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* Whatis a stream join?



Motivation

Applications in sensor networks, cyber-physical

systems:

* large and fluctuating volumes of data generated
continuously

demand for:

* Continuous processing of data streams

* In a real-time fashion

Store-then-process is not feasible!!!
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What is a stream join?
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Why parallel stream joins?

WS = 600 seconds

R receives 500 tuples/second
S receives 500 tuples/second

Wy will contain 300,000 tuples
W will contain 300,000 tuples

Each new tuple from R gets compared with
all the tuples in W

Each new tuple from S gets compared with
all the tuples in Wg

..300,000,000 comparisons/second!
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 Which are the challengesof a parallel stream join?



Which are the challenges of a parallel stream join?

Determinism

Scalability Disjoint

parallelism

High
throughput

Skew
resilience
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* Why Scaleloin?



The 3-step procedure (sequential stream join)

We assume each
producer delivers tuples
in timestamp order

G,

Add tuples to S Q > I > Consume results
For each incoming tuple t:
—
Q 1. comparet with all tuples in opposite window given predicate P
Add tuples to R 2. add tto its window

3. remove stale tuples fromt’s window
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The 3-step procedure, is it enough?
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Enforcing determinismin sequential stream joins

* Next tuple to process = earliest(ts,tRg)

/E’*I Ll
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U

* The earliest(ts,tz) tuple is referred to as the next ready tuple

* Process ready tuples in timestamp order > Determinism
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Deterministic 3-step procedure

T

Add tuples to S > Daaa~> Consume results
Q > EEEEI/‘ Pick the next ready tuple t:
1. comparet with all tuples in opposite window given predicate P
Add tuples to R 2. add tto its window

3. remove stale tuples fromt’s window
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Shared-nothing parallel stream join
(state-of-the-art)
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Determinism d:
\\

" Scalbity |
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> g throughput

Chose a PU
Add tuple to PU; S

Take the next
ready output tuple Consume results

Chose a PU .
Add tuple to PU. R e
| ma@ EEEE

Pick the next ready tuple t:
1. comparet with all tuples in opposite window given P
2. add tto its window
3. remove stale tuples fromt’s window
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Shared-nothing parallel stream join
(state-of-the-art)

ﬁ é : E enqueue()

dequeue()
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From coarse-grained to fine-grained synchronization
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a) Insertion of a new tuple

ScaleGate

& New incoming tuple
10 from source R ====+=========1

b e 3 .

i P P 6 P & P {18 1)

A N K
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addTuple (tuple, sourcelD)
allows a tuple from sourceID to be merged by ScaleGate in the
resulting tlmestamp -sorted stream of ready tuples.

— — — - ~ — — — — — — A N~ o —

getNextReadyTuple (readerID)
providesto readerID the nextearliest ready tuple that has not been
yet consumed by the former.

17



Scaleloin
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Add tuple SG,, o Soy
S S -——>
\ A
S \, : ! Get next ready
e e 4
Q -~ \\\ A output tuple
\N // from SG_
Add tuple SG,, m
Steps for PU

Get next ready input tuple from SG,,

1. comparet with all tuples in opposite window given P
2. add tto its window in a round-robin fashion

3. remove stale tuples fromt’s window
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Sequential stream join:

Scaleloin (example)

ScalelJoin with 3 PUs:

Wr
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Scaleloin

Prod
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Add tuple SG,,

Get next ready
Prod <7 A ' /!
- ', \ y output tuple
U4
",' \N /I from SGout
. ]

Add tuple SG;, ] PU,

Steps for PU,
Prod L !
R Get next ready input tuple from SG;,

1. comparetwith all tuples in opposite window given P
2. addttoits windowin a round robin fashion
3. remove stale tuples from t’s window
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* How well does ScalelJoinaddresses stream joins’
challenges?



Evaluation setup

e Common benchmark

R: <timestamp, x,y, z> S: <timestamp,a,b,c,d>

* |Implemented in Java P: a-10<x<a+10 AND b-10<y<b+10

e Evaluation platform
— NUMA architecture: 2.6 GHz AMD Opteron 6230 (48 cores over 4
sockets), 64 GB of memory
— Architecture with Hyper Threading: 2.0 GHz Intel Xeon E5-2650 (16
cores over 2 sockets), 64 GB of memory



Scaleloin Scalability — comparisons/second
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Scaleloin latency — milliseconds
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Scaledoin skew-resilience
Constant distinct rates with peaks
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Conclusions

* Scaleloin: a Deterministic, Disjoint-Parallel and
Skew-Resilient Stream Join

* Challenges of parallel
stream joins

[& EUN

* Fine-grained synchronization (ScaleGate)

* 4 billion comparisons/second, with latency lower
than 60 milliseconds

2015-10-30 27



2015-10-30

Scaleloin: a Deterministic,
Disjoint-Parallel and Skew-Resilient
Stream Join

Vincenzo Gulisano, Yiannis Nikolakopoulos,
Marina Papatriantafilou, Philippas Tsigas

Thank you! Questions?
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