Scaleloin: a Deterministic,
Disjoint-Parallel and Skew-Resilient
Stream Join

Vincenzo Gulisano, Yiannis Nikolakopoulos,
Marina Papatriantafilou, Philippas Tsigas

Chalmers University
% of technology

2015-10-30

Agenda

Whatis a stream join?
Which are the challenges of a parallel stream join?

Why ScaleJoin?

How well does ScaleJoin addresses stream joins’
challenges?

Conclusions

Agenda

* Whatis a stream join?

Motivation

Applications in sensor networks, cyber-physical

systems:

* large and fluctuating volumes of data generated
continuously

demand for:

* Continuous processing of data streams

* In a real-time fashion

Store-then-process is not feasible!!!

2015-10-30 4

What is a stream join?

Sliding @ ______
window | ‘;,(\"
Wy @ ______ Wi
=
R S
Data stream: .
Predicate P

unbounded sequence of tuples

2015-10-30

__ Window
size WS

Why parallel stream joins?

WS = 600 seconds

R receives 500 tuples/second
S receives 500 tuples/second

Wy will contain 300,000 tuples
W will contain 300,000 tuples

Each new tuple from R gets compared with
all the tuples in W

Each new tuple from S gets compared with
all the tuples in Wg

..300,000,000 comparisons/second!

Agenda

 Which are the challengesof a parallel stream join?

Which are the challenges of a parallel stream join?

Determinism

Scalability Disjoint

parallelism

High
throughput

Skew
resilience

2015-10-30

Agenda

* Why Scaleloin?

The 3-step procedure (sequential stream join)

We assume each
producer delivers tuples
in timestamp order

G,

Add tuples to S Q > I > Consume results
For each incoming tuple t:
—
Q 1. comparet with all tuples in opposite window given predicate P
Add tuples to R 2. add tto its window

3. remove stale tuples fromt’s window

2015-10-30 10

The 3-step procedure, is it enough?

y Determ|n|°
Scalability ()
parallelism

s g
v throughput A —
7, shp resilience

\
\\
~

()
)

2015-10-30 11

Enforcing determinismin sequential stream joins

* Next tuple to process = earliest(ts,tRg)

/E’*I Ll
\EII

U

* The earliest(ts,tz) tuple is referred to as the next ready tuple

* Process ready tuples in timestamp order > Determinism

2015-10-30

12

Deterministic 3-step procedure

T

Add tuples to S > Daaa~> Consume results
Q > EEEEI/‘ Pick the next ready tuple t:
1. comparet with all tuples in opposite window given predicate P
Add tuples to R 2. add tto its window

3. remove stale tuples fromt’s window

2015-10-30 13

Shared-nothing parallel stream join
(state-of-the-art)

. N

Determinism d:
\\

" Scalbity |

- .
> g throughput

Chose a PU
Add tuple to PU; S

Take the next
ready output tuple Consume results

Chose a PU .
Add tuple to PU. R e
| ma@ EEEE

Pick the next ready tuple t:
1. comparet with all tuples in opposite window given P
2. add tto its window
3. remove stale tuples fromt’s window
2015-10-30 14

Shared-nothing parallel stream join
(state-of-the-art)

ﬁ é : E enqueue()

dequeue()

2015-10-30 15

From coarse-grained to fine-grained synchronization

Prod
S \\\\A
Prod //'7
R

2015-10-30

16

a) Insertion of a new tuple

ScaleGate

& New incoming tuple
10 from source R ====+=========1

b e 3 .

i P P 6 P & P {18 1)

A N K

Latest tuple Correct insert Latest tuple
from R position from S

gy

SSS S <A\

\VAVAVAYAYAVAYAYAYAVAVAY,

2015-10-30

addTuple (tuple, sourcelD)
allows a tuple from sourceID to be merged by ScaleGate in the
resulting tlmestamp -sorted stream of ready tuples.

— — — - ~ — — — — — — A N~ o —

getNextReadyTuple (readerID)
providesto readerID the nextearliest ready tuple that has not been
yet consumed by the former.

17

Scaleloin

Q / \\
SO V4 N
\\x I, \\
/)
4 7 \\\ Y
Add tuple SG,, o Soy
S S -——>
\ A
S \, : ! Get next ready
e e 4
Q -~ \\\ A output tuple
\N // from SG_
Add tuple SG,, m
Steps for PU

Get next ready input tuple from SG,,

1. comparet with all tuples in opposite window given P
2. add tto its window in a round-robin fashion

3. remove stale tuples fromt’s window

2015-10-30 18

Sequential stream join:

Scaleloin (example)

ScalelJoin with 3 PUs:

Wr

2015-10-30

gl |

A

“

gl |

“

19

Scaleloin

Prod
S
Prod
S \

parallelism
\

\)) aly " Skew
N throughput
Sso “4
S SN)

Determinism

Scalability

"

resilience
Add tuple SG,,

Get next ready
Prod <7 A ' /!
- ', \ y output tuple
U4
",' \N /I from SGout
.]

Add tuple SG;,] PU,

Steps for PU,
Prod L !
R Get next ready input tuple from SG;,

1. comparetwith all tuples in opposite window given P
2. addttoits windowin a round robin fashion
3. remove stale tuples from t’s window

2015-10-30

20

Agenda

* How well does ScalelJoinaddresses stream joins’
challenges?

Evaluation setup

e Common benchmark

R: <timestamp, x,y, z> S: <timestamp,a,b,c,d>

* |Implemented in Java P: a-10<x<a+10 AND b-10<y<b+10

e Evaluation platform
— NUMA architecture: 2.6 GHz AMD Opteron 6230 (48 cores over 4
sockets), 64 GB of memory
— Architecture with Hyper Threading: 2.0 GHz Intel Xeon E5-2650 (16
cores over 2 sockets), 64 GB of memory

Scaleloin Scalability — comparisons/second

5¢
4 O
x
¢ 2
—— 5 Min.
1 —+— 10 Min.
—— 15 Min.

12 24 36 48
Number of PUs

2015-10-30

23

Scaleloin latency — milliseconds

70

(@)
()

—*— 5 Min.

o)
)

N W b
o O O

Latency (milliseconds)

A
o
K

o

1l2 2l4 3.6 4l8
Number of PUs

2015-10-30

2015-10-30

Scaledoin skew-resilience
Constant distinct rates with peaks

i 3

o

X 2

€ 1

¢ Q— =R (4 streams)
X 70 | =S5 (2 streams)
9 35 R+S

© T T—7
(@)

> 0 :

<

o\00.4-

02 1l Mo
o

»w 0 100 200 300

Time (s)

25

Agenda

e Conclusions

Conclusions

* Scaleloin: a Deterministic, Disjoint-Parallel and
Skew-Resilient Stream Join

* Challenges of parallel
stream joins

[& EUN

* Fine-grained synchronization (ScaleGate)

* 4 billion comparisons/second, with latency lower
than 60 milliseconds

2015-10-30 27

2015-10-30

Scaleloin: a Deterministic,
Disjoint-Parallel and Skew-Resilient
Stream Join

Vincenzo Gulisano, Yiannis Nikolakopoulos,
Marina Papatriantafilou, Philippas Tsigas

Thank you! Questions?

28

