Lightweight Causal Cluster
Consistency

@ @ @ @

Boris Koldehofe, Anders Gidenstam,
Marina Papatriantafilou, and Philippas Tsigas

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Outline

o o o o
= |ntroduction

= Collaborative environments
= Problem definition
= Causal Cluster Consistency
= Protocol implementing Causal Cluster Consistency
= Framework
= Cluster Management
= Dissemination and Causal delivery
= Recovery
= Results
= Conclusion and Future Work

Collaborative Environments

.
Possible applications with physically distributed

‘users™:
= Conferencing, CVEs
= Simulation, Training, Entertainment

= Administration of distributed
(e.g. telecom, transport) systems

Decentralised solution
= Avoid single point of failure
= Share the load evenly

= Scalability join
Trade-off -

= Overhead vs. Consistency €2

Defining the problem

@ @ @ @

= Goal: Support large Collaborative Environments
Provide Consistency (order of updates matter)
Scalable communication media
= Focus: Group communication
Propagate events (updates) to all interested processes
Ordered event delivery
= Causal order
= QOpportunities
Delivery with high probability is enough
Limited per-user domain of interest
= Nobody is interested in changing everything at once
Events have lifetimes/deadlines
Often more observers than updaters

Example: Collaborative
Environments

o o o
= World

= Consists of Clusters
= Consists of Objects

= Clusters represent
Interest

= Only few updaters per
cluster

= Forming the Core

ore

Cluste

Causal Cluster Consistency

o o o o
= n constant known by all processes

= Given a set of clusters C,, ..., C,

Cluster corresponding to region of interest
= Processes can join and leave any cluster C,

A process in C,

, receives events disseminated in C, w.h.p.

events can be observed in optimistic causal order
= A dynamic non-empty subset forms the core of C,

at most n processes inside a core

Only those processes create new events

Outline

o o o o
* [ntroduction
= Collaborative environments
= Problem definition
= Causal Cluster Consistency
= Protocol implementing Causal Cluster Consistency
= Framework
= Cluster Management
= Dissemination and Causal delivery
= Recovery
= Results
= Conclusion and Future Work

Overview: A Layered
approach

= Point-2-point
communication layer
= Dissemination layer
= Gossip protocol
* Reader membership
= Causal layer
= Cluster Manager

= Controls concurrent
updates

= Causal delivery
= Recovery

Application

Ordered, predictably reliable
disseminate/receive

Join/
l leave

Cluster Consistency

disseminate/receive

Dissemination:
PrCast

I send/receive

recover

Network transport service

Cluster Management

. . . .
= Each cluster corresponds to a process group

= [nterested processes join
= Readers — everyone

= Join the process group
= Updaters

= At most n
at a time

= Core of the cluster

Managing the Core

o o o o
= Assign unique identity for each process

= lds 5 {0, ..., n-1}
= Two processes never
own the same id
= Even in the occurrence
of failures
= Stop failures
= Communication failures
= Reclaim tickets

Cluster Management
Algorithm

@ @ @
= Inspired by DHT 0 Successor

= Ids form a cycle (max n) '\
= Each process manage the entries immediately n-1 1

before it.
= Contact any coordinator to join n-2 2
= Notify successor if given an entry
= Notify all about the new coord. 3
= Failure detection n-3
= Heartbeats
= Send to 2k + 1 closest successors
= Receive from 2k + 1 closest predecessors
= If <k + 1 received, stop

PrCast

o o o o
= Gossip based protocol
Epidemic style dissemination
Good scalability and fault-tolerance
no ordering of events provided

= Use dissemination scheme providing delivery guarantee
w.h.p.
W.h.p. = with probability O(1-n%), k>1.
Only a small number of processes is not receiving an
event
only few messages require recovery

4

Causally ordered delivery

. . . .
= Vector timestamps

Processes

For each event in cluster 1
#simultaneous updaters limited => .
bounded number of vector entries in 3 Timestamp vector
timestamps

4

ID of the cluster manager
corresponds to entry in the vector S
clock 6 ><
Can detect missing dependencies .
Deliver in causal order

= Skip events not recovered in time

Recovery

. . . .
= Some events may not be delivered by PrCast

= Can detect these events with the help of the vector
timestamp

Queue of delayed events
Queue of missing event ids
= A delayed event is delivered latest after a lifetime
% Exp(time to disseminate + time to recover)
= Recovery of missing events if a delayed event has a lifetime
¢ Exp(time to disseminate)

Recovery Schemes

o o o o
= Recover from source
+ Only small buffer size needed
= Sender buffers only own events
+ Only one message per recovery
— Source may fail before recovery starts
— Too many processes may contact the source

= Alternatively recover from k peers (chosen at random)
Avoids problems above
Needs to buffer some of the received events
Can evaluate buffer size and k suitable for high probability recovery

Experimental Evaluation

® ® ® ®
= Evaluate

Scalability
= effect of limited number of updaters
Reliability
= Measure effect of recovery schemes
= “Real network" experiment
Used self-implemented group communication framework
Test application performing on up to 125 workstations

Configured to provide maximum throughput and
performing stable

Experiments: Scalability

‘Throughput, under low communication failures and event loss
60 . : | . |
5 Updater Gossip/TCP —+—
25 Updater Gossip/TCP -
- U Full Updater Gossip/TCP -
=
g 40 _
E W === b L] o
g" 30 . i
B 20 F a
L
b=
10 -
] : ! L A |
20 40 60 30 100 120
Processes

Experiments: Scalability

@ @ @ Q
Latency, under low communication failures and event loss

| 5 Updat:ar GDSSip_.-"ITCP ——
1400 r 25 Updater Gossip/TCP ===
1200 L Full Updater Gossip/TCP '_ _
1000 - - _
=800 t '
B 600 | :
400 - : & e
200 r .

0 | | |] |
20 40 60 80 100 120

Processes

Experiments: Reliability

Event loss

10 | | T | | T
- Caual layver with R4 recovery ——
ks Causal layer with R1 gecovery --------
@ g L Causal layer without recovery - |
S No.Causal layer -~
-
s L -
£ 6
o
S
4 o
= 4 t —
L
5h
8
= .
E 27 o _.
2 . —

0 . T T s ,I:__J __________ —

0.1 015 02 025 03 035 04 045 05 055

Probability to create a new event

Overhead

Latency
1000 . | | - | | |
Caual layer with R4 recovery —+—
Causal layer with R1 recovery ---- Xemnes
800 | Causal layer without recovery -
No Causal layer - g
= 600
R=
>
=
D B —
R 400
200 r i
O | 1 1 1 | | | |

01 015 02 025 03 035 04 045 05 055

Probability to create a new event

Results

. . . .
= Can combine predictable reliable protocols and causal

delivery
= The number of concurrent updaters
Important for the performance
Scalable solutions require a bound on the number of
updaters

= Recovery
Increases delivery rate for many concurrent events

Recovery falls if
= Only few processes received the event

= Recovered event arrives late

Conclusions and Future Work

@ @ @ @
= Causal Cluster Consistency
Suitable preserving optimistic causal order relations
= Interesting for Collaborative Environments
= Good predictable delivery guarantees
= Scalability
requires a natural clustering of objects
= Recovery
Can increase delivery rate
Good match with protocols providing delivery w.h.p.
Source recovery (R1) vs. decentralised recovery (R4)
= Here no real difference
= For larger systems R4 expected to perform better
= Future work
Recovery for larger systems
Different ordering and time stamping schemes (e.g. plausible clocks)
Evaluate effect on dynamic systems

Recovery Success

@ ® ® ®
Event recovery success
:j 100 I I 1| T L I T I
G . Caual layer with R4 recovery —+—
) 271 — .
S N Causal layer with R1 recovery ----- X-=n=s
g "a' l“ __’2'-.-___ : e
= 80 * 5 ,*" ----------------------
o \ T
7] K 8
£
3 60
—
© 1
-
2 40
o
-
2
S 20 ¢+ .
—
=
L
2
cﬂf 0 | | | | | | | |
0.1 015 02 025 03 035 04 045 05 055
Probability to create a new event

	Lightweight Causal Cluster Consistency
	Outline
	Collaborative Environments
	Defining the problem
	Example: Collaborative Environments
	Causal Cluster Consistency
	Outline
	Overview: A Layered approach
	Cluster Management
	Managing the Core
	Cluster Management Algorithm
	PrCast
	Causally ordered delivery
	Recovery
	Recovery Schemes
	Experimental Evaluation
	Experiments: Scalability
	Experiments: Scalability
	Experiments: Reliability
	Overhead
	Results
	Conclusions and Future Work
	Recovery Success

