1991.

A Non-blocking Concurrent FIFO Queue

39

[9] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems (TOCS),
9(1):21-65, Feb. 1991.

[10] M. M. Michael and M. L. Scott. Nonblocking algorithms and preemption-safe locking on
multiprogrammed shared memory multiprocessors. Journal of Parallel and Distributed
Computing, 51(1):1-26, 25 May 1998.

[11] S. Prakash, Y. Lee, and T. Johnson. A nonblocking algorithm for shared queues using
compare-and-swap. IEEE Transactions on Computers, 43:548-559, May 1994.

[12] J. D. Valois. Lock-Free Data Structures. PhD thesis, Rensselaer Polytechnic Institute,
Department of Computer Science, 1995.

[13] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
Characteriation and methodological considerations. In Proceedings of the 22nd Annual

International Symposium on Computer Architecture, pages 24-37, New York, June 22-24
1995. ACM Press.

[14] J. Zahorjan, E. D. Lazowska, and D. L. Eager. The effect of scheduling discipline on
spin overhead in shared memory parallel processors. IEEE Transactions on Parallel and
Distributed Systems, PDS-2(2):180-198, Apr. 1991.

40

Chapter 3

Integrating Non-blocking Synchronisation
in Parallel Applications: Performance
Advantages and Methothologies

This paper is the full version of the paper appeared in the Proceedings of the 3rd
ACM Workshop on Software and Performance (WOSP’02).

42

Integrating Non-blocking in Parallel Applications

43

Integrating Non-blocking Synchronisation in
Parallel Applications: Performance Advantages
and Methodologies *

Philippas Tsigas and Yi Zhang

Department of Computing Science,
Chalmers University of Technology,
SE-412 60, Gothenburg, Sweden

Abstract

In this paper we investigate how performance and speedup of applications would
be affected by using non-blocking rather than blocking synchronisation in parallel
systems. The results obtained show that for many applications, non-blocking syn-
chronisation leads to significant speedups for a fairly large number of processors,
while it never slows the applications down. As part of this investigation this paper
also provides a set of efficient and simple translations that show how typical blocking
operations found in parallel applications, such as simple locks, queues and lock trees
can be translated into non-blocking equivalents that use hardware primitives com-
mon in modern multiprocessor systems. With these translations, this paper clearly
demonstrates that it is easy for the application designer/programmer to replace the
blocking operations commonly found on with non-blocking equivalents ones. For
the empirical results a set of representative applications running on a large-scale
ccNUMA machine were used.

1 Introduction

Parallel programs running on shared memory multiprocessors coordinate via shared
data objects. To ensure the consistency of the shared data objects, programs typically

* This paper is based on preliminary work that appeared: i) in the proceedings of the ACM
SIGMETRICS 2001/Performance 2001 Joint International Conference on Measurement and
Modeling of Computer Systems, Cambridge, Massachusetts, USA, June 2001 and ii) in the
proceedings of the ACM SIGSOFT, SIGMETRICS Workshop on Software and Performance,

Rome, Italy, July 2002.

44

rely on some forms of software synchronisations. Typical software synchronisation
mechanisms are based on blocking that unfortunately results in poor performance
because it produces high levels of memory and interconnection network contention
and, more significantly, because it causes convoy effects: if one process holding a
lock is preempted, other processes on different processors waiting for the lock will
not be able to proceed. Researchers have introduced non-blocking synchronisation
to address the above problems. However, its performance implications on modern
systems or on real applications are not well understood. In this paper we study the
impact of non-blocking synchronisation on representative applications running on a
large-scale ccNUMA machine: a 64-processor SGI Origin 2000. Our results show that
non-blocking synchronisation leads to significant speedups for a fairly large number
of processors, while, more interestingly, it never slows the applications down. We used
several SPLASH-2 applications [24] with different communication requirements and
some Spark98 kernels [17]. The SPLASH-2 suite of parallel applications has been de-
veloped to facilitate the study of centralised and distributed and shared-address-space
multiprocessor systems and has been used extensively by the parallel architecture
community. The set of Spark98 kernels is a collection of sparse matrix kernels for
shared memory and message passing systems. Spark98 kernels have been developed
to facilitate system builders with a set of example sparse matrix codes that are simple,
realistic, and portable. The identification of the key synchronisation schemes that are
used in multiprocessor applications and the efficient transformation to non-blocking
ones with the use hardware primitives that are commonly found in multiprocessor
systems are integral parts of the study presented here.

Cache-coherent non-uniform memory access (ccNUMA) shared memory multiproces-
sor systems have attracted considerable research and commercial interest in the last
years. Unfortunately, synchronisation is still an intrusive source of bottlenecks in
many parallel programs running on shared memory multiprocessors. Synchronisation
in these systems is explicit via high-level synchronisation operations like locks, bar-
riers, semaphores, etc. The systems typically provide a set of hardware primitives
in order to support the software implementation of these high-level synchronisation
operations. There has been a considerable debate about how much hardware support
and which hardware primitives should be provided by the systems to support software
synchronisation primitives that the user can build.

1.1 Blocking vs. Non-Blocking Synchronisation

Software implementations of synchronisation constructs are usually included in sys-
tem libraries. Good synchronisation library design can be challenging and as it is
expected many efficient implementations for for the basic synchronisation constructs
(locks, barriers and semaphores) have been proposed in the literature. Many such

Integrating Non-blocking in Parallel Applications

45

implementations have been designed with the aim to lower the contention when the
system is in a high congestion situation. These implementations give different exe-
cution times under different contention instances. But still the time spend by the
processes on the synchronisation can form a substantial part of the program execu-
tion time |7, 13, 14, 16, 27|. The reason for this is that typical synchronisation is
based on blocking that introduces performance bottlenecks because of busy-waiting
and convoying. Busy-waiting tends to produce a large amount of memory and inter-
connection network contention. The convoying effect that takes place when a process
holding a lock is preempted (slows down), all other process waiting for the same
lock that become unable to perform any useful work until the process that holds
the locks is scheduled back. In a typical multiprocessor environment, processes run
for periods of time (multiprogramming environment) or, even if the machine is used
exclusively, background daemons run from time to time, processes are interrupted
by page faults, I/O interrupts. These events can cause the rate at which processes
make progress to vary considerably. With synchronisation that is based on blocking
the parallel program as a whole slows down when one process is slowed (convoying
effect). To address the problems that arise from blocking researchers have proposed
non-blocking implementations of shared data objects.

Non-blocking implementation of shared data objects is a new alternative approach
to the problem of designing scalable shared data objects for multiprocessor systems.
Non-blocking implementations allow multiple tasks to access a shared object at the
same time, but without enforcing mutual exclusion to accomplish this. Since, in non-
blocking implementations of shared data objects, one process is not allowed to block
another process, non-blocking shared data objects have the following significant ad-
vantages over lock-based ones:

(1) they avoid lock convoys and contention points (locks).

(2) they provide high fault tolerance (processor failures will never corrupt shared
data objects) and eliminates deadlock scenarios, where two or more tasks are
waiting for locks held by the other.

(3) they do not give priority inversion scenarios.

The above features of non-blocking synchronisation makes it ideal for parallel and
real-time systems.

1.2 Previous and Current Work

As it was expected, non-blocking synchronisation has attracted the attention of many
researchers that developed efficient non-blocking implementations for several data
objects. Some studies have focused on the developing of better software algorithms,
while others have identified the properties of different atomic transaction operations

46

in terms of their synchronisation power [5]. Some evaluation studies have also been
performed for specific data structure implementations. Most of these performance
evaluations were using micro-benchmarks and were performed on small scale sym-
metric multiprocessors, as well as distributed memory machines |1, 6, 8, 9, 14| or
simulators [8, 11]. Micro-benchmarks are useful since they enable easy isolation of
performance issues, but the real goal of better synchronisation methods is to improve
performance of real applications, which micro-benchmarks may not represent well. A
substantial number of realistic scalable applications now exist. On the systems side,
scalable, hardware coherent machines with physically distributed memory have be-
come very popular for moderate to large scale computing. It is important to evaluate
the benefits of non-blocking synchronisation in a range of interesting applications
running on top of modern realizations of these systems. In [16] the authors assess the
performance and scalability of several software synchronisation algorithms, as well
as the interrelationship between synchronisation, multiprogramming and parallel job
scheduling. In their evaluation, minor modifications are applied in the synchronisa-
tion code of small number of applications that spend a significant amount of time in
synchronisation.

In the work presented here, we try to provide an indepth understanding of the per-
formance benefits of integrating non-blocking synchronisation in general parallel ap-
plications. That is the reason that applications like volrent, from SPLASH-2, that do
not spend a lot of time in communication were included. Simple methodologies that
could transform all major lock-based synchronisations used in the applications had
to be introduced. We tried to select representative applications well known and with
characteristics that are well-understood. We selected applications from the SPLASH-2
shared-address-space parallel applications suit [24] and the Spark98 kernels [17].

More specifically, the main issues addressed in this paper include:

i) The identification of the basic locking operations that parallel programmers use in
their applications.

ii) The study of the architectural support found in modern ccNUMA architectures
like the SGI Origin 2000 machine that could be used to support non-blocking
synchronisation mechanisms.

iii) The efficient translation of lock-based synchronisation operations found in the ap-
plications to non-blocking semantically equivalent ones.

iv) The experimental comparison of the lock-based and lock-free versions of applica-
tions selected.

The work presented here shows that although the applications used are optimised for
parallel performance and usually perform synchronisation only when really needed —
It is reasonable to expect versions of the same or similar applications to be produced
by non-expert programmers with more synchronisation — the integration of non-

Integrating Non-blocking in Parallel Applications

47

blocking synchronisation to them lead to significant speedups for a fairly large number
of processors, and more surprisingly never slowed the applications down. Another
integrated result that is presented in this paper is that it is easy to replace the lock-
based synchronisation operations with non-blocking equivalent ones. We think that
this is a strong argument for making non-blocking synchronisation a common practice.
Our results can benefit parallel programmers in two ways. First, to understand the
benefits of non-blocking synchronisation, and then to transform some typical lock-
based synchronisation operations that are probably used in their programs to non-
blocking ones by using the general translations that we provide in this paper. Although
for our examination we used a set of applications on a 64 processor SGI Origin 2000
multiprocessor system, the conclusions and the methods presented in this paper have
general applicability in other realizations. A preliminary and short version of this
paper presented at a poster session at the ACM Conference of Sigmetrics/Performance
[23].

The rest of the paper is organised as follows. Section 2 outlines the Origin 2000
architecture and its hardware support for synchronisation. Section 3 discusses the
applications that we used for our evaluation. Section 4 presents the transformations
that we applied in order to translate the basic blocking synchronisation operations
used in these applications to non-blocking ones. In the same section we also present
the experimental results. Section 5 discusses the questions addressed in this work
together with the results obtained. Finally, Section 6 concludes this paper.

! |
! |
; L
i INode 1| « & o & [Node 3
i 1 i
| vemor Ao 1 j_‘ |
i R =
H Lo

‘ I nterconnect Network ‘

Figure 1: The SGI Origin 2000 architecture

2 Origin 2000

The SGI Origin 2000 [9] is a commercial ccNUMA machine with fast MIPS R10000
processors [26] and an aggressive scalable distributed shared memory (DSM) archi-
tecture. ccNUMA is a relatively new system topology that is the foundation for many
next-generation shared memory multiprocessor systems. Based on "commodity" pro-
cessing modules and a distributed, but unified, coherent memory, ccNUMA extends
the power and performance of shared memory multiprocessor systems while preserv-

48

LL(p; , 0) SC(pi,v,0)
{ {
Pset(0) := Pset(0) U {p;} if p; € Pset(0O)
return value (0) value (0):= v
} Pset(0) =0
return TRUE
else

return FALSE
}

Figure 2: The Load-Linked and Store-Conditional primitives

ing the shared memory programming model. ccNUMA systems maintain a unified
global coherent memory and all resources are managed by a single copy of the op-
erating system. A hardware-based cache coherency scheme ensures that data held in
memory is consistent on a system-wide basis.

2.1 The Platform

The SGI Origin 2000 [9] is a scalable shared memory multiprocessing architecture,
Figure 1 describes the architecture of a 64 processor machine. It provides global
address spaces not only for memory, but also for the I/O subsystem. The communi-
cation architecture is much more tightly integrated than in other recent commercial
distributed shared memory (DSM) systems, with the stated goal of treating a lo-
cal access as simply as an optimisation of a general DSM memory reference. The
two processors within a node do not function as a snoopy share memory multipro-
cessor cluster, but operate separately over the single multiplexed physical bus and
are governed by the same, one-level directory protocol. Less snooping keeps both
absolute memory latency and the ratio of remote to local latency low [9, 10|, and pro-
vides remote memory bandwidth equal to local memory bandwidth (780MB/s each)
[9, 10, 12]. The two processors within a node share a hardwired coherence controller
called the Hub that implements the directory based cache coherence protocol.

Two nodes (4 processors) are connected to each router, and routers are connected by
CrayLinks [2]. Within a node, each processor has separate 32KB first level I and D
caches, and a unified 4MB second-level cache with 2 way associativity and 128 byte

block size. The machine we use has sixty-four 195MHz MIPS R10000 CPUs with 4MB
L2 cache and 15.5GB main memory.

Integrating Non-blocking in Parallel Applications

49

2.2 Hardware Support for Synchronisation

The SGI Origin 2000 provides two groups of transactional instructions that can be
used to implement any other transactional synchronisation operations. The first one
contains two simple operations, Load-Linked and Store-Conditional. The Load-Linked
(LL) loads a word from the memory to a register. The matching Store-Conditional
(SC) stores back possibly a new value into the memory word, unless the value at the
memory word has been modified in the meantime by another process. If the word
has not been modified, the store succeeds and a 1 is returned. Otherwise the, Store-
Conditional fails, the memory is not modified, and a 0 is returned. The specification
of this operation is shown in Figure 2.

The second hardware synchronisation mechanism is a group of fetch_and_op op-
erations. The fetch_and_op operations are implemented at the node memory and
supports at-memory atomic read-modify-write operations to special uncached mem-
ory locations. These operations are called fetchops and only a few atomic operations
are supported on this machine. The specification of this set of operations is shown
in Figure 3. The operations that are supported in Origin 2000 include fetch_and_and,
fetch_and_or, fetch_and_increment, fetch_and_decrement,
fetch_and_exchange_with_zero. The fetch_and_and was first introduced by the
NYU Ultracomputer Project |4]. Reads and updates of fetchop memory blocks re-
quire a single message in the interconnection network and do not generate coherence
traffic. A shortcoming of fetchops is the read latency experienced by a processor
that spins on an uncacheable variable; spinning on fetchop variables may generate
significant network traffic. A second drawback of fetchops is that they lack the syn-
chronisation power that operations like the Compare-and-Swap, that can atomically
check the and exchange the contents of a memory location, have. LL&SC or Compare-
and-Swap are universal atomic primitives, while fetchops are not.

int fetch_and_op(int *address,int value)

{
int temp;
temp = *address;
*address = op(temp,value);
return temp;
}

Figure 3: The fetch_and_op primitive

For more information on the SGI Origin 2000 the reader is referred to [9, 19].

50

3 The Applications

Evaluating the impact of the synchronisation performance on applications is impor-
tant for several reasons. First, micro-benchmarks can not capture every aspect of
primitive performance. It is hard to predict the primitive impact on the application
performance. For example, a lock or barrier that generates a lot of additional net-
work traffic might have little impact on applications. Second, even in applications
that spend significant time in synchronisation operations, the synchronisation time
might be dominated by the waiting time due to load imbalance and serialisation in
the application itself, which better implementations of locks and barriers may not
be helpful in reducing. Third, micro-benchmarks rarely capture (generate) scenarios
that occur in real applications.

We used all the applications from the SPLASH-2 [24] shared memory benchmark suite
that use locks for synchronisation, and the kernels for shared memory machines from
the Spark98 kernels suit [17]. We included the Spark98 kernels since they cover irreg-
ular applications based on sparse matrices. Such applications are at the core of many
important scientific computations that simulate physical systems. The importance of
such applications is likely to increase in the future.

Later in this section we briefly describe the applications that we have used. The actual
descriptions of the applications can be found in [18, 20, 21, 24].

3.1 Problem Size

Problem size is a very important issue. Generally, the larger the problem size the lower
the frequency of synchronisation relative to computation. On one hand, using large
problem sizes will therefore make synchronisation operations seem less important. On
the other hand, small problem sizes might result in very low speedup making them
uninteresting on a machine of this scale. Because we wanted to make the evaluation
on realistic problem sizes for this machines, we selected significant problem sizes that
do not favour synchronisation, but still as we will show later the improvements were
big in many applications. Table 1 shows the inputs that we used for each of the
applications.

3.2 Application Description

Ocean simulates eddy currents in an ocean basin |25]. Both its inherent and induced
(at page granularity) data referencing patterns generally involve one producer with

51

Integrating Non-blocking in Parallel Applications
Application Input
Ocean 1026
radiosity largeroom
volrend 256x256x126
spark98 sfb.1.pack
water-spatial | 1331 molecules
water-nsquared | 1331 molecules

Table 1. Applications and inputs

one consumer.

Volrend renders three dimensional volume data into an image using a ray-casting
method [15]. The volume data are read only. Its inherent data referencing pattern on
data that are written (task queues and image data) is migratory, while its induced
pattern at page granularity involves multiple producers with multiple consumers.
Both the read accesses to the read only volume and the write accesses to task queues
and image data are fine grained, so it suffers both fragmentation and false sharing.

Radiosity computes the equilibrium distribution of light in a scene using the iterative
hierarchical diffuse radiosity method [3]. The structure of the computation and the
access patterns to data objects are highly irregular.

Water-Nsquared is an improved version of the Water program in SPLASH |21].
This application evaluates forces and potentials that occur over time in a system of
water molecules. A process updates a local copy of the particle accelerations as it
computes them, and accumulates into the shared copy once at the end.

Water-Spatial solves the same problem as Water-Nsquared, but uses a more efficient
algorithm. It imposes a uniform 3-D grid of cells on the problem domain, and uses
an O(n) algorithm which is more efficient than Water-Nsquared for large numbers
of molecules. The advantage of the grid of cells is that processors which own a cell
need only look at neighbouring cells to find molecules that might be within the cutoff
radius of molecules in the box it owns. The movement of molecules into and out of
cells causes cell lists to be updated, resulting in communication.

Spark98 is a collection of sparse matrix kernels for shared memory and message
passing systems. Each kernel performs a sequence of sparse matrix vector product
operations using matrices that are derived from a family of three dimensional finite
element earthquake applications. The multiplication of a sparse matrix by a dense
vector is central to many computer applications, including scheduling applications
based on linear programming and applications that simulate physical systems. These

52

applications are irregular applications based on sparse matrices. The running time of
these applications is dominated by a sparse matrix-vector product (SMVP) operation
that is repeated thousands of times, and the SMVP is the only operation besides I/O
that requires the transfer of data between processors.

4 Typical Lock-Based Synchronisation Operations and
Their Translations to Non-blocking Ones

In all parallel applications that we looked at, the most frequent use of a lock is to
protect a single global shared variable while a process first reads the variable, then it
performs the operation on the number it has just read and finally it writes the number
back to the variable (the Read-Modify-Write problem). These shared variables are
used in the application programs to either: i) assign consecutive values to a set of
processes, or ii) to sum up values computed by processes of the system, or iii) as
simple indexes of arrays.

We call this kind of locks SimpleLocks. 1t is easy to observe that such a lock can
be replaced with the respective fetch_and_op operation to achieve the same func-
tionality without enforcing locking, if the variable protected by the lock is of integer
type. One shortcoming of the fetch_and_op operations is that they do not provide
support for floating point numbers. In high performance scientific computing though,
computations based on floating point numbers are very common. In order to over-
come this shortcoming of the hardware, an efficient software implementations for the
fetch_and_op that could supports floating point numbers was developed. For the rest
of the paper we will refer to these fetch_and_op operation that can support floating
point numbers as double_fetch_and_op (denoted DFAD also) operations. As a build-
ing block in our implementation we used the load_link and store_conditional
primitives. The specification of the new double_fetch_and_add operation is given in
Figure 4.

double double_fetch_and_add(double *address, double value)
{

double temp;

temp = *xaddress;

*address = temp + value;

return temp;

Figure 4: The double_fetch_and_add primitive

Now, with the help of the FAD (fetch_and_add) and DFAD (double_fetch_and_add)
operations we can remove all SimpleLocks in any parallel application. As it is going

Integrating Non-blocking in Parallel Applications

53

to become clear in the next subsection the big majority of the locks that we found
are SimpleLocks.

—— Lock-based = Nonblocking

30000 I

25000 +—
W
£ 20000
c \\
= 15000 —
£ e
S 10000
== \‘\

e
5000 =
D T T T T
1 2 4 8 16 32

Number of processors

Figure 5: Performance results of Ocean

4.1 The Applications and Their Synchronisation

In this subsection, we describe the different lock-based synchronisation operations
that are used in the applications that we examine, together with our transformations
that transform them to non-blocking ones with the same functionality.

In the Ocean application 4 different locks are used:

e idlock is a SimpleLock that protects the global variable index.

e psiailock is also a SimpleLock that protects the global variable psiai that carries
floating point numbers.

e psibilock is also a SimpleLock that protects the global variable psibi that carries
floating point numbers.

e error_lock on the other hand is not a SimpleLock, and, it protects the global variable
err_multi. The use of err_multi is describe below.

We replaced the first three of these locks with FAD or DFAD operations using the
methods described before in this section. The fourth lock (error_lock) protects a
global variable which is updated conditionally as follows:

LOCK(locks->error_lock)
if (local_err > multi->err_multi)

54

{

multi->err_multi = local_err;

}
UNLOCK (locks->error_lock)

For this lock we had to implement a non-blocking synchronisation with the same func-

tionality to replace it, in our implementation we used the load_link and store_conditional

primitives. Figure 6 describes our simple implementation.

rtn = TRUE;
do
{
temp = LL(multi->err_multi);
if (local_err > temp)
rtn = SC(multi->err_multi, local_err);

}
while(rtn == FALSE)

Figure 6: Lock-free implementation of the conditional update of error_lock

Figure 5 shows performance results for the original version and the modified non-
blocking version of the Ocean application. Because the Ocean application requires
the number of processes to be power of 2, we could only do the experiments for up
to 32 processors. For this particular application we do not observe any significant
improvement after the modification, but, we also notice that the non-blocking syn-
chronisation do not hamper it’s performance. Ocean is a regular application with very
regular communication patterns.

In the radiosity application, a scene is initially modelled as a number of large in-
put polygons. Light transport interactions are computed among these polygons. and
polygons are hierarchically subdivided into patches as necessary to improve accuracy.
In each step, the algorithm iterates over the current interaction lists of patches, sub-
divides patches recursively, and modifies interaction lists as necessary. At the end
of each step, the patch radiosities are combined via an up-ward pass through the
quad-trees of patches to determine if the overall radiosity has converged. The main
data structures represent patches, interactions, interaction lists, the quad-tree struc-
tures, and a BSP tree which facilitates efficient visibility computation between pairs
of polygons. Parallelism is managed by distributed task queues, one per processor,
with task stealing for load balancing.

Radiosity uses 11 different locks:

e index_lock is a SimpleLock that protects the variable index.
e bsp_tree_lock is a lock that protects the bsp_tree structure.
e pbar_lock is a lock that protects the global variable pbar_counter.

Integrating Non-blocking in Parallel Applications 55

—+— Lockbased —=- Nonblocking

120000

100000 "\
80000

7]
= \
=
o 60000
E \
40000 \

20000

O T T T T - I___l
1 2 4 8 16 32 60

Number of Processors
Figure 7: Performance results of radiosity

e task_counter_lock is a lock that protects the global shared variable task_counter.

e free_patch_lock is the lock that protects the global shared data object Patch
that is implemented as a queue where free "patches" are queued.

e free_element_lock is the lock that protects the global shared data object Element.
Element is implemented as a queue where processes queue free "elements".

e free_interaction_lock is the lock that protects the global shared data object
Interaction. Interaction is a queue structure where "interactions" are queued.

e free_elemvertex_lock is the lock that protects the global shared data object
Elemvertex. Elemvertex is also implemented as a queue where "free elements"
are stored.

e free_edge_lock is the lock that protects the global shared data object Edge. Edge
is also a queue structure where "free edges" are queued.

e avg_radiosity_lock is a lock that acts as a barrier that processes can use in order
to determine when some parts of the computation should stop.

e g_lock protects the task queue.

The bsp_tree is protected by the bsp_tree_lock that has also a tree structure.
We used the Compare-and-Swap (CAS) atomic operation to implement a non-blocking
version of the bsp_tree. The specification of the Compare-and-Swap primitive is shown
in Figure 9. For the SGI Origin 2000 system we had to emulate the Compare-and-
Swap atomic primitive with the load_linked store_conditional instruction; this
implementation is shown in Figure 10.

56

traversal the tree to find the
leaf to add the node;

}
while ('CAS(leaf’s address, NULL, node))

Figure 8: Non-blocking operations on bsp_tree

In the program, nodes are only added to the bsp_tree and they are never deleted
from it. Moreover, there is no operation that can change the position of a node that is
already in the tree. New nodes are added as leaves. Because of these special properties
of the bsp_tree, we do not face the ABA problem that most non-blocking protocols
that use Compare-and-Swap have to phase. The ABA problem arises when a process
p reads the value A from a shared memory location, computes a new value based on
A, and using Compare-and-Swap updates the same memory location after checking
that the value in this memory location is still A and mistakenly concluding that there
was no operation that changed the value to this memory location in the meantime.
But between the read and the Compare-and-Swap operation, other processes may have
changed the context of the memory location from A to B and then back to A again.
Our lock-free implementation for the bsp_tree is described in Figure 8.

Boolean Compare-and-Swap(WORD *mem, register WORD old, new)
{

WORD temp;
temp = *mem;
if (temp == o0ld)
{
*mem = new;
return TRUE;
}
else

return FALSE;

Figure 9: The Compare-and-Swap primitive

The variable pbar_counter is a counter that counts the number of working processors.
It also emulates the behaviour of a barrier; when there is no processor working, the
program will exit the current iteration and will check the radiosity convergence to
determine whether to continue the iterations or not. We used the FAD operation to
replace the locks, in this way we achieved the same functionality without using locks.

Integrating Non-blocking in Parallel Applications 57

Boolean Compare -and-Swap(WORD *mem, register WORD old, new)
{

WORD temp;

do

{

temp = LL(mem);
if (temp != o0ld)

return FALSE;
}while (!'SC(mem,new)) ;
return TRUE;
}

Figure 10: Emulating Compare-and-Swap with load_linked/store_conditional

The task_counter is used by the processes to determine the task that enters the
function check_task_counter. We implement this counter in a lock-free manner
using the Compare-and-Swap primitive, our implementation is shown in Figure 11.

check_task_counter(process_id)

{
do

{
tempold = global->task_counter;
tempnew = (tempold + 1) % n_processors;
} while (!CAS(global->task_counter, tempold, tempnew));
flag = !tempold;
return(flag) ;
}

Figure 11: Non-blocking version of the check_task_counter

The remaining shared data objects that are protected by locks (free_patch, free_element,
free_interaction, free_elemvertex, free_edge, task_queue) are implemented as
queues. Table 2, describes some special properties of these queues.

We used the non-blocking queue implementation presented in [22|, to replace the
lock-based implementations for the queue based shared objects mentioned before.

Figure 7 shows the performance of our non-blocking version comparing with original
one. There is no big difference between the two versions until we reach 32 processors
where synchronisation becomes a significant part of the total computing time. With
32 processors, the non-blocking version is about 34% faster than the lock-based one
and as the number of processors increases the improvement on the performance also
increase reaching a 93% better performance when using 60 processors, the maximum
number of processors that we could use exclusively for running this application. The
access patterns to shared data structures in radiosity are highly irregular, as we

58

Data Object Name Functionality
free_patch no enqueue operations run in parallel
free_element no enqueue operations run in parallel
free_interaction enqueue and dequeue operations run in parallel
free_elemvertex no enqueue operations are running in parallel
free_edge no enqueue operations are running in parallel
task_queue enqueue and dequeue operation are running in parallel

Table 2. Data objects in radiosity
mentioned in the previous section.

Volrend in contrast with radiosity does not use many locks. It uses only two Sim-
pleLocks and an array lock. These locks are described below:

e IndexLock is a SimpleLock that protects the shared variable index.

e CountLock is a SimpleLock that protects the shared variable Counter.

e QLock is an array lock used to protect a global queue. The global queue is imple-
mented as an array. The protection is on the index of the array. As there is only
one arithmetic operation, we used a normal fetch_and_add to translate it into a
non-blocking one.

Figure 12 shows the performance of our non-blocking version comparing with original
one. The performance advantage of the non-blocking version starts to show as the
number of processors becomes greater than 8. The performance of the non-blocking
one is close to optimal since its speed up is very close to the theoretical limit. Vol-
rend’s inherent data referencing pattern on data that are written (task queues and
image data) is migratory, while its induced pattern at page granularity involves mul-
tiple producers with multiple consumers.

From the Spark98 kernel we used the shared memory applications, the Imwv and the
rmv. The Imwv is a parallel shared memory program based on locks. The rmwv is a
parallel shared memory program based on a reduction of the number of locks that
are used in /mv. Based on the naming schemes that the developers of Spark98 have
used, we named our version nmv. In order to create this non-blocking version we
used the Imv version from the kernel. All locks in this program are SimpleLocks and
they handle floating point numbers. Due to the limited time for exclusive use that
we had we performed the experiments for up to 28 processors for this application.
The results, graphically shown in Figure 13, clearly show the power of non-blocking
synchronisation for unstructured applications like this one. The speedup of rmwv and

Integrating Non-blocking in Parallel Applications 59

—+— Lockbased —=— Nonblocking

1000
800 \

600 \\\\\K\
400 XNNNN%E
200 e |

1 2 4 8 16 32 60

Number of Processors

Time in ms

Figure 12: Performance results of VOLREND
Imv stop when we go above 16 processors while nmuv scales uniformly. This allows us

to conjecture that non-blocking will dramatically increase the performance of these
applications as the number of processors increases.

—— Lockbased - Reduced —— Nonblocking

2500
2000 s

g
1
£ 1500 \
@ .-
£ 1000 ——
[o x\
500 \\M '
0 T T T T _ T -
1 2 4 8 16 24 28

Number of processors
Figure 13: Performance results of Spark98

In Water-nsquared although 10 different locks are defined, only 7 are used. These
7 are described bellow:

60

14000
12000
10000
8000
6000
4000
2000

Time in ms

—— Lockbased = Nonblocking

s
. - =

4 8 16 32 60

Number of Processors

Figure 14: Performance results of WATER-NSQUARED

—+— Lockbased = Nonblocking

6000
5000

4000

3000

Time in ms

2000
1000

4 8 16 32 60

Number of Processors

Figure 15: Performance results of WATER-SPATIAL

e IndexLock is a SimpleLock that protects the global variable Index

e IntrafVirLock is a SimpleLock that protects the global variable VIR when com-
puting the intra-molecular force/mass acting.

InterfVirLock is a SimpleLock that protects the variable VIR when computing the

inter-molecular force.

KinetiSumLock is a SimpleLock that protects the array SUM

Integrating Non-blocking in Parallel Applications

61

e PotengSumLock is a SimpleLock that protects the variables POTA, POTR, POTRF.

e MolLock, is an array of locks, all of them are SimpleLocks and they are used in
order to update the force on all molecular.

e I0Lock is a special lock that is used for I/O control. We used the implementations
described in the previous subsection in order to replace all SimpleLocks.

Water-spatial uses 7 different locks. Five of these are SimpleLocks, the first five Sim-
pleLocks that are listed in the Water-nsquared above (IndexLock, IntrafVirLock,
InterfVirLock, KinetiSumLock, PotengSumLock). We used the implementations
described in the previous subsection in order to replace all SimpleLocks.

In Water-nsquared and Water-spatial the communication and the sharing of the
data is very simple: A process updates a local copy of the particle accelerations as it
computes them, and accumulates into the shared copy once at the end. This simple
communication pattern does not give the opportunity to lock-free synchronisation to
show it’s power. On the other hand, the experiments show that lock-free synchroni-
sation does not harm the performance of the applications. The lock-free versions of
both applications perform as well as the respective lock-based ones.

Figure 16 summarises our experimental results. It graphically shows the maximum
speedup of the lock-free and the respective lock-based implementation for each of our
implementations.

5 Discussion

There has been much advocacy arising from the theory community for the use of non-
blocking synchronization primitives, rather than blocking ones, in the design of inter-
process communication mechanisms for parallel and high performance computing.
This advocacy is intuitive, but has not been investigated on top of real and well-
understood applications; such an investigation could also reveal the effectiveness of
non-blocking synchronization on different applications. There has been a need for
an investigation of how performance and speedup in parallel applications would be
affected by using non-blocking rather than blocking synchronization primitives. From
our interaction with practitioners we could definitely conclude that one of the main
reasons why non-blocking synchronization has not become popular among them is
the lack of such an investigation. One other significant reason is that many non-
blocking synchronization mechanisms are quite complex. In this paper we want to
address in an effective way this issue, by performing, a fair evaluation of non-blocking
synchronization in the context of well-established parallel benchmark applications.

The results in this paper come to support the general belief of people working in

62

@ Lock-based B Nonblocking

30

25

Speedup
o

Figure 16: Speedup for the non-blocking and the original versions

the research area of non-blocking synchronization that advocated that non-blocking
synchronization can lead to better performance in the context of parallel applications.
They clearly show that applications that have irregular communication patterns and
spend significant part of their execution time on communication can benefit a lot from
non-blocking synchronization. Something that was not that clear from the beginning,
was that the performance of applications with regular communication patterns that
do not generate congestion are not going to be affected negatively from the introduc-
tion of non-blocking synchronization. Our intuition on this was not that clear, since,
lock-based synchronization performs usually better that non-blocking synchronization
when contention is very low. Since this work was aiming at clarifying the practical
aspects of non-blocking synchronization, we also wanted to demonstrate that it is
easy to replace the blocking operations with non-blocking equivalents and get the
benefits of non-blocking synchronization, which is a strong argument for making non-
blocking synchronization common practice. As part of this investigation, this paper
also provides a set of efficient and simple translations that show how typical blocking
operations found in parallel applications, such as simple locks, queues and lock trees
can be translated into non-blocking equivalents that use hardware primitives common
in modern multiprocessor systems.

Integrating Non-blocking in Parallel Applications

63

We believe that our work is a first step and more experiments are needed to reveal the
effectiveness of non-blocking synchronization on different applications. But we think
that it is a fair evaluation of the proposed non-blocking primitives in the context of
well-established parallel benchmark applications.

6 Conclusion

The main conclusions of our study are the following:

e For the fairly wide range of applications examined, non-blocking synchronisation
performs as well, and often better than the respective blocking synchronisation.

e For certain applications, the use of non-blocking synchronisation yields great per-
formance improvement. Figure 16 shows graphically the maximum speedup of the
lock-free and the respective lock-based implementation for each of our implementa-
tions. With 60 processors, the non-blocking version of radiosity is about two times
faster than the lock-based one; non-blocking Volrend is about 7 times faster that
the lock based one.

e Irregular applications benefit the most from non-blocking synchronisation. Since the
importance of such applications is likely to increase in the future, the importance
of lock-free synchronisation in high-performance parallel systems is also expected
to increase.

e The methods that we introduce to remove lock based synchronisations are quite
simple and can be used in any parallel application.

Acknowledgements

This work was partially supported by: i) the national Swedish Real-Time Systems
research initiative ARTES (www.artes.uu.se) supported by the Swedish Foundation
for Strategic Research and ii) the Swedish Research Council.

We are grateful to Carl Hallen, Andy Polyakov and Paul Waserbrot, they made the
impossible possible and at the end we could have exclusive access to our heavily
(thanks to our physics department) loaded Origin 2000. Many thanks to Marina
Papatriantafilou for her always helpful comments.

64

References

[1] A. Eichenberger and S. Abraham, Impact of Load Imbalance on the Design of Software
Barriers, in Proceedings of the 1995 International Conference on Parallel Processing, pp.
63-72, August 1995.

[2] M. Galles, Scalable Pipelined Interconnect for Distributed Endpoint Routing: The SGI
Spider Chip,in Proceedings of Hot Interconnects IV, pp. 141-146, 1996.

[3] P. Hanrahan and D. Salzman, A Rapid Hierarchical Radiosity Algorithm, in Proceeding
of SIGGRAPH, pp. 197-206,1991.

[4] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph and M. Snir,
The NYU Ultracomputer - Designing a MIMD Shared-Memory Parallel Machine", IEEE
Trans. on. Computers, 32(2), p. 175, February 1983.

[5] M. Herlihy, Wait-Free Synchronization, ACM Transactions on Programming Languages
and Systems, 13(1), pp. 124-149, January 1991.

[6] D. Jiang and J. Singh, A Methodology and an Evaluation of the SGI Origin2000, in
Proceedings of ACM SIGMETRICS 1998, pp. 171-181.

[7] A. Karlin, K. Li, M. Manasse and S.Owicki, Empirical Studies of Competitive Spinning
for a Shared-memory Multiprocessor, in Proceedings of the 13th ACM Symposium on
Operating Systems Principles, pp. 41-55, October 1991.

[8] A. Kégi, D. Burger and J. Goodman, Efficient Synchronization: Let Them Eat QOLB,
in Proceedings of the 24th Annual International Symposium on Computer Architecture
(ISCA-97), pp. 170-180, ACM Press, June 2-4 1997.

[9] J. Laudon and D. Lenoski, The SGI Origin: A ccNUMA Highly Scalable Server, in
Proceedings of the 24th Annual International Symposium on Computer Architecture
(ISCA-97), Computer Architecture News, Vol. 25,2, pp. 241-251, ACM Press, June 2-4
1997.

[10] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and John Hennessy,
The DASH prototype: Logic Overhead and Performance, IEEE Transactions on Parallel
and Distributed Systems, 4(1), pp. 41-61, January 1993.

[11] B. Lim and A. Agarwal, Reactive Synchronization Algorithms for Multiprocessors,
in Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS VI), pp. 25-35, October 1994.

[12] T. Lovett and R. Clapp, STING : A CC-NUMA Computer System for the Commercial
Marketplace,in Proceedings of the 23rd Annual International Symposium on Computer
Architecture, pp. 308-317, ACM Press, May 22-24 1996.

[13] J. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors, ACM Trans. on Computer Systems, 9(1), pp. 21-65
February 1991.

Integrating Non-blocking in Parallel Applications

65

[14] M. M. Michael and M. L. Scott, Nonblocking Algorithms and Preemption-Safe
Locking on Multiprogrammed Shared Memory Multiprocessors, Journal of Parallel and
Distributed Computing 51(1), pp. 1-26, 1998.

[15] J. Nieh and M. Levoy, Volume Rendering on Scalable Shared Memory MIMD
Architectures, in Proceeding of the 1992 Workshop on Volume Visualization, pp 17-24,
October 1992.

[16] D. S. Nikolopoulos and T. S. Papatheodorou, A Quantitative Architectural Evaluation
of Synchronization Algorithms and Disciplines on ccNUMA Systems: The Case of the SGI
Origin2000, in Proceedings of the 1999 Conference on Supercomputing, ACM SIGARCH,
pp- 319-328, June 1999.

[17] D. R. O’Hallaron, Spark98: Sparse Matrix Kernels for Shared Memory and Message
Passing Systems, Technical Report CMU-CS-97-178, October 1997.

[18] E. Rothberg, J. P. Singh and A. Gupta, Working Sets, Cache Sizes, and Node
Granularity Issues for Large-Scale Multiprocessors, in Proceedings of the 20th Annual
International Symposium on Computer Architecture, pp. 14-26, IEEE Computer Society
Press, May 1993.

[19] SGI, SGI TechPubs Library, http://techpubs.sgi.com/, 2000.

[20] J. P. Singh, A. Gupta and Marc Levoy, Parallel Visualization Algorithms: Performance
and Architectural Implications, Computer, 27(7), pp. 45-55, July 1994.

[21] J. P. Singh, W. D. Weber and Anoop Gupta, SPLASH: Stanford Parallel Applications
for Shared-Memory, Computer Architecture News, 20(1), pp. 2-12, March 1992.

[22] P. Tsigas and Y. Zhang, A Simple, Fast and Scalable Non-Blocking Concurrent FIFO
queue for Shared Memory Multiprocessor Systems, in Proceedings of the 13th ACM
Symposium on Parallel Algorithms and Architectures, pp. 134-143, July 2001.

[23] P. Tsigas and Y. Zhang, Evaluating The Performance of Non-Blocking Synchronisation
on Shared-Memory Multiprocessors (Poster Paper), in Proceedings of SIGMETRICS
2001, June 2001.

[24] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, The SPLASH-2 Programs:
Characterization and Methodological Considerations, in Proceedings of the 22nd
International Symposium on Computer Architectures, pp. 24-36, June 1995.

[25] S. C. Woo, J. P. Singh and J. L. Hennessy, The Performance Advantages of Integrating
Block Data Transfer in Cache-Coherent Multiprocessors, in Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 219-229, October 4-7, 1994.

[26] K. Yeager, The MIPS R10000 superscalar microprocessor, IEEE Micro, 16(2), pp. 28-40,
April 1996.

[27] J. Zahorjan, E. D. Lazowska and D. L. Eager, The effect of scheduling discipline on
spin overhead in shared memory parallel systems, IEEE Transactions on Parallel and
Distributed Systems, 2(2), pp. 180-198, April 1991.

66

Chapter I

A Simple, Fast Parallel Implementation of

Quicksort and its Performance Evaluation
on SUN Enterprise 10000

This paper is an extended version of the paper appeared in the Proceedings of the
11th Furomicro Conference on Parallel Distributed and Network based Processing.

68

A Fast Parallel Implementation of Quicksort

69

A Simple, Fast Parallel Implementation of
Quicksort and its Performance Evaluation on

SUN Enterprise 10000 *

Philippas Tsigas and Yi Zhang

Department of Computing Science,
Chalmers University of Technology,
SE-412 60, Gothenburg, Sweden

Abstract

We have implemented sample sort and a parallel version of Quicksort on a cache-
coherent shared address space multiprocessor: the SUN ENTERPRISE 10000. Our
computational experiments show that parallel Quicksort outperforms sample sort.
Sample sort has been long thought to be the best, general parallel sorting algorithms,
especially for larger data sets.

On 32 processors of the ENTERPRISE 10000 the speedup of parallel Quicksort is
more than six units higher than the speedup of sample sort, resulting in execution
times that were more than 50% faster than sample sort. On one processor parallel
quicksort achieved 15% percent faster execution times than sample sorting. More-
over, because of its low memory requirements, parallel Quicksort could sort data sets
twice the size that sample sort could under the same system memory restrictions.

The parallel Quicksort algorithm that we implemented is a simple, fine-grain
extension of Quicksort. Although fine-grain parallelism has been thought to be inef-
ficient for computations like sorting due to the synchronization overheads, we show
as part of this work that efficiency can be achieved by incorporating non-blocking
techniques for sharing data and computation tasks in the design and implementa-
tion of the algorithm. Non-blocking synchronization has increased concurrency be-
tween communication and computation and gives good execution behavior on cache-
coherent shared memory multiprocessor systems. Cache-coherent shared memory
multiprocessors offer fruitful ground for algorithmic or programming techniques
that were considered impractical before, in the context of high-performance pro-
gramming, to develop and change a little the way we think about high-performance
programming.

* This work is partially supported by: i) the national Swedish Real-Time Systems research

70

1 Introduction

Sorting is an important kernel for sequential and multiprocessing computing and a
core part of database systems. Donald Knuth in [10] reports that “computer manufac-
turers of the 1960s estimated that more than 25 percent of the running time on their
computers was spend on sorting, when all their customers were taken into account.
In fact, there were many installations in which the task of sorting was responsible for
more than half of the computing time.” As it was expected, sorting is one of the most
heavily studied problems in computer science. Parallel algorithms for sorting have
been studied for long, with many major advances in the area coming from as early as
the sixties [10]. Accordingly, a vast number of research articles dealing with parallel
sorting have been published; the number is too large to allow mentioning them all, so
we will restrict discussion to those that are directly related to our work. Considerable
effort has been made by the theoretical community in the design of parallel algo-
rithms with excellent and occasionally optimal asymptotic efficiency. However there
has only been limited success in obtaining efficient implementations on actual parallel
machines [8, 19]. Similar research effort has also been made with the practical aspects
in mind, for a list of work in this area please see [3] and [14]. The latter work has
given many exciting results due to interaction between the algorithms research area
and the computer architectures research area. Most of the work on high-performance
sorting is based on message-passing machines, vector supercomputers and clusters.

Among all the innovative architectures for multiprocessor systems that have been
proposed the last forty years, a new tightly-coupled multiprocessor architecture is
gaining a central place in high performance computing. This new type of architecture
supports a shared address programming model with physically distributed memory
and coherent replication (either in caches or main memory). A hardware-based cache
coherency scheme ensures that data held in memory is consistent on a system-wide
basis. These systems are commonly referred to as cache-coherent distributed shared
memory (DSM) systems and are built for server and desktop computing. Over the last
decade many such systems have been built and almost all major computer vendors
develop and offer cache coherent shared memory multiprocessor systems nowadays.
This class of systems differs a lot from the traditional message-passing machines, vec-
tor supercomputers and clusters on which high-performance sorting has been studied.
These new systems offer very fast interprocess communication capabilities and give
space to new programming and algorithmic techniques, which would have been im-
practical on vector supercomputers or clusters because of high communication costs.
Shan and Singh in examined the performance of radix sorting and sample sorting (the
two most efficient parallel sorting algorithms) in hardware cache-coherent shared ad-

initiative ARTES (www.artes.uu.se) supported by the Swedish Foundation for Strategic
Research and ii) the Swedish Research Council for Engineering Sciences.

A Fast Parallel Implementation of Quicksort

dress space multiprocessors under three major programming models.

This paper looks into the behavior of a simple, fine-grain parallel extension of Quick-
sort for cache-coherent shared address space multiprocessors. Quicksort has many
nice properties: 1) it is fast and general purpose; it is widely believed that Quicksort
is the fastest general-purpose sorting algorithm, on average, and for a large number of
elements [1, 4, 7, 16], ii) it is in-place, iii) it exhibits good cache performance and iv)
it is simple to implement. The new generation of hardware-coherent, shared address
space multiprocessor systems with their already dominant position on the tightly-
coupled multiprocessor systems are our target systems. The implementation of the
parallel Quicksort algorithm utilizes the capabilities that these new systems have to
offer and uses the following algorithmic techniques:

Cache-efficient: Each processor tries to use all keys when sequentially passing
through the keys of a cached-block from the key array.

Communication Overlapping Fine-grain Parallelism: It is a fine-grain paral-
lel algorithm. Although fine-grain parallelism has been thought to be inefficient for
computations like sorting due to the synchronization overheads, we achieved effi-
ciency by incorporating non-blocking techniques for sharing data and computation
tasks. No mutual locks or semaphores are used in our implementation.

Parallel Partition of Data: A parallel technique for partitioning the data similar
to the one presented in [5] is used. We rediscovered this technique when parallelizing
Quicksort.

We implemented the algorithm on a SUN ENTERPRISE 10000, a leading example of
the tightly-coupled, hardware-coherent architecture and we compared it with sample
sort, which has been previously shown to outperform other comparison based, general
sorting algorithms, especially for larger data sets [1, 4, 7, 16]. On 32 processors we
achieved a speedup that was more than 6 units higher than the speedup of sample sort.
This speedup resulted in an execution time that was over 50% faster than sample sort.
On one processor of the ENTERPRISE 10000 parallel Quicksort gave 15% percent
faster execution times than the sample sort on many large sorting instances. Moreover,
parallel Quicksort could sort data sets double the size that sample sort could because
of the its low memory requirements. One one processor parallel Quicksort behaves
as it sequential parent. The asymptotic number of all comparisons and computation
and memory steps used by the algorithm is the same as in quicksort: O(Nlg (NNV)) on
average and O(N?) for the worst case. When B < N, the average time complexity
Nlg(N) N2

for the parallel algorithm is O(=5~") and the worst case time complexity is O(%-).

O(N + P) is the asymptotic space complexity.

The remainder of the paper is organized as follows: In Section 2 the algorithm and
its analysis are presented. We describe the experimental evaluation in Section 3. The
paper concludes with Section 4.

71

72

2 The Algorithm

Quicksort [9] is a sequential sorting algorithm that is widely believed to be the fastest
comparison-based, sequential sorting algorithm (on average, and for a large input sets)
[2, 11, 18]. Tt is a recursive algorithm that uses the “Divide and Conquer” method to
sort all keys. The standard Quicksort first picks a key from the list, the pivot, and
finds its position in the list where the key should be placed. This is done by “walking”
through the array of keys from one side to the other. When doing this, all other keys
are swapped into two parts in the memory: i) the keys less than or equal to the pivot
are placed to “the low side” of the pivot and ii) the keys larger than or equal to the
pivot are placed to “the high side” of the pivot. Then the same program is recursively
applied on these two parts.

2.1 Description

Assume that we have an array with NV keys, indexed from 0 to N — 1, to be sorted
on a cache-coherent shared memory multiprocessor with P asynchronous processors.
Each processor is assigned a unique index, pid, from 0 to P — 1.

The parallel Quicksort algorithm presented here is a simple parallelization of Quick-
sort. It is a 3+1-phase algorithm. The first three phases constitute the divide phase
and are recursively executed. The last phase is a sequential sorting algorithm that
processors execute in parallel, during this phase a helping scheme is used. The four
phases are: i) the Parallel Partition of the Data phase, ii) the Sequential Partition
of the Data phase, iii) the Process Partition phase and iv) the Sequential Sorting
in Parallel with Helping phase. The detailed explanation of the four phases is given
below.

Phase One: Parallel Partition of the Data The algorithm sees the array of the
data as a set of consecutive blocks of size B. B depends on the size of the system’s
first-level cache, and is selected so that two blocks of length B can fit in cache at the
same time. In our system where the size of the first-level cache is 16KB, we selected
B = 2048 so as to be able to fit two blocks of data in the cache at the same time. In
order to simplify the description and without loss of generality let us consider first
the case where all keys can be divided into blocks exactly, i.e. N mod B = 0. Later
on, we will show how to extend this phase for the case where N mod B # 0. The
whole array can be viewed as a line of % data blocks; processors can only choose
blocks to work on, from the two ends of the line.

The first phase starts with the processor Fy, the one with the smallest pid, picking
a pivot. After that, each processor in parallel picks the block that it finds at the
very end of the left side of the line le ftblock and then the block that it finds at the

A Fast Parallel Implementation of Quicksort 73

SIDE neutralize (Data *leftblock, Data *rightblock, Data pivot)
{
int i, j;
dof{
for (i=0; i<BlockSize; i++)
if (leftblock[i] > pivot)
break;
for(j=0; j<BlockSize; j++)
if (rightblock[j]l < pivot)

break;
if ((i== BlockSize) || (j == BlockSize))
break;
SWAP (leftblock[i], rightblock[jl);

i++; j++;
} while (i < BlockSize && j < BlockSize)

if (i == BlockSize && j == BlockSize)
return BOTH;
if (i == BlockSize)

return LEFT;
return RIGHT;

Figure 1: The neutralize function

very end of the right side of the line rightblock and uses these two blocks together
with the pivot as an input to a function that is called the neutralize function. This
function is described in pseudo-code in Figure 1. The function takes as input two
blocks, leftblock and rightblock, and the pivot and swaps the keys in leftblock
which are larger than the pivot with keys in rightblock that are smaller than the
pivot in an increasing order, as long as this can be done. A call of the neutralize
function will result into one of the following results: either i) all keys in leftblock
are going to be less than or equal to the pivot, in this case we say that leftblock
has been neutralized or ii) all keys in rightblock are going to be larger than or equal
to the pivot and then we say that rightblock has been neutralized, or iii) it can
also happen that both le ftblock and rightblock have been neutralized at the same
time.

Each processor will then try to get a fresh block from the left side of the array
if its leftblock was neutralized before, or from the right side if its rightblock was
neutralized before and it will then neutralize this block with the still charged block
that it has on hand. If both blocks were neutralized, the processor gets two fresh
blocks from both ends. Processes continue the above steps until all blocks are ex-
hausted. At this moment, each processor has at most one block unfinished in hand
and puts it on the remainingBlocks shared array that consequently can collect at
most P blocks, and exits the parallel partition phase. The parallel partition phase

74

is described in pseudo-code in Figure 2. Processors report the number of keys con-
tained on leftblocks that have been neutralized by summing the numbers into LN
(Left-Neutralized). The number of keys on rightblocks that have been neutralized
are counted into RN (Right-Neutralized).

For the general case where N mod B = M # 0 we can modify the end condition
for the parallel phase so that a processor exits when it finds that the remaining
keys are not enough to form a block. In this case there are going to be at most P
blocks plus M keys left. To process the remaining keys, the processor Py, with the
smallest pid, will run the sequential partition phase.

if (pid == smallestpid)
pivot = PivotChoose ();
barrier (P);
leftblock = Get A Block From LEFT End;
rightblock = Get A Block From RIGHT End;

leftcounter = 0;

rightcounter = 0;

do{
side = neutralize(leftblock, rightblock, pivot);
if ((side == LEFT) || (side == BOTH))
{

leftblock = Get A Block From LEFT End;
leftcounter ++;

}

if ((side == right) || (side == BOTH))

{
rightblock = Get A Block From RIGHT End;
rightcounter ++;

}
} while((leftblock != EMPTY) && (rightblock != EMPTY));
if (leftblock != EMPTY)

remainingBlocks [pid] = leftblock;
else

remainingBlocks [pid] = rightblock;
LN + (leftcounter * B);
RN + (rightcounter * B);

LN
RN

Figure 2: The procedure that implements the parallel partition phase.

Phase Two: Sequential Partition of the Data The purpose of sequential par-

tition phase is to finish what the parallel partition has started: the placement of
keys to the “correct side” of the pivot. When the parallel partition finishes all neu-
tralized blocks that are between [0, LN — 1) and [RN, N — 1) are correctly placed
with respect to the pivot. After the Parallel Partition phase, the remaining P blocks
that can appear in any position on the array as shown in figure 4a need to be cor-
rectly placed and the neutralized blocks that are placed in [LN — 1, RN] have to

A Fast Parallel Implementation of Quicksort

75

sort (remainingBlocks , ascend order);

/* p 1is the number of remain blocks; p< P */
left = 0; right = p - 1;

/% Treat the remainingBlocks as an array and do
Sequential block Partition */

while (left<right)

{

3

/*Neutralize the most left block and the most right block */

side = neutralize(remainingBlocks[left],
remainingBlocks [right], pivot);

if ((side == LEFT) || (side == BOTH))

{

if (remainingBlocks is between [0,LN —1])

{

/% update LN and remove the block from remainingBlocks
only <f it <s between [0,LN —1] */
LN +=B;
remainingBlocks [left] = EMPTY;

}
left ++;
}
if ((side == right) || (side == BOTH))
{
if (remainingBlocks is between [N — RN,N —1])
{
/* update RN and remove the block from remainingBlocks
only <f it is between [N—RN,N—1] */
RN +=B;
remainingBlocks [right] = EMPTY;
}
right --;
3

/* For those which still remain in the remainingBlocks array,

we will swap them with blocks between [LN,N — RN) */

for (i=0; i<p; 1i++)

{

if (remainingBlocks[i] is not EMPTY)
{

Swap remainingBlocks[i] with neutralized
blocks between [LN,N — RN);

Figure 3: The procedure that implements the sequential partition phase.

76

be swapped in a correct position. During this phase processor P, first sorts the P
blocks using the start indices of these blocks. It then uses this order to pick a block
from the left (leftblock) and a block from right (rightblock) and give them as input
to the neutralize function together with the previously selected pivot. It does this
until all remaining blocks are exhausted. In this phase it is not always true that a
neutralized block can always contribute to LN or RN, for example, a block that was
picked out from the right end during the parallel partition phase and is neutralized
as leftblock now will not contribute to LN. All blocks between [0, LN — 1] were
picked during the parallel partition phase by some processors from the left end. If
they can be neutralized as leftblocks in this sequential partition phase, they can
contribute to the LN as other neutralized blocks [0, LN — 1]. Similar is the case for
blocks between [N — RN, N — 1]. The procedure of sequential partition is described
in figure 3. The first step is sorting the remaining blocks. Then, picking blocks from
the two ends and running the neutralize function on them as shown in figure 4b.
Finally, some blocks are still misplaced between [LN, N — RN — 1]. If there are m
blocks unfinished between [0, LN — 1], then there should be at least m blocks which
are neutralized as le ftblocks between [LN, N — RN — 1]. The Sequential Partition
will swap them as shown in figure 4c. The same methods will be applied to the
remain blocks between [N — RN, N —1]. Now, all blocks between [0, LN — 1] contain
keys less than or equal to the pivot and all blocks [N — RN, N — 1] contain keys
larger than or equal to the pivot. The remaining task is to partition between LN
and RN as sequential quicksort.

Next we will demonstrate the behavior of the two phases presented before by a way
of an example. The example is also graphically shown in in Figure 5. For input 37
random integers are selected. Our system for this example has 3 processors and the
block size is 4. First, we need to select a pivot. We use the method proposed by
Sedgewick in [13] to choose the pivot, which is the median of the first, middle and
last keys in the array (in this case the pivot does not have to be an input key).

(min(17,7,32) + max(17,7,32))
2

pivot = |] =19

After choosing the pivot, all processors will pick two blocks of keys one block from
the left end and one block from the right end. One possible result is the following: i)
processor 0 gets block L2 (the second — in input order — block from the left end)
and R1 (the first — in input order — block from the right end), ii) processor 1 gets
L1 and R2, ii) processor 2 gets L3 and R3. Then, every processor calls the neutralize
function. For processor 0, after the return from the neutralize function, all keys in
block L2 are less than or equal to the pivot and all keys in block R1 are larger than
or equal to the pivot, i.e. L1 and R1 have been neutralized. Block R2 and L3 are
neutralized by processors 1 and 2 respectively. To continue the algorithm processor 0
needs to get two more blocks one from each end of the array and processor 1 needs

A Fast Parallel Implementation of Quicksort

LN RN
Neutralized Block I:l Unfinished Block

(a) The blocks after parallel partition phase

Neutralize

LN RN
- Neutralized Block I:l Unfinished Block

(b) Block neutralization during the sequential partition phase

Swa
ENRR Y R [ISRy
LN RN
Neutralized and well placed Block ﬁ Neutralized but not well placed l:, Unfinished Block

(c) Block swapping during the sequential partition phase

Partition

A N NN EE S AN AN TN N AN
LN RN
Neutralized and well placed Block |:| Unfinished Block

(d) Sequential partition during the sequential partition phase

T A A A A A A A AV A A AT A A A

Split Point

Figure 4: A graphical description of the sequential partition phase.

to get one block from the right end and processor 2 needs to get one from the left
end. As the whole system is asynchronous, this time processor 2 gets block L4 and
processor 0 get block L5 and R4. When processor 1 tries to pick a block, it finds out
that the remaining keys are not enough to form a block, and consequently it exits the
parallel partition phase and puts block L1 in the remainingBlocks array. Processor
0 and processor 2 use the neutralize function with input L5 and R4, and L4 and
R3, respectively. Processor 0 exits the parallel partition phase with L5 unfinished.
Processor 2 exits with no unfinished block. The parallel partition phase is over with 2
blocks (< P) marked as unfinished and 1 key (< B — 1) (key 29) left unprocessed in
the middle. The algorithm will enter the sequential partition phase to process these
keys, in our example there are no neutralized blocks in (LN,N — RN to be processed,
LN =12 and RN = 16.

Processor 0, as the one with the smallest pid, will process first the blocks L1 and
L5 that are in the remainingBlocks array. Processor 0 calls the neutralize function

77

78

37 Keys 3 Processors BlockSize=4
Initial Data |[17]32[30] 4[o]20]13[17])33] s|11]24|12|23|12|30] 3[32[32[26]29[31| 9|20|18| 1|14)15] 5|31|24]| o[30]33|26[28] 7
L1 2 L3 4 L5 Ra R3 2 R1
Pivot=19
e LN=0; RN=0
O
Phase One: SRR L B

. [‘
| Parallel Partition v Left [of20] 5 G 32|26
—— —— 2 [S L 42
L2 \ / L2 L5

ERmE
! : \ / L5 '
' Right / \ 33 26 28 20 / \ 31322032
‘ R R R4 R4
| |

P;ociessioril

L L Lol

o0 [T~ |
— — 1

! L1 L1

‘Right/\31243230 !

L77777R277777777777&%:2777777777777

_Processor 2.

1 511 14 1211512 b5
— 11 a7 A — a " A
\/ - \/ -

L3 L3
|
‘
" Right / \ 33|24f15] 5 33]24]15 5 / \ 3324 2330
‘ - Pt iy
R3 R3 R3 R3
, LN:=LN+8; RN:=RN+4 | '

dE e LCH B St oY e

3132 2032 33 24 2330 31 243230 3312628 20
A /a0 0 L

L2 L3 Ra R3 R2 R1
LN RN

I Sequential

| L. Processor 0

‘Pamtlon A T e

‘ x \ /

| Phase Two: Phase Ila: Sequential block neutralization LN=12; RN=16

0

L1
i Lol L |
S, e e e e e e e e e e e e e oo - - - - -
Phase ITb: Swap last block if need

Phase Ilc: Sequential partition of remaining keys

!

!

|

!

!

! Z
!

!

|

: Processor 0 __LN:[G; RN=16
|

!

!

|

!

!

|

!

!

Data J17 {of SR el e Hi e S E S IR B E B O G e 30| 9|18|26|29 G182 201350 SR O 233 0L S DA 3PS 0 3312 61281210
A /a0 0 LN
L1 L) 13 2 L5 e R3 ™ R

LN ‘ RN

p EpARIEIo e Er o it i s Hin S E R RSN I S D I E G B o o ilio: 9|31 32 20 32 33 24 23 30 31 24 32 30 33 26 28 20

split point
1
|

! Phase Three:

|
P |
' pavttin L L o oLl L [l el e [sledeelolellses ool ol sols o eeled]
T

Processor 0 Processor 1 Processor 2

Sequential Sorting with Helping I Phase One: Parallel Partition ce s :
: Phase Two: Sequential Partition L I
I Phase Three: Processor Partition S e :
I
I
I

Processor 1

Sequential Sorting with Helping

Figure 5: The algorithm by way of an example.

A Fast Parallel Implementation of Quicksort 79

with L1 as the leftblock and L5 as the rightblock and as a result L1 is neutralized.
As the start index of L1 is less than LN, LN will be increased by 4. In this example
the remaining block L5 is between [LN,N — RN) and there is no need to swap it. The
processor 0 splits the keys between [LN,N — RN)=[16,21)=[16, 20] with the pivot,
19. The final split point is index 18, as shown in figure 5.

After the two partition phases, the array is split into two subarrays and all keys are
placed on the “right side” of the pivot.

Phase Three: Process Partition During this phase, the algorithm partitions all
processors into two groups. The sizes of these groups are proportional to the sizes
of the respective subarrays. If the size of one group is zero, then its size is set to
1 and the other group takes the remaining processors. Each processor group will
take a subarray from Phase Two and apply the same parallel partition method,
Phase One to Phase Three, on it recursively. When only one processor is assigned
to a subarray, the processor will exit the partition phase and enter the Sequential
Sorting with Helping phase.

Phase Four: Sequential Sorting with Helping During the sequential sorting phase,
every processor uses quicksort to sort the subarray it gets from phase three and
help other processors’ work after it finishes its own. For the sequential quicksort we
use, the optimization introduced in [11] is applied. This optimization gives good
cache behavior. Every processor uses an auxiliary stack for itself to keep track of
the algorithm’s state, and the recursion of Quicksort turns into a loop of PUSH
and POP operations. Whenever a processor encounters a small subarray which can
fit in cache, it will use inserting sort to sort it without PUS Hing it into the stack.

In our parallel sorting algorithm, we introduce the following helping scheme to
achieve good load balance. The stacks of the sequential Quicksort of all processors
are implemented as lock-free (non-blocking) stacks shared among all processors.
All these stacks are restricted shared concurrent stacks, because only one processor
performs the PUSH operations. In the algorithm presented here, we used a variant
of [17] that has been optimized for our restricted class of stacks. When one proces-
sor finished its job, it will start to help other processors by popping out unsorted
subarray (one at a time) from their stacks. In this way we can achieve load balance
online.

The pseudo code of the complete algorithm is shown in Figure 6°.

I The complete version of the code is available for mnon-commercial use at:
http://www.cs.chalmers.se/~yzhang/PQuick

80

PQuicksort (Data *array, int size, int ProcessorNumber)
{
if (ProcessorNumber == 1)

{

/% Parallel Sorting Phasex*/
SequentialSorting (array);
HelpOtherProcessor ();

}
/* Parallel Partition Phase; The code ts in Figure 2%/
parallel partition;

/* Sequential Partition Phase */
if (pid == smallestpid)
{
/% The code is in Figure 3 */
split = sequential partition;

/* Processor Partition Phase */
processorsplit = Processor Partition;

}

barrier (ProcessorNumber) ;

/% Recursive call */

PQuicksort (&array [0], split+1l, processorsplit);

PQuicksort (&array[split+1], size-split-1,
ProcessorNumber -processorsplit);

Figure 6: The complete algorithm
2.2 Analysis of the Algorithm

The parallel Quicksort presented before is a simple parallelization of Quicksort. The
parallel algorithm follows the same divide-and-conquer steps as Quicksort and the
depth of recursion is the same between the parallel quicksort and the sequential
quicksort. Therefore, the amount of comparison and swap operations of the parallel
algorithm is the same with the sequential one: O(N lg (NN)) for the average case and
O(N?) for the worst case. Now, when looking into the analysis of the speedup of the
algorithm we can see that parallelism is introduced in two places: i) the partition phase
and ii) the sorting phase. The time cost of the partition phase is O(N). The parallel
algorithm finishes the partition of the whole array in two steps. First, all processors
neutralize blocks of keys in parallel; this will take O(%) time. Then one processor will
process the unfinished P blocks and M keys; this will take O(P x B + M) time. As
M < B, the whole time complexity for the partition phase is O(% + (P +1) * B). If
B < N then the speedup of the partition phase will be O(%).

A Fast Parallel Implementation of Quicksort 81

The next parallelism introduced is in the sorting phase. When the whole array is par-
titioned into P subarrays, each processor will run Quicksort on one of these subarrays.
The stacks used by all processors for Quicksort during this phase will be shared by
all processors. When a processor is finished with its own subarray, it will access other
processors’ stacks to help them until all keys are sorted. The speedup for this phase
is approximately P with some some small synchronization overhead.

From the above analysis, we can see that the time complexity of the algorithm depends
on the size of block, B, and the number of processors, P and does not depend on the
distribution of keys.

3 Experimental Results

3.1 The SUN ENTERPRISE 10000 Platform

The SUN ENTERPRISE 10000, is a scalable, hardware-supported, cache-coherent,
symmetric or uniform memory access (cc-UMA) multiprocessor machine. In ENTER-
PRISE 10000, every processor has its own cache and all the processors and memory
modules attach to the same interconnect. In symmetric shared memory multiprocessor
systems, data normally needs to be moved from point to point, while addresses often
must be broadcasted throughout the system. Therefore the interconnect of E10000
uses a packet switched scheme with separate address and data paths. Data is trans-
fered with a fast crossbar interconnect, and addresses are distributed with a broadcast
router. The crossbar interconnect is constructed with two levels: global and local. In
the Global level, there is a 16 byte wide, 16 x 16 crossbar that steers data packets be-
tween the 16 system boards. The global data crossbar connects the 16 system boards’
ports, as Local level, together. At the Local level, “many-to-one” routers are used
on the system boards to gather on-board requests and direct them to one port (per
board). The address routing is implemented over a separate set of four global address
buses, one for each of the four memory banks that can be configured on a system
board. The buses are 48 bits wide including error correcting code bits. Each bus is in-
dependent, meaning that there can be four distinct address transfers simultaneously.
Figure 7 graphically describes the architecture of the new SUN ENTERPRISE 10000.
Main memory is configured in multiple logical units. All memory units, processors,
and I/0 buses, are equidistant in the architecture and all memory modules comprise
a single global shared memory space. The latter means that the machine provides
not only a global address space but also the memory access to any memory location
is uniform. There are four coherency interface controllers (CICs). Each CIC connects
to a separate global address router through one of the four global address buses. The
CICs maintain cache coherency. The machine we used had 36, 249 MHz UltraSPARC

82

processors, which where divided into two logical domains: one with 4 processors as
frontend and another one with 32 processors. Each CPU had a 16 KB first-level data
cache and a 4 MB second-level cache. Our experiments were done on the 32 processor
domain.

3]]
i S
53 1 1 N S 1 @ §
P B R e —
=1 [: gﬁ
m Qﬂ:)
“ System ae
o
o = 19
o Board 58
g o8
3
< S8
>
&
S

Figure 7: The architecture of the SUN Enterprise 10000

3.2 Parallel Sorting with Sample Sort

We compared parallel Quicksort with sample sort. Sample sort has been shown to be
the best comparison-based and consequently general sorting algorithm for larger data
sets [1, 4, 7, 16].

Sample sorting is a five-phases algorithm. First it divides the keys evenly among all
P processors, and then, during the first phase each processor sorts locally its own
keys. During the second phase each processor samples a fixed number of keys from
its locally sorted keys. These sample keys in phase three of the algorithm are sent to
one processor, that sorts them and selects P — 1 out of them as sample splitters for
the next phase. During the fourth phase each processor uses these P — 1 splitters to
partition the sorted input values and to decide locally the appropriate destinations of
its partitioned keys. Finally, in the last phase of the algorithm, each processor uses
mergesort locally to merge the key sequences send to it. In [12, 15] description of
the algorithm and its analysis can be found together with a study on ways to decide
how to perform the sampling of the keys and how to select the sample splitters and
how these selection affect the load balance and the behavior of the program. Sample
sort is a very efficient parallel sorting algorithm on distributed memory and message
passing systems [14].

3.3 Sorting Benchmarks

The performance of sorting depends on the distribution of key values. We used the
benchmark data sets that are described below. A detailed description and justification
of the benchmarks can be found in [6]. In the following description, P is the total
number of processors used and N is the total number of keys.

A Fast Parallel Implementation of Quicksort 83

e In Uniform or Random the input keys are uniformly distributed. For the case where
the input is comprised only by integers, it is obtained simply by calling the random
number generator function random() to initialize each key. The function returns
integers in the range from 0 to 23!, For the experiments with double floating-point
input, we divide the integer benchmark values with a prime number, 97 for our
experiments.

e In Gaussian the input values follow the Gaussian distribution. For integer input,
each key is the average of four consecutive integers returned by the random()
function. For the experiments with double data type (floating-point) input, we
normalized the integer inputs in the way described in the Uniform benchmark
case.

e Zero is created by setting every key to a constant that is randomly selected by
calling the function random().

e Bucket is obtained by setting the first £; elements assigned to each process to be

31
random numbers between 0 and 27 — 1, the second 3; elements at each process to

be random numbers between % to % — 1, and so forth. For the experiments with
double data type (floating-point) input, we normalized the integer inputs the way
described in the Uniform benchmark case.

e Stagger is obtained by setting the keys as follows: i) each processors with index

i less than or equal to £, is assigned % keys randomly chosen from the interval

(20 +1) 25 (26 + 2)2—;1], ii) each processor with index ¢ greater than £, is assigned

P
keys randomly chosen from the interval [(2i — P)%, (2i —p+ 1)%].

3.4 Results with Integer Input

We used five different input sizes of integers for each of the above five benchmarks:
8M, 32M, 64M, 128M and 256M. For our experiments we had exclusive access to
32 processors of a SUN ENTERPRISE 10000 machine. For parallel Quicksort, we
choose the size of block to be 2048, with this number two blocks could be placed in the
first level cache of our system at the same time. For the sample sort, we selected the
sample size according to [12, 15] and the number of processors that we had access to.
The speedup results are show in Figures 8, 9, 10, 11 and 12. The results for parallel
Quicksort are labeled PQuick. For the experiments with 256M integer keys, we do
not have any results for sample sort. This is because the kernel configuration of our
systems does not allow single programs to allocate more than 2G bytes of memory
and sample sort has higher memory needs than the parallel Quicksort presented here.

D 1P m2P O4P O 8P W 16P B 32P D 1P m2P O4P O 8P m16P m32P
16 30
14 1
25
12
20
a 10 4 [-%
5 5
8 s 315 = 1l
& 1 &
& | &
10] 1l
o |
; 7i —‘ 5 r{{ rJ rﬂ
. il i Sl alll 4 il e dl
PQu\ck‘ PSRS PQu\ck‘ PSRS PQu\ck‘ PSRS PQulck‘ PSRS PQulck‘ PSRS PQulck‘ PSRS PQu\ck‘ PSRS Pchk‘ PSRS PQulck‘ PSRS PQulck‘ PSRS
[U-8m [Gl-8M [z1-8m [B1-8M [S}-8M [U-32m [G]-32Mm [z1-32m [Bl-32M [Sl-32M

Figure 8: Experiments with 8M Integers Figure 9: Experiments with 32M Integers

E1P m2P O4P 08P W 16P E32P @1P m2P O4P O8P M16P @32P
30 30
25 | 25 -
20 = 20 = e —
o o
S 3
s — —— 315] e — -
g 2
«n 2
10 10 —a— b -
5 ;{ 5 4‘ 4(4(| |
ol , i , al |T|mﬂ , , , o (oLl Al i i rlanJ rﬂ rﬂ
PQulck‘ PSRS PQu\ck‘ PSRS PQulck‘ PSRS PQu\ck‘ PSRS PQu\ck‘ PSRS PQulck‘ PSRS F’Qu\ck‘ PSRS Pchk‘ PSRS PQulck‘ PSRS PQulck‘ PSRS
[U]-64M [G]-64M (2]-64M [B]-64M [S]-64M [U]-128M [G]-128M [Z]-128M [B]-128M [S]-128M

Figure 10: Experiments with 64M Inte- Figure 11: Experiments with 128M Inte-
gers gers

O1P m2P O4P 08P W 16P B 32P

4

PQu\ck‘ PSRS
[G]-256M

F'Qulck‘ PSRS
[S]-256M

PQulck‘ PSRS
[B]-256M

PQu\ck‘ PSRS
[2)-256M

PQu\ck‘ PSRS
[U]-256M

Figure 12: Experiments with 256M Inte-
gers

From the results obtained, we can see that for any number of processors and for any
data size selected parallel Quicksort exhibits the following characteristics:

The execution time of parallel Quicksort is not sensitive to the distribution of the input

A Fast Parallel Implementation of Quicksort

85

No. Proc. [U]-64M [G]-64M

PQuick PSRS PQuick PSRS

1 139221763 | 157149728 | 147128678 | 160416695

2 79665604 | 80083084 | 74646110 | 77354959

4 39740592 | 38210913 | 37798256 | 38968839

8 19799215 | 20113143 | 19299378 | 20098710

16 10309607 | 11108192 9900953 | 11084988

32 5564001 8015688 5590313 8291338
No. Proc. [B]-64M [S]-64M

PQuick PSRS PQuick PSRS

1 139882786 | 156416659 | 141337885 | 157289882

2 71928127 | 75946922 | 82174454 | 83648007

4 36426837 | 36768544 | 37653127 | 41555739

8 18661486 | 18728796 | 19496991 | 21802329

16 9518032 | 12768536 9878692 | 12357691

32 5221680 9297328 5796658 9318278

Table 1. The execution times (us) with 64M Integers

data. Parallel Quicksort produced the same speedup for the the benchmark datasets
Uniform, Gaussian, Bucket, and Stagger. For the benchmark Zero, the speedup that
we got is always less than the speedup that we got on the other benchmarks. But, when
looking at the absolute execution times, we can see that the sequential time for the
Zero benchmark is about 30% faster than the sequential execution time for the other
benchmarks while all other benchmarks have almost the same sequential execution
times. The execution time of parallel Quicksort is not sensitive to the distribution of
the data as mentioned in Section 2.2.

Better Execution Times and Speed-ups than Sample Sort. The absolute sequential
execution times from sample sort are at least 15% slower than those of the parallel
Quicksort in general, with only exception a small number of instances with proces-
sors between 2 to 8 and mostly in the benchmarks Uniform and Gaussian. All the
instances in which sample sort outperforms the parallel Quicksort are shown in Ta-
ble 3. The excess execution part in sample sort is due to the Mergesort that copies
the data from one array to another array. From these figures, we can see that the
speedups of the sample sort are better than the parallel Quicksort algorithm when
the input sizes are small and the number of processors are small with the only excep-

86

No. Proc. [Z]-8M [Z]-32M

PQuick PSRS PQuick PSRS

1 9643146 | 12912753 | 48593446 | 62147791

2 5928310 8383057 | 28895086 | 39120591

4 3508595 7251678 | 14904826 | 33235381

8 1723524 9285370 7848143 | 37933231

16 1334066 | 13362880 4478794 | 54547186

32 917237 | 23342432 2910912 | 93403783
No. Proc. [Z]-64M [Z]-128M

PQuick PSRS PQuick PSRS

1 100276211 | 127420481 | 211486046 | 262376511

2 59113923 | 79046473 | 123347231 | 162749347

4 30510105 | 65319136 | 62769102 | 131289494

8 15400692 | 73537879 | 32329882 | 144721896

16 8475414 | 104793490 | 16883436 | 203698914

32 5020324 | 178521414 | 10375268 | 343280741

Table 2. The execution times (us) of Benchmark Zero

tion the benchmark Zero (in Zero sample sort performs very poorly). Table 1 shows
the execution times of the benchmark datasets Uniform, Gaussian, Bucket, and Stag-
ger for parallel Quicksort and the sample sort algorithm with 64M integers (64 is in
the median of 8 and 128, the smallest and the biggest input sizes for sample sort). In
sample sort, the local sort phase is well load balanced. The mergesort will also be well
load balanced if there are not many duplicate keys, which is the case in benchmarks
Uniform and Gaussian. At the same time, when the number of processors increases,
the cache capacity that is used in the algorithm increases. The increase of cache ca-
pacity would offset the parallelism overhead in the sample sort algorithm and even
introduces superlinear speedup e.g. most experiments on 2 processors for all input
data sizes with only exception the benchmark Zero. However, when the number of
processors and/or the input size of the data is large enough, the cost for parallelism
could not be offset by the increase of cache capacity any more. There is no super-
linear speedup for sample sort for more than 16 processors and for the experiments
with 128M integers only those with 2 processor show superlinear speedup. After that
point, the speedup of sample sort lags behind the speedup of the parallel Quicksort.
As the sequential execution time of sample sort is longer than the execution time of
the parallel Quicksort, the sample sort can only beat the parallel Quicksort when a

87

A Fast Parallel Implementation of Quicksort
No. Proc. [B]-8M [S]-8M
PQuick PSRS | PQuick PSRS
1 14269874 16414229 | 14325041 16452619
2 8244073 8031141 8614346 8548883
4 4252418 4238064 4485420 4402723
8 2204853 2760520 2537265 2722804
No. Proc. [U]-32M [U]-64M
PQuick PSRS PQuick PSRS
1 68339788 76938437 | 139221763 | 157149728
2 38923895 | 36649493 | 79665604 | 80083084
4 19327928 | 17931728 | 39740592 | 38210913
8 9908154 | 9465147 | 19799215 20113143

Table 3. The execution times (us) of instances (in boldface) where sample sort is faster
than parallel Quicksort

large superlinear speedup is achieved.

On benchmark Zero, sample sort never performed better than the parallel Quicksort.
The benchmark Zero is the most difficult for sample sort. The execution times of the
parallel Quicksort and sample sort for benchmark Zero with 8M, 32M, 64M, 128M
are shown in Table 2. When using the benchmark Zero the bottleneck is the fifth
phase of mergesort. Since all keys have the same value, all keys will be send to one
processor at the last phase of the algorithm to be mergesorted. When sorting inputs
from Zero, only the first phase (local sorting) executes in parallel. On the other hand,
parallel Quicksort delivers the best absolute execution times when sorting inputs from
benchmark Zero. The reason is that the performance of Quicksort is optimal because
any pivot will partition keys evenly; the best sequential time of parallel Quicksort
for benchmark Zero also confirm this. Partitioning the keys also help the parallel
algorithm by distributing the subarrays evenly among processors.

3.5 Results with Floating Point Inputs

In this section, we present the results of our experiments of sorting 64 bits double type
(floating-point) input. Because of the same memory allocation limitation mentioned
early, we have the results with data sizes of 8M, 32M, and 64M for both the parallel
Quicksort and the sample sort and the results on 128M for parallel Quicksort only.

88

T1P W2P O4P 08P M16P B32P D 1P W 2P 04P I8P M16P m32P
2
20
S5 —
@
& 10 —
2]
s |
B (] 0 P SRR | NPT IR il [‘%Im |
x %) x n x 0 x %] x n < 1] = 12 = %) < [x %
R I I T I = T I < I - B 121312 1351213122512
5|2 |5(2(32(3[2|3|¢2 312|312 |5|2|312|312
'8 o o a o a o a o a
urem | erem | @zrem | [Erem | (siem UMM | [eleam | [Zream | [B1seM | [s)aam

Figure 13: Experiments with 8M Double Figure 14: Experiments with 32M Double

Floating-points Floating-points
D1P W2P O4P 08P W 16P @32P D1P 2P O4P 8P M 16P m32P
35 35
30 30
25 25
Q o
3 20 = 3 20
[Q
8 15 o — — 215
2] n
10 —] — 10
|] (] (0] st ey T‘ g
o e LMLl L L Wl T a1 e ol L T M DOLPTE {1 O] T | o
x 0 x %) x 0 x %) x n < 1] =<] = %) < [= %
SIB15|8 1588 08/8 08 SIBIL|EI58|88/8 8
o o o o o o a o o o a o o o a o o o a o
[U-64M | [G]-64M | [z]-64M | [B]-64M | [S]-64M [U128M | [G]-128M | [Z]-128M | [B]-128M | [S]-128M

Figure 15: Experiments with 64M Double Figure 16: Experiments with 128M Dou-
Floating-points ble Floating-points

Figure 13, 14, 15 and 16 compare the speedup between the parallel Quicksort and
sample sort algorithm with different double floating point benchmarks. We can ob-
serve the same trend: parallel Quicksort deliver almost the same speedup all the time;
the speedup of the sample sort slowdown when the data size increases and when the
number of processor increases.

4 Conclusion

Cache-coherent shared memory multiprocessors offer fruitful ground for algorithmic
or programming techniques that were considered impractical before, in the context
of high-performance programming, to develop and change a little the way we think
about high-performance programming. We have implemented sample sort and a par-
allel version of Quicksort on a cache-coherent shared address space multiprocessors:
the SUN ENTERPRISE 10000. Our computational experiments show that parallel

A Fast Parallel Implementation of Quicksort 89

Quicksort outperforms sample sort. Sample sort has been long thought to be the
best, general parallel sorting algorithms, especially for larger data sets. The paral-
lel version of Quicksort is a simple fine-grain parallelization of Quicksort. Although
fine-grain parallelism has long been thought to be inefficient for computations like
sorting due to the synchronization overheads, efficiency was achieved by increased
concurrency between communication and computation, This concurrency comes from
the incorporation of non-blocking techniques especially when sharing data and sub-
tasks. Quicksort might be a practical choice when it comes to general purpose in-place
sorting both for uniprocessor and multiprocessor cc-DSM systems.

Acknowledgements

We thank Carl Hallen and Andy Polyakov from our Supercomputing Center, for
their help on our inconvenient requests for exclusive use. Many thanks to Marina
Papatriantafilou for her support and continuous flow of comments. Niklas Elmqvist
and Anders Gidenstam provided us with many comments that made this paper much
better to read.

References

[1] G.E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha.
A comparison of sorting algorithms for the connection machine CM-2. In Proceedings of
the 8rd annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’91),
pages 3—16, Hilton Head, South Carolina, July 1991.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT
Press and McGraw-Hill Book Company, 6th edition, 1992.

[3] R. Dlekmann, J. Gehring, R. Liiling, B. Monien, M. Niibel, and R. Wanka. Sorting
large data sets on a massively parallel system. In Proceedings of the 6th Symposium
on Parallel and Distributed Processing, pages 2-9, Los Alamitos, CA, USA, Oct. 1994.
IEEE.

[4] A. C. Dusseau, D. E. Culler, K. E. Schauser, and R. P. Martin. Fast Parallel Sorting
Under LogP: Experience with the CM-5. IEEFE Transactions on Parallel and Distributed
Systems, 7(8):791-805, Aug. 1996.

[5] P.Heidelberger, A. Norton, and J. T. Robinson. Parallel quicksort using Fetch-and-Add.
IEEFE Transactions on Computers, 39(1):133-137, Jan. 1990.

[6] D. R. Helman, D. A. Bader, and J. JiJ4. A randomized parallel sorting algorithm
with an experimental study. Technical Report CS-TR-3669 and UMIACS-TR-96-53,

90

Institute for Advanced Computer Studies, University of Maryland, College Park, MD,
Aug. 1996.

[7] D. R. Helman, D. A. Bader, and J. JaJ4. Parallel algorithms for personalized
communication and sorting with an experimental study. In Proceedings of the 8th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 211-222,
Padua, Italy, June 1996.

[8] W. Hightower, J. Prins, and J. Reif. Implementations of Randomized Sorting on Large
Parallel Machines. In Proceedings of the fth annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA’92), June 1992.

[9] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10-16, Apr. 1962.

[10] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, second edition, 1998.

[11] A. LaMarca and R. E. Ladner. The influence of caches on the performance of sorting. In
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
370-379, New Orleans, Louisiana, 5-7 Jan. 1997.

[12] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi. On the versatility of
parallel sorting by regular sampling. Parallel Computing, 19(10):1079-1103, Oct. 1993.

[13] R. Sedgewick. Implementing Quicksort programs. Communications of the ACM,
21(10):847-857, Oct. 1978.

[14] H. Shan and J. P. Singh. Parallel sorting on cache coherent DSM multiprocessors. In
Proceedings of Supercomputing ’99, Portland, Oregon, USA, Nov. 1999.

[15] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel and
Distributed Computing, 14(4):361-372, 1992.

[16] A. Sohn and Y. Kodama. Load balanced parallel radix sort. In Proceedings of the
International Conference on Supercomputing (I1CS-98), pages 305-312, New York, July
1998. ACM press.

[17] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RC
5118, IBM T. J. Watson Research Center, Yorktown Heights, NY, Apr. 1986.

[18] E. W. Weisstein. Eric Weisstein’s world of mathematics. Technical report, Wolfram
Research, http://mathworld.wolfram.com/Quicksort.html, 1999.

[19] M. Zagha and G. E. Blelloch. Radix sort for vector multiprocessors. In Proceedings of
Supercomputing’91, pages 712-721, Albuquerque, New Mexico, Nov. 1991. IEEE.

Chapter 5

Non-blocking Data Sharing in
Multiprocessor Real-Time System

This paper is an extended version of the paper appeared in the Proceedings of the
6th International Conference on Real-Time Computing Systems and Applications

(RTCSA "99).

92

Non-blocking Sharing in Real-time Multiprocessors 93

Non-blocking Data Sharing in Multiprocessor
Real-Time Systems *

Philippas Tsigas and Yi Zhang

Department of Computing Science,
Chalmers University of Technology,
SE-412 60, Gothenburg, Sweden

Abstract

A non-blocking protocol that allows real-time tasks to share data in a multiprocessor
system is presented in this paper. The protocol gives a way to concurrent real-time
tasks to read and write shared data; the protocol allows multiple write operations
and multiple read operations to be executed concurrently. Our protocol extends
previous results and is optimal with respect to space requirements. Together with
the protocol, its schedulability analysis and a set of schedulability tests for a set of
random task sets are presented. Both the schedulability analysis and the schedu-
lability experiments show that the algorithm presented in this paper exhibits less
overhead than the lock based protocols.

1 Introduction

In any multiprocessing systems, cooperating processes share data via shared data ob-
jects. In this paper, we are interested in designing shared data objects for cooperative
processes in real-time multiprocessor systems.

The challenges that have to be faced in designing of inter-process communication
protocols for multiprocessor systems become more delicate when these systems have
to support real-time computing. In real-time multiprocessor systems, inter-process
communication protocols i) have to support sharing of data between different tasks
e.g. on an operational flight program (OFP), tasks like navigation, maintaining of pilot
displays, control of and communication with a variety of special purpose hardware,

* Partially supported by ARTES, a national Swedish strategic research initiative in Real-
Time Systems and TFR the Swedish Research Council for Engineering Sciences.

94

weapon delivery, and so on; ii) must meet strict time constraints, the hard real-time
(HRT) deadlines; and iii) have to be efficient in time and in space since they must
perform under tight time and space constraints. A nice description of fine challenges
that inter-process communication protocols for real-time systems have to address can
be found in [11].

The classical, well-known and most simple solution enforces mutual exclusion. Mutual
exclusion protects the consistency of shared data by allowing only one process at
time to access it. However, mutual exclusion i) causes large performance degradation
especially in multiprocessor systems [12]; ii) leads to complex scheduling analysis
since processes can be delayed because they were either preempted by other more
urgent processes, or because they are blocked before a critical section by another
process that can in turn be preempted by another more urgent process and so on.
(this is also called as the convoy effect) [2]; and iii) leads to priority inversion in
which a high priority task can be blocked for an unbounded time by a lower priority
task [4]. Several synchronisation protocols have been introduced to solve the priority
inversion problem for uniprocessor [4] and multiprocessor [3] systems. The solution
presented in [4] solves the problem for the uniprocessor case with the cost of limiting
the schedulability of task sets and also makes the scheduling analysis of real-time
systems hard. The situation is much worse in a multiprocessor real-time system,
where a task may be blocked by another task running on a different processor [3].

Non-blocking implementation of shared data objects is a new alternative approach for
the problem of inter-process communication. Non-blocking mechanisms allow multiple
processes to access a shared object at the same time, but without enforcing mutual
exclusion to accomplish this. Non-blocking inter-process communication does not al-
low one process to block another process gives significant advantages over lock-based
schemes because:

(1) it does not give priority inversion, avoids lock convoys that make scheduling
analysis hard and delays longer.

(2) it provides high fault tolerance (processor failures will never corrupt shared data
objects) and eliminates deadlock scenarios from two or more processes both
waiting for locks held by the other.

(3) and more significantly it completely eliminates the interference between process
schedule and synchronisation.

Non-blocking protocols on the other hand have to use more delicate strategies to
guarantee data consistency than the simple enforcement of mutual exclusion between
readers and writers of a data object. These new strategies on the other hand, in order
to be useful for real-time systems, should be efficient in time and space in order to
perform under the tight space and time constraints that real-time systems demand.

In this paper, we present an efficient non-blocking solution to the general readers/writ-

Non-blocking Sharing in Real-time Multiprocessors 95

ers inter-process communication problem; our solution allows any arbitrary number
of readers and writers to perform their respective operations. With a simple and
efficient memory management scheme in it, our protocol needs n + m + 1 memory
slots (buffers) for n readers and m writers and is optimal with respect to space re-
quirements. Sorencen and Hemacher in [8] have proven that n 4+ m + 1 memory slots
(buffers) are necessary. Together with the protocol, its schedulability analysis and a
set schedulability tests for a set of random task sets are presented. Both the schedula-
bility analysis and the schedulability experiments show that the algorithm presented
in this paper exhibits less overhead than the lock based protocol. Our protocol ex-
tends previous results by allowing any arbitrary number of tasks to perform read or
write operations concurrently without trading efficiency. In previous work, Simpson
[6], presented a non-blocking asynchronous protocol for task communication between
1 writer and 1 reader which needs 4 buffers. Chen and Burns [7] presented a non-
blocking synchronous protocol for n readers and 1 writer that needs n+ 1+ 1 buffers.
Kopetz and Reisinger [2] also presented a non-blocking synchronous protocol for n
readers and 1 writer that contains a mechanism to configure the number of buffers
to the application requirements, trading memory space for execution time. We also
believe that the memory management scheme that we introduce in this paper and
use in our protocol is of interest and can be used as an independent component with
other non-blocking shared data object implementations.

The rest of this paper is organised as follows. In Section 2 we give a description
of the basic characteristics of a multiprocessor architecture and describe the formal
requirements that any solution to the synchronisation problem that we are addressing
must guarantee. Section 3 presents our protocol. In Section 4, we give the proof of
correctness of the protocol. Section 5 is devoted to the schedulability analysis and
schedulability experiments that compare our non-blocking protocol with the lock-
based one. The paper concludes with Section 6.

2 Problem Statement

2.1 Real-time Multiprocessor System Configuration

A typical abstraction of a shared memory multiprocessor real-time system configura-
tion is depicted in Figure 1. Each node of the system contains a processor together
with its local memory. All nodes are connected to the shared memory via an inter-
connection network. A set of cooperating tasks (processes) with timing constraints is
running on the system performing their respective operations. Each task is sequen-
tially executed on one of the processors, while each processor can serve (run) many
tasks at a time. The cooperating tasks now, possibly running on different processes,

96

Local Memory ‘

I I e o o
Processor 1‘ ’Processor 4

Processor n

Local Memory ‘

Real-Time Interconnection Network

1/0 Shared Memory

Figure 1: Shared Memory Multiprocessor System Structure

use shared data objects build in the shared memory to coordinate and communicate.
Every task ' has a worst case execution time and has to be completed by a time spec-
ified by a deadline. Tasks synchronise their operations through read/write operations
to shared memory.

2.2 General Reader/Writer Problem

In this paper we are interested in the general read/write buffer problem where several
reader-tasks, (the readers), access a buffer maintained by several writer-tasks, (the
writers). There is no limit on the length of the buffer that can be increased by the
writers on-line depending on the length of the data that they want to write in one
atomic operation. The shared data object can be used to increase the word length of
the system.

The accessing of the shared object is modelled by a history h. A history h is a finite
(or not) sequence of operation invocation and response events. Any response event is
preceded by the corresponding invocation event. For our case there are two different
operations that can be invoked, a read operation or a write operation. An operation
is called complete if there is a response event in the same history h; otherwise, it is
said to be pending. A history is called complete if all its operations are complete.
In a global time model each operation g “occupies” a time interval [s,, f,] on one
linear time axis (s, < f,;); we can think of s, and f, as the starting and finishing time
instants of ¢. During this time interval the operation is said to be pending. There
exists a precedence relation on operations in history denoted by <, which is a strict
partial order: ¢; <j g» means that ¢; ends before ¢y starts; Operations incomparable
under < are called overlapping. A complete history h is linearisable if the partial
order <, on its operations can be extended to a total order —} that respects the
specification of the object [1]. For our object this means that each read operation
should return the value written by the write operation that directly precedes the read
operation by this total order (—1y,).

I throughout the paper the terms, process and task, are used interchangably

Non-blocking Sharing in Real-time Multiprocessors 97

To sum it up as we are looking for a non-blocking solution to the general Read/Writer
problem for real-time systems we are looking for a solution that satisfies that:

e Every read operation guarantees the integrity and coherence of the data it returns

e The behaviour of each read and write operation is predictable and can be calculated
for use in the scheduling analysis

e Every possible history of our protocol should be linearisable.

We assume that writer-tasks have the highest priority on the host processor and
no two writer-tasks execute on one host processor. Two writer-tasks may overlap
but no write processes can be preempted by another process. Reader processes may
have different priorities and may be scheduled with the writer process on the same
processor. This is because writer-tasks usually interact with the environment (e. g.
sampler for temperature or pressure), and they are of high prioritiy. To the best of
our knowledge the above assumption holds in most real-time systems.

3 The Protocol

3.1 Idea description

Our construction divides memory into memory slots and uses a pointer that points
to the slot with the latest written data. Each slot has a flag field used by the special
memory management mechanism in the protocol. Through this mechanism, i) writers
can find a safe slot to write without corrupting the slots from where overlapping
readers are getting their values and ii) readers find the slot with the latest information.

In the worst case, n readers occupy n slots to read and m writers allocate m slots to
write and the pointer points to another slot. So, in total we need at most n +m + 1
slots for our protocol. In [8], Sorensen and Hemacher showed that n + m + 1 slots is
necessary for this problem.

3.2 Protocol Description

Our protocol uses the instructions Compare_and_Swap? and Fetch_and_Add. The re-
spective specifications of these instructions are shown in Figure 2 and Figure 3. Most
multiprocessor systems either provide these primitives or provide others that can be
used to emulate these primitives.

2 IBM System 370 was the first computer system that introduced Compare_and_Swap

98

Boolean Compare_and_Swap (WORD #*mem, register WORD old, new)
{
WORD temp = *mem;
if (temp == old)
{
*mem = new;
return TRUE;
b
else
return FALSE;

Figure 2: The Compare_and_Swap atomic primitive

int Fetch_and_Add(int *mem, int increment)

int temp;
temp = *mem;
*mem = *mem + increment;

return temp

Figure 3: The Fetch_and_Add atomic primitive

Figure 4 presents commented pseudo-code for our nonblocking protocol. We use n +
m+1=TASKS NUM + 1 slots. Each slot has a field, called ‘used’ that is used by
the memory management layer of our protocol. There are a number of values that this
field can carry, these values together with an informal description of the associated
information can be described as follows:

e k = 0 : indicates that a writer has finished writing in the respective slot but no
reader has read it yet

e k > 0: indicates that this is the slot with the most recent value and there are k
readers reading this slot at this moment

e —(n+m) < k < 0: indicates that this is not the slot with the most recent value
but there are k 4 (n 4+ m) readers currently reading it. These readers started their
operations long ago when this slot had the most recent value

e k = —(n + m): indicates that this is not the slot with the most recent value and
that there is no reader reading it; the combination of these two makes it ideal for
a writer to allocate this slot to its current operation and use it

e k = —2(n + m): indicates that a writer has allocated this slot and is currently
writing in it

The read/write protocol can be described informally as follows.

Non-blocking Sharing in Real-time Multiprocessors 99

structure readwrite_buf
2 {
data: array[LENGTH_BUF] of Character;
4 used: integer;
/*-2*%TASK ’NUM means allocated & writing data

6 -TASK’NUM means slot 1is free
-TASK’NUM + 1 © -1 means slot is free but with readers accessing %t
8 0 means wvalidate data */

} LF_buffer /*x Lock-free buffer */
10 workbuf: array [TASK’NUM+1] of LF_buffer
dataptr: pointer to LF_buffer
12
function newbufcell (): pointer to LF_buffer
11 for i=0 to TASK’NUM
if (cas(work_buf[i].used,
16 -TASK’NUM ,-2*TASK’NUM)
return &work_buf [i]
18 return NULL

20 function initdata
for i=0 to TASK’NUM

22 work_buf [i] .used=-TASK’NUM
dataptr=&work_buf [0]

24 function writebuf (data: pointer to datatye)
temp = newbufcell ()

26 /* allocate a new buffer cell for write x*/
writingsth (temp,data)

2s /* write data into new buffer cell */
temp.used=0

30 /* means data valid in the cell x/
swap (dataptr ,o0ld, temp)

32 /* use cas to achieve non-blocking write x*/
faa(old->used, -TASK’NUM)

s« /* if no reader then it will change to -TASK’NUM x*/

function readbuf (): pointer to datatype

36 /* use fetch and add to mark that current block is in use. */
loop

38 reading=dataptr
until (faa(reading->used,1) >= (-TASK’NUM))

40 /* increase used by 1 if it is greater than -TASK’ NUM.

So it can not be recycled*/

42 return=readingsth(reading)

faa(reading->used,-1)

Figure 4: The Structure and Operations description for our non-blocking shared object

100

A writer runs the following steps whenever it wants to write data into the object:

(1) First, it allocates a free slot from the slots with flags entry & = —(n 4+ m). The
writer uses Compare_and_Swap to read and change the flag from k = —(n + m)
to k = —2(n + m) in one atomic operation, in this way if several writers want
to allocate the same slot, the Compare_and_Swap atomic operation available at
a hardware level will guarantee that only one will succeed.

(2) Then, it writes the data that it wants to write into that slot. If one reader tries
to access that slot during this writing, the reader will give up and will be forced
to try again as we will see in the readers protocol description.

(3) After the writing has finished, the writer changes the flag entry of that slot from
k=—-2(n+m) to 0.

(4) As a next step the writer changes the data pointer variable to this new slot (so
that consequent reads find a pointer to the fresh value) with the atomic primitive
Swap and gets the pointer to the old slot at the same time.

(5) Finally, the writer changes the flag entry of the old slot from £ > 0 to k£ < 0 by
subtracting n + m.

Any write operation will finish after the 5 steps. The worst case execution time can
be analyzed directly.

A reader performs the following steps during each read operation:

(1) reads the data pointer variable to get a pointer to the slot with the most recently
written value

(2) uses the atomic primitive Fetch_and_Add to get and to add 1 on the value k of
the flag entry of that slot

(3) there are three possibilities for the value that the fetch_and_add will return to
the reader

(a) k > 0, the slot has the most recent value written by all writers until now,
and the reader can return this value, so go to step 5 to get the value.

(b) 0 > k > —(n + m), the slot has the most recent value with respect to this
specific reader from the linearisabilty point of view and the reader can return
this value, so go to step 5 to get the value.

(c) k < —(n + m), the slot has been “recycled” by some writer and the data
that the slot holds is invalid.

(4) goto step 1

(5) reads the data out of the slot

(6) uses the atomic primitive Fetch-and_Add with value -1 to change the value k of
the flag entry of the slot

From the above description, a reader has a possibility to retry whenever it want to
read a slot. We must find out whether there exists a upper bound on the number of
reties a reader have to experience and only if it exists, we can derive the worst case

Non-blocking Sharing in Real-time Multiprocessors 101

irected to
i ements g

Each reade
0>flag> lag by on
~ (n+m+1) thdt return d

ader_LeGv

3
Data pointer

Points to another Cell

Data pointer
Points to the Cell

H ader oo o
s ement s ~¥lag
‘ fach reader increments
H flag by one and reader
‘ thaf return decrement by one
> R Cave

Slot is in
"Readable" State

Slot is in
"Writable" State

—_—
Flag Changed by Writer Flag Changed by Reader

Figure 5: Slot state changing graph

execution time for any reader. The detailed analysis of the worst case behaviour of a
reader will be given in Section 5.

A description of the different states that a slot can be in, together with the description
of the actions that cause the change of these states, is depicted in Figure 5.

From the above description, it is easy to check that the protocol: i) guarantees con-
tinuous flow of information from the writers to the readers, without any blocking; ii)
makes it possible to add or remove readers and writers on the fly without any change
to the protocol of the other tasks; and iii) does not require information about how
big the buffer has to be.

4 Correctness

4.1 Linearisability Model and Definitions

In [9] one can find a formalism for the notion of the atomic buffer and the global time
assumption that we adopt. We assume that each operation Op has a time interval
[sop, fop] on a linear time axis. We can think of sp, and fp, as the starting and
finishing times of Op. Moreover, we assume that there is a precedence relation on op-
erations which is a strict partial order (denoted by ‘<;’). Semantically, a <j b means
that operation a ends before operation b starts. If two operations are incomparable
under <y, they are said to overlap.

102

A reading function Rjp for a buffer B is a function that assigns a write operation
W to each read operation R on B, such that the value returned by R is the value
written by W. It is assumed that there exists a write operation, which initialises the
buffer B, that precedes all other operations on B.

A complete history on a buffer is an execution of an arbitrary number of operations
according to its protocol. With the linearisability definition described in section 2.2, a
complete history on a buffer B is linearisable if there is a total order —}, on the set of
all the operations of the run such that: (i) The total order —}, extends the precedence
relation <y, (ii) every read operation r returns a value which is equal to the value
written by a write operation that directly precedes r in the total ordering —y,. An
implementation of a buffer is linearisable if all its complete histories are linearisable.

4.2 Correctness Proof

In this subsection will show that any complete history is linearisable. Our proof uses
a widely used lemma in the area that can be found also in [10].

Lemma: A complete history h is linearisable iff there exist a function mapping each
operation in A to a rational number such that the following three conditions are
satisfied:

Precedence if one operation precedes another, then the value of the latter is at
least that of the former

Uniqueness different write operations have different numbers

Integrity for each read operation there exists a write operation with the same
value which it doesn’t precede.

Now we associate a tag field with the pointer variable that associates a tag value to
each value that is written in this variable in the following way: every time a write
operation updates the pointer with a swap operation the tag is increased by one. The
tag field and variable are auxiliary and are introduce only to help the proof.

Now, it is easy to associate a tag value to each write operation and each read oper-
ation in a way that guarantees the above mentioned conditions. A write operation is
associated with the tag value that it writes and a read operation is associated with
the tag value that it read when it read the pointer variable; in this way different
write task are associated to different values (tag values only increase) and read tasks
are associated with the respective write operations that wrote the values that they
return.

Theorem 1 Fach complete history of our protocol is linearisable.

Non-blocking Sharing in Real-time Multiprocessors 103

5 Schedulability Analysis

5.1 Worst Case Analysis

As we mentioned in Section 2 we assume that writers have the highest priority on
the nodes where they are running. In our protocol i) write operations are guaranteed
to finish independently from interleaving with other task operations after a finite
number of steps; ii) read operations are subject to retry under certain circumstances.

For our analysis we will use the following notation:

P, period of the writer

: Compute time of task ¢

: read latency caused by one retry

: the response time fo task ¢

;- the deadline and period of task 4

;: maximum number of interventions

;: the worst case executing time of task ¢

==z20®338

Because tasks on different processors are decoupled, the scheduling problem for a
multiprocessor system is converted to the scheduling problem on several uni-processor
systems. If we can find out the worst case executing time of each task then we can
use any scheduling algorithm for uni-processor systems to schedule them.

Observation 1 A read operation will do a retry only if there are more than two write
operations overlap with it.

A read operation will do a retry if it finds the slot which it want to read is recycled
by a write operations. It is obvious that if no write operation overlaps with a read
operation, the reader will succeed without any retry. An overlap between a reader
operation and other read operations does not cause reader to retry. If only one write
operation overlaps with a read operation, there are two possibilities:

(1) The write operation change the pointer variable with its swap statement before
the read operation read the pointer variable. In this case, the read operation will
read out the freshest value without any retry.

(2) The write operation change the pointer variable after the read operation read the
pointer variable, the read operation will return a value satisfied linearisability
without retry

If a read operation overlap with more than two write operations, the following scenaria
might happen and lead the read operation retry.

104

(1) The read operation, Ry reads the pointer variable and finds that slot A contains
the freshest value.

(2) A write operation W; changes the pointer variable to another slot with a Swap
and frees slot A by change the tag of A to —(n + m) with a Fetch_and_Add.

(3) Another write operation W, allocate slot a by changing the tag of A to —2x*(n+
m), with a Compare_and_Swap.

(4) The read operation Ry uses Fetch_and_Add to change the tag of A and find the
slot is recycled. Ry does a retry.

From the above observation, we can tell that to let a reader retry, a Swap, a Fetch_and_Add
and a Compare_and_Swap statement must take effect between the read and Fetch_and_Add
of the read operation. If the read operation is not preempted by any other tasks, there

is no time for the above statement to happen. This gives us the following lemma.

Lemma 1 The number of retry of a read operation is less or equal to the number of
preemption the operation experienced.

The number of retry of a read operation is also effected by the maxium number of
writers during the total time which the reader experience preemption.

Lemma 2 Assume the total preemption time a read task i expereinced is Pre;, then
the max number of interventions for each read operation is bounded by

Pre;
Ni == !
[2*PJ

5.2 Rate-Monotonic

The response time of a reader task ¢ can be calculated with the following fomular:

ZjeHP(i) [%1 Cj
2% P,

R=C+t Y [%Cﬁmm() [%},

JEHP(3) JEHP(®) (

)T,

where H P(i) represents all tasks who run on the same processor as task i and whose
priorities is higher than the priority of task ¢. The first two items are the same as
original response time analysis. The third item calculates the extra execution time
introduced by retrying of the reader task in the worst case. The item has a minimum of
two numbers: the maxium number of preemption given by Lemma 1 and the maxium
number of interference given by Lemma 2.

Non-blocking Sharing in Real-time Multiprocessors 105

5.3 Scheduling experiment

We conduct the following scheduling experiments:

In the first experiment all tasks need to access to the multi-word buffer. There
are fixed number of writers that write to the buffer with period P,. Every reader
task needs the same computing time and all tasks have the same deadline and period.
We try, in the experiments, to schedule as many reader tasks as possible. All the
experiment parameters are listed as following;:

Ci: Compute time of task i: 800usec

Trw: Read/Write buffer time: 100usec

D;: the deadline of task: 10msec

T, read latency caused by one retry: 10usec

P,: period of the writer: Imsec

P, period of the reader: 10msec

bent : the number of buffers for the message, used by Kopetz’s protocol: 4

For the non-blocking algorithm, we calculate the response time of reader tasks. In this
experiment, we compare our algorithm with a lock-based algorithm. The lock-based
protocol is using PCP to avoid Priority inversion. Figure 6 shows the result of the
schedule simulation. The solid line represents the ideal number of reader tasks based
on the lock algorithm that can be scheduled and the dashed line represents that of
our non-blocking protocol. As it can be seen, the schedulability of our non-blocking
protocol is the same as or better than the other protocol all the time.

In the second experiment, we consider different randomised computing times for
different reader tasks. All parameters except the computing time for the reader tasks
are the same as the first experiment. The worst case execution time for the non-
blocking algorithm is calculated with the equation in section 5.2. We create two sets
of randomised computing time tasks with different random seeds. Figure 7 shows
the result of two task sets. The results also show that with randomised computing
time our non-blocking protocol also gives better scheduling results compared to the
lock-based one.

6 Conclusion

In this paper, we presented a non-blocking protocol that allows real-time processes to
share data in a multiprocessor system. The protocol provides the means for concur-
rent real-time tasks to read and write the shared data; the protocol allows multiple
write and multiple read operations to be executed concurrently. Together with the

106

Schedulability
120

Loclk —
New Non-blocking —=—

100

80

Number of Tasks
D
o

40

20

1 2 3 4 5 6 7 8 9 10
number of processors
Figure 6: Fixed computing time schedule experiment

protocol its schedulability analysis and a set of schedulability tests are given. Both
the schedulability analysis for a task set and the schedulability experiments show
that the algorithm presented in this paper exhibit less overhead than the lock based
protocols.

The space requirements of our protocol is the same with the lower bound shown by
Sorencen and Hemacher [8]. Our protocol only needs n 4+ m + 1 memory slots where
n is the number of readers that perform their read operations concurrently and m
is the number of writers that can write concurrently. Our protocol extends previous
results by allowing any arbitrary number of tasks to perform read or write operations
concurrently without compromising efficiency.

We believe that the memory management scheme that we introduce in this paper
and used in our protocol can be used as an independent component with other non-
blocking shared data object implementations; we are currently looking at it.

Acknowledgement

We'd like to thank Hans Hanson for his valuable comments and discussions.

Non-blocking Sharing in Real-time Multiprocessors 107

Schedulability

‘ ‘ Lock —+—

140 New Non-blocking —=— -

120

100

80

60

Number of Tasks

40

20

2 4 6 8 10 12
number of processors

Schedulability

Lock —+—
140 New Non-blocking —=— -

120

100

[o]
o

Number of Tasks

D
o

40

20

0 | | | |
2 4 6 8 10 12

number of processors
Figure 7: Random computing time schedule experiment

108

References

1]

MAURICE P. HERLIHY, JEANNETTE M. WING Linearizability: A correctness condition
for concurrent objects, ACM Transactions on Programming Languages and Systems,
12(3), July 1990, pp. 463-492.

H. Kopretz, J. REISINGE The Non-Blocking Write Protocol NBW: A Solution
to a Real-Time Synchronisation Problem, in Proceedings of the Real-Time Systems
Symposium, 1993, pp. 131-137.

R. RAJKUMAR Real-Time Synchronization Protocols for Shared Memory
Multiprocessors, in Proceedings of the 10th International Conference on Distributed
Computing Systems, 1990, pp. 116-123.

L. SHA AND R. RAJKUMAR, J. P. LEHOCZKY Priority Inheritance Protocols: An
Approach to Real-Time Synchronization, IEEE Transactions on Computers, Vol. 39, 9
(Sep.) 1990, pp. 1175-1185.

S. V. Apve, K. GHARACHORLOO Shared Memory Consistency Models: A Tutorial,
IEEE Computer, Dec. 1996, pp. 66-76.

H. R. SimpsoN Four-slot fully asynchronous communication mechanism, I[EE
Proceedings, Jan. 1990, pp. 17-30.

J. CHEN, A. BURNs A Fully Asynchronous Reader/Writer Mechanism for
Multiprocessor Real-Time Systems, Technical Report YCS-288, Department of
Computer Science, University of York, May 1997.

P. SORENSEN, V. HEMACHER A Real-Time System Design Methodology, INFOR, 13,
1 (Feb.) 1975, pp. 1-18.

L. LAMPORT On interprocess communication, part i: basic formalism, part ii: basic
algorithms, Distributed Computing, 1986, pp. 77-101.

[10] M. L1, J. TroMP, P. VITANYI How to share concurrent wait-free variables Journal of

the ACM, July 1996, pp. 723-746.

[11] STUART FAULK, DAvVID PARNAS On Synchronization in Hard-Real-Time Systems,

Communication of ACM, Vol. 31, Mar. 1988, pp. 274-287.

[12] A. SILBERSCHATZ, PETER B. GALVIN, Operating System Concepts, Addison Wesley,

1994.

Chapter 6

Efficient Wait-Free Queue Algorithms for
Real-Time Synchronization

This paper is in submission. It is also available as the Technical Report 2002-05 of
Department of Computing Science, Chalmers University of Technology.

110

Wait-free Queues for Real-time Systems 111

Efficient Wait-Free Queue Algorithms for
Real-Time Synchronization *

Philippas Tsigas and Yi Zhang

Department of Computing Science,
Chalmers University of Technology,
SE-412 60, Gothenburg, Sweden

Abstract

The Real-Time Specification for Java provides protected, non-blocking, shared ac-
cess to objects used by both regular Java threads (java.lang.Threads) and the
time-critical NoHeapRealtimeThreads. Such access is offered via a set of wait-free
queue classes. These classes are provided explicitly to enable communication be-
tween the real-time NoHeapRealtimeThreads and the regular Java threads; they
have a unidirectional nature with one side of the queue for the real-time threads
and the other one for the non-real-time ones. This set of wait-free queue classes is of
big importance not only to real-time Java but also to any real-time synchronization
system.

Efficient algorithmic implementations of these queue classes are presented in this
paper. The algorithms are designed to exploit the unidirectional nature of these
queues and they are more efficient, with respect to space complexity, compared to
previous wait-free implementations, without losing in time complexity. The space
complexity of our algorithms is O(M + N) where N is the maximum number of
concurrent tasks that the Queue supports and M is the size of the Queue. The
space complexity of the previous best solution is O(N * M). The time complexity
of our algorithm and the previous best one is O(N) for each task. Experiments
we’ve performed suggest that our algorithms are typically 9% — 36% faster than the
previous best one.

* This work is partially funded by the national Swedish Real-Time Systems research ini-
tiative ARTES (www.artes.uu.se), supported by the Swedish Foundation for Strategic Re-
search.

112

1 Introduction

In this work, we present algorithmic implementations of the wait-free queue classes
of the Real-time Specification for Java. These implementations are designed to have
the unidirectional nature of these queues in mind and they are more efficient, with
respect to space, compared to previous wait-free implementations, without losing in
time complexity. The wait-free queue classes proposed in the Real-time Specification
for Java are of general interest to any real-time synchronization system where hard
real-time tasks have to synchronize with soft or even non real-time tasks.

Java was originally designed by Sun to facilitate the development of embedded system
software [8], it was designed more to simplify programming than to enable program-
mers to write software that complies reliably with real-time constraints. In order to
facilitate its major goal of operating system and hardware independence, in areas
such as thread behavior, synchronization, interrupts, memory management, and in-
put/output Java’s expressiveness was designed to be weak. However, these are among
the critical areas needing explicit management for meeting application timeliness re-
quirements. On the other hand because the simplicity, the object orientation appeal
and most significantly the Java platform’s independence offer, there are greater cost-
savings potential in the real-time domain than in the desktop and server domains:
real-time computing systems use many different processor types and operating sys-
tems. The matching between Java and real-time software development led to the
formation of the Real-Time for Java Experts Group (RTJEG) that began developing
the Real-Time Specification for Java (RT'SJ) in March 1999 under the Java Commu-
nity Process [4]. The goal was to provide a platform that let programmers correctly
reason about the temporal behavior of executing software. In their effort to do so,
they enhanced Java in 7 areas [5]:

(1) thread scheduling and dispatching,
(2) memory management,

(3) synchronization and resource sharing,
(4) asynchronous event handling,

(5) asynchronous transfer of control,

(6) asynchronous thread termination,

(7) physical memory access.

In the area of synchronization and resource allocation the RTSJ introduces a set
of new synchronization mechanisms, a set of wait-free queue classes. This wait-
free queue classes became obligatory for the support of protected, concurrent ac-
cess of data by both regular threads (java.lang.Threads) and the time-critical
NoHeapRealtimeThreads' that were introduced by the RTSJ to have an implicit

1 We are going to use the NHRT term to denote the NoHeapRealtimeThread for the rest of

Wait-free Queues for Real-time Systems 113

execution eligibility logically higher than the garbage collector. NHRTs can not access
(allocate or even reference) any objects in the heap, which means that they should
be able to run while the garbage collector is running. NHRTs are introduced for code
with a very low tolerance of non-scheduled delays. The RTSJ does not mandate al-
gorithms or specific time constants for such, but requires that the semantics of the
implementation are met.

1.1 Wait-Free Synchronization

In the area of synchronization and resource allocation applications often need to share
serializable resources. Java also provides the ability to introduce concurrency mech-
anisms into applications. Traditionally, concurrency mechanisms for synchronization
and resource allocation use mutual exclusion to protect the consistency of the shared
data by allowing only one process at a time to access the method/class. If one de-
clares a method to be synchronized, Java will prevent more than one thread from
executing that method at any time. The keyword synchronized is the only mecha-
nism required by the specification that can enforce mutual exclusion in the traditional
sense in RTSJ as in Java. Mutual exclusion i) causes large performance degradation;
ii) leads to a complex scheduling analysis since tasks can be delayed, because they
were either preempted by other more urgent tasks, or because they are blocked before
a critical section by another process that can in turn be preempted by another more
urgent task and so on (This is also known as the convoy effect); iii) and most signifi-
cantly for the real-time systems it leads to priority inversion in which a high priority
task can be blocked for an unbounded time by a lower priority task [16]. Several syn-
chronization protocols have been introduced to solve the priority inversion problem
for uniprocessor [16] and multiprocessor [14] systems. The solution presented in [16]
solves the problem for the uniprocessor case with the cost of limiting the schedula-
bility of task sets and also making the scheduling analysis of real-time systems hard.
The situation is even worse in a multiprocessor real-time system, where a task may
be blocked by another task running on a different processor [14]. For the RTSJ, it was
decided that the least intrusive specification for allowing real-time safe synchroniza-
tion is to require that implementations of the Java keyword synchronized includes
one or more algorithms that prevent priority inversion among real-time Java threads
that share the serialized resource. But still the use of the synchronized keyword
implementing the required priority inversion algorithm was not sufficient to both pre-
vent priority inversion and allow the special NHRTs, that were introduced in the RT'SJ
to give the means to time-critical tasks to get an execution eligibility logically higher
than the garbage collector, to do so [4]. The RTJEG realized that a non-blocking,
protected access to objects shared between NHRT and regular Java threads is the only

the paper.

114

solution to the problem. The decision of the RTJEG to provide wait-free queues to
enable communication between the regular Java threads and the real-time NHRT fol-
lows research in recent years, in which several researchers have investigated the use
of wait-free shared-object algorithms as an alternative to lock-based mechanisms in
object-based real-time systems [1, 2, 3, 7, 15, 17]. Moreover, research in real-time op-
erating systems [6, 9, 11, 19] has also shown how to incorporate wait-free techniques
in real-time kernels.

Wait-free implementation of shared data objects is an alternative approach for the
problem of inter-task communication and synchronization. Wait-free mechanisms al-
low multiple tasks to access a shared object at the same time, but without enforcing
mutual exclusion to accomplish this. A wait-free implementation of a shared data ob-
ject guarantees that every process accessing the object always completes its operation
in a bounded number of its own steps, regardless of interleaving (process halts, fail-
ures, scheduler behavior). Wait-free inter-task communication does not allow one task
to block another task and thus gives significant advantages over lock-based schemes
because:

(1) it does not give priority inversion and avoids lock convoys that make scheduling
analysis hard and delays longer.

(2) it provides high fault tolerance (processor failures will never corrupt shared data
objects) and eliminates deadlock scenarios from two or more tasks both waiting
for locks held by the other.

(3) more significantly, it completely eliminates the interference between process
schedule and synchronization; thus, giving a more compositional framework to
argue about the ‘task’ behavior under the effect of the scheduler and the syn-
chronization mechanism. This gives the ability to a task to keep its execution
eligibility during communication and synchronization, and this was the feature
that was incumbent in the RTSJ.

All the above mentioned advantages come from the fact that wait-free solutions are
not penalized from the negative effects of blocking.

1.2 Related Work and Our Contribution

Concurrent FIFO queue data structures are fundamental data structures used in many
programs and algorithms and, as can be expected, many researchers have proposed
implementations for them. Although there are many non-blocking implementations
(see [18] for references), only few of them are wait-free. In a non-blocking algorithm,
some operations are allowed to perform unbounded number of steps when they are
concurrent with other operations; this, of course, is not allowed in a wait-free algo-
rithm. All previously mentioned constructions (wait-free or not) were targeted to-

Wait-free Queues for Real-time Systems 115

wards asynchronous systems; such constructions require hardware support for strong
synchronization primitives such as Compare-and-Swap etc. These primitives are not
available in the Real-Time Specification for Java. As a matter of fact in the RTSJ
only read and write memory operations are supported. The reason is the hardware-
independence property that the RTSJ wants to preserve.

Recent research at the University of North Carolina has shown that wait-free algo-
rithms can be simplified considerably in real-time systems by exploiting the way that
processes are scheduled for execution in such systems [1, 15]. In particular, if processes
are scheduled by priority, then object calls by high-priority processes automatically
appear to be atomic to lower-priority processes executing on the same processor.
Consequently they show an implementation of the Compare-and-Swap from reads
and writes in a priority-based uniprocessor system [15]. In a consequent paper [2], a
wait-free implementation of a linked-list from compare-and-swap for priority-based
systems is presented. These results combined can offer an efficient implementation,
with respect to time complexity, that satisfies the specifications of the wait-free queue
classes in RTSJ. The space complexity of this implementation is O(N % M) where N
and M is the maximum number of concurrent tasks that the queue supports and the
size of the queue respectively; the time complexity of this implementation is O(N)
for each task.

In this paper implementations of RTSJ queue classes with O(M+ N) space complexity
and O(N) time complexity are presented. Experiments we’ve performed suggest that
our algorithms are typically 9% —36% faster than the previous best one. The wait-free
queue classes that are provided by RTSJ have been designed to enable communication
between the real-time NoHeapRealtimeThreads and the regular Java threads; they
have a unidirectional nature with one side of the queue (read or write) for the real-
time threads and the other one (write or read, respectively) for the non-real-time ones.
The implementations presented in this paper are designed having the unidirectional
nature of these queues in mind in order to gain efficiency; to the best of our knowledge
our implementations are the first unidirectional wait-free queue implementations in
the literature.

The remainder of the paper is organized as follows. In Section 2 we give a brief
introduction to the basic design features of the RTSJ and Section 3 presents our
algorithms. In Section 4 we summarize our experimental results. We conclude in
Section 5.

116

2 Synchronization and Resource Sharing in RTSJ

In this section, a short description of the basic design features of RTSJ, that we had
to take into account in our implementation, are presented.

The RTSJ is designed for multithreading priority-based uniprocessor systems. The
application program must see the minimum 28 priorities as unique; for example, it
must know that a thread with a lower priority will never execute if a thread with
a higher priority is ready. If threads with the same exact priority are eligible to
run, they will execute in FIFO order. The RTSJ provides wait-free queue classes
to provide protected, non-blocking, shared access to objects accessed by both regular
Java threads and NHRT. These classes are provided explicitly to enable communication
between the real-time execution of NHRT and regular Java threads. Basically, there
exist two different new queue classes in RTSJ: the WaitFreeWriteQueue class and
the WaitFreeReadQueue class.

Concurrent Concurrent Concurrent Concurrent
Non-Realtime No-Heap Realtin Non-Realtime No-Heap Realtin
Threads Threads Threads Threads
———— ———— ———— ————
— Engueue Dequeue — — Dequeue Enqueue —
———— ———— ———— ————
—— —— —— ——
———— ——— ———— ————
Mutual Exclusion Wait-free Access Mutual Exclusion Wait-free Access

Figure 1: The WaitFreeReadqueue class Figure 2: The WaitFreeWriteQueue class

Both these queue classes are unidirectional. The information flow for the
WaitFreeWriteQueue is from the real-time side to the non-real-time one, as shown in
Figure 1. The information flow for the WaitFreeReadQueue is from the non-real-time
side to the real-time one, as shown in Figure 2. When a NHRT wants to send data to a
regular Java thread, it uses the write (real-time) operation of WaitFreeWriteQueue
class. Regular threads use the read (non-real-time) operation of the same class to
read information. The write side is non-blocking and wait-free, so that NHRT will not
experience delays from the garbage collection. The read operation, on the other hand,
is blocking. Since the write is wait-free and the arrival dynamics are incompatible,
data can be lost. To avoid delays of allocating memory elements, class constructors
statically allocate all memory used for queue elements, giving the queue a finite limit.
The WaitFreeReadQueue class, which is unidirectional from non-real-time to real-
time, works in the converse manner.

The third queue class that is described in the RTSJ is the WaitFreeDeQueue class and
is implemented by putting back-to-back a WaitFreeWriteQueue and a
WaitFreeReadQueue. The formal specification for the WaitFreeWriteQueue,
WaitFreeReadQueue and WaitFreeDeQueue classes, can be found in [5].

Wait-free Queues for Real-time Systems 117

3 The Algorithms

Algorithmically the implementations of the two wait-free queue classes
(WaitFreeWriteQueue and WaitFreeReadQueue) are quite similar. In this paper, we
present the implementation of the WaitFreeWriteQueue class to illustrate the ideas
behind the constructions.

public class SeqQueue {
2 RTQueueCell head, tail;
RTQueueCell dumbcell;
4+ void SeqQueue () {
head = dumbcell;

6 tail = dumbcell;
dumbcell.data = null;
8 dumbcell .next = null;
}

10 public java.lang.Object read () {
RTQueueCell temp;

12 temp = (RTQueueCell)head.next;
if (temp != null)
14 head = temp;
return temp;
16 F
public boolean write(java.lang.Object object) {
18 RTQueueCell temp;
temp = new RTQueueCell ();
20 temp.data = object;
temp.next = null;
22 //tail and tail,next will be shared
//read/write in concurrent implementation
24 tail.next = temp;
tail = temp;
26 return TRUE;
}
28}

Figure 3: The Sequential implementation of the queue

3.1 Informal Description

To simplify the presentation of our algorithm, we start with a simple sequential queue
implementation. We will then discuss how to extend this sequential algorithm to a
concurrent queue implementation with the specifications that we are looking for. The
Java-pseudo-code for this sequential queue is shown in Figure 3.

As it can be seen in Figure 3 we implemented algorithmically the queue using a singly

118

linked list. For efficiency reasons, we choose the front of the queue, where we only
delete nodes, to be the head of the list, and the rear of the queue, where we only insert,
to be the tail of the list. In this way we only use the operations of the linked list that
modify the head and the tail of the list. In order to minimize the interference between
the write (enqueue) and read (dequeue)? operations, we introduce a dumbcell
in the empty list. In this way, when executing a dequeue operation, only the head
needs to be checked in order to see whether the queue is empty or not. If the next
field of the head is null, the queue is empty. Therefore, the dequeue operation needs
only to check the head variable and only the tail needs to be checked for the enqueue
operation. For the initialization for the simple sequential queue we define a dumbcell,
with null in its next field, and let the head and the tail of the queue point to it,
statements 5 to 8 in Figure 3.

Figure 4 shows the structure of the cells of the linked list that we are using. The class
RTQueueCell has two public members: one is for the data entry, the other is the next
pointer that singly links the elements of the list.

To extend the sequential version to a concurrent wait-free queue implementation,
first we will use a simple announce-and-help scheme for the enqueue operations. The
announce-and-help scheme uses the priority-based scheduler to achieve wait-freedom.
This scheme is based on the task priorities to guarantee that an operation will finish in
a bounded number of steps regardless of the status of the other operations, as follows:
First, each enqueue-task announces the data (writes a pointer to the memory where
the data are) that it wants to enqueue in a special Announcement array. The enqueue-
task with priority ¢ will use the ith position of the array. After the announcement step,
the enqueue-task reads and helps the data that have been announced in the array one
by one, starting from the lowest priority up to its own priority. During this helping
phase, if an enqueue-task A is not going to be preempted by a higher priority task,
then all current enqueue operations, with lower priority than the priority of A, that
are announced will be helped/enqueued by A. If the enqueue task A is preempted by
a higher priority task B during its helping phase, then there are two cases:

public class RTQueueCell {
public java.lang.0Object data = null;
public java.lang.0Object next null;

Figure 4: Definition of the queue cell

e B is not an enqueue-task on the same queue: then the task A will continue its

2 Throughout the paper, the terms queue write and enqueue are used interchangeably.
The same also holds for the terms queue read and dequeue. To distinguish between the
queue read/write and normal read/write memory operation, we are using typewriter type
style for the queue operations and serif type style for the memory ones.

Wait-free Queues for Real-time Systems 119

program steps after B finishes, from the same queue-state from which it was pre-
empted. Dequeue operations on the same queue are executed by tasks that have
lower priority and therefore they can not preempt enqueue operations on the same
queue.

e B performs an enqueue operation on the same queue: in this case B is going to
announce its task and help all lower priority tasks that are announced and its own
task that has just been announced. Therefore task A will be helped by B. Because
the priorities are bounded, there always exists a task which will not be preempted
by another enqueue task. Therefore, all tasks that announced their operations will be
helped (either by themselves or by higher priority tasks).

The RTSJ has been designed for uniprocessor systems. The RTSJ as well as Java
support only plain memory synchronization primitives like atomic reads and writes
to memory locations, as opposed to other advanced synchronization primitives like
Compare-and-Swap. The weak vocabulary of Java in memory synchronization comes
again from the fact that different processors support different memory synchronization
primitives and Java was designed to be hardware-independent. Although reads and
writes are very weak synchronization primitives in the context of general asynchronous
systems, by exploiting the fact that the tasks are executed by priority, it has been
shown that they are universal primitives for priority-based uniprocessor systems [15].

During the design phase of any shared data object, a problem that arises from the
use of memory read/write operations is the “enabled late-write” problem [15]. The
“enabled late-write” problem arises when a low priority task A is preempted while it
is about to write to a memory position, and is preempted by other tasks that access
and modify the same memory position. When task A resumes running, it overwrites
the previous “fresh” value with an “old” one. Anderson et al. [15] proposed a majority
voting scheme to overcome the problem. Their scheme requires 2N — 1 memory words
to solve “the enabled late-write” problem for 1 word.

In this paper we propose a new more efficient scheme to face the “enabled late-write”.
The new scheme tries to avoid the problem from the beginning by:

(1) Making sure that, when a task A is preempted before writing to position p, all
other tasks that write on to p, (while A is preempted) write the same value that
A wanted to write. In order to establish this, we guide the tasks to go through
the same computational steps as A when they have to decide about the value
that they want to write on the same memory location.

(2) When the above is possible, we organize the shared variables that might suffer
from the “enabled late-write” problem as arrays that carry information that can
be used algorithmically to determine the correct/new value of the variable.

We believe that, the same idea can be used when algorithmically designing other

120

shared objects for the RT'SJ.

public class WaitFreeWriteQueue

{

private MemoryArea MemPool;

private java.lang.Object[] Announcement;
private RTQueueCell[] tail;

private RTQueueCell head;

// get the minPriority from the scheduler
private int minPriority;

// get the mazPriority from the scheduler
private int maxPriority;

}

Figure 5: Shared private variables for WaitFreeWriteQueue
RTQueueCell dumbcell = new RTQueueCell ();
Announcement = new
java.lang.0Object [maxPriority + 1];

tail = new RTQueueCell [maxPriority + 1];

for (i=minPriority;i<=maxPriority;i++) {

Announcement [i] = null;
tail[i] = null;

}

tail [minPriority] = dumbcell;

head = dumbcell;
dumbcell .data = null;
dumbcell .next = null;

Figure 6: Initialization for WaitFreeWriteQueue

The wait-free part in this class is the part that implements the enqueue operations.
The wait-free write operations share also the private variable Mem Pool that hold ref-
erences to a MemoryArea® . The shared private variables for our WaitFreelWiriteQueue
are as shown in Figure 5. All RTQueueCells should be allocated from the MemoryArea.
The Announcement array is used to hold the different enqueue operations. The tail
and Announcement arrays are of equal length, equal to the real-time priority level
supported by the scheduler. For the head of the queue we use the simple variable head.
The minPriority and maxPriority are the minimum and maximum priorities that
real-time threads can be assigned, respectively. This information can be obtained from
the scheduler. All shared variables will be initialized when constructing the queue.

3 The RTSJ introduces the memory area concept, which is a region of memory outside the
garbage-collected heap that you can use to allocate objects. The RTSJ uses the abstract
class MemoryArea for this.

Wait-free Queues for Real-time Systems 121

The initialization is similar to that of the sequential version. Because we now use an
array to represent the tail, we need to initialize this array in a way that makes it easy
for the algorithm to find the correct tail (the dumbcell), when a task accesses the
queue for the first time. When a task accesses the tail array, it checks from the the
cell of the lowest priority task to the highest to find a non-null cell. Henceforth, we
initialize the cell corresponding to the lowest priority point to the dumbcell. During
the initialization part, we also need to initialize the Announcement array with the
value null, that means that there are no announced operations. The pseudo-code for
the initialization is described in Figure 6. The initialization of the local variables is
part of the pseudo-code description of the algorithm described in Figure 7.

Now, in order to extend the sequential version that we presented at the beginning
of this section to the concurrent one that we are aiming for, we first need to make
sure that the shared read/write operations to the tail and the tail.next variables
(the shared variables of our implementation where overwriting might take place) do
not suffer from the “enabled late-write” problem. The wait-free enqueue operation is
presented in the write function below. The announce-and-help scheme, that is used
in our implementation, uses the priority-based scheduler to achieve wait-freedom.
Each priority is mapped to the respective entry of the array Announcement. An
enqueue operation first gets the priority of its thread, then it allocates a free cell
from the memory area assigned to the queue. The memory area is where the queue
and its internal elements are allocated. After writing the data in the free cell, the task
announces this cell in the Announcement array at the index that is associated to its
priority. This constitutes the last part of the announcement phase. This is, as we will
see, the “linearizability point” of the enqueue operation at the linearizability history.
After it announces the object that it wants to enqueue in the Announcement, a task
will enter the helping phase that was described at the beginning of this subsection.
The helping phase is described in relation to the implementation pseudo-code in
Figure 7. During the helping phase, an enqueue operation with priority ¢ helps the
tasks with priority 7 < 4 that have been announced in the array Announcement,
one at a time, starting from the operation with the smallest priority that it can find
(statement 17 in the implementation). For each such operation, it finds the tail of the
queue (statements 22-32 on the protocol); then puts the data announced at the end
of the tail of the queue; then changes the tail variable to point to the new position;
and finally cleans the Announcement]j].

The wait-free queue class we designed are used to provide communication between
NHRTs and regular Java threads. To untangle the effect of garbage collection, stat-
ical memory management is needed for nodes of the queue class. Statical memory
management is not the subject of this paper; but, a simple scheme is presented here,
in the Appendix A, to show the feasibility of such a scheme. Other better and more
efficient schemes are possible. In the Appendix B, we describe implementations of the
other methods supported by the WaitFreeWriteQueue class.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

122

public boolean write(java.lang.Object object) {
boolean find = false; int i,j, mypriority;
RTQueueCell tempcell, temptail=null;
java.lang.0Object tempAnnounce;
java.lang.Thread currentone;
//Find your priority
currentone = java.lang.Thread.currentThread();
mypriority currentone.getPriority ();
//Allocate a cell in the MemoryArea
try {
tempcell = MemPool.newInstance (RTQueueCell);
tempcell.data = object; tempcell.next = null;
} catch(OutofMemoryError x) { return false; }
//Announce one’s operation
Announcement [mypriority]=tempcell;
//Enter helping phase and help lower priorities and oneself
for(i=minPriority;i<=mypriority;i++) {
tempAnnounce=Announcement [i];
if (tempAnnounce == null) continue;
//Try to find the actual tail
find = false;
for(j=minPriority;j<=maxPriority;j++) {
if (taill[jl!=null)

if (taill[j].next == null) {
find = true;
break;

}

}
//Continue in Figure 8

Figure 7: Wait-free enqueue operation for the WaitFreeWriteQueue

Figure 9 shows the lock-based read operation of the WaitFreeWriteQueue class. It’s
a straight forward implementation that uses mutual exclusion to serialize concurrent
dequeue operations.

3.2 Correctness Proof

In the helping phase two sets of variables are used, the tail array (tasks help to enqueue
data at the tail of the queue) and the Announcement array; all of them are shared
variables and can be read and written by different tasks. In the implementation, the
value of a variable Announcement|i] changes from null to a non-null value, when a
task with priority ¢ announces its enqueue operation. The value of the same variable
changes back to null when the item that the enqueue operation wanted to enqueue
was enqueued by the same operation or by another higher priority enqueue operation.
If there are e enabled writes that are ready to write to Announcement][i] then at least

Wait-free Queues for Real-time Systems 123

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

if (find)

//No preemption detected, the actual tail has been found.
temptail = taillj];

else

//Preemption detected! There are 2 possibilities
if (Announcement [i]!=null) {
//Preempted, helped but not completely. Help the task with
//priority ¢ to update tail and Announcement array
tail[i]=(RTQueueCell) tempAnnounce;
Announcement[i] = null;
continue;
}
else
//Preempted and helped by a higher priority task that helped
//the task that you were helping and you. Return!
return true;

//Did you preempt a lower priority task when it was on
//statements 60 and 61 ?
if (temptail==tempAnnounce)

{

//Help it to update the Announcement
Announcement [i] = null;
continue;

}

//Preempted by higher priority task that helped you completely?
if (Announcement [i]==null)
return true;
//Enqueue the announcement
temptail .next=tempAnnounce;
tail [i]=(RTQueueCell) tempAnnounce;
Announcement [i] = null;
}
return true;

}
Figure 8: Wait-free enqueue operation for the WaitFreeWriteQueue (continue)

e — 1 of them are helping operations and have priority higher than ¢ and want to
change the value of the Announcementli] from non-null to null. The one “enabled
late-write”, that might exist, is the write with priority ¢ that wants to announce a new
enqueue operation. This write will not be scheduled before the other pending writes,
with higher priority, take place, and thus, its write will not be overwritten by them.
The above proves the following lemma:

Lemma 1 Vi, minPriority < i < maxPriority, Announcementli] will not suffer
from the “enabled late-write” problem.

Lemma 2 When a task A is preempted just before it writes to the tail array, a higher

124

1public synchronized java.lang.Object read() {
2RTQueueCell tempcell;

3tempcell = head.next;

4if (tempcell != null)

shead = (RTQueueCell) tempcell;

csreturn tempcell;

7}
Figure 9: Lock-based dequeue operation for WaitFreeWriteQueue

priority task will write the same content to the same position in the tail array.

Proof: The decision of what to write on the tail is based on the contents of the
Announcement and tail arrays. If a higher priority task preempted task A just before
A was to write the tail array, then, since, nothing changed on the Announcement
and tail of the object from the time that A read them, the higher priority task, that
preempted A, will compute the same value to write to the tail array. 0

If we would have used a simple tail variable for the queue, as it is used in the sequential
implementation of the queue, the “enabled late-write” problem could have happened
in the tail variable. To solve that problem, we organize the tail of the queue as an
array. Each location in the array corresponds to the respective priority. All tasks with
the same priority will be executed in a FIFO order and use the same location in the
array. Each enqueued item from a task with priority ¢ will become the tail of the
queue once, and the ith index of the tail will point to it. In our construction, all tasks
that try to help a task with priority ¢ that has been announced, are going to write to
the tail array at the index that corresponds to priority ¢. For example, when a task
A is helping with task C, it is preempted by another high priority task B and has an
enabled write on the tailarray. Then the new task B will help the same task C' also
and will go through the same computational steps and will update the same entry of
the tail array with the same value as the preempted enabled write of task A. This
is guaranteed from Lemma 2. In this way, the “enabled late-write” problem can not
take place in any tail[i] variable. This sketches a proof of the following lemma.

Lemma 3 Vi, minPriority < i < maxPriority, tailli] will not suffer from the “en-
abled late-write” problem.

Now, we need to give a way for the tasks to read the tail array and compute the
real tail of the queue. Each item in the tail array has been the real tail of the queue
at some point in time but only one of them is the current tail of the queue. In our
implementation, there is at most one tail entry that has the value null on its next
field. As we are designing a concurrent queue, an enqueue operation can be preempted
anywhere; a task A can be preempted between statement 59 and 60 by a task B. The
tatl array then will have no element with the value null on its next field. The actual
tail in this case should point to the object enqueued by a task C', which is being helped

Wait-free Queues for Real-time Systems 125

by task A (A executes statement 59 and 60 i only when it is helping another task).
During the helping phase of its enqueue operation, task B need to find the tail of the
queue and uses the local variable temptail to store it. In the pseudo-code, when task
B executes statements 22-28, it goes through the tail array from the lowest priority
to the highest priority and tries to find the one index in the array with null in the
‘next’ field, if there is one. If there is no overlapping with enqueue operations, task
B will find the index with null in the next field. It will store the value in temptail
(statement 32).

Lemma 4 temptail.next will not suffer from the “enabled late-write” problem.

Proof: When a task A with priority j helps a task with priority ¢ that has been
announced, where ¢ < j, all items in the announcement array from minPriority
to i — 1 should have the value null because task A starts its helping phase from
minPriority, and, tasks with priority less than j can not preempt task A and make
changes in the announcement array. Before task A updates the next field of the tail
of the queue (statement 59), nothing changes in the tail array and the announcement
array. If a task B with priority k, where k > j, preempted task A, task B will add
its own announcement in position k£ and nothing between minPriority to j in the
announcement array will change. Therefore task B will help the announcement of the
task with priority ¢ and will find the same tail and make the same decision with task
A and finally put the same value as A on temptail . next.]

If task B overlapped with other enqueue tasks, then task B might not find an index
on the array with null in the next field. If this happens, task B has already enough
information to find the actual tail of the queue and help the preempted task to update
the tail of the queue. To see this, let us look at the possible ways that the above could
have happened; there are two cases:

e Task B preempts the lower priority task A, when A was between statements 59
and 60; e.g. A had just finished enqueueing the data before updating the tail of the
queue. The actual tail of the queue at this point is the task which is being helped by
both task A and task B. Task B will help task C' to update the tail when B runs
statements 38-39.

e Task B is preempted by a higher priority task D and D updates the tail array
in such a way that task B misses the actual tail of the queue when B is scheduled
back. In this case, D will help all lower priority tasks. So, task B just needs to stop
its helping phase and return. B will detect that it has been helped and return in
statement 45.

The above sketches a proof that items are going to be put on the singly link-list one
after the other.

126

Since different tasks are going to try to help the same task, we need to show that
an item is not going to be enqueued more than one time. That is the reason that
statement 49 is used from task B to detect that it has preempted a task A when A
was between statements 60 and 61 of its pseudo-code. When the preemption happens,
the announcement has been added to the queue as a tail but not been cleaned, which
has been read by task B in temptail. If such a preemption is detected, the task B will
help task A to clean the announcement array, when task B executes statement 52. As
both of them want to write null at the same position, no “enabled late-write” problem
exist. Statement 56-57 is used from task B to detect that it had been preempted by a
higher priority tasks D and to conclude that task D has helped the task that B was
helping when preempted.

The following lemma also proves that it is necessary and sufficient for a task to help
other tasks with priority up to its own priority.

Lemma 5 When a task A with priority i announces an enqueue data in the Announcement
array, all elements of the array from i + 1 to maxPriority have the value null.

Proof: Assume towards a contradiction that Announcement[j] is not null, where j >
7. Then there must exist a task B with priority j that announced its enqueue object
in Announcement array and the announcement by task B hasn’t been “cleaned”.
Announcement|[j] is cleaned as the last step of the enqueue operation. The task A
must preempt task B to announce its enqueue object in Announcement, in order to
preempt task B, ¢ > j must hold. This is a contradiction,

As the contents of the Announcement array from index i+1 to index max Priority are
null when task A announce its operation, there is no need to help them. It is sufficient
to help tasks with priority up to i. As task A can preempt any lower priority task
after it has announced, it is necessary to help them. 0

The access of the queue is modeled by a history h. A history h is a finite (or not)
sequence of operation invocation and response events. Any response event is preceded
by the corresponding invocation event. For our case there are two different operations
that can be invoked, a write operation or a read operation. An operation is called
complete if there is a response event in the same history h; otherwise, it is said to be
pending. A history is called complete if all its operations are complete. In a global
time model each operation ¢ “occupies” a time interval [s,, f,] on a linear time axis
(sq < fq); we can think of s, and f, as the starting and finishing time instants
of ¢. During this time interval the operation is said to be pending. There exists a
precedence relation on operations in a history denoted by <, which is a strict partial
order: ¢; <j ¢» means that ¢; ends before ¢ starts; Operations incomparable under
<y, are called overlapping. A complete history h is linearizable if the partial order <,
on its operations can be extended to a total order —y, that respects the specification

Wait-free Queues for Real-time Systems 127

of the object [10].

In the remains of this section, we prove that our implementation is a concurrent
linearizable queue implementation. In order to do so, we will show that any possible
history (<), produced by our implementation, can be extended to a total order (—y,)
by using a “linearization point” for each operation. The “linearization point” of an
operation is an atomic point on its execution, during which the operation takes effect.

Lemma 6 The write to the announcement array is the “linearization point” for the
write operations.

Proof: By Lemma 5, when a task A with priority ¢ executes statement 15, all items of
the announcement array from i + 1 to max Priority have the value null. Task A will
help all operations announced in Announcement from the lowest to its own priority.
Enqueue operations with lower priority than ¢ that have been announced by executing
statement 15, will be enqueued before A’s announcement on the anouncement array.
If the current task A is preempted by a higher priority task after executing statement
15, the announcement will be enqueued before the announcement of the task with
higher priority. So, the execution order of statement 15 in the write operation extends
the precedence partial order to a total order that respects the FIFO specifications of
the WaitFreeWriteQueue class. 0

Lemma 7 The read of the next field of the head of the queue is the “linearization
point” for the reads of the queue.

Proof: Since, mutual exclusion is used between read operations on the queue, the
order in which they get access to the critical section totally orders them. But as the
read operations of the queue have lower priority than all the write operations of the
queue, they can be preempted and run concurrently with write operations. As all high
priority tasks will appear atomic to a low priority task, a write operation will only be
observed if it starts executing before statement 3 of the read operation. By selecting
then the execution of the statement 3 of a read operation as its “linearizability point”,
all operations are totally ordered with a relation that extends the precedence relation
and respects the specification of the WaitFreeWriteQueue class.]

The lemma below proves that our queue implementation is a FIFO one and that no
enqueued element gets lost. For simplicity we introduce write(empty) operations in
the history when the queue is empty.

Lemma 8 In a complete history such that write(z) —p, write(y), then read(z) —,
read(y).

128

Proof: From the assumption, we have that write(x) —y, write(y) which means z is
announced before y. If there is no overlapping, x will be put in the list before y as in
the sequential version. If overlapping exists, by lemma 5, the task A who announces y
has higher priority than the task who announces x. As task A will help from the task
with lowest priority to itself, it will put x in the list before y. As read uses mutual
exclusion, only one read operation processes the list from the head to the tail. So
read operations will find x first. 0

The lemma below proves that dequeue operations dequeue items that have really been
enqueued.

Lemma 9 In a complete history, if v is read, then it has been writed, and write(x) —,
read(z)

Proof: The linearizability point of the read(z) is the point where the read operation
reads the next field of the head. Because a write operation announces its operation
and the announcement takes place before the helping phase, and in the helping phase
the announcement will be put in the next field of a tail[i]. If x is read, then some
task must write in the field during its helping phase. Helping an announcement can
only happen after it has been announced by some task in the announcement array.
So, the = read by a task must have been written before the read operation. 0

The above lemmas give us the following theorem.

Theorem 1 Our algorithm for the WaitFreeWriteQueue s a linearizable FIFO con-
current queue without the “enabled late-write” problem.

4 Experimental Results

To evaluate the performance of our algorithm, we compare it with the best previ-
ously known solution that was proposed in [2]. We performed our experiments on
a real-time environment simulator based on the Real-Time Threads (RTT) Package
[12]. The RTT provides priority-based preemptive scheduling for real-time threads
that is similar to the real-time java virtual machine specification. To the best of our
knowledge there is no implementation of a real-time java virtual machine available
yet.

We performed experiments with 1, 2, 4, 8 and 16 concurrent enqueue tasks. The
parameters of the task sets were selected so that the tasks are schedulable and are

Wait-free Queues for Real-time Systems 129

based on the following formulas:
T,=(n—1) T, i=0,...,(n—1)

m—i)xC, i=1,...,(n—1)
(18— (n—1)),i=0

Ci=

T and C are the period and computation time of the highest priority task respectively
and % = 20. T; and C; are the period and computation time of the task i respec-
tively. N is the number of concurrent enqueue tasks. The task sets are scheduled with
the rate-monotonic scheduling algorithm. With the task parameters described above,
the processor utilization is U =) % = 90% for all task sets and all task sets are
schedulable under rate-monotonic scheduling [13).

The results of our experiments show that our algorithm does not decrease only dra-
matically the space requirements but is also from 9% to 36% faster than best previ-
ously known. The average response times of the highest, middle and lowest priority
task of each task set are shown in Figure 10.

5 Conclusion

Efficient implementations of the RT'SJ queue classes are presented in this paper. The
wait-free queue classes proposed in the Real-time Specification for Java are of general
interest to any real-time synchronization system where hard real-time tasks have to
synchronize with soft or even non real-time tasks. The implementations presented
here are designed with the unidirectional nature of these queues in mind and they are
more efficient, with respect to space, compared to previous wait-free implementations
without losing in time complexity. The space complexity of our algorithms is O(M +
N) where N is the maximum number of concurrent tasks that the Queue supports
and M is the size of the Queue. The space complexity of the previous best solution
is O(N % M). The time complexity of our algorithm is O(N). Experiments we’ve
performed suggest that our algorithms are typically 9% —36% faster than the previous
best one.

There are several ways that future research in wait-free synchronizations can con-
tribute to real-time Java. A very promising, we believe, is the investigation of practi-
cal wait-free implementations of garbage collection in the RT'SJ model. The garbage
collector is a central component of the Java environment. Wait-free implementation
will improve the programmers ability to correctly reason about the temporal behavior
of their Java programs.

130

Lowest Priority

2500

2000

1500

1000

500

1 2 4 8 16
‘ ~+New Queue = UNC CAS

Middle Priority

1400
1200
1000
800
600
400
200

1 2 4 8 16
|+ New Queue -+ UNC CAS

Highest Priority

1200
1000
800
600
400
200

1 2 4 8 16

‘ ~+New Queue = UNC CAS

Figure 10: Response times of the lowest priority, middle priority and highest priority
task

References

[1] J. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-sharing schemes for real-
time uniprocessors and multiprocessors. In Proceedings of the 18th IEEE Real-Time

Wait-free Queues for Real-time Systems 131

Systems Symposium (RTSS '97), pages 111-122. IEEE, Dec. 1997.

[2] J. Anderson, S. Ramamurthy, and R. Jain. Implementing wait-free objects on priority-
based systems. In Proceedings of the 16th Annual ACM Symposium on Principles of
Distributed Computing (PODC' ’97), pages 229-238. ACM, Aug. 1997.

[3] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free shared
objects. ACM Transactions on Computer Systems, 15(2):134-165, May 1997.

[4] G. Bollella and J. Gosling. The real-time specification for java. IEEE Computer,
33(6):47-54, June 2000.

[5] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull. The
Real-Time Specification for Java. Java Series. Addison-Wesley, June 2000. URL:
www.javaseries.com/rtj.pdf.

[6] G. C. Buttazzo. HARTIK: A real-time kernel for robotics applications. In Proceedings
of the Real-Time Systems Symposium, pages 201-205. IEEE Computer Society Press,
Dec. 1993.

[7] A. Ermedahl, H. Hansson, M. Papatriantafilou, and P. Tsigas. Wait-free snapshots
in real-time systems: Algorithms and their performance. In Proceedings of the fifth
International Conference on Real-Time Computing Systems and Applications (RTCSA
’98), pages 257-266, Dec 1998.

[8] J. Gosling and H. McGilton. The Java Language Environment: A White Paper. SUN
Microsystems, Inc., 1995.

[9] M. Greenwald. Non-Blocking Synchronization and System Design. PhD thesis, Stanford
University, 1999.

[10] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492,
July 1990.

[11] G. Lamastra, G. Lipari, G. C. Buttazzo, A. Casile, and F. Conticelli. Hartik 3.0: A
portable system for developing real-time applications. In Proceedings of the jth IEEFE

International Workshop on Real-Time Computing Systems and Applications (RTCSA),
pages 43-50, October 1997.

[12] S. L. A. Lo, N. C. Hutchinson, and S. T. Chanson. Architectural considerations in the
design of real-time kernels. In Proceedings of the 14th Real-Time Systems Symposium,
December 1-3, 1993, pages 138-147. IEEE, 1993.

[13] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M. Gonza, and L. Harbour. A Practitioners
Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real Time
Systems. Kluwer Academic Publishers, 1993.

[14] R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors.
In 10th International Conference on Distributed Computing Systems, pages 116-123.
IEEE, IEEE Computer Society Press, May—June 1990.

132

[15] S. Ramamurthy, M. Moir, and J. Anderson. Real-time object sharing with minimal
system support. In Proceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’96), pages 233-242. ACM, May 1996.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transactions on Computers, 39(9):1175-1185, Sept.
1990.

[17] P. Tsigas and Y. Zhang. Non-blocking data sharing in multiprocessor real-time systems.
In Proceedings of the Sixth International Conference on Real-Time Computing Systems
and Applications(RTCSA '99), pages 247-254, Dec 1999.

[18] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent fifo queue
for shared memory multiprocessor systems. In Proceedings of the 18th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA '01), pages 134-143. ACM,
July 2001.

[19] K. Zuberi, P. Pillai, and K. G. Shin. EMERALDS: a small-memory real-time
microkernel. In Proceedings of the 17th ACM Symposium on Operating Systems
Principles, pages 277-299, 1999.

Appendix A: Memory Management for Queue Node

A simple statical memory management scheme for the wait-free queue class is provided
in this section. Other statical memory management schemes can be also used for the
queue class presented here.

Each task will be statically associated an array of queue nodes during initialization.
The length of the array depends on the expected length of the enqueue. A flag is
associated to each item in the array; this flag is used to tell whether the node is free
or not. When an enqueue task want to allocate a node, it will go through the array
and return the first free node if such a node exists. The enqueue task will mark the
node as 'not free’. A dequeue task will free the node by setting the flag to be ’free’
after it finish its operation on the node.

No mutual exclusion is required for allocating and freeing a node with the above
scheme. For each array, there is only one enqueue task associated with the array and
the dequeue task which got this node will only write on the flag of this node. At any
time, only one task can write the flag: if the node is free, only the enqueue task will
update the flag to make the node occupied; if the node is not free, only a dequeue task
will update the flag to make the node free. Therefore, the above scheme is wait-free.
As mentioned before, memory management is not the subject of this paper, but we
provide a simple and working statical memory management for our scheme to show
the feasibility of such a scheme. Other better and more efficient schemes are possible.

Wait-free Queues for Real-time Systems 133

Appendix B: Other Methods Supported by the Class

Here we describe how to implement the other methods supported by the WaitFreeWriteQueue
class.

For wait-free queue classes in RTSJ, programmers need to manage nodes themselves.
Functions isFull and size are related to memory management and their implemen-
tation can be varied according to the memory management scheme. We show how
these two functions can be implement under the memory scheme presented in Ap-
pendix A. As each task has its own associated array, isFull will return True when
there is no free node in the associated array; otherwise it will return False. The
size of the wait-free queue is equal to the number of allocated nodes by all tasks.
The force function requires a task to overwrite an old value when the queue is full.
We can implement the force function with the helping of the memory management
scheme. When allocating a node, the last allocated node will be recorded. When all
nodes are occupied, a task can not enqueue a new data. If it calls the force function,
it will enqueue the value into the last allocated node.

The implementations of clear and isEmpty functions are shown in Figure and .1 do
not depend on memory management scheme.

public void clear ()

{

int i;

for (i=minPriority;i<=maxPriority;i++)
{

Announcement [i] = null;

tail[i] = null;

}

tail [minPriority] = DumbNull;
head = DumbNull;

DumbNull .next = null;

}

public boolean isEmpty ()

{

if (head.next == null)

return true;

else

return false;

}

Figure .1: Implementation of clear and isEmpty functions

134

Chapter ;

Lock-free Object-Sharing for Shared
Memory Real-time Multiprocessors

This paper is in submission. It is also available as the Technical Report 2003-03 of
Department of Computing Science, Chalmers University of Technology.

136

Lock-free for Real-time Multiprocessors 137

Lock-free Object-Sharing for Shared Memory
Real-time Multiprocessors *

Philippas Tsigas and Yi Zhang

Department of Computing Science,
Chalmers University of Technology,
SE-412 60, Gothenburg, Sweden

Abstract

Operations on lock-free shared data objects suffer from potential unbounded exe-
cution time particularly in multiprocessor systems. To apply lock-free technology
in real-time systems, the problem of unbounded execution time must be solved. In
this paper, we analyze the causes of unbounded execution time of operations on
lock-free implementations and propose an inter-process coordination protocol that
bounds the execution time of operations on lock-free shared data objects in real-
time shared memory multiprocessors. The protocol that we propose works for the
lock-free implementations in real-time multiprocessor systems the same way that
the multiprocessor priority ceiling protocol (MPCP) works for mutual exclusion in
real-time multiprocessors. With the new protocol, the worst case execution time of
accessing a lock-free shared data object can be bounded. Scheduling analysis for the
proposed protocol is presented and the advantages of applying such a protocol in
real-time multiprocessors is discussed.

1 Introduction

Tasks in real-time multiprocessors are required to provide correct computation under
time critical constrains. To satisfy time constrains, the worst case execution time of
tasks must be bounded and predictable. With a simplified assumption that all tasks
are independent of each other, most real-time scheduling algorithms guarantee that
all tasks meet deadlines using the information of worst case behavior. However, in
reality, not all real-time tasks are independent of each other; some of them need to

* Partially supported by ARTES, a national Swedish strategic research initiative in Real-
Time Systems and TFR the Swedish Research Council for Engineering Sciences.

138

communicate with each other in order to coordinate. In real-time shared memory
multiprocessors, shared objects are the communication channels for tasks. Shared ob-
jects must be protected with synchronization protocols to guarantee the consistency
of the objects. Synchronization protocols for shared objects can introduce unbounded
or unpredictable worst case behavior into real-time systems. The design of synchro-
nization protocols for shared object with predictable behavior in real-time systems
has attracted the attention of many researchers.

In shared memory real-time multiprocessors, there are two ways to protect shared
objects: mutual exclusion and non-blocking synchronization. When mutual exclusion
is used to protect shared data objects in real-time systems without any other effort,
tasks will have unpredictable worst case behavior because of priority inversion. To
minimize the effect of priority inversion, Rajkumar, Sha, and Lehoczky have proposed
the priority inheritance protocol (PIP) and priority ceiling protocol (PCP) [10, 12]
for uniprocessor real-time systems with rate monotonic (RM) scheduling. Chen and
Lin [8] extended the PCP protocol to work together with the earliest deadline first
(EDF) scheduling algorithm. Baker [6] describes a stack-based resource allocation
policy for real-time systems scheduled with RM or EDF. For real-time multiproces-
sor systems, Rajkumar et al. have proposed the distributed priority ceiling protocol
(DPCP) [11] (for message passing systems) and the multiprocessor priority ceiling
protocol (MPCP) [9] (for shared memory systems).

Compared to mutual exclusion, non-blocking synchronization has certain advantages
that make it attractive for use in real-time systems. Non-blocking synchronization
includes lock-free and wait-free synchronization. Objects with lock-free synchroniza-
tion usually are implemented with retry loops [5] and guarantee the progress of the
whole system. However, the retry loops in lock-free shared objects are potentially un-
bounded; unbounded retry loops make individual processes to experience unbounded
execution times. Objects with wait-free synchronization are often implemented with
a helping scheme to bound execution time and ensure for each operation individual
progress. In [3, 5], Anderson, Ramamurthy and Jeffay show how to apply lock-free
synchronization into hard real-time uniprocessor systems. Anderson et al. in [1, 4]
have also shown how to apply wait-free synchronization into real-time uniproces-
sors and multiprocessors. In their approach, when interferences between operations
happen, tasks help each other in certain ways to make sure that every one makes
some progress. Later, they extend their results to work in quantum-based real-time
systems [2].

In this paper, we address the problem of applying lock-free synchronization in real-
time shared memory multiprocessor systems. First, we look into the causes of un-
bounded worst case execution behavior when accessing lock-free shared objects in
such systems. Then, in order to make lock-free synchronization applicable to real-time
shared memory multiprocessors, we propose inter-process an protocol that bounds the

Lock-free for Real-time Multiprocessors 139

worst case execution time of an operation accessing a lock-free shared object in such
systems. The proposed protocol works for lock-free synchronization the same way
that MPCP or DPCP work for mutual exclusion. With the help of such protocols,
the worst case execution time of accessing shared objects is bounded and tasks which
communicate through shared objects can be scheduled as independent tasks. Our re-
sults complement the results in [3, 5] that were proposed for uniprocessor systems.
In [3, 5], the interference between tasks, running on the same processor, accessing
lock-free shared data object was analyzed. Based on this analysis, a way was shown
to bound the number of retries when accessing lock-free shared objects under certain
conditions with RM and EDF scheduling for uniprocessors.

The rest of the paper is organized as follows. In Section 2, we present the problem ad-
dressed in this paper. We describe the real-time shared memory multiprocessor system
model, the lock-free synchronization scheme and we analyze the causes of unbounded
worst case execution time when accessing lock-free shared objects in multiprocessor
systems. In section 3, we present our protocols for applying lock-free synchronization
in real-time multiprocessors. We conclude in section 4.

2 The Problem

Resource sharing is an important problem in both uniprocessor and multiprocessor
real-time systems. Tasks in real-time systems are required to deliver results within a
deadline. To finish their computation, tasks may have to access shared resources. Syn-
chronization mechanisms are used to guarantee the consistency of shared resources.
Furthermore, because of real-time constrains of the system, the access time of a shared
resource must also be bounded.

Non-blocking synchronization is a way to coordinate accessing of shared resources.
It guarantees the consistency of shared data objects without using mutual exclusion.
There are two types of non-blocking synchronization: wait-free and lock-free. Wait-free
synchronization offers bounded accessing time for shared resources under any system
conditions. This feature makes it very attractive to real-time systems. However wait-
free synchronization typically is algorithmically more complex and has larger memory
consumption than the respective lock-free synchronization. The obstacle of applying
lock-free synchronization in real-time systems is that lock-free synchronization has
unbounded resource accessing time in the worst case, it guarantees only progress of
the whole system.

In the following subsection, first we will give a brief description of the system model
and the notation used in this paper. Then we will introduce the general structure of
lock-free synchronization and analyze the cause of the unbounded accessing time of

140

Local Memory ‘ Local Memory ‘

Processor l‘ Processor 2

Processor n

Figure 1: Shared Memory Multiprocessor System Structure

shared resources when using lock-free synchronizations.

2.1 Shared Memory Multiprocessor Real-time System

A generic shared memory multiprocessor system is depicted in Figure 1. Each node
of the system contains a processor together with its local memory. All nodes are
connected to the shared memory via an interconnection network. In shared memory
multiprocessor systems, communication architectures provide implicit and transpar-
ent communication as a result of conventional memory accessing primitives, such as
Read/Write, Test And Set and Compare And Swap. A set of cooperating tasks (pro-
cesses) with timing constraints are running on the system, performing their respective
operations. Each task is sequentially executed on one of the processors, while each
processor can be shared between many tasks (multiprocessing). The cooperating tasks
which possibly run on different processes use shared data objects built in the shared
memory to coordinate and communicate. Every task has a maximum computing time
and has to be completed by a time specified by a deadline.

2.2 Lock-free Synchronization

An implementation of a shared data object is called lock-free if it first supports con-
currency: several processes can perform operations on the shared data object concur-
rently; and moreover if it guarantees that at any point in time some of the non-fault
concurrent processes will complete their operations on the object in a bounded time
regardless of the speed or status of the other processes. This requirement rules out
the use of locks: if a process crashes while holding a lock, all other processes wait-
ing for the lock can make no progress. Operations on lock-free shared objects are
usually implemented as a union of “retry loops”. For detailed description of such
lock-free shared data objects, the readers are referred to [5]. In this article, we use the
term “lock-free” in the same way as it is used in [5]. Lock-free synchronization has
some properties that fit the needs of real-time system: it does not suffer from priority
inversion and is free from deadlock.

Lock-free for Real-time Multiprocessors 141

1void access_object (ptr)

2 {

3 do

a {

5 old = READ(ptr);

6 new = Computing(old);

7 result = CAS(ptr, old, new);
8 Y while(result != SUCCESS);

o}

Figure 2: A general scheme of accessing a lock-free data structure

A general retry loop that is used for accessing a lock-free shared data object is de-
picted in Figure 2. When a process wants to access a lock-free shared data object,
it finds a pointer which points to the interesting part of the shared data object for
this part of the operation. Then it reads out the content of the pointer and performs
computation on the content of the shared data object and generates a new content.
Finally, it uses an atomic primitive, Compare And Swap (CAS) in this example, to
update the pointer with the new value in one atomic step. The atomic primitive
CAS can be replaced by any other universal atomic primitive like the primitive-pair
Load Linked/Store Conditioned or the primitive CAS2 [5]. If only one process ac-
cesses the part of the shared data object, it will succeed to perform the CAS. When
several processes want to modify the same part of the data structure at the same
time, the atomic primitive CAS will guarantee that only one of them will succeed; the
other processes will have to retry the whole loop again and again until they succeed.

Terminology and Notation: In this paper, we assume that all tasks are periodic,
can not migrate between processors and are scheduled with priority on uniprocessors.
The deadline of each task is the end of the corresponding period of the task. Below
we describe the notations used in the rest of this paper.

N is the number of tasks in the system.

P is the number of processors of the system. Processors are indexed from [0, P —1].

T; is the ith task.

P(T;) is the period of the task T;.

s is the worst-case execution time required for one lock-free computing loop iter-

ation (statements 5 to 7), on a lock-free shared object regardless of success of the

operation. For simplicity, we assume it is the same for all objects.

e {(T}, j) is the absolute time that statement j of an operation on a lock-free shared
object by task T; takes effect.

e W,(i) is the worst case execution time outside the lock-free operations for the ith
task.

e OP(j) is the set of all processors except from processor j.

e T'S(j,x) is the set of tasks which are running on processor j and perform operations

on the lock-free shared object x.

142

o R? is the retry-level of task 7; for shared object a. The definition and usage of
retry-level will be described later.

If two tasks, T; and T}, execute the lock-free retry loop when they access the same
object and T; succeeds to update the shared object and 7 fails to update it, we say
that task 7} is interfered by T; or 7T; causes interference on 7;. A task T} can cause
interference on many tasks. Operations on lock-free shared objects are concurrent
operations and an operation can be interfered by other operations at any time and
at any rate. Such interferences can cause any operation on a lock-free shared object
to take arbitrarily long time to finish.

2.3 Causes of Interference

If we consider the relative location of tasks involved, there are two kinds of interfer-
ences that can take place:

Preemption Interference: Preemption interference takes place when a task T; that
is accessing a lock-free shared data object, is preempted by another task 7} that also
causes interference on 7;. An example scenario is shown in Figure 3, T; and T} run
on the same processor: Processor 0.

Processor 0
T READ COMPUTE UPDATE \/_

v UPDATE operation with atomic primitive succeed
X UPDATE operation with atomic primitive fail

Figure 3: Failure of atomic primitive caused by preemption

Overlap Interference: Overlap Interference is the interference that takes place be-
tween two tasks 7; and T; when task 7; and Task 7} run on two different processors.
An example scenario is shown in Figure 4, T; runs on processor 0 and 7 runs on
processor 1.

|
|
T, READ COMPUTE __ UPDATE \/ :

: READ COMPUTE UPDATE READ COMPUTE _ UPDATE \/

v UPDATE operation with atomic primitive succeed
X UPDATE operation with atomic primitive fail

Figure 4: Failure of atomic primitive caused by overlap

In uniprocessor systems, overlap interference does not exist as all tasks are running on
one processor. In such a system, only preemption will cause a task to do a retry loop

Lock-free for Real-time Multiprocessors 143

when accessing a lock-free shared data object. Anderson et al. [3, 5] have analyzed
this case. In their work, they show that since all tasks of a real-time system are
scheduled under a certain scheduling policy, the maximum number of preemptions of
an operation on a lock-free shared object within a time period can be determined with
the knowledge of scheduler. Furthermore, they induce a formula for calculating the
worst case execution time of lock-free computing under different scheduling policies
for real-time uniprocessor systems.

In multiprocessor systems, both preemption and overlapping can cause task inter-
ferences and force a task to execute a retry loop when it accesses a lock-free shared
data object. Furthermore, these two causes of interference cross-effect each other. If
an operation on a lock-free shared object by a task is preempted and interfered, the
operation will be forced to execute a retry loop. Consequently the operation will take
more time and thus the probability to be preempted and overlapped by other tasks
again will increase. The same argument also holds when an operation on a lock-free
shared object by a task is forced to do a retry loop because of overlap interference.
Things are even worse when looking at overlap interferences since they have the po-
tential to happen at any point in time and at any rate in a general multiprocessor
system. Therefore, if we want to use lock-free shared data objects in real-time mul-
tiprocessors, we must bound the number of overlap interferences that can happen to
an operation.

2.4 Observations

In this paper, we focus on analyzing first the overlap interference of lock-free shared
objects in real-time multiprocessors. We assume tasks will not migrate among pro-
CessOors.

The worst case frequency of overlap interferences on different tasks running on the
same processors is the same. When a task accesses a lock-free shared object, the
number of overlap interference in one time unit is determined by the number of the
other tasks which also want to access the same lock-free object and run on different
processors. That is the reason that all tasks on the same processor will have the same
worst case overlap interferences.

Overlapping interference has more impact on scheduling for tasks (scheduled on the
same processor) with small periods than on tasks with long periods. When comput-
ing the worst case execution time of a task, we have to assume that the task we
consider is the one that failed to access the object in every overlap interference. The
extra accessing time of a lock-free object introduced because of overlap interference
is constant for all tasks on the same processor. The smaller the period a task has, the
larger the processor utilization the extra accessing time will introduce. As the worst

144

case frequency of overlap interference for one processor increases, at certain point the
extra processor utilization introduced by overlap interference will make the task no
schedulable.

If using the worst case frequency of overlap interference for scheduling, many extra
processor time need to be reserved. Considering three tasks on three processors. All
tasks have the same release time and access the same lock-free shared objects. In the
worst case, all of them should finish access the lock-free objects in 3s. As every task
has a chance to be the last one accessing the object, we have to reserve 3s for each
tasks. It means we reserve 9s processor time in total for accessing lock-free object.

From the above observations, we concluded that in order, to be able to use lock-free
shared objects in real-time multiprocessors, the overlap interference must respect the
priority nature already existing in real-time systems; and use it to reduce the time
reserved for lock-free accessing. We will address these problem in the next section.

3 Retry-level Based Protocol for Lock-free Com-
puting

In this section, we will first show how to bound the number of overlap interferences
that can happen to an operation. Then we will propose schemes for using lock-free
shared objects in real-time multiprocessors and give a method to calculate the worst
case execution time of operations on lock-free shared objects.

3.1 The protocol

As said in the previous section, preemption interference and overlap interference may
cross-effect each other. To analyze the behavior of overlapping and present our proto-
col that bounds the retry-time caused by overlapping, we will first decouple the two
causes of interference. To simplify the presentation, non-preemptive scheduling is go-
ing to be assumed for the beginning, later we will show how to extend our results for
preemptive scheduling. We assume tasks are periodic and fixed on processors. When
using non-preemptive scheduling, an instance of a task which is running on a proces-
sor will not be stopped unless it relinquishes the processor itself. Therefore, in the
non-preemptive scheduling case the cause of interference for operations on lock-free
shared objects is only overlapping.

When a task 7T; on processor ¢ executes an operation on a lock-free shared object
a, the number of overlap interferences on the task’s operation can be determined by

Lock-free for Real-time Multiprocessors 145

the number of tasks which are running on all other processors of the system and
access the same object. Hence, the number of overlap interferences on a task does not
depend on its priority but rather depends on the number of processors which access
the same object. For a certain period of time, [0,¢], the maximum number of overlap
interferences, OI, on T; is calculated by the following formula:

t

0= 5 % [

k€OP(5) I€TS (k,a)

This estimation can be refined further if information concerning the release time of
tasks and the start time of lock-free operation of each task are considered known. The
estimation above is pessimistic since we have to assume that every overlap interference
will cause a retry loop and not desirable for real-time systems. We propose a retry-
level based protocol to work on top of a lock-free shared object implementation. In
real-time systems, high priorities are given to some tasks to help them finish early.
Every task has a priority when it runs on a processor; we introduce also a retry-
level for every task accessing a lock-free shared object. A task with high priority
experiences small delays; a task with high retry-level will experience less overlap
interference when it accesses a lock-free shared object. Every task can have its own
priority for the scheduling part and at the same time it has its own retry-level on
each lock-free shared object. A requirement of the protocol is that the retry-level for
each task on a lock-free shared object must be unique. Our protocol is designed to
achieve the following goal: tasks with high retry-level will not be forced to do a retry
loop by a task with low retry-level. In this way we will manage to bound the number
of interferences on an operation by the number of tasks with higher retry-level on
different processors.

A generic operation on a lock-free shared object with the retry-level protocol is de-
scribed in figure 5. The operation with the retry-level protocol on a lock-free shared
object is an extension of the original operation. We assume, like in MPCP [9], that
there is a prioritized queue associated with the lock-free shared object. When a task
wants to access a lock-free shared object, it first inserts its own retry-level into the
priority queue, statement 5. Then, it calls a “delay” function that delays the process
from reading for some time, the time that the “delay” function uses is going to be
specified later in this section. Before updating the object, it finds the highest retry-
level in the priority queue, statement 11. If it is its own retry-level, it will continue
the update. Otherwise, it will perform a retry. If the task updates the object success-
fully, it will remove its own retry-level from the priority queue. The execution time
of the delay function, t4eqy, should be larger than or equal to the execution time of
the statements 11, 12 and 13 together. The delay function can be implemented as
several “nop” instructions which give the same execution time. The delay time, t4ejqy,
is determined by the system architecture and is independent of the implementation
of lock-free shared objects.

146

The proposed protocol has the following properties: if there is no overlapping, a task
will access the shared object without any retry; a task with high retry-level will never
be interfered by a task with low retry-level; the task with the lowest retry-level will
suffer the same amount of the interference as it would have suffered without using
our protocol.

18Shared PriorityQueue pgq;
2void access_object(int mrl, ptr) /* mrl: The retry-level of current
s {

4 1int templevel;

5 enqueue(pq, mrl);

6 delay();

7 do

s {

9 old = READ(ptr);

10 new = Computing(old);

11 templevel = read_min(pq);

12 if (templevel == mrl) {

13 result = CAS(ptr, new);
14 remove (pg, templevel);
15 }

16 else

17 result = FAIL

18 Y while(result !'= SUCCESS);

19}

Figure 5: A Generic Lock-free operation with the retry-level protocol

3.2 An Example

Before we analyze in detail the properties of our protocol, we will illustrate the retry-
level protocol with an example. For the priority and the retry-level, we assume that
small numbers mean high priorities or retry-levels. Let us consider a system with 3 pro-
cessors, Py, Pi, P», and six tasks, Ji, ..., Jg, and two global shared objects, SO, SOs.
The tasks need to access the two shared objects in the following sequence:

Jp 1 [..S01...80,)]
Jo 1 [..805...80,]
J3 1 [...805...50; ..
Ji:[..S0;..]

Js 1 [..SO;..]

tasi

Lock-free for Real-time Multiprocessors 147

Js : [...S0;..]

Tasks Priority | Retry-Level for | Retry-Level for | Run on Proces-
SO SOy sor

Ji 1 1 3 Py

I 2 2 2 P

J3 3 3 1 Py

Jy 4 4 N/A P

Js 5 5 N/A Py

Js 6 6 N/A P

\Prdcessor 0~ "~~~ T T T T T T T

| "
L, [[eRIEIRZZ R

\Prdcessor 2~ T T T

| v Vv
L xRl]

v
1

V UPDATE operation with atomic primitive succeed
I:‘ Lock-free access of shared object SO

Lock-free access of shared object SO2
Figure 6: Example of the execution of the retry-level based protocol

The task set and system configure are shown above. “N/A” means a task does not
have a retry-level for a shared object because it does not access it. Let us consider
the following execution shown in Figure 6.

o At t = 0: tasks Jy, Jg, J4 begin to execute on processors Py, P, Py, respectively.
Task Jg begins to access the global shared object SO;.

e Att = 1: task Jy begins to access the global shared object SOq; at that moment task
Jy executes statement 5 then Jg executes statement 11; Jg finds out the intention
of J; and gives up its updating operation and does a retry loop.

e At t =2, task Jy read the priority queue and finds its own retry-level and updates
the object SO; successfully.

e At t = 3: task Jy on P; finishes and task Jj3 is released and begins to access shared
object SO,. Jg on Py reads the priority queue and finds its own retry-level. Before
Jg starts to update object SOy, task J; starts to access the same shared object

148

and inserts its retry-level into the priority queue. J; will be delayed for some time
before it reads the shared object, delay that will allow Jg to update the object SO;
before J; reads it. Jg finishes its operation on SO;.

e At t = 4: task J; updates SO; successfully. J; then starts its operation on SOs.
Task Jg on P; has finished and J is scheduled begins access to SO,. Both J; and
Jo insert their retry-levels into the priority queue for SOs,.

e At t =5: tasks Ji, Jo, J3 want to update shared object SO;. When they check the
priority queue, J3 will go ahead and J; and J, will do a retry loop. After accessing
SO,, J3 continues.

e At t = 6: tasks J; and J, read the priority queue of SOy and they find out that
the highest retry-level is 2 (Jy's retry-level). J; skips its updating operation and J,
updates SO, successfully. Task J3 begins to access SO;.

e At t = T: task J; updates SO, successfully and exits. Task J5 begins to execute
and accesses the shared object SO;. J3 wants to update SO; and reads the priority
queue. Jo also accesses the shared object SO;. When J3 checks the priority queue,
it finds its own retry-level. J; will wait some time before reading the shared object.

e At t = 8: task J; finishes its operation. Tasks J, and J5 both want to update SO,
Jo will go ahead and J5 will perform a retry loop. Js finishes after updating SO;.

e At t =09: task Js updates SO; and then releases the processor.

3.3 Schedulability Analysis

In this section, we analyze the worst case behavior of the protocol proposed in the pre-
vious section and also remove the non-preemptive restriction that we introduced for
simplicity reasons before. First we present some lemmas which describe the properties
of the protocol.

Lemma 1 In real-time shared memory multiprocessor systems, where non-preemptive
scheduling is applied on each processor and all tasks use the retry-level based protocol
to access lock-free shared objects, a task with retry-level i will not be interfered by
tasks with retry-level less than .

Proof: The CAS atomic primitive will succeed if and only if no other task updated the
value of the pointer after it was read ' . If a task T; fails to modify the shared data ob-
ject when executing the CAS operation, it means that T; has suffer an overlap interfer-
ence and task 7T has modified the object after T; read it and before it executed the CAS
operation. This means that the statement 9 of task T; took effect before statement 13
of T} effect. If task T} has a lower retry-level than 7;, then the execution of statement 5
of T; has happened after the execution of statement 11 of T;. Otherwise, task 7; would

1 We will not consider the ABA problem in this paper. We can use one of the standard
techniques used in the literature to overcome it [13].

Lock-free for Real-time Multiprocessors 149

have observed the intention of 7T; and would have not modified the object. By sum-
ming these up, we get the following relations: ¢(7},11) < t(7;,5) < t(1;,9) < t(1}, 13).
From these relations, we have that (¢(7},13) —t(7},11)) > (¢(73,9) — t(T3,5) > taeiay:
which contradicts the requirement that tge1q, > (¢(1},13) — t(13,11)).]

The above lemma implies that the task with the highest retry-level will never suffer
from overlap interferences; for the task with the lowest retry-level, every time it
overlaps with another task, it will be forced to do a retry loop. If the retry-level based
protocol is not applied, every time a task overlaps with any other task, it is possible
for that task to have to perform a retry loop. Therefore, in the worst case, tasks that
use the retry-level based protocol will not behave worse than tasks without retry-level
based protocol. The above sketches the proof of the following lemma.

Lemma 2 In real-time shared memory multiprocessors, where non-preemptive schedul-
ing s applied on each processor and all tasks use the retry-level based protocol to access
lock-free shared objects, the number of overlap interferences in the worst case on any
task is no more than the number of overlap interferences for the same task if it is
running in a system without retry-level base protocol.

The above two lemmas give us the number of overlap interferences (in the worst
case) for the tasks with the highest and lowest retry-levels. The number of overlap
interferences in the worst case for other tasks is determined by the following lemma.

Lemma 3 In real-time shared memory multiprocessors, where non-preemptive schedul-
ing is applied on each processor and all tasks use the retry-level based protocol to access
lock-free shared objects, the number of overlap interferences (in the worst case) on the
ith task running on processor j with retry-level R(T;, a) while accessing shared object
a, is denoted as B;, and is the smallest natural number that satisfies the following
formula:

B= Yy (B

keOP(5) 1€TS' (k)

where T'S'(k) = {t|t € TS(k,a)\V R} < R}}

Proof: From lemma 1, we know that all tasks with lower retry-level than the retry
level of T; cannot introduce any retry loop to T;. The formula above represents the
maximum retry time caused by overlap interferences from all tasks which are not
running on the same processor and whose retry-levels are higher than ¢ between the
time T; starts to access the object and the time it can start its loop without failing.
If no such t exists, then the maximum possible blocking time is infinite for this task.

O

150

The above lemma computes the worst case number of overlap interferences for opera-
tions on a lock-free shared object for all tasks in a real-time multiprocessors with non-
preemptive scheduling. The following theorem comes also from the previous lemma.

Theorem 1 In real-time shared memory multiprocessors, where non-preemptive schedul-
ing s applied on each processor and all tasks use the retry-level based protocol to access
lock-free shared objects, the worst case execution time of the ith task is

Weer = Wo(i) + (Bi + 1) x s
where B; is given by Lemma 3.

For simplicity reasons until now we considered non-preemptive scheduling policy on
each processor. Now, we will show how to extend our result to also work with pre-
emptive scheduling polices. When a preemptive scheduling policy is used, the number
of retries depends not only on the overlapping with other tasks running on other
processors but also on preemption because of high priority tasks that are running on
the same processor. Therefore, we suggest to apply the proposed protocol with other
protocols that have been proposed for uniprocessor systems to bound the execution
time of lock-free computing. We show how to incorporate the protocol presented here
with the immediate priority ceiling protocol (ICPP)[7] and we also compute the worst
case execution time of an operation on a lock-free shared object when using such a
scheme.

By using ICPP [7] we avoid preempting a task accessing a global lock-free shared
data object. The priority ceiling, Pg, of a lock-free shared data object is the highest
priority assigned to any task in the entire system. When a task wants to operate on
a lock-free shared object, first it uses the ICPP protocol to promote the priority of
the task to Pg. Then, the task will use the retry-level based protocol to access the
lock-free shared data object. When it finishes its operation on the object, the priority
of the task will be changed back to its own priority. The worst case time of accessing
a lock-free shared object will be the same as the one computed with non-preemptive
scheduling. This give us the following theorem.

Theorem 2 In real-time shared memory multiprocessors, where preemptive schedul-
ing is applied on each processor, and all tasks use the combination of the ICPP protocol
on uniprocessor level, and the retry-level based protocol to access a lock-free object a,
then the number of interferences on an operation while accessing a lock-free shared
object a for task T;, is denoted as B;, and is the smallest natural number that satisfies
the following formula:

B= Yy B

keOP(5) 1€TS' (k)

Lock-free for Real-time Multiprocessors 151

where T'S'(k) = {t|t € TS(k,a)\V R} < R}}

4 Discussion and Conclusion

One advantage of lock-free shared object over mutual exclusion is that faults or failure
on one task will not effect the progress of other tasks. This property is weakened by the
proposed protocol: the failure of a task with low retry-level will never effect a task
with high retry-level. We think the weakened property will not have much impact
in practice. If a real-time system is mission-critical, the system must impose some
fault-tolerance technology. Otherwise, the faults will render the whole system useless.

The assignment of retry-levels on tasks is a decision problem. The retry-levels of
tasks can be assigned the same order as priorities of tasks. In this way, the system
will delivery the best fault tolerance in respect to the shared object accessing part.
They can also be assign in other ways which can help people to schedule tasks. How
to assign them is up to the designer of the real-time system.

Our contributions in this paper are the following: we analyze the cause of interference
for lock-free shared object in real-time shared memory multiprocessors; we propose
methods to bound the number of interferences for lock-free shared object in real-time
shared memory multiprocessors; we analyze the worst case behaviors of the proposed
methods. To the best of our knowledge, we are the first to show how to apply lock-free
technology in real-time shared memory multiprocessors.

For systems with non-preemptive scheduling on each processor, the new protocols
can perform in user level entirely. For systems with preemptive scheduling, the new
protocols have the requirement of priority promotion as MPCP does, but without
having to perform the task of waking up and transferring control of shared resources
to tasks on different processors, which is required by MPCP. In the worst case, the
task with the highest priority that uses MPCP will be blocked for one critical section;
the task with the highest retry-level will not be interferenced by any other tasks in
our protocol. Comparing it with MPCP, the methods in this paper have also better
behavior in case of faults; the content of lock-free shared objects will be consistent
all the time and the failure of a task with low retry-level will never effect a task with
high retry-level.

In future work, we will compare the protocol with MPCP and wait-free schemes in
schedulability and implementation requirements with experiments. Implementation of
the new protocol in real-time kernel and profiling its performance are also interested
by us.

152

References

1]

J. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-sharing schemes for real-
time uniprocessors and multiprocessors. In Proceedings of the 18th IEEE Real-Time
Systems Symposium (RTSS '97), pages 111-122. IEEE, Dec. 1997.

J. Anderson, R. Jain, and S. Ramamurthy. Efficient object sharing in quantum-
based real-time systems. In Proceedings of the 19th IEEE Real-Time Systems
Symposium(RTSS '98), pages 346-355. IEEE, Dec. 1998.

J. Anderson and S. Ramamurthy. Using lock-free objects in hard real-time applications.
In Proceedings of the 14th Annual ACM Symposium on Principles of Distributed
Computing (PODC ’95), pages 272-272. ACM, Aug. 1995.

J. Anderson, S. Ramamurthy, and R. Jain. Implementing wait-free objects on priority-
based systems. In Proceedings of the 16th annual ACM symposium on Principles of
distributed computing, pages 229-238. ACM Press, 1997.

J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free shared
objects. ACM Transactions on Computer Systems, 15(1):134-165, Feb. 1997.

T. Baker. Stack-based scheduling of real-time processes. Real-Time Systems, 3(1), Mar.
1991.

A. Burns and A. J. Wellings. Real-time systems and programming languages: Ada 99,
real-time Java, and real-time POSIX. Addison-Wesley, Third edition, 2001.

M.-I. Chen and K.-J. Lin. Dynamic priority ceilings: a concurrency control protocol for
real-time systems. Real-Time Systems, 2(4):325-346, 1990.

R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors.
In Proceedings of the 10th International Conference on Distributed Computing Systems,
pages 116-123, Paris (France), May—June 1990. IEEE, IEEE Computer Society Press.

[10] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach.

Kluwer Academic Publishers, 1991.

[11] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization protocols for

multiprocessors. In Proceedings of the 1988 IEEE Real-Time Systems Symposium, pages
259-269, 1988.

[12] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach

to real-time synchronization. IEEE Transactions on Computers, 39(9):1175-1185, Sept.
1990.

[13] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent FIFO

queue for shared memory multiprocessor systems. In Proceedings of the 13th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA '01), pages 134-143.
ACM, July 2001.

Chapter

Conclusions

This thesis has performed a study on applying non-blocking synchronization in
shared memory multiprocessors. It first explores the performance impact of non-
blocking synchronization in shared memory multiprocessors. Then it demonstrates
the advantages of non-blocking synchronization on real-time shared memory sys-
tems.

The performance advantage of non-blocking synchronization over mutual exclu-
sion in shared memory multiprocessors is intuitive and has been advocated by the
theoretical community for a long time. But non-blocking synchronization is still not
popular among programs for shared memory multiprocessors. One of the reasons
is that many non-blocking synchronization mechanisms are quite complex. Besides,
there are no large application examples with non-blocking synchronization. The
aim of this thesis is to address these issues. We developed non-blocking data struc-
tures which can be used as basic building blocks for applications. We worked on
large benchmark applications, transfered mutual exclusion in applications into non-
blocking synchronization, and showed the cost and performance impacts of such
modifications. We developed non-blocking algorithms for shared memory multipro-
cessors. We hope that our effort can help application designers and programmers un-
derstand the performance advantage of non-blocking synchronization, accept ideas
of non-blocking synchronization, and use them in their programs.

The advantages of non-blocking synchronization in real-time shared memory
systems have also been known for a long time. Compared with mutual exclusion,
non-blocking synchronization is freed from priority inversion problem and deadlocks.
There are two ways to apply non-blocking synchronization in real-time systems. One
of them is to design a general scheme which can allow non-blocking algorithms to be
used in real-time systems and produce predictable behavior. The other one is to de-
sign special non-blocking synchronization algorithms with information provided by

153

154

the real-time systems themselves, such as time information of task and information
of scheduler, etc. In this thesis, we investigated both ways: two non-blocking data
structures are proposed and a general way of applying lock-free synchronization into
real-time systems is investigated.

From our experience of working with non-blocking synchronization, we learn
that:

e Non-blocking synchronization is more complex algorithmically than mutual
exclusion. The design and understanding of algorithms using non-blocking
synchronization require more time than those of mutual exclusion. This com-
plexity is the main obstacle for programmers to accept non-blocking synchro-
nization.

e Data-structure-specific non-blocking algorithms are desired. These algorithms
generally outperform lock-based implementations and universal non-blocking
implementations. At the same time, the implementations of these data struc-
tures can be provided to programmers as basic building blocks for their appli-
cations. This can lower the entry cost of using non-blocking synchronization.

e General memory management schemes for non-blocking synchronization are
appreciated. In our research of non-blocking synchronization, we incorporate
the idea of memory management into our non-blocking algorithms in several
occasions. Such incorporation helps the designing and the efficiency of our
algorithms. We believe that general memory management schemes for non-
blocking synchronization will be crucial for non-blocking synchronization.

	Introduction
	High Performance Shared Memory Multiprocessors
	Synchronization
	Mutual Exclusion
	Non-blocking Synchronization
	Performance of Synchronization

	Real-time Shared Memory Multiprocessors
	Contributions

	A Non-blocking Concurrent FIFO Queue
	Integrating Non-blocking in Parallel Applications
	A Fast Parallel Implementation of Quicksort
	Non-blocking Sharing in Real-time Multiprocessors
	Wait-free Queues for Real-time Systems
	Lock-free for Real-time Multiprocessors
	Conclusions

