
1

Lightweight Causal Cluster
Consistency

Boris Koldehofe, Anders Gidenstam,
Marina Papatriantafilou, and Philippas Tsigas

2

Outline

Introduction
Collaborative environments
Problem definition

Causal Cluster Consistency
Protocol implementing Causal Cluster Consistency

Framework
Cluster Management
Dissemination and Causal delivery
Recovery

Results
Conclusion and Future Work

3

Collaborative Environments

join

World
create/read/modify/delete

responseleave

users

objects

Possible applications with physically distributed
“users”:

Conferencing, CVEs
Simulation, Training, Entertainment
Administration of distributed
(e.g. telecom, transport) systems

Decentralised solution
Avoid single point of failure
Share the load evenly
Scalability

Trade-off
Overhead vs. Consistency

(self-)modify
mobile

4

Defining the problem

Goal: Support large Collaborative Environments
Provide Consistency (order of updates matter)
Scalable communication media

Focus: Group communication
Propagate events (updates) to all interested processes
Ordered event delivery

Causal order
Opportunities

Delivery with high probability is enough
Limited per-user domain of interest

Nobody is interested in changing everything at once
Events have lifetimes/deadlines
Often more observers than updaters

5

Example: Collaborative
Environments

World
Consists of Clusters

Consists of Objects
Clusters represent
interest
Only few updaters per
cluster

Forming the Core

…

Cluster

Core

6

Causal Cluster Consistency

n constant known by all processes
Given a set of clusters C1, …, Cm

Cluster corresponding to region of interest
Processes can join and leave any cluster Ci

A process in Ci

⇒ receives events disseminated in Ci w.h.p.
events can be observed in optimistic causal order

A dynamic non-empty subset forms the core of Ci

at most n processes inside a core
Only those processes create new events

7

Outline

Introduction
Collaborative environments
Problem definition

Causal Cluster Consistency
Protocol implementing Causal Cluster Consistency

Framework
Cluster Management
Dissemination and Causal delivery
Recovery

Results
Conclusion and Future Work

8

Point-2-point
communication layer
Dissemination layer

Gossip protocol
Reader membership

Causal layer
Cluster Manager

Controls concurrent
updates

Causal delivery
Recovery

Overview: A Layered
approach

Cluster Consistency

Dissemination:
PrCast

Application
Ordered, predictably reliable
disseminate/receive

disseminate/receive

Network transport service

send/receive

recover

Join/
leave

Ordered Delivery Cluster
Manager

9

Cluster Management

Each cluster corresponds to a process group
Interested processes join
Readers – everyone

Join the process group
Updaters

At most n
at a time
Core of the cluster

Cluster

Core

10

Managing the Core

Assign unique identity for each process
Ids ∈ {0, …, n-1}

Two processes never
own the same id

Even in the occurrence
of failures

Stop failures
Communication failures

Reclaim tickets

Core

11

Cluster Management
Algorithm

p1

p4

p3

p2

Successor

1

0

n-1

n-2 2

n-3
3

Inspired by DHT
Ids form a cycle (max n)
Each process manage the entries immediately
before it.

Contact any coordinator to join
Notify successor if given an entry
Notify all about the new coord.

Failure detection
Heartbeats

Send to 2k + 1 closest successors
Receive from 2k + 1 closest predecessors
If < k + 1 received, stop

12

PrCast

Gossip based protocol
Epidemic style dissemination
Good scalability and fault-tolerance
no ordering of events provided

Use dissemination scheme providing delivery guarantee
w.h.p.

W.h.p. = with probability O(1-n-k), k>1.
Only a small number of processes is not receiving an
event
⇒ only few messages require recovery

13

Causally ordered delivery

Vector timestamps
For each event in cluster
#simultaneous updaters limited =>
bounded number of vector entries in
timestamps
ID of the cluster manager
corresponds to entry in the vector
clock
Can detect missing dependencies
Deliver in causal order

Skip events not recovered in time

1

2

3

4

5

6

7

Processes

Timestamp vector

14

Recovery

Some events may not be delivered by PrCast
Can detect these events with the help of the vector
timestamp

Queue of delayed events
Queue of missing event ids

A delayed event is delivered latest after a lifetime
� Exp(time to disseminate + time to recover)

Recovery of missing events if a delayed event has a lifetime
≥ Exp(time to disseminate)

15

Recovery Schemes

Recover from source
+ Only small buffer size needed

Sender buffers only own events
+ Only one message per recovery
– Source may fail before recovery starts
– Too many processes may contact the source

Alternatively recover from k peers (chosen at random)
Avoids problems above
Needs to buffer some of the received events
Can evaluate buffer size and k suitable for high probability recovery

16

Experimental Evaluation

Evaluate
Scalability

effect of limited number of updaters
Reliability

Measure effect of recovery schemes
‘‘Real network‘‘ experiment

Used self-implemented group communication framework
Test application performing on up to 125 workstations
Configured to provide maximum throughput and
performing stable

17

Experiments: Scalability

18

Experiments: Scalability

19

Experiments: Reliability

20

Overhead

21

Results

Can combine predictable reliable protocols and causal
delivery
The number of concurrent updaters

Important for the performance
Scalable solutions require a bound on the number of
updaters

Recovery
Increases delivery rate for many concurrent events
Recovery fails if

Only few processes received the event
Recovered event arrives late

22

Conclusions and Future Work

Causal Cluster Consistency
Suitable preserving optimistic causal order relations

Interesting for Collaborative Environments
Good predictable delivery guarantees
Scalability

requires a natural clustering of objects
Recovery

Can increase delivery rate
Good match with protocols providing delivery w.h.p.
Source recovery (R1) vs. decentralised recovery (R4)

Here no real difference
For larger systems R4 expected to perform better

Future work
Recovery for larger systems
Different ordering and time stamping schemes (e.g. plausible clocks)
Evaluate effect on dynamic systems

23

Recovery Success

	Lightweight Causal Cluster Consistency
	Outline
	Collaborative Environments
	Defining the problem
	Example: Collaborative Environments
	Causal Cluster Consistency
	Outline
	Overview: A Layered approach
	Cluster Management
	Managing the Core
	Cluster Management Algorithm
	PrCast
	Causally ordered delivery
	Recovery
	Recovery Schemes
	Experimental Evaluation
	Experiments: Scalability
	Experiments: Scalability
	Experiments: Reliability
	Overhead
	Results
	Conclusions and Future Work
	Recovery Success

