
Thesis for the Degree of Doctor of Philosophy

Reactive Concurrent Data Structures and Algorithms
for Synchronization

Phuong Ha

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 G̈oteborg, Sweden

Göteborg, Sweden 2006

Reactive Concurrent Data Structures and Algorithms for Synchronization
Phuong Hoai Ha
ISBN 91-7291-780-6

c©Phuong Ha, 2006.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny series nr 2462
ISSN 0346-718X

Technical Report no. 17D
ISSN 1651-4971
Department of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 G̈oteborg, Sweden
Telephone + 46 (0)31-772 1000

Chalmers Reproservice,
Göteborg, Sweden, 2006

Abstract

Parallelism plays a significant role in high-performance computing systems,
from large clusters of computers to chip-multithreading (CMT) processors. Perfor-
mance of the parallel systems comes not only from concurrently running more pro-
cessing hardware but also from utilizing the hardware efficiently. The hardware uti-
lization is strongly influenced by how processors/processes are synchronized in the
system to maximize parallelism. Synchronization between concurrent processes
usually relies on shared data structures. The data structures that enhance paral-
lelism by allowing processes to access them concurrently are known asconcurrent
data structures. The thesis aims at developing efficient concurrent data structures
and algorithms for synchronization in asynchronous shared-memory multiproces-
sors.

Generally speaking, simple data structures perform well in the absence of con-
tention but perform poorly in high-contention situations. Contrarily, sophisticated
data structures that can scale and perform well in the presence of high contention
usually suffer unnecessary high latency when there is no contention. Efficient
concurrent data structures should be able to adapt their algorithmic complexity
to varying contention. This has motivated us to develop fundamental concurrent
data structures like trees, multi-word compare-and-swap and locks into reactive
ones that timely adapt their size or algorithmic behavior to the contention level
in execution environments. While the contention is varying rapidly, the reactive
data structures must keep the cost of reaction below its benefit, avoiding unneces-
sary reaction due to the contention oscillation. This is quite challenging since the
information of how the contention will vary in the future is usually not available
in multiprogramming multiprocessor environments. To deal with the uncertainty,
we have successfully synthesized non-blocking synchronization techniques and ad-
vanced on-line algorithmic techniques, in the context of reactive concurrent data
structures. On the other hand, we have developed a new optimal on-line algorithm
for one-way trading with time-varying exchange-rate bounds. The algorithm ex-
tends the set of practical problems that can be transformed to the one-way trading
so as to find an optimal solution. In this thesis, the new algorithm demonstrates
its applicability by solving the freshness problem in the context of concurrent data
structures.

Keywords: synchronization, reactive, non-blocking, concurrent data struc-
tures, distributed data structures, multi-word atomic primitives, spin-locks, shared
memory, online algorithms, online financial problems, randomization.

4

5

List of Included Papers and Reports

This thesis is based on the work contained in the following publications.

1. Phuong Hoai Ha & Philippas Tsigas. Reactive multi-word synchronization
for multiprocessors.Proceedings of the 12th IEEE/ACM International Con-
ference on Parallel Architectures and Compilation Techniques (PACT ’03),
Sept. 2003, pp. 184-193, IEEE press.

2. Phuong Hoai Ha & Philippas Tsigas. Reactive multi-word synchronization
for multiprocessors.The Journal of Instruction-Level Parallelism, Vol. 6,
No. (Special issue with selected papers from the 12th IEEE/ACM Interna-
tional Conference on Parallel Architectures and Compilation Techniques),
April 2004, AI Access Foundation and Morgan Kaufmann Publishers.

3. Phuong Hoai Ha, Marina Papatriantafilou & Philippas Tsigas. Self-tuning
Reactive Distributed Trees for Counting and Balancing.Proceedings of the
8th International Conference on Principles of Distributed Systems (OPODIS
’04), Dec. 2004, LNCS 3544, pp. 213-228, Springer-Verlag.

4. Phuong Hoai Ha, Philippas Tsigas, Mirjam Wattenhofer & Roger Watten-
hofer. Efficient Multi-Word Locking Using Randomization.Proceedings of
the 24th Annual ACM SIGACT-SIGOPS Symposium on Principles Of Dis-
tributed Computing (PODC ’05), Jul. 2005, pp. 249-257, ACM Press.

5. Phuong Hoai Ha, Marina Papatriantafilou & Philippas Tsigas. Reactive
Spin-locks: A Self-tuning Approach.Proceedings of the 8th IEEE Inter-
national Symposium on Parallel Architectures, Algorithms and Networks (I-
SPAN ’05), Dec. 2005, pp. 33-39, IEEE press.

6. Peter Damaschke, Phuong Hoai Ha & Philippas Tsigas. One-Way Trading
with Time-Varying Exchange-Rate Bounds.Technical report: CS:2005-17,
Department of Computer Science and Engineering, Chalmers University of
Technology, Sweden.

7. Peter Damaschke, Phuong Hoai Ha & Philippas Tsigas. Competitive Fresh-
ness Algorithms for Wait-free Data Objects.Technical report: CS:2005-18,
Department of Computer Science and Engineering, Chalmers University of
Technology, Sweden.

I together with the co-authors of the respective papers contributed to the design,
analysis and experimental evaluation of the algorithms presented in these papers,
as well as to the writing of these papers in a nice research environment.

6

ACKNOWLEDGMENTS

First of all, I wish to thank Philippas Tsigas, my supervisor, and Marina Pap-
atriantafilou for their enthusiasm and constant support. They continuously inspire
my research with excellent advices. I have learnt an enormous amount on how to
do research from working with them and have really enjoyed that. I am honored to
be one of their students. Further, I would like to thank Björn von Sydow, a member
of my committee, for following my research with helpful comments. I am also
grateful to Peter Dybjer for kindly agreeing to be my examiner.

I am very honored to have Prof. Michael L. Scott from University of Rochester
as my faculty opponent. I am also honored to my grading committee: Prof. Otto J.
Anshus, Prof. Bj̈orn Lisper, and Prof. Per Stenström.

I feel privileged to be a member of the distributed system group with nice col-
leagues: Niklas Elmqvist, Anders Gidenstam, Boris Koldehofe, Andreas Larsson,
Elad Schiller, H̊akan Sundell and Yi Zhang. They gave me many helpful comments
and advices not only on my work but also on the Swedish life.

Frankly, I would not have gone so far without the support of all staffs and other
PhD students at the Department of Computing Science. I would like to take this
chance to thank them all. Many thanks to Bror Bjerner and Sven-Arne Andréasson
for suitably coordinating my teaching duty with my research, which helps me have
better insights in my research fields.

It would be a mistake if I forget to thank my good friends. Without them, my
life would have been more difficult and less enjoyable. I could not thank them
personally here, but they know who they are. Thanks to them all!

Last but not least, I wish to give many thanks to my family for their constant
love, support and encouragement. They are forever my motivation to overcome
any hardships and challenges in my life.

Phuong Hoai Ha

Göteborg, June 2006.

8

Contents

1 Introduction 1
1.1 Our Contributions 2

1.1.1 Universal Constructions for Concurrent Data Structures . 2
1.1.2 Reactive Spin-locks. 3
1.1.3 Self-Tuning Diffracting Trees. 4
1.1.4 Freshness Algorithms for Wait-free Data Objects. 4
1.1.5 One-Way Trading with Time-Varying Bounds. 5

2 Background 7
2.1 Shared Memory Multiprocessors 7

2.1.1 Synchronization Primitives. 9
2.2 Mutual Exclusion . .. 10
2.3 Non-blocking Synchronization 15

2.3.1 Universal Constructions 16
2.3.2 Freshness . .. 17

2.4 Distributed Data Structures for Counting and Balancing. 19
2.5 Online Algorithms 21

3 Reactive Multi-Word Synchronization 25
3.1 Introduction. 26
3.2 Problem Description, Related Work and Our Contribution. 27

3.2.1 Our Contribution . .. 30
3.3 Algorithm Informal Description 31

3.3.1 The First Algorithm . 33
3.3.2 The Second Algorithm 34

3.4 Implementations . .. 35
3.4.1 First Reactive Scheme 35
3.4.2 Second Reactive Scheme. 43

3.5 Correctness Proof 46

i

ii CONTENTS

3.6 Evaluation 51
3.6.1 Results . 52

3.7 Conclusions. 54

4 Efficient Multi-Word Locking 57
4.1 Introduction . .. 58
4.2 Related Work 59
4.3 Problem and Model. 60
4.4 Randomized Registers. 61

4.4.1 The Algorithm . 61
4.4.2 Length of Directed Paths 61
4.4.3 Length of Waiting Chains. 63
4.4.4 Execution Time 65

4.5 Evaluation 70
4.5.1 The micro-benchmark 71
4.5.2 The application .. 73

4.6 Conclusions. 75

5 Reactive Spin-locks: A Self-Tuning Approach 77
5.1 Introduction . .. 78

5.1.1 Contributions. 79
5.2 Problem analysis 81

5.2.1 Tuning parameters and system characteristics 81
5.2.2 Experimental studies 82

5.3 Modeling the problem .. 83
5.4 The algorithm. 86
5.5 Correctness. 88
5.6 Estimating the delay base. 90
5.7 Evaluation 93

5.7.1 Results . 95
5.8 Conclusions. 98

6 Self-Tuning Diffracting Trees 99
6.1 Introduction . .. 100
6.2 Background. 102

6.2.1 Diffracting and Reactive-Diffracting Trees. 102
6.2.2 Online Algorithms 103

6.3 Self-tuning reactive trees 104
6.3.1 Problem description 104
6.3.2 Key ideas . .. 104

CONTENTS iii

6.3.3 The tree structure. 105
6.3.4 The reactive scheme. 106
6.3.5 Space needs of the tree. 108

6.4 Implementation 108
6.4.1 Preliminaries. 108
6.4.2 Traversing self-tuning reactive trees 109
6.4.3 Reaction conditions. 111
6.4.4 Expanding a leaf to a sub-tree. 112
6.4.5 Shrinking a sub-tree to a leaf. 114
6.4.6 Efficiency enhancement. 116

6.5 Correctness Proof 118
6.6 Evaluation. 121

6.6.1 Full contention benchmark 123
6.6.2 Surge load benchmark 124

6.7 Conclusion . 125

7 Competitive Freshness Algorithms 127
7.1 Introduction. 128
7.2 Preliminaries 129
7.3 Problem and Model . .. 131
7.4 Optimal Deterministic Algorithm 133
7.5 Competitive Randomized Algorithm 136
7.6 Conclusions. 139

8 One-Way Trading with Time-Varying Bounds 141
8.1 Introduction. 142

8.1.1 Freshness of Concurrent Data Objects 142
8.1.2 Our contributions. 144

8.2 The Lower Bound of Competitive Ratios 145
8.3 Optimal threat-based policy for the second model 148
8.4 Conclusions. 159

9 Conclusions and Future Research 161

iv CONTENTS

List of Figures

2.1 The bus-based and crossbar-switch-based UMA systems. 8
2.2 The SGI Origin 2000 architecture with 32 processors, whereR is

a router. 9
2.3 Synchronization primitives. 10
2.4 The structure of concurrent processes in the mutual exclusion . . . 11
2.5 Thetest-and-set lock . 12
2.6 Thetest-and-test-and-set lock 12
2.7 The splitter element .. 14
2.8 Freshness problem .. 18
2.9 A diffracting tree(A) and a reactive diffracting tree(B). 20

3.1 Recursive helping policy and software transactional memory . . . 29
3.2 Reactive-CASN states and reactive-CAS4 data structure. 32
3.3 Reactive CASN description. 32
3.4 The term definitions .. 33
3.5 Synchronization primitives. 36
3.6 Data structures in our first reactive multi-word compare-and-swap

algorithm . 36
3.7 Procedures CASN and Help in our first reactive multi-word compare-

and-swap algorithm .. 38
3.8 Procedures Locking and CheckingR in our first reactive multi-word

compare-and-swap algorithm. 39
3.9 Procedures Updating and Unlocking/Releasing in our first reactive

multi-word compare-and-swap algorithm 40
3.10 Circle-helping problem: (A) Before helping; (B) Afterp1 helps

CAS32 acquireMem[2] andMem[5]. 42
3.11 Procedures Help and Unlocking in our second reactive multi-word

compare-and-swap algorithm.. 44

v

vi LIST OF FIGURES

3.12 Procedures CheckingR in our second reactive multi-word compare-
and-swap algorithm and the procedure for Read operation.. . . . 45

3.13 Shared variables with procedures reading or directly updating them 46
3.14 The numbers of CAS2s, CAS4s and CAS8s and the number of

successful CAS2s, CAS4s and CAS8s in one second 53

4.1 Delation ofp. 64
4.2 t1, t2 andt3 for a process. .. 65
4.3 Processp, q1, q2, q3, q4 are inp’s delay graph. The depth ofp is 3,

q1’s depth is also 3.. 66
4.4 Depth(p)=1. 68
4.5 The single-word compare-and-swap primitive. 70
4.6 The distributions of the longest wait-queue lengths in the micro-

benchmark on the SGI Origin2000. 72
4.7 The micro-benchmark execution times on the SGI Origin2000. . . 73
4.8 The algorithm for a threadtk in computing one result/output . . . 75
4.9 The application execution times on the SGI Origin2000. 75

5.1 The structure for parallel applications 79
5.2 Synchronization primitives, wherex is a variable andv, old, new

are values.. 80
5.3 The execution time and the lock fairness of the Spark98 benchmark

on an SGI Origin3800.. 82
5.4 The transaction phases of contention variations on the lock. 86
5.5 The Acquire and Release procedures. 89
5.6 The table of manually tuned parameters forTTSE andTicketP

in Spark98, Volrend and Radiosity applications on the SGI Ori-
gin2000 and the Intel Xeon workstation, wherebe, le are respec-
tively TTSE’s delay base anddelay upper limit for exponential
backoff, andbp is TicketP ’s delay base for proportional backoff
delays. Thebe, le andbp are measured by the number of null-loops. 95

5.7 The execution time of Spark98, Volrend and Radiosity applications
on the SGI Origin2000.. 95

5.8 The execution time of Spark98, Volrend and Radiosity applications
on a workstation with 2 Intel Xeon processors.. 96

6.1 A diffracting tree(A) and a reactive diffracting tree(B). 102
6.2 A self-tuning reactive tree. 105
6.3 The tree basic data structure and the synchronization primitives . . 109

LIST OF FIGURES vii

6.4 The TraverseTree, TraverseB, TraverseL, CheckCondition, Surplus2Latency
and Latency2Surplus procedures 110

6.5 TheGrow, Elect2Shrink andShrink procedures. 113
6.6 TheNextCount function in theGrow procedure 114
6.7 Illustrations forGrow andShrink procedures 114
6.8 TheNextCount function inShrink procedure. 115
6.9 The BasicAssign, Assign, Read, and AcquireLockcond operations 116
6.10 An illustration for the need ofread-and-follow-link operation . . . 117
6.11 Throughput and average depth of trees in the full-contention bench-

mark on SGI Origin2000. 122
6.12 Average depths of trees in the surge load benchmark on SGI Ori-

gin2000, the fastest and the average reactions.. 124
6.13 Throughput of trees in the surge load benchmark on SGI Origin2000.125

7.1 Illustrations for concurrent reading/writing and freshness problem 131
7.2 Illustrations for Theorem 2 and the randomized algorithm 136

8.1 Freshness problem .. 143
8.2 Illustration for the proof of Theorem 4. 147
8.3 Numerical comparison of competitive ratios among different algo-

rithms. The last row shows values ofk corresponding to the ratios
c in the improved TBP. 158

viii LIST OF FIGURES

Chapter 1

Introduction

Parallel systems aim at supporting computation capacity for large parallel appli-
cations in many research areas like high-energy physics, biomedical sciences and
earth sciences. Such applications consist of tasks/processes that run concurrently
and share common data/resources. Since most of the shared resources do not al-
low more than one process to access them concurrently in a predictive manner, the
processes need to be synchronized efficiently. The conventional method to syn-
chronize concurrent processes ismutual exclusion (e.g. semaphore, monitor). Mu-
tual exclusion degrades the system’s overall performance as it causes blocking (cf.
Section 2.2). To address the drawbacks of mutual exclusion, a concept callednon-
blocking synchronization has been proposed for shared resources (cf. Section 2.3).
Non-blocking synchronization entails implementations of fundamental data struc-
tures that allow many processes to access them concurrently. The implementations
are known asconcurrent data structures.

On one hand, concurrent data structures aim at improving performance by max-
imizing parallelism. On the other hand, since the data structures allow many pro-
cesses to concurrently access them, the contention level on them is high, subse-
quently degrading performance. Generally, simple data structures perform well in
the absence of contention but perform poorly in high-congestion situations. Con-
trarily, sophisticated data structures that can scale and perform well in the presence
of high contention usually suffer unnecessary high latency when there is no con-
tention. Efficient concurrent data structures should be able to adapt their algorith-
mic complexity to contention variation. This fact raises a question on constructing
reactive concurrent data structures and algorithms that can react to contention vari-
ation so as to achieve good performance in all conditions.

There exist reactive concurrent data structures and algorithms in the litera-
ture [2, 7, 25, 66, 75]. However, their reactive schemes rely on either some experi-

2 CHAPTER 1. INTRODUCTION

mentally tuned thresholds or known probability distributions of some inputs. Such
fixed experimental thresholds may frequently become inappropriate in variable and
unpredictable environments such as multiprogramming systems. The assumption
on known probability distributions of some inputs is usually not feasible.

These issues motivated us to research and develop efficient reactive concurrent
data structures and algorithms that require neither experimentally tuned thresholds
nor probability distributions of inputs. In order to develop such concurrent data
structures and algorithms, we need to deal with unpredictability in execution envi-
ronments. Our approach is to synthesize non-blocking synchronization techniques
and advanced on-line algorithmic techniques (e.g. on-line trading), in the context
of reactive concurrent data structures. Working on this research direction, we have
achieved the following results.

1.1 Our Contributions

1.1.1 Universal Constructions for Concurrent Data Structures

We have developed and implemented new reactive multi-word compare-and-swap
objects [39,40]. The multi-word compare-and-swap objects are powerful construc-
tions, which make the design of concurrent data structures much more convenient
and efficient.

Shared memory multiprocessor systems typically provide a set of hardware
primitives in order to support synchronization. Generally, they providesingle-word
read-modify-write hardware primitives such as compare-and-swap, load-linked/store-
conditional and fetch-and-op, from which higher-level synchronization objects are
then implemented in software. Although thesingle-word hardware primitives are
conceptually powerful enough to support higher-level synchronization, from the
programmer’s point of view they are not as useful as their generalizations, the
multi-word objects. This has motivated us to develop two fast and reactive lock-free
multi-word compare-and-swap algorithms. The algorithms dynamically measure
the level of contention as well as the memory conflicts of themulti-word compare-
and-swap objects, and in response, they react accordingly in order to guarantee
good performance in a wide range of system conditions. The algorithms are non-
blocking (lock-free), allowing in this way fast dynamical behavior. Experiments
on thirty processors of an SGI Origin2000 multiprocessor have showed that both
our algorithms react quickly to the contention variations and outperform the best-
known alternatives in almost all contention conditions. The algorithms, together
with their implementation details, are described in Chapter 3.

Subsequently, we have developed a general multi-word locking method that
allows processes to efficiently multi-lock arbitrary registers [41]. Multi-word lock-

1.1. OUR CONTRIBUTIONS 3

ing methods, together with appropriate helping schemes, are the core of universal
constructions like multi-word compare-and-swap objects. We have examined the
general multi-word locking problem, where processes are allowed to multi-lock
arbitrary registers. Aiming for a highly efficient solution, we have proposed a ran-
domized algorithm that successfully breaks long dependency chains, the crucial
factor for slowing down an execution. In the analysis, we have focused on the
2-word locking problem and showed that in this special case an execution of our
algorithm takes with high probability at most timeO(∆3 log n/ log log n), where
n is the number of registers and∆ is the maximal number of processes interested
in the same register (the contention). Furthermore, we have implemented our al-
gorithm for the general multi-word lock problem on an SGI Origin2000 machine,
demonstrating that our algorithm is not only of theoretical interest. The algorithm,
together with its analysis, is described in Chapter 4.

1.1.2 Reactive Spin-locks

We have developed and implemented a new reactive lock-based synchronization
algorithm that can automatically react to contention variation on the lock [38]. The
algorithm is based on synchronization structures of applications and competitive
online algorithms.

Reactive spin-lock algorithms that can automatically react to contention varia-
tion on the lock have received great attention in the field of multiprocessor synchro-
nization. This results from the fact that the algorithms help applications achieve
good performance in all possible contention conditions. However, to make deci-
sions, the reactive schemes in the existing algorithms rely on (i) somefixed experi-
mentally tuned thresholds, which may frequently become inappropriate in dynamic
environments like multiprogramming/multiprocessor systems, or (ii) known prob-
ability distributions of inputs, which are usually not available. This has motivated
us to develop a new reactive spin-lock algorithm that is completely self-tuning,
which means no experimentally tuned parameter nor probability distribution of in-
puts is needed. The new spin-lock is built on a competitive online algorithm. Our
experiments, which use the Spark98 kernels and the SPLASH-2 applications as
application benchmarks, on a multiprocessor machine SGI Origin2000 and on an
Intel Xeon workstation have showed that the new self-tuning spin-lock helps appli-
cations with different characteristics to achieve good performance in a wide range
of contention levels. The algorithm, together with its implementation details, is
described in Chapter 5.

4 CHAPTER 1. INTRODUCTION

1.1.3 Self-Tuning Diffracting Trees

We have developed and implemented new self-tuning reactive trees that distribute
a set of memory accesses to different memory banks in a coordinated manner [37].
The trees reactively adapt their size to contention variation, attaining good perfor-
mance at all contention levels.

Reactive diffracting trees [25] are efficient distributed data structures that sup-
ports synchronization. The trees distribute a set of processes to smaller subsets
that access different parts of memory in a global coordinated manner. They also
adjust their size to attain good performance in the presence of different contention
levels. However, their adjustment is sensitive to parameters that have to be man-
ually tuned and determined after experimentation. Since these parameters depend
on the application as well as on the system configuration, determining their optimal
value is hard in practice. On the other hand, as the trees grow or shrink by only
one level at a time, the cost of multi-level adjustments is high. This has motivated
us to develop new reactive diffracting trees for counting and balancing without the
need to tune parameters manually. The new trees, in an on-line manner, balance
the trade-off between the tree traversal latency and the latency due to contention
at the tree nodes. Moreover, the trees can grow or shrink by several levels in one
adjustment step, improving their efficiency. Their efficiency is illustrated via ex-
periments, which compare the new trees with the traditional reactive diffracting
trees. The experiments, which have been conducted on an SGI Origin2000, a well-
known commercial ccNUMA multiprocessor, have showed that the new trees select
the same tree depth, perform better and react faster than the traditional trees. The
tree algorithm, together with its implementation details, is described in Chapter 6.

1.1.4 Freshness Algorithms for Wait-free Data Objects

We have analyzed the freshness problem of concurrent data objects1 as an online
problem and subsequently developed two online algorithms for the problem: an
optimal deterministic algorithm and a competitive randomized algorithm [23].

Wait-free concurrent data objects are widely used in multiprocessor systems
and real-time systems. Their popularity results from the fact that they avoid lock-
ing and that concurrent operations on such data objects are guaranteed to finish
in a bounded number of steps regardless of the other operations interference. The
data objects allow high access parallelism and guarantee correctness of the concur-
rent access with respect to its semantics. In such a highly concurrent environment,
where write-operations update the object state concurrently with read-operations,
the age/freshness of the state returned by a read-operation is a significant measure

1A data structure that is considered as a basic building block is calleddata object in this thesis.

1.1. OUR CONTRIBUTIONS 5

of the object quality, especially in reactive/detective real-time systems. To address
the problem, we have first proposed a freshness measure for wait-free concurrent
data objects. Subsequently, we have modeled the freshness problem as an online
problem and developed two algorithms for the problem. The first one is a determin-
istic algorithm with freshness competitive ratio

√
α, whereα is a function of the

execution-time upper-bound of the wait-free operations. Moreover, we have proved
that

√
α is asymptotically the optimal freshness competitive ratio for deterministic

algorithms, implying that the first algorithm is optimal. The second algorithm is
a competitive randomized algorithm with freshness competitive ratioln α

1+ln 2− 2√
α

.

The algorithms, together with their analysis, are described in Chapter 7.

1.1.5 One-Way Trading with Time-Varying Bounds

We have developed new online trading models to which more practical problems
in parallel/distributed systems can be transformed in order to find an optimal solu-
tion [24]. For the models, we have proved lower bounds of competitive ratios and
suggested an optimal competitive algorithm.

One-way trading is a basic online problem in finance. Since its optimal solu-
tion is given by a simple formula (however with difficult analysis), the problem is
attractive as a target to which other practical online problems can be transformed.
However, there are still natural online problems that do not fit in the known vari-
ants of one-way trading. We have developed some new models where the bounds
of exchange rates are not constant but vary with time in certain ways. The first
model, where the (logarithmic) exchange rate has limited decay speed, arises from
an issue in distributed data structures, namely to maximize the freshness of values
in concurrent objects. For this model we have proved a lower bound on competitive
ratios which is nearly optimal, i.e., up to a small constant factor. Clearly, the lower
bound holds also against stronger adversaries. Subsequently, we have presented
an optimal algorithm in a model where only the maximal allowed exchange rate
decreases with time, but the actual exchange rates may jump arbitrarily within this
frame. We have chosen this more powerful adversary model afterwards because
some applications do not make use of the limited decay speed. Our numerical
experiments have suggested that this algorithm is still not too far from the lower
bound for the weaker adversary. This is explained by the observation that slowly
increasing exchange rates seems to be the worst case for the online player. The new
models and the algorithm, together with their analysis, are described in Chapter 8.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Shared Memory Multiprocessors

In this section, we give a brief overview of shared memory multiprocessors, the
computer architecture that most of the work in this thesis concerns.

A multiprocessor system can be considered as “a collection of processing el-
ements that communicate and cooperate to solve large problems fast” [22]. This
description shows the significant role of communication architecture which can
be based on eithermessage passing or shared memory. In message passing sys-
tems, the communication is done via sending and receiving messages. In shared
memory multiprocessor systems, processors communicate by writing and reading
shared variables in a common memory address space. Depending on the features of
processor-to-memory interconnection, shared memory multiprocessor systems can
be classified into two subclasses: uniform memory access (UMA) and non-uniform
memory access (NUMA).

Uniform Memory Access (UMA): In the UMA systems, references from pro-
cessors to memory banks have the same latency. The interconnection networks
often used in UMA systems are bus and crossbar-switch types. In bus-based UMA
systems as depicted in Figure 2.1, all processors access memory banks via a central
bus and consequently the bus becomes a bottle-neck when the number of proces-
sors increases. Since the bandwidth of the bus is still fixed when more processors
are connected to the bus, the average bandwidth for each processor decreases as
the number of processors increases. Therefore, the bus-based architecture limits
the system’s scalability. Unlike bus-based UMA systems, crossbar-switch based
UMA systems increase the aggregate bandwidth when adding new processors. As
depicted in Figure 2.1, each processor in the system has an interconnection to each

8 CHAPTER 2. BACKGROUND

Mem Mem ...

PP ...

Mem

Shared Bus

P P P

Mem

Mem

Mem

Mem Crossbar switch

Figure 2.1: The bus-based and crossbar-switch-based UMA systems

memory bank. Therefore, bandwidth is not a problem to the system when adding
new processors, but the problem is to expand the switch: the cost increment is
quadratic to the number of ports.

Since it is expensive to design a scalable UMA system, an alternative design
called non-uniform memory access (NUMA) has been proposed.

Non-Uniform Memory Access (NUMA): As their name mentions, NUMA sys-
tems have different latency of references from a processor to memory banks. In
the system, the shared memory banks are distributed among processors in order
to alleviate traffic on the processor-to-memory interconnection: references from
a processor to its memory bank do not incur traffic on the interconnection. This
makes local-memory references faster than remote-memory ones. Although the
physical memory banks are distributed, the same virtual address space is shared by
the whole system and memory controllers handle the mapping from the virtual ad-
dress space to the physical distributed memory banks. Such memory architecture
is called distributed shared memory (DSM). The NUMA architecture reduces both
the average access time and the bandwidth demand on the interconnection because
requests to local memory banks are executed locally.

Moreover, in order to increase performance and reduce the memory access
time, cache is exploited in modern systems. The data from memory is replicated
into caches of processors and the system supports means to keep the caches con-
sistent. Such a system is called cache-coherent non-uniform memory access (cc-
NUMA).

The SGI Origin 2000 [64], which has been used for the experiments in this the-

2.1. SHARED MEMORY MULTIPROCESSORS 9

R

R

R

R

N

N

N

N

NN

NN

R

R

R

R

N

N

N

N

NN

NN

Hub

R10000 R10000

Mem & Directory

Single node

Figure 2.2: The SGI Origin 2000 architecture with 32 processors, whereR is a
router.

sis, is a commercial ccNUMA machine. The machine can support up to 512 nodes,
which each contains 2 MIPS R10000 processors and up to 4GB of memory. The
machine uses distributed shared memory (DSM) and maintains cache-coherence
via a directory-based protocol, which keeps track of the cache-lines from the cor-
responding memory. A cache-line consists of 128 bytes. The machine architecture
is depicted in Figure 2.2

2.1.1 Synchronization Primitives

In order to synchronize processes efficiently, modern shared memory multiproces-
sors support somestrong synchronization primitives. The primitives are classified
according to theirconsensus number [46], the maximum number of processes for
which the primitives can be used to solve aconsensus problem in a fault tolerant
manner. In the consensus problem, a set ofn asynchronous processes, each with a
given input, communicate to achieve an agreement on one of the inputs. A primi-
tive with a consensus numbern can achieve consensus amongn processes even if
up ton − 1 processes stop [102].

According to the consensus classification, read/write registers have consensus
number 1, i.e. they cannot tolerate any faulty processes in the consensus setting.
There are some primitives with consensus number 2 and some with infinite con-
sensus number. In this subsection, we present only the primitives used in this the-
sis. The synchronization primitives related to our algorithms are two primitives
with consensus number 2:test-and-set (TAS) and fetch-and-op (FAO) and two

10 CHAPTER 2. BACKGROUND

TAS(x) /* init: x ← 0 */
atomically{

oldx ← x;
x ← 1;
return oldx;
}

FAO(x, v)
atomically {

oldx ← x;
x ← op(x, v);
return(oldx)
}

CAS(x, old, new)
atomically {

if(x = old)
x ← new;
return(true);

else return(false);
}

LL(x){
return the value of x so that it may
be subsequently used with SC
}

VL(x)
atomically {

if (no other process has written to x
since the last LL(x))

return(true);
else return(false);
}

SC(x, v)
atomically {

if (no other process has written to x
since the last LL(x))

x ← v; return(true);
else return(false);
}

Figure 2.3: Synchronization primitives

primitives with infinite consensus number:compare-and-swap (CAS) and load-
linked/validate/store-conditional (LL/VL/SC). The definitions of the primitives are
described in Figure 2.3, wherex is a variable,v, old, new are values andop can be
operatorsadd, sub, or, and andxor.

For the systems that supportweak LL/SC1 or the systems that supportCAS, we
can implement theLL/VL/SC instructions algorithmically [80]. Since bothLL/SC
andCAS are primitives with infinite consensus number, or universal primitives, one
primitive can be implemented from the other.

2.2 Mutual Exclusion

In shared memory multiprocessor systems, processes communicate by writing and
reading shared variables or shared objects. In order to guarantee the consistency of

1The weak LL/SC instructions allow the SC instruction to returnfalse even though there was no
update on the corresponding variable since the last LL.

2.2. MUTUAL EXCLUSION 11

while true do
Noncritical section;
Entry section;
Critical section;
Exit section;

od

Figure 2.4: The structure of concurrent processes in the mutual exclusion

the object state/value, the conventional method is to use mutual exclusion, which
allows only one process to access the object at one time. A brief description of
mutual exclusion research is given in this section.

In mutual exclusion, each concurrent process repeatedly executes anoncritical
section and acritical section as depicted in Figure 2.4, whereNoncritical section
contains the code not accessing the shared object;Entry section contains the code
responsible for resolving the conflict among concurrent processes so that only one
can pass by this section and all other processes have to wait here until the winner
exits the critical section;Critical section contains the code accessing the shared
object; andExit section contains the code to inform other waiting processes that
the winner has left the critical section. A mutual exclusion algorithm consists of
the Entry and Exit sections. Mutual exclusion algorithms must satisfy the two
following requirements [4]:

Exclusion : at most one process can be at the critical section at any point in time.

Livelock-freedom : if there are some processes in the entry section, one process
will eventually enter the critical section.

Moreover, an efficient mutual exclusion algorithm should generate small overhead,
i.e delay time, due to the execution of entry and exit sections.

In systems where many processes can be executed concurrently by the same
processor, there are two options for waiting processes in the entry section:blocking
or busy-waiting. In the blocking mode, waiting processes relinquish their proces-
sors , allowing other processes to execute useful tasks. This mode, however, incurs
the context-switching cost: waiting processes’ contexts must be saved and contexts
of other processes must be restored. In the busy-waiting mode, waiting processes
continuously check shared variables (or a lock) protecting the critical section; these
are known asspinning algorithms. In this mode, processes waste processor time
on checking the lock. Therefore, an efficient mutual exclusion algorithm should
keep waiting processes in the busy-waiting mode when the waiting time is short

12 CHAPTER 2. BACKGROUND

and should switch them to the blocking mode when the waiting time is long. How-
ever, the waiting time in which the lock will be held is normally unknown prior to
the decision point. This challenge has attracted a lot of attention to this research
field [2,7,54,58]; especially Karlin et al. [58] presented five competitive strategies
for determining whether and how long to busy-wait before blocking.

In systems where each process is executed on a separate processor, the blocking
mode is no longer necessary since no other process will use the relinquished pro-
cessor. However, even in this case, the busy-waiting mode still encounters another
challenge: if processes/processors continuously execute read-modify-write opera-
tions on the lock, this may incur high network traffic and high memory contention.
A simple mutual exclusion algorithm known as atest-and-set lock is depicted in
Figure 2.5. Since theTAS primitive requires a “write” permission even when it
fails to update thelock variable, it causes aread-miss in cache-coherent multipro-
cessor systems. All processors experiencing the read-miss will concurrently access
the variable in order to read its unchanged value again, causing an access burst on
both the processor-to-memory interconnection and the memory module containing
the variable. Therefore, continuously executingTAS inside the while-loop incurs
a very high load, slowing down all accesses to the interconnection and to other
non-contended variables on this memory module.

shared lock := 0;
acquire(){ while (TAS(lock) = 1); }
release(){ lock := 0; };

Figure 2.5: Thetest-and-set lock

Test-and-test-and-set locks: In order to reduce the surge load caused byTAS,
an improved version of the test-and-set lock has been suggested, which is known
as atest-and-test-and-set lock (cf. Figure 2.6). The improvement is to execute
TAS only if the lock is available, i.e.lock �= 1. In cache-coherent multiprocessor
systems, thelock variable is cached at each processor and thus reading the variable
does not incur any network traffic.

acquire(){ while (lock = 1 or TAS(lock) = 1); }

Figure 2.6: Thetest-and-test-and-set lock

Backoff technique: Although the improved version significantly reduces net-
work traffic and memory conflict, continuously checking the cached variable still
incurs a surge load when the lock is released. At that time, all waiting processors

2.2. MUTUAL EXCLUSION 13

will concurrently try to executeTAS on the variable as in the test-and-set lock. In
order to avoid the situation where all processors concurrently realize that the lock
is available, a delay is inserted between two consecutive iterations. How long the
delay should be is an interesting issue. Agarwal et al. [2] suggested an exponen-
tial backoff scheme, where the delay on each processor will be doubled up to a
limit every time the processor checks and finds the lock unavailable. The backoff
scheme has been showed to work in practice, but it needs manually tuned parame-
ters, namely the initial delay and the upper limit of the delay. Inaccurately chosen
parameters will significantly affect the lock performance.

Queue-lock: In the aforementioned algorithms, busy-waiting loops need to ac-
cess a common lock variable. The variable consequently becomes a bottleneck,
limiting the scalability of the system. This has motivated researchers to develop
local-spin algorithms [7, 21, 32, 73, 77, 110] in which busy-waiting loops access
only shared variables that arelocally accessible. Such algorithms are especially
efficient in cache-coherent multiprocessors and in distributed shared-memory pro-
cessors. A variable is locally accessible if either a copy of the variable is in the
local cache (for the former) or the variable is stored in the local partition of the
shared memory (for the latter). The most practical local-spin algorithms in the lit-
erature are queue-locks [7,21,32,73,77]. The idea is that each processor spins on a
separate variable and subsequently the variable will be cached at the corresponding
processor. These spin-variables are linked together to construct a waiting queue.
When the winner releases the lock, it informs the first processor in the waiting
queue by writing a value to the processors spin-variable. Since only one processor
is informed that the lock is available, no conflict among waiting processors occurs
when the lock is released.

Algorithms using only Read/Write: All aforementioned mutual exclusion algo-
rithms exploit strong synchronization primitives such asTAS, FAO andCAS.
Another major research trend on mutual exclusion is to design mutual exclusion
algorithms using onlyRead andWrite operations that are faster than the strong
synchronization primitives. The trend has been initiated by Lamport’s fast mu-
tual exclusion algorithm [63] that has been generalized to thesplitter element [10].
Figure 2.7 describes the splitter and its implementation. A beautiful feature of the
splitter is that ifn concurrent processes enter the splitter, the splitter will split the
set of concurrent processes such that: i) at most one stops at the splitter, ii) at most
n − 1 processes go right and iii) at mostn − 1 processes go down. That means if
we have a complete binary tree of splitters with depthn − 1, all n concurrent pro-
cesses entering at the root of the tree will be kept within the tree and each splitter
will keep at most one process.

14 CHAPTER 2. BACKGROUND

shared Y := 0,X;
splitter(pid){

X := pid;
if Y �= 0 then return Right;
else

Y := pid;
if X �= pid then return Down;
else return Stop;

}

stop
n−1

right

down

1

n

n−1

Figure 2.7: The splitter element

Drawbacks

Although substantial research effort has been devoted to the improvement of mu-
tual exclusion algorithms, the concept of lock-based synchronization itself contains
inevitable drawbacks:

• Risk of lock convoy and deadlock: In lock-based synchronization, one pro-
cess slowing down can make the whole system consisting of many processes
slow down. If the process that is holding the lock is delayed for some rea-
son, e.g. due to preemption, page faults, cache misses or interrupt handling,
other processes waiting for the lock must suffer the delay even though they
are running on other independent and fast processors. Moreover, if the lock
holder suddenly crashes or cannot proceed to the point where it releases the
lock, all processes waiting for the lock to be released will wait forever.

• Risk of priority inversion: In real-time systems, a high-priority task must be
executed before lower-priority tasks in order to meet its deadline. However,
if the tasks communicate using lock-based synchronization, a low-priority
task can delay a higher-priority task even if they do not share any objects.

For example, assume there are three tasksT1, T2, T3, whereT1 has the high-
est priority andT3 has the lowest priority.T1 andT3 share a resource pro-
tected by a lock. Assume thatT3 is holding the lock and thusT1 is delayed
by T3 until T3 releases the lock. BeforeT3 releases the lock,T2 with higher
priority thanT3 will delay T3 and thus delayT1. We see that even though
T1 andT2 do not share any resource, the lower priority taskT2 can delay the
higher priority taskT1.

These risks can be eliminated using complicated operation system supports like
blocking-aware schedulers and priority-inheritance protocols [89], which entail ad-

2.3. NON-BLOCKING SYNCHRONIZATION 15

ditional overhead. Because of the drawbacks of the lock-based synchronization, an
alternative callednon-blocking synchronization has been suggested and it has be-
come a major research trend in the area.

2.3 Non-blocking Synchronization

To address the drawbacks of lock-based synchronization, a new concept ofnon-
blocking synchronization has been proposed for shared resources. Non-blocking
synchronization does not involve mutual exclusion, and therefore does not suffer
from the problems that blocking can cause. Non-blocking algorithms are either
lock-free or wait-free.

A lock-free implementation of a concurrent data structure guarantees that al-
waysat least one of the concurrent operations executed by processes progresses
regardless of the interleaving caused by the other operations. A general approach
is that each operation makes its own copy of the shared data, updates the copy
and finally makes the copy become the current data. The final step is usually done
by switching a pointer using strong synchronization primitives like compare-and-
swap or load-linked/store-conditional to avoid race conditions. This approach has
drawbacks like the high cost of copying the whole data and loss ofdisjoint-access-
parallelism. Disjoint-access-parallelism [53] means that processes accessing no
common portion of the shared data should be able to progress in parallel. Another
approach is to use a set of locks to protect the shared data, each associated with
a small portion of the data. To avoid blocking problems arising from the mutual
exclusion, a process executing an operationoi musthelp the contending operation
oj complete before continuing to executeoi.

However, lock-free implementations encounter a risk of starvation since the
progress of other processes could cause one specific process to never finish.Wait-
free [46] implementations are lock-free and moreover they avoid starvation. In
a wait-free implementation,each operation is guaranteed to finish in a bounded
number of steps, regardless of the actions of other concurrent operations on the
same data. The basic idea is to improve the fairness (with respect to response
time) among contending operations. Since lock-free/wait-free algorithms are guar-
anteed to progress regardless of process failures, the algorithms are strongly fault-
tolerant. Lock-free/wait-free algorithms have been shown to be of big practical
importance [70,79,100,101].

Recently, a concept ofobstruction-freedom has been proposed due to exces-
sive helping overhead in lock-free/wait-free implementations. Obstruction-free im-
plementations guarantee termination only in the absence ofstep contention [11],
the number of concurrent processes whose steps are interleaved. The absence of

16 CHAPTER 2. BACKGROUND

step contention does not preclude scenarios in which other processes are failed,
swapped-out or have outstanding operations on the same data but are not accessing
the data. Obstruction-free implementations avoid deadlock and priority-inversion
arising from the mutual exclusion, but they encounter live-lock in the presence of
step contention. The present solution for the live-lock is to use acontention man-
ager [11,36,48,108].

Since non-blocking algorithms do not involve mutual exclusion and allow pro-
cesses to access shared data concurrently, their criteria for consistency correctness
are more complex than those of mutual exclusion. A well-known correctness con-
dition is linearizability [50], which means that a concurrent execution is correct if
there is an equivalent sequential execution that preserves the partial order of the
real execution. Linearizability requires that operations on the shared data appear to
take effect atomically at a point of time in their execution interval.

2.3.1 Universal Constructions

Since implementing data structures in a non-blocking manner is notoriously so-
phisticated, substantial research effort has been devoted to developuniversal con-
structions like multi-word atomic objects and software transactional memory, which
alleviate the burden of transforming sequential implementations of data structures
into non-blocking concurrent ones.

Herlihy [47] proposed a methodology for implementing concurrent data ob-
jects where interferences among processes are prevented by generating a private
copy of the portions changed by each process. In the methodology, large objects
are partitioned into portions (by designers) that are linked together using pointers.
Each operation makes alogical copy of the object in which read-only portions are
physically shared among the copies to minimize overhead. However, for common
objects like FIFO queues implemented as linked lists of portions, operations like
enqueue must copy the whole object since changing the next pointer of a portion
results in copying the portion. The disadvantages of the methodology are the high
cost of copying large objects and loss ofdisjoint-access-parallelism [53]. The
disjoint-access-parallelism means that processes accessing no common portion of
the shared data should be able to progress in parallel.

Barnes [14] later suggested acooperative technique which allows many pro-
cesses to access the same data structure concurrently as long as the processes write
down exactly what they will do. Before modifying a portion of the shared data,
a processp1 checks whether this portion is used by another processp2. If this
is the case,p1 will first cooperate withp2 to completep2’s work. Israeli and Rap-
poport [53] transformed this technique into more applicable one, where the concept
of disjoint-access-parallelism was introduced. All processes try to lock all portions

2.3. NON-BLOCKING SYNCHRONIZATION 17

of the shared data they need before writing back new values to the portions one
by one. Anowner field is assigned to every portion of the shared data to inform
the processes which process is the current owner of the portion. The technique has
subsequently been used to develop wait-free universal constructions [1,5].

However, the disadvantage of thecooperative technique is that the process,
which is being blocked by another process, does not release the portions of the
shared data it is holding when helping the blocking process. If these portions were
released, processes blocked on them would be able to progress. Thiscooperative
technique uses arecursive helping policy, and the time needed for a blocked pro-
cessp1 to help another processp2 may be long. The longer the response time of
p1, the larger the number of processes blocked byp1. The processes blocked byp1

will first help p1 and then continue to helpp2 even when they andp2 access disjoint
parts of the shared data. This problem will be solved ifp1 does not conservatively
keep its portions while helping the blocking processp2.

Shavit and Touitou [92] realized the problem and presented a lock-freesoft-
ware transactional memory (STM). In STM, a processp1 that is being blocked
by a processp2 releases its portions immediately before helpingp2. Moreover,
a blocked process helps at most one blocking process, sorecursive helping does
not occur. Lock-free STM has been improved with respect to performance, space
overhead and dynamic collections of shared data [29]. Recently, obstruction-free
STM has been proposed [49,75].

However, from efficiency point of view, STM is not an ideal technique to im-
plement concurrent data structures since the blocked process releases its portions
regardless of the contention level on them. That is, even if there is no other process
requiring the portions at this time, it still releases them, and after helping the block-
ing process, it may have to compete with other processes to acquire the portions
again. Moreover, even if a process is holding all portions it needs except for the
last one, which is being held by another process, it still releases all its portions and
then starts from scratch. In this case, it should realize that not many processes are
waiting for its portions and that it is almost successful, so it should try to keep its
current portions as in thecooperative technique.

2.3.2 Freshness

Concurrent data-structures/data-objects play a significant role in distributed com-
puting. As a result, many of their aspects have been researched deeply such as con-
sistency conditions [13,50,90], concurrency hierarchy [30] and fault-tolerance [74].
In this section, we introduce another aspect of concurrent data objects: freshness
of states/values returned by read-operations of read-write objects.

Freshness is a significant property for shared data in general and has received

18 CHAPTER 2. BACKGROUND

great attention in databases [18, 56, 85] as well as in caching systems [60, 65, 68].
Briefly, freshness is a yardstick to evaluate how fresh/new a value of a concur-
rent object returned by its read-operation is, when the object is updated and read
concurrently. For concurrent data objects, although read-operations are allowed to
return any value written by other concurrent operations, they are preferred to return
the most fresh/latest one of these valid values, especially in reactive/detective sys-
tems. For instance, monitoring sensors continuously concurrently input data via a
concurrent object and the processing unit periodically reads the data to make the
system react accordingly. In such systems, the freshness of data influences how
fast the system reacts to environment changes.

W3

p2

W2

W1

e3

e2

e1

p3

p4
s0

R0

e0 e0 + De0 + t

p1

W4

Figure 2.8: Freshness problem

Figure 2.8 illustrates the freshness problem. A read-operationR0 runs con-
currently with three write-operationsW1, W2 andW3 on the same object, where
the execution-time upper-boundD of the (wait-free) read/write operations on the
object is known. Each operation takes effect at an endpointei (i.e. linearization
point [50]) that happens at an unpredictable time before timeD. At the endpoint
e0, the number of ongoing write-operationsM is given. The freshness problem is
to find a delayt, a real number in[0, D], so that the new endpointe′0 = e0 + t

of the read-operationR0 has an optimal freshness valueft = k(#wet)
h(t) , where

#wet is the number of further write-operation endpoints earned by the delayt,
e.g. #weD = M ; andk, h are increasing functions that reflect the relation be-
tween freshness and latency in real applications. The read-operation is only al-
lowed to read the object data and check the number of ongoing write-operations.
The write-operation is only allowed to write data to the object.

In Figure 2.8, read-operationR0 earns two more endpointse1, e2 of concur-
rent write-operationsW1, W2 due to delaying endpointe0 by t, and thus returns
a fresher value. Intuitively, ifR0 delays the endpointe0 by D, it will return the

2.4. DISTRIBUTED DATA STRUCTURES FOR COUNTING AND BALANCING19

freshest value at endpointe3
2. However, from the application point of view the

read-operationR0 in this case will respond most slowly. Therefore, the goal in the
freshness problem is to design read-operations thatrespond fast as well asreturn
fresh values. Since there are two conflicting objectives for read-operations:fast
response and fresh value, we define a measure of freshness as a function that is
monotone increasing in the number of earned endpoints and decreasing in time.

The freshness problem is especially interesting in reactive/detective systems
where monitoring sensors continuously and concurrently input data to the system
via a concurrent data object and a processing unit periodically reads the data to
make the system react accordingly. The period of reading data is denoted byT .
If the read-operationR0 of the processing unit returns data ate0, the system will
change its state according to the old data and will keep this state until the next
period. IfR0 delays its endpointe0 by timet < T , the system will change its state
according to the data ate1, which means the system in this case may react faster to
environment changes.

2.4 Distributed Data Structures for Counting and Balanc-
ing

As we have seen above, performance of concurrent data structures is much im-
proved if the contention on the shared data is not too high. With this idea in mind,
many researchers have focused on developing distributed data structures that can
alleviate the contention on the shared data. These data structures distribute pro-
cesses into small groups, each of which accesses a different part of the distributed
shared data in a coordinated manner, for instance queue-locks [7, 32, 77], combin-
ing trees [31,111], counting pyramids [106,107], combining funnels [95], counting
networks [8, 9] and diffracting trees [93, 94]. Whereas queue-locks aim at reduc-
ing contention on locks generally, the other sophisticated data structures focus on
specific problems such as counting and balancing in order to enhance efficiency.
Combining trees [31, 111] implement low-contentionfetch-and-Φ operations
by combining requests along paths upward to their root and subsequently distribut-
ing results downward to their leaves. The idea has been developed to counting
pyramids [106,107] that allow nodes to randomly forward their requests to a node
on the next higher level and allow processors to select their initial level accord-
ing to their request frequency. A similar idea has been used to develop combining
funnels [95]. Opposite to the idea of combining requests, diffracting trees [93,94]
reduce contention for counting problems by distributing requests downward to the

2Note thatR0 only needs to consider write-endpoints of write operations that occur concurrently
to R0 in its original execution interval[s0, e0], e.g.R0 will ignore W4.

20 CHAPTER 2. BACKGROUND

0

0

0

1

1

1

C:2

D:3

B1

B2

B3

C4

C7

F, E, D, C, B, A

C5

C6

(A)

E:4, A:0

F:5, B:1
0

1

B1F, E, D, C, B, A

0

1

C2

B3

C6

C7 D:3

(B)

E:4, C:2, A:0

F:5, B:1

Figure 2.9: A diffracting tree(A) and a reactive diffracting tree(B).

leaves which each works as a counter in a coordinated manner. The trees have
been developed to elimination trees [91] that are suited for stack and pool con-
structions. Another approach to solve counting problems is to use counting net-
works [8, 9], which ensure low contention at each node. The networks have been
extended tolinearizable [50] counting networks with timing assumptions [71,76].
Empirical studies on the Proteus [17], a multiprocessor simulator, have showed that
diffracting trees are superior to counting networks and combining trees under high
loads [94].

Diffracting trees [93, 94] are well-known distributed data structures with the
ability to distribute concurrent memory accesses to different memory banks in a
coordinated manner. Each process(or) accessing the tree can be considered as lead-
ing atoken that follows a path with intermediate nodes from the root to a leaf. Each
node receives tokens from its single input (coming from its parent node) and sends
tokens to its outputs. The node is calledbalancer and acts as atoggle mechanism
that, given a stream of input tokens, alternately forwards them to its outputs, from
left to right (i.e. send them to the left and right child nodes, respectively). The
result is an even distribution of tokens at the leaves. In the trees, the contention
at the root and balancers is alleviated using anelimination technique that evenly
balances each pair of incoming tokens left and right without accessing thetoggle
bit. Diffracting trees have been introduced forcounting problems, and hence their
leaves are counters. The trees also guarantee thestep property, which states that:
when there are no tokens present inside the tree and ifouti denotes the number
of tokens that have been output at leafi, 0 ≤ outi − outj ≤ 1 for any pairi and
j of leaves such thati < j (i.e. if one draws the tokens that have exited from
each counter as a stack of boxes, the combined outcome will have the shape of a
single step). Yet the fixed-size diffracting tree is optimal only for a small range of
contention levels. To solve this problem, Della-Libera and Shavit [25] proposed
reactive diffracting trees, where nodes can shrink (to a single counter) or grow (to
a subtrees with counters as leaves) according to their local load.

Figure 2.9(A) depicts a diffracting tree. A set of processors{A, B, C, D, E, F}

2.5. ONLINE ALGORITHMS 21

is balanced on all leaves. Tokens passing one of these counters receive integeri,
i + 4, i + 2 ∗ 4, · · · wherei is initial value of the counter. In the figure, proces-
sorsA, B, C, D, E andF receive integers0, 1, 2, 3, 4 and5, respectively. Even
though the processors access separate shared data (counters), they still receive
numbers that form a consecutive sequence of integers as if they accessed a cen-
tralized counter.

Trees(A) and(B) in Figure 2.9 depict the folding action of a reactive diffract-
ing tree. Assume at the beginning the reactive diffracting tree has a shape like
tree(A). If loads on two countersC4 andC5 are small, the sub-tree whose root
is B2 shrinks to counterC2 as depicted in tree(B). After that, if processors
A, B, C, D, E andF sequentially traverse the tree(B), three processorsA, C and
E will visit counterC2. That is, the latency for processors to go from the root to
the counter decreases whereas the load on each counter is still kept low.

However, the reactive diffracting tree [25] uses a set of parameters to make its
reactive decisions, namely folding/unfolding thresholds and the time interval for
consecutive reactions. The parameter values depend on the multiprocessor system
in use, the applications using the data structure and, in a multiprogramming en-
vironment, the system utilization by other concurrent programs. The parameters
must be manually tuned using experimentation and information that is not easily
available (e.g. future load characteristics). On the other hand, the tree can shrink
or grow by only one level at a time, making multi-level adjustments costly.

As we know, the main challenge in designing reactive data structures in multi-
processor/ multiprogramming systems is to deal with unpredictable regular changes
in the execution environment. The changes may make reactions obsolete at the
time they take effect and consequently slow the system down. Therefore, reactive
schemes usingfixed parameters cannot be an optimal approach indynamic environ-
ments such as multiprogramming systems. An ideal reactive data structure should
not rely on experimentally tuned parameters and should react fast.

2.5 Online Algorithms

As mentioned in Chapter 1, our approach for reactive concurrent data structures to
deal with unpredictability in execution environments is to synthesize non-blocking
synchronization techniques and algorithmic techniques in the area of online algo-
rithms. In this section, we give a brief introduction to online algorithms and their
competitive analysis.

Online problems are optimization problems, where the input is received online
and the output is produced online so that the cost of processing the input is min-
imum or the outcome is best. If we know the whole input in advance, we may

22 CHAPTER 2. BACKGROUND

find anoptimal offline algorithm OPT processing the whole input with the min-
imum cost. In order to evaluate how good an online algorithm is, the concept of
competitive ratio has been suggested.

Competitive ratio: An online algorithmALG is considered competitive with a
competitive ratioc (or c-competitive) if there exists a constantβ such that for any
finite inputI [16]:

ALG(I) ≤ c · OPT (I) + β (2.1)

whereALG(I) andOPT (I) are the costs of the online algorithmALG and the
optimal offline algorithmOPT to service inputI, respectively. The competitive
ratio is a well-established concept and the comparison with the optimal off-line
algorithm is natural in scenarios where either absolute performance measures are
meaningless or assumptions on known probability distributions of some inputs are
not feasible.

A common way to analyze an online algorithm, calledcompetitive analysis, is
to consider a game between anonline player and a maliciousadversary. In this
game, i) the online player applies the online algorithm on the input generated by
the adversary and ii) the adversary with the knowledge of the online algorithm tries
to generate the worst possible input for the player. The input processing costs are
very expensive for the online algorithm but relatively inexpensive for the optimal
offline algorithm.

Adversary: For deterministic online algorithms, the adversary with knowledge
of the online algorithms can generate the worst possible input to maximize the
competitive ratio. However, the adversary cannot do that if the online player uses
randomized algorithms. In randomized algorithms, depending on whether the ad-
versary can observe the output from the online player to construct the next input,
we classify the adversary into different categories. The adversary that constructs
the whole input sequence in advance regardless of the output produced by the on-
line player is calledoblivious adversary. A randomized online algorithm isc-
competitive against an oblivious adversary if

E[ALG(I)] ≤ c · OPT (I) + β (2.2)

whereE[ALG(I)] is the expected cost of the randomized online algorithmALG
with the inputI. The other adversary that observes the output produced by the
online player so far and then based on that information constructs the next input
element is calledadaptive adversary. The adaptive adversary, however, is less
natural and less practical for modeling real problems than the oblivious adversary.

The competitive analysis that uses the competitive ratio as a yardstick to eval-
uate algorithms is a valuable approach to resolve the problems where i) if we had

2.5. ONLINE ALGORITHMS 23

some information about the future, we could find an optimal solution, and ii) it is
impossible to obtain such information.

24 CHAPTER 2. BACKGROUND

Chapter 3

Reactive Multi-word
Synchronization for
Multiprocessors1

Phuong Hoai Ha2, Philippas Tsigas2

Abstract

Shared memory multiprocessor systems typically provide a set of hardware
primitives in order to support synchronization. Generally, they provide single-
word read-modify-write hardware primitives such as compare-and-swap, load-
linked/store-conditional and fetch-and-op, from which higher-level synchroniza-
tion operations are then implemented in software. Although the single-wordhard-
ware primitives are conceptually powerful enough to support higher-level synchro-
nization, from the programmer’s point of view they are not as useful as their gen-
eralizations, the multi-word objects.

This paper presents two fast and reactive lock-free multi-word compare-and-
swap algorithms. The algorithms dynamically measure the level of contention as
well as the memory conflicts of the multi-wordcompare-and-swap operations, and
in response, they react accordingly in order to guarantee good performance in
a wide range of system conditions. The algorithms are non-blocking (lock-free),
allowing in this way fast dynamical behavior. Experiments on thirty processors

1This paper appeared in the Journal of Instruction-Level Parallelism, Vol. 6, No. (Special Issue
with selected papers from the 12th IEEE/ACM International Conference on Parallel Architectures
and Compilation Techniques), Apr. 2004, AI Access Foundation and Morgan Kaufmann Publishers.

2Department of Computer Science and Engineering, Chalmers University of Technology, S-412
96 Gothenburg, Sweden. Email:{phuong, tsigas}@cs.chalmers.se

26 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

of an SGI Origin2000 multiprocessor have showed that both our algorithms react
quickly to the contention variations and outperform the best known alternatives in
almost all contention conditions.

3.1 Introduction

Synchronization is an essential point of hardware/software interaction. On one
hand, programmers of parallel systems would like to be able to use high-level syn-
chronization operations. On the other hand, the systems can support only a limited
number of hardware synchronization primitives. Typically, the implementation of
the synchronization operations of a system is left to the system designer, who has
to decide how much of the functionality to implement in hardware and how much
in software in system libraries. There has been a considerable debate about how
much hardware support and which hardware primitives should be provided by the
systems.

Consider the multi-word compare-and-swap operations (CASNs) that extend
the single-word compare-and-swap operations from one word to many. A single-
word compare-and-swap operation (CAS) takes as input three parameters: the ad-
dress, anold value and anew value of a word, and atomically updates the contents
of the word if its current value is the same as theold value. Similarly, an N-word
compare-and-swap operation takes the addresses,old values andnew values ofN
words, and if the current contents of theseN words all are the same as the re-
spectiveold values, the CASN will update the new values to the respective words
atomically. Otherwise, we say that the CAS/CASN fails, leaving the variable val-
ues unchanged. It should be mentioned here that different processes might require
different number of words for their compare-and-swap operations and the number
is not a fixed parameter. Because of this powerful feature, CASN makes the design
of concurrent data objects much more effective and easier than the single-word
compare-and-swap [33–35]. On the other hand most multiprocessors support only
single word compare-and-swap or compare-and-swap-like operations e.g. Load-
Linked/Store-Conditional in hardware.

As it is expected, many research papers implementing the powerful CASN op-
eration have appeared in the literature [5, 6, 44, 53, 81, 92]. Typically, in a CASN
implementation, a CASN operation tries to lock all words it needs one by one. Dur-
ing this process, if a CASN operation is blocked by another CASN operation, then
the process executing the blocked CASN may decide to help the blocking CASN.
Even though most of the CASN designs use the helping technique to achieve the
lock-free or wait-free property, the helping strategies in the designs are different.
In the recursive helping policy [5, 44, 53], the CASN operation, which has been

3.2. PROBLEM DESCRIPTION, RELATED WORK AND OUR CONTRIBUTION27

blocked by another CASN operation, does not release the words it has acquired
until its failure is definite, even though many other not conflicting CASNs might
have been blocked on these words. On the other hand, in thesoftware transactional
memory [81,92] the blocked CASN operation immediately releases all words it has
acquired regardless of whether there is any other CASN in need of these words at
that time. In low contention situations, the release of all words acquired by a
blocked CASN operation will only increase the execution time of this operation
without helping many other processes. Moreover, in any contention scenario, if
a CASN operation is close to acquiring all the words it needs, releasing all its ac-
quired words will not only significantly increase its execution time but also increase
the contention in the system when it tries to acquire these words again. The dis-
advantage of these strategies is that both of them are not adaptable to the different
memory access patterns that different CASNs can trigger, or to frequent variations
of the contention on each individual word of shared data. This can actually have a
large impact on the performance of these implementations.

The idea behind the work described in this paper is that giving the CASN op-
eration the possibility to adapt its helping policy to variations of contention can
have a large impact on the performance in most contention situations. Of course,
dynamically changing the behavior of the protocol comes with the challenge of
performance. The overhead that the dynamic mechanism will introduce should not
exceed the performance benefits that the dynamic behavior will bring.

The rest of this paper is organized as follows. We give a brief problem descrip-
tion, summarize the related work and give more detailed description of our con-
tribution in Section 3.2. Section 3.3 presents our algorithms at an abstract level.
The algorithms in detail are described in Section 3.4. Section 3.5 presents the
correctness proofs of our algorithms. In Section 3.6 we present the performance
evaluation of our CASN algorithms and compare them to the best known alterna-
tives, which also represent the two helping strategies mentioned above. Finally,
Section 3.7 concludes the paper.

3.2 Problem Description, Related Work and Our Contri-
bution

Concurrent data structures play a significant role in multiprocessor systems. To
ensure consistency of a shared data object in a concurrent environment, the most
common method is to use mutual exclusion, i.e. some form of locking. Mutual ex-
clusion degrades the system’s overall performance as it causes blocking, i.e. other
concurrent operations cannot make any progress while the access to the shared re-
source is blocked by the lock. Using mutual exclusion can also cause deadlocks,

28 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

priority inversion and even starvation.
To address these problems, researchers have proposednon-blocking algorithms

for shared data objects. Non-blocking methods do not involve mutual exclusion,
and therefore do not suffer from the problems that blocking can cause. Non-
blocking algorithms are either lock-free or wait-free.Lock-free implementations
guarantee that regardless of the contention caused by concurrent operations and
the interleaving of their sub-operations, always at least one operation will progress.
However, there is a risk for starvation as the progress of other operations could
cause one specific operation to never finish.Wait-free [46] algorithms are lock-free
and moreover they avoid starvation as well. In a wait-free algorithm every opera-
tion is guaranteed to finish in a limited number of steps, regardless of the actions
of the concurrent operations. Non-blocking algorithms have been shown to be of
big practical importance [100,101], and recently NOBLE, which is a non-blocking
inter-process communication library, has been introduced [98].

The main problem of lock/wait-free concurrent data structures is that many
processes try to read and modify the same portions of the shared data at the same
time and the accesses must be atomic to one another. That is why a multi-word
compare-and-swap operation is so important for such data structures.

Herlihy proposed a methodology for implementing concurrent data structures
where interferences among processes are prevented by generating a private copy of
the portions changed by each process [47]. The disadvantages of the methodology
are the high cost of copying large objects and loss of disjoint-access-parallelism.
The disjoint-access-parallelism means that processes accessing no common por-
tion of the shared data should be able to progress in parallel.

Barnes [14] later suggested acooperative technique which allows many pro-
cesses to access the same data structure concurrently as long as the processes write
down exactly what they will do. Before modifying a portion of the shared data, a
processp1 checks whether this portion is used by another processp2. If this is the
case,p1 will first cooperate withp2 to completep2’s work.

Israeli and Rappoport transformed this technique into more applicable one [53],
where the concept of disjoint-access-parallelism was introduced. All processes try
to lock all portions of the shared data they need before writing back new values to
the portions one by one. Anowner field is assigned to every portion of the shared
data to inform the processes which process is the current owner of the portion.

Harris, Fraser and Pratt [44] aiming to reduce the per-word space overhead
eliminated the owner field. They exploited the data word for containing a special
value, a pointer to a CASNDescriptor, to pass the information of which process
is the owner of the data word. However, in their paper the memory management
problem is not discussed clearly.

A wait-free multi-word compare-and-swap was introduced by Anderson and

3.2. PROBLEM DESCRIPTION, RELATED WORK AND OUR CONTRIBUTION29

Moir in [5]. The cooperative technique was employed in the aforementioned results
as well.

However, the disadvantage of thecooperative technique is that the process,
which is being blocked by another process, does not release the words it is holding
when helping the blocking process, even though many other processes blocked on
these words might be able to make progress if these words were released. This
cooperative technique uses arecursive helping policy, and the time needed for
a blocked processp1 to help another processp2 may be long. The longer the re-
sponse time ofp1, the larger the number of processes blocked byp1. The processes
blocked byp1 will first help p1 and then continue to helpp2 even when they andp2

access disjoint parts of the data structure. This problem will be solved ifp1 does
not conservatively keep its words while helping the blocking processp2.

The left part in Figure 3.1 illustrates the helping strategy of therecursive help-
ing policy. There are three processes executing three CAS4:p1 wants to lock
words 1,2,3,4;p2 wants to lock words 3,6 and two other words; andp3 wants to
lock words 6,7,8 and another word. At that time, the first CAS4 acquired words 1
and 2, the second CAS4 acquired word 3 and the third CAS4 acquired words 6,7
and 8. When processp1 helps the first CAS4, it realizes that word 3 was acquired
by the second CAS4 and thus it helps the second CAS4. Then,p1 realizes that word
6 was acquired by the third CAS4 and it continues to help the third CAS4 and so
on. We observe that i) the time for a process to help other CASN operations may
be long and unpredictable and ii) if the second CAS4 did not conservatively keep
word 3 while helping other CAS4, the first CAS4 could succeed without helping
other CAS4s, especially the third CAS4 that did not block the first CAS4. Note
that helping causes more contention on the memory. Therefore, the less helping is
used, the lower the contention level on the memory is.

41 2

help the 3rd CAS4

help the 2nd CAS4

p3(6,7,8, x)

1

p2(3,6,x,x)

1 2

3 5 6 87Mem

p1(1,2,3,4)

33 ...3 1

7 8

help the 2nd CAS4

p3(6,7,8,9)

2 2

31 2 4 5 6

p2(2,3,5,6)

Mem
2

9

p1(1,2,8,x)

3 3 3 ...

Figure 3.1: Recursive helping policy and software transactional memory

30 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

Shavit and Touitou realized the problem above and presented thesoftware
transactional memory (STM) in [92]. In STM, a processp1 that is being blocked
by a processp2 releases the words it owns immediately before helpingp2. More-
over, a blocked process helps at most one blocking process, sorecursive helping
does not occur. STM then was improved by Moir [81], who introduced a design
of aconditional wait-free multi-word compare-and-swap operation. An evaluating
function passed to the CASN by the user will identify whether the CASN will retry
when the contention occurs. Nevertheless, both STM and the improved version
(iSTM) also have the disadvantage that the blocked process releases the words it
owns regardless of the contention level on the words. That is, even if there is no
other process requiring the words at that time, it still releases the words, and after
helping the blocking process, it may have to compete with other processes to ac-
quire the words again. Moreover, even if a process acquired the whole set of words
it needs except for the last one, which is owned by another process, it still releases
all the words and then starts from scratch. In this case, it should realize that not
many processes require the words and that it is almost successful, so it would be
best to try to keep the words as in thecooperative technique.

The right part of Figure 3.1 illustrates the helping strategy of STM. At that time,
the first CAS4 acquired word 1, the second CAS4 acquired words 2,3 and 5 and
the third CAS4 acquired words 6,7 and 8. When processp1 helps the first CAS4,
it realizes that word 2 was acquired by the second CAS4. Thus, it releases word
1 and helps the second CAS4. Then, whenp1 realizes that the second CAS4 was
blocked by the third CAS4 on word 6, it, on behalf of the second CAS4, releases
word 5,3 and 2 and goes back to help the first CAS4. Note that i)p1 could have
benefited by keeping word 1 because no other CAS4 needed the word; otherwise,
after helping other CAS4s,p1 has to compete with other processes to acquire word
1 again; and ii)p1 should have tried to help the second CAS4 a little bit more
because this CAS4 operation was close to success.

Note that most algorithms require the N words to be sorted in addresses and this
can add an overhead ofO(logN) because of sorting. However, most applications
can sort these addresses before calling the CASN operations.

3.2.1 Our Contribution

All available CASN implementations have their weak points. We realized that the
weaknesses of these techniques came from their static helping policies. These tech-
niques do not provide the ability to CASN operations to measure the contention that
they generate on the memory words, and more significantly to reactively change
their helping policy accordingly. We argue that these weaknesses are not funda-
mental and that one can in fact construct multi-word compare-and-swap algorithms

3.3. ALGORITHM INFORMAL DESCRIPTION 31

where the CASN operations: i) measure in an efficient way the contention that they
generate and ii) reactively change the helping scheme to help more efficiently the
other CASN operations.

Synchronization methods that perform efficiently across a wide range of con-
tention conditions are hard to design. Typically,small structures andsimple meth-
ods fit better low contention levels whilebigger structures and morecomplex mech-
anisms can help to distribute processors/processes among the memory banks and
thus alleviate memory contention.

The key to our first algorithm is for every CASN to release the words it has
acquired only if the average contention on the words becomes too high. This al-
gorithm also favors the operations closer to completion. The key to our second
algorithm is for a CASN to release notall the words it owns at once butjust
enough so that most of the processes blocked on these words can progress. The
performance evaluation of the proposed algorithms on thirty processors of an SGI
Origin2000 multiprocessor, which is presented in Section 3.6, matches our intu-
ition. In particular, it shows that both our algorithms react fast according to the
contention conditions and significantly outperform the best-known alternatives in
all contention conditions.

3.3 Algorithm Informal Description

In this section, we present the ideas of our reactive CASN operations at an abstract
level. The details of our algorithms are presented in the next section.

In general, practical CASN operations are implemented by locking all theN
words and then updating the value of each word one by one accordingly. Only the
process having acquired all theN words it needs can try to write the new values
to the words. The processes that are blocked, typically have tohelp the blocking
processes so that the lock-free feature is obtained. The helping schemes presented
in [5,44,53,81,92] are based on different strategies that are described in Section 3.2.

The variableOP [i] described in Figure 3.2 is the shared variable that carries
the data ofCASNi. It consists of three arrays withN elements each:addri, expi

andnewi and a variableblockedi that contain the addresses, the old values, the new
values of theN words that need to be compared-and-swapped atomically and the
number of CASN operations blocked on the words, respectively. TheN elements
of arrayaddri must be increasingly sorted in addresses to avoid live-lock in the
helping process. Each entry of the shared memoryMem, a normal 32-bit word
used by the real application, has two fields: thevalue field (24 bits) and theowner
field (8 bits). Theowner field needslog2P + 1 bits, whereP is the number of
processes in the system. Thevalue field contains the real value of the word while

32 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

ENDLOCK

FAILURE

SUCCESS

UNLOCK

PHASE ONE PHASE TWO

i i i j

N state blocked

addr[N]

new[N]

shared memory words

OP[i]

exp[N]

Mem

value

owner

Figure 3.2: Reactive-CASN states and reactive-CAS4 data structure

theowner field contains the identity of the CASN operation that has acquired the
word. For a system supporting 64-bit words, the value field can be up to 56 bits if
P < 256. However, the value field cannot contain a pointer to a memory location
in some modern machines where the size of pointer equals the size of the largest
word. For information on how to eliminate the owner field, see [44].

Each CASN operation consists of two phases as described in Figure 3.2. The
first phase has two statesLock andUnlock and it tries to lock all the necessary
words according to our reactive helping scheme. The second one has also two
statesFailure and Success. The second phase updates or releases the words
acquired in the first phase according to the result of phase 1.

Figure 3.3 describes our CASN operation at a high level.

CASN(OP [i])
try again :

Try to lock all N necessary words;
if manage to lock all the N words then

write new values to these words one by one; return Success;
else if read an unexpected value then

release all the words that have been locked by CASNi; return Failure;
else if contention is “high enough” then

release some/all CASNi’s words to reduce contention; goto try again;

Figure 3.3: Reactive CASN description

In order to know whether the contention onCASNi’s words is high, each
CASNi uses variableOP [i].blocked to count how many other CASNs are being
blocked on its words. Now, which contention levels should be consideredhigh?

3.3. ALGORITHM INFORMAL DESCRIPTION 33

TheCASNi has paid a price (execution time) for the number of words that it has
acquired and thus it should not yield these words to other CASNs too generously
as thesoftware transactional memory does. However, it should not keep these
words egoistically as in thecooperative technique because that will make the whole
system slowdown. Letwi be the number of words currently kept byCASNi and
ni be the estimated number of CASNs that will go ahead if some ofwi words are
released. TheCASNi will consider releasing its words only if it is blocked by
another CASN. The challenge forCASNi is to balance the trade-off between its
own progresswi and the potential progressni of the other processes. IfCASNi

knew how the contention on itswi words will change in the future from the time
CASNi is blocked to the timeCASNi will be unblocked, as well as the time
CASNi will be blocked,CASNi would have been able to make an optimal trade-
off. Unfortunately, there is no way forCASNi to have this kind of information.

The terms used in the section are summarized in the following table:

Terms Meanings
P the number of processes in the system
N the number of words needing to be updated atomically
wi the number of words currently kept byCASNi

blockedi the number CASN operations blocked byCASNi

ri the average contention on words currently kept byCASNi

m the lower bound of average contentionri

M the upper bound of average contentionri

c the competitive ratio

Figure 3.4: The term definitions

3.3.1 The First Algorithm

Our first algorithm concentrates on the question of whenCASNi should release
all thewi words that it has acquired. A simple solution is as follows: if the aver-
age contention on thewi words,ri = blockedi

wi
, is greater than a certain threshold,

CASNi releases all itswi words to help themany other CASNs to go ahead. How-
ever, how big should the threshold be in order to optimize the trade-off? In our first
reactive CASN algorithm, the threshold is calculated in a similar way to thereser-
vation price policy [28]. This policy is an optimal deterministic solution for the
online search problem where a player has to decide whether to exchange his dol-
lars to yens at the current exchange rate or to wait for a better one without knowing
how the exchange rate will vary.

34 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

LetP andN be the number of processes in the system and the number of words
needing to be updated atomically, respectively. BecauseCASNi only checks the
release-condition when: i) it is blocked and ii) it has locked at least a word and
blocked at least a CASN, we have that1 ≤ blockedi ≤ (P − 2) and1 ≤ wi ≤
(N − 1). Therefore,m ≤ ri ≤ M wherem = 1

N−1 andM = P − 2. Our
reservation contention policy is as follows:

Reservation contention policy: CASNi releases itswi words when the aver-
age contentionri is greater than or equal toR∗ =

√
Mm.

The policy is
√

M
m -competitive. For the proof and more details on the policy,

seereservation price policy [28].
Beside the advantage of reducing collision, the algorithm also favors CASN

operations that are closer to completion, i.ewi is larger, or that cause a small num-
ber of conflicts, i.e.blockedi is smaller. In both cases,ri becomes smaller and thus
CASNi is unlikely to release its words.

3.3.2 The Second Algorithm

Our second algorithm decides not only when to release theCASNi’s words but
also how many words need to be released. It is intuitive that theCASNi does not
need to release all itswi words but releasesjust enough so that most of the CASN
operations blocked byCASNi can go ahead.

The second reactive scheme is influenced by the idea of thethreat-based algo-
rithm [28]. The algorithm is an optimal solution for the one-way trading problem,
where the player has to decide whether to accept the current exchange rate as well
as how many of his/her dollars should be exchanged to yens at the current exchange
rate.

Definition 3.3.1. A transactionis the interval from the time a CASN operation is
blocked to the time it is unblocked and acquires a new word

In our second scheme, the following rules must be satisfied in atransaction.
According to the threat-based algorithm [28], we can obtain an optimal competitive
ratio for unknown duration variantc = ϕ − ϕ−1

ϕ1/(ϕ−1) if we know only ϕ, where

ϕ = M
m ; m andM are the lower bound and upper bound of the average contention

on the words acquired by the CASN as mentioned in subsection 3.3.1, respectively:

1. Release words only when the current contention is greater than(m ∗ c) and
is the highest so far.

2. When releasing, releasejust enough words to keep the competitive ratioc.

3.4. IMPLEMENTATIONS 35

Similar to the threat-based algorithm [28], the number of words which should be

released by a blockedCASNi at timet is dt
i = Di ∗ 1

c ∗ rt
i−rt−1

i

rt
i−m

, wherert−1
i is

the highest contention until time(t − 1) andDi is the number of words acquired
by theCASNi at the beginning of the transaction. In our algorithm,ri stands for
the average contention on the words kept by aCASNi and is calculated by the
following formula: ri = blockedi

wi
as mentioned in Section 3.3.1. Therefore, when

CASNi releases words with contention smaller thanri, the average contention
at that time, the next average contention will increase andCASNi must continue
releasing words in decreasing order of word-indices until the word that made the
average contention increase is released. When this word is released, the average
contention on the words locked byCASNi is going to reduce, and thus according
to the first of the previous rules,CASNi does not release its remaining words
anymore at this time. That is howjust enough to help most of the blocked processes
is defined in our setting.

Therefore, beside the advantage of reducing collision, the second algorithm
favors to release the words with high contention.

3.4 Implementations

In this section, we describe our reactive multi-word compare-and-swap implemen-
tations.

The synchronization primitives related to our algorithms arefetch-and-add
(FAA), compare-and-swap (CAS) andload-linked/validate/store-conditional (LL/VL/SC).
The definitions of the primitives are described in Figure 3.5, wherex is a variable
andv, old, new are values.

For the systems that supportweak LL/SC such as the SGI Origin2000 or the
systems that supportCAS such as the SUN multiprocessor machines, we can im-
plement theLL/VL/SC instructions algorithmically [80].

3.4.1 First Reactive Scheme

The part of a CASN operation (CASNi) that is of interest for our study is the
part that starts whenCASNi is blocked while trying to acquire a new word after
having acquired some words; and ends when it manages to acquire a new word.
This word could have been locked byCASNi beforeCASNi was blocked, but
then released byCASNi. Our first reactive scheme decides whether and when
theCASNi should release the words it has acquired by measuring thecontention
ri on the words it has acquired, whereri = blockedi

kepti
andblockedi is the number

of processes blocked on thekepti words acquired byCASNi. If the contention

36 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

FAA(x, v)
atomically {

oldx ← x;
x ← x + v;
return(oldx)
}

CAS(x, old, new)
atomically {

if(x = old)
x ← new;
return(true);

else return(false);
}

LL(x){
return the value of x such that it may
be subsequently used with SC
}

VL(x)
atomically {

if (no other process has written to x
since the last LL(x))

return(true);
else return(false);
}

SC(x, v)
atomically {

if (no other process has written to x
since the last LL(x))

x ← v; return(true);
else return(false);
}

Figure 3.5: Synchronization primitives

type word type = record value; owner; end; /*normal 32-bit words*/
state type = {Lock, Unlock, Succ, Fail, Ends,Endf};
para type = record N : integer; addr: array[1..N] of ∗word type ;

exp, new: array[1..N] of word type; /*CASN*/
state: state type; blocked : 1..P ; end; /*P: #processes*/

return type = record kind:{Succ, Fail, Circle}; cId:1..P ; end;
/*cId: Id of a CASN participating in a circle-help*/

shared var Mem: set of word type; OP : array[1..P] of para type;
V ersion: array[1..P] of unsigned long;

private var casn l: array[1..P] of 1..P ;
/*keeping CASNs currently helped by the process*/
l: of 1..P ; /*the number of CASNs currently helped by the process*/

Figure 3.6: Data structures in our first reactive multi-word compare-and-swap al-
gorithm

3.4. IMPLEMENTATIONS 37

ri is higher than acontention threshold R∗, processpi releases all the words. The
contention threshold R∗ is computed according to thereservation contention policy
in Section 3.3.1. One interesting feature of this reactive helping method is that it
favors processes closer to completion as well as processes with a small number of
conflicts.

At the beginning, the CASN operation starts phase one in order to lock the
N words. ProcedureCasn tries to lock the words it needs by setting the state of
the CASN toLock (line 1 in Casn). Then, procedureHelp is called with four
parameters: i) the identity of helping-processhelping, ii) the identity of helped-
CASN i, iii) the position from which the process will help the CASN lock words
pos, and iv) the versionver of current variableOP [i]. In theHelp procedure, the
helping process chooses a correct way to helpCASNi according to its state. At
the beginning,CASNi’s state isLock. In theLock state, thehelping process tries
to helpCASNi lock all necessary words:

• If theCASNi manages to lock all theN words successfully, its state changes
into Success (line 7 inHelp), then it starts phase two in order to condition-
ally write the new values to these words (line 10 inHelp).

• If the CASNi, when trying to lock all theN words, discovers a word having
a value different from its old value passed to the CASN, its state changes
into Failure (line 8 in Help) and it starts phase two in order to release all
the words it locked (line 11 in Help).

• If the CASNi is blocked by anotherCASNj , it checks the unlock-condition
before helpingCASNj (line 6 in Locking). If the unlock-condition is sat-
isfied, CASNi’s state changes intoUnlock (line 3 in CheckingR) and it
starts to release the words it locked (line 3 inHelp).

ProcedureLocking is the main procedure in phase one, which contains our
first reactive scheme. In this procedure, the process calledhelping tries to lock
all N necessary words forCASNi. If one of them has a value different from its
expected value, the procedure returnsFail (line 4 in Locking). Otherwise, if the
value of the word is the same as the expected value and it is locked by another
CASN (lines 6-15 inLocking) and at the same timeCASNi satisfies the unlock-
condition, its state changes intoUnlock (line 3 in CheckingR). That means that
other processes whose CASNs are blocked on the words acquired byCASNi can,
on behalf ofCASNi, unlock the words and then acquire them while theCASNi’s
process helps its blocking CASN operation,CASNx.owner (line 13 inLocking).

ProcedureCheckingR checks whether the average contention on the words
acquired byCASNi is high and has passed a threshold: the unlock-condition. In

38 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

/* Version[i] must be increased by one before OP[i] is used to contain parameters
addr[], exp[] and new[] for Casn(i) */
state type CASN(i)
begin
1: OP [i].blocked := 0; OP [i].state := Lock; for j := 1 to P do casn l[j] = 0;
2: l := 1; casn l[l] := i; /*record CASNi as a currently helped one*/
3: Help(i, i, 0, V ersion[i]);

return OP [i].state;
end.

return type HELP(helping, i, pos, ver)
begin
start :
1: state := LL(&OP [i].state);
2: if (ver �= V ersion[i]) then return (Fail, nil);

if (state = Unlock) then /*CASNi is in state Unlock*/
3: Unlocking(i);

if (helping = i) then /*helping is CASNi’s original process*/
4: SC(&OP [i].state, Lock); goto start; /*help CASNi*/

else /*otherwise, return to previous CASN*/
5: FAA(&OP [i].blocked,−1); return (Succ, nil);

else if (state = Lock) then
6: result := Locking(helping, i, pos);

if (result.kind = Succ) then /*Locking N words successfully*/
7: SC(&OP [i].state, Succ); /*change its state to Success*/

else if (result.kind = Fail) then /*Locking unsuccessfully*/
8: SC(&OP [i].state, Fail); /*change its state to Failure*/

else if (result.kind = Circle) then /*the circle help occurs*/
9: FAA(&OP [i].blocked,−1);

return result; /*return to the expected CASN*/
goto start;

else if (state = Succ) then
10: Updating(i);SC(&OP [i].state, Ends); /*write new values*/

else if (state = Fail) then
11: Releasing(i);SC(&OP [i].state, Endf); /*release its words*/

return (Succ, nil);
end.

Figure 3.7: Procedures CASN and Help in our first reactive multi-word compare-
and-swap algorithm

3.4. IMPLEMENTATIONS 39

return type LOCKING(helping, i, pos)
begin
start:

for j := pos to OP [i].N do /*only help from position pos*/
1: e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];

again:
2: x := LL(e.addr);
3: if (not V L(&OP [i].state)) then

return (nil, nil); /*return to read its new state*/
4: if (x.value �= e.exp) then return (Fail, nil); /*x was updated*/

else if (x.owner = nil) then /*x is available*/
5: if (not SC(e.addr, (e.exp, i)) then goto again;

else if (x.owner �= i) then /*x is locked by another CASN*/
6: CheckingR(i, OP [i].blocked, j − 1); /*check unlock-condition*/
7: if (x.owner in casn l) then return (Circle, x.owner); /*circle-help*/
8: Find index k: OP [x.owner].addr[k] = e.addr;
9: ver = V ersion[x.owner];
10: if (not V L(e.addr)) then goto again;
11: FAA(&OP [x.owner].blocked, 1);
12: l := l + 1; casn l[l] := x.owner; /*record x.owner*/
13: r := Help(helping, x.owner, k, ver);
14: casn l[l] := 0; l := l − 1; /*omit x.owner’s record*/
15: if ((r.kind = Circle) and (r.cId �= i)) then

return r; /*CASNi is not the expected CASN in the circle help*/
goto start;

return (Succ, nil);
end.

CHECKINGR(owner, blocked, kept)
begin
1: if ((kept = 0) or (blocked = 0)) then return;
2: if (not V L(&OP [owner].state)) then return;
3: if (blocked

kept > R∗) then SC(&OP [owner].state, Unlock);
return;

end.

Figure 3.8: Procedures Locking and CheckingR in our first reactive multi-word
compare-and-swap algorithm

40 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

UPDATING(i)
begin

for j := 1 to OP [i].N do
1: e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];
2: e.new = OP [i].new[j];

again :
3: x := LL(e.addr);
4: if (not V L(&OP [i].state)) then return;

if (x = (e.exp, i)) then /*x is expected value & locked by CASNi*/
5: if (not SC(e.addr, (e.new, nil)) then goto again;

return;
end.

UNLOCKING(i)/RELEASING(i)
begin

for j := OP [i].N downto 1 do
1: e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];

again :
2: x := LL(e.addr);
3: if not V L(&OP [i].state) then return;

if (x = (e.exp, nil)) or (x = (e.exp, i)) then
4: if (not SC(e.addr, (e.exp, nil)) then goto again;

return;
end.

Figure 3.9: Procedures Updating and Unlocking/Releasing in our first reactive
multi-word compare-and-swap algorithm

this implementation, thecontention threshold is R∗, R∗ =
√

P−2
N−1 , whereP is

the number of concurrent processes andN is the number of words that need to be
updated atomically by CASN.

At time t, CASNi has created average contentionri on the words that it has ac-
quired,ri = blockedi

kepti
, whereblockedi is the number of CASNs currently blocked by

CASNi andkepti is the number of words currently locked byCASNi. CASNi

only checks the unlock-condition when: i) it is blocked and ii) it has locked at
least a word and blocked at least a process (line 1 inCheckingR). The unlock-
condition is to check whetherblockedi

kepti
≥ R∗. Every process blocked byCASNi on

wordOP [i].addr[j] increasesOP [i].blocked by one before helpingCASNi using
a fetch-and-add operation (FAA) (line 11 inLocking), and decreases the variable
by one when it returns from helping theCASNi (line 5 and 9 inHelp). The vari-
able is not updated when the state of theCASNi is Success or Failure because

3.4. IMPLEMENTATIONS 41

in those casesCASNi no longer needs to check the unlock-condition.
There are two important variables in our algorithm, theV ersion andcasn l

variables. These variables are defined in Figure 3.6.
The variableV ersion is used for memory management purposes. That is when

a process completes a CASN operation, the memory containing the CASN data, for
instanceOP [i], can be used by a new CASN operation. Any process that wants
to useOP [i] for a new CASN must firstly increase theV ersion[i] and pass the
version to procedure Help (line 3 inCasn). When a process decides to help its
blocking CASN, it must identify the current version of the CASN (line 9 and 10 in
Locking) to pass to procedureHelp (line 13 inLocking). Assume processpi is
blocked byCASNj on worde.addr, andpi decides to helpCASNj . If the version
pi reads at line 9 is not the version ofOP [j] at the time whenCASNj blockedpi,
that isCASNj has ended andOP [j] is re-used for another new CASN, the field
owner of the word has changed. Thus, commandV L(e.addr) at line 10 returns
failure andpi must read the word again. This ensures that the version passed to
Help at line 13 in procedureLocking is the version ofOP [j] at the time when
CASNj blockedpi. Before helping a CASN, processes always check whether the
CASN version has changed (line 2 inHelp).

The other significant variable iscasn l, which is local to each process and is
used to trace which CASNs have been helped by the process in order to avoid
the circle-helping problem. Consider the scenario described in Figure 3.10. Four
processesp1, p2, p3 andp4 are executing four CAS3 operations:CAS31, CAS32,
CAS33 andCAS34, respectively. TheCAS3i is the CAS3 that is initiated by
processpi. At that time,CAS32 acquiredMem[1], CAS33 acquiredMem[2] and
CAS34 acquiredMem[3] andMem[4] by writing their original helping process
identities in the respective owner fields (recall thatMem is the set ofseparate
words in the shared memory, not an array). Becausep2 is blocked byCAS33

andCAS33 is blocked byCAS34, p2 helpsCAS33 and then continues to help
CAS34. Assume that whilep2 is helpingCAS34, another process discovers that
CAS33 satisfies the unlock-condition and releasesMem[2], which was blocked
by CAS33; p1, which is blocked byCAS32, helpsCAS32 acquireMem[2] and
then acquireMem[5]. Now,p2, when helpingCAS34 lock Mem[5], realizes that
the word was locked byCAS32, its own CAS3, that it has to help now. Process
p2 has made a cycle while trying to help other CAS3 operations. In this case,p2

should return from helpingCAS34 andCAS33 to help its own CAS3, because, at
this time, theCAS32 is not blocked by any other CAS3. The local arrayscasn ls
are used for this purpose. Each processpi has a local arraycasn li with size of the
maximal number of CASNs the process can help at one time. Recall that at one
time each process can execute only one CASN, so the number is not greater than
P , the number of processes in the system. In our implementation, we set the size

42 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

of arrayscasn l to P , i.e. we do not limit the number of CASNs each process can
help.

owner

value

Mem[M] 1 2 3 4 5 6 7 8

2 3 4 4

p1

p4

p3

p2

(A)

p1

p4

p3

p2

owner

value

Mem[M] 1 2 3 4 5 6 7 8

2 4 4 22

(B)

Figure 3.10: Circle-helping problem: (A) Before helping; (B) Afterp1 helps
CAS32 acquireMem[2] andMem[5].

An elementcasn li[l] is set toj when processpi starts to help aCASNj

initiated by processpj and theCASNj is thelth CASN that processpi is helping
at that time. The element is reset to0 when processpi completes helping the
lth CASN. Processpi will realize the circle-helping problem if the identity of the
CASN that processpi intends to help has been recorded incasn li.

In procedureLocking, before processphelping helpsCASNx.owner, it checks
whether it is helping the CASN currently (line 7 inLocking). If yes, it returns from
helping other CASNs until reaching the unfinished helping task onCASNx.owner

(line 15 in Locking) by setting the returned value(Circle, x.owner) (line 7 in
Locking). Thelth element of the array is set tox.owner before the process helps
CASNx.owner, its lth CASN, (line 12 inLocking) and is reset to zero after the
process completes the help (line 14 inLocking).

In our methods, a process helps another CASN, for instanceCASNi, just
enough so that its own CASN can progress. The strategy is illustrated by using
the variablecasn l above and helping theCASNi unlock its words. After helping
theCASNi release all its words, the process returns immediately because at this
time the CASN blocked byCASNi can go ahead (line 5 inHelp). After that,
no process helpsCASNi until the process that initiated it,pi, returns and helps it
progress (line 4 inHelp).

3.4. IMPLEMENTATIONS 43

3.4.2 Second Reactive Scheme

In the first reactive scheme, aCASNi must release all its acquired words when it
is blocked and the average contention on these words is higher than a threshold,
R∗. It will be more flexible if theCASNi can release only some of its acquired
words on which many other CASNs are being blocked.

The second reactive scheme is more adaptable to contention variations on the
shared data than the first one. An interesting feature of this method is that when
CASNi is blocked, it only releasesjust enough words to reduce most of CASNs
blocked by itself.

According to rule 1 of the second reactive scheme as described in Section 3.3.2
, contentionri is considered for adjustment only if it increases, i.e. when either
the number of processes blocked on the words kept byCASNi increases or the
number of words kept byCASNi decreases. Therefore, in this implementation,
which is described in Figure 3.11 and Figure 3.12, the procedureCheckingR is
called not only from inside the procedureLocking as in the first algorithm, but
also from inside the procedureHelp when the number of words locked byCASNi

reduces (line 5). In the second algorithm, the variableOP [i].blocked1 is an array
of sizeN , the number of words need to be updated atomically by CASN. Each
element of the arrayOP [i].blocked[j] is updated in such a way that the number
of CASNs blocked on each word is known, and thus a process helpingCASNi

can calculate how many words need to be released in order to releasejust enough
words. To be able to perform this task, besides the information about contention
ri, which is calculated through variablesblockedi andkepti, the information about
the highestri so far and the number of words locked byCASNi at the beginning of
the transaction is needed. This additional information is saved in two new fields of
OP [i].state calledrmax andinit, respectively. While theinit is updated only one
time at the beginning of the transaction (line 3 inCheckingR), thermax field is
updated whenever the unlock-condition is satisfied (line 3 and 5 inCheckingR).
The beginning of a transaction is determined by comparing the number of word
currently kept by the CASN,kept, and its last unlock-position,gs.ul pos (line 2
in CheckingR). The values are different only if the CASN has acquired more
words since the last time it was blocked, and thus in this case the CASN is at the
beginning of a new transaction according to definition 3.3.1.

After calculating the number of words to be released, the position from which
the words are released is saved in fieldul pos of OP [i].state and it is called
ul posi. Consequently, the process helpingCASNi will only release the words
from OP [i].addr[ul posi] to OP [i].addr[N] through the procedureUnlocking.

1In our implementation, the arrayblocked is simple a 64-bit word such that it can be read in one
atomic step. In general, the whole array can be read atomically by a snapshot operation.

44 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

type state type = record init; rmax; ul pos; state; end;
para type = record N : integer; addr: array[1..N] of ∗word type ;

exp, new: array[1..N] of word type;
state: {Lock, Unlock, Succ, Fail, Ends,Endf};
blocked: array[1..N] of 1..P ; end;
/* P: #processes; N-word CASN */

return type HELP(helping, i, pos)
begin
start :
1: gs := LL(&OP [i].state);
2: if (ver �= V ersion[i]) then return (Fail, nil);
3: if (gs.state = Unlock) then
4: Unlocking(i, gs.ul pos);
5: cr = CheckingR(i, OP [i].blocked, gs.ul pos, gs);
6: if (cr = Succ) then goto start;
7: else SC(&OP [i].state.state, Lock);
8: if (helping = i) then goto start;
9: else FAA(&OP [i].blocked[pos],−1); return (Succ, nil);

else if (state = Lock) then
10: result := Locking(helping, i, pos);
11: if (result.kind = Succ) then SC(&OP [i].state, (0, 0, 0, Succ));
12: else if (result = Fail) then SC(&OP [i].state, (0, 0, 0, Fail));

else if (result.kind = Circle) then
13: FAA(&OP [i].blocked[pos],−1); return result;

goto start;
...

end.

UNLOCKING(i, ul pos)
begin

for j := OP [i].N downto ul pos do
e.addr = OP [i].addr[j]; e.exp = OP [i].exp[j];

again :
x := LL(e.addr);
if (not V L(&OP [i].state)) then return;
if (x = (e.exp, nil)) or (x = (e.exp, i)) then

if (not SC(e.addr, (e.exp, nil)) then goto again;
return;

end.

Figure 3.11: Procedures Help and Unlocking in our second reactive multi-word
compare-and-swap algorithm.

3.4. IMPLEMENTATIONS 45

boolean CHECKINGR(owner, blocked, kept, gs)
begin

if (kept = 0) or (blocked = {0..0})) then return Fail;
1: if (not V L(&OP [owner].state)) then return Fail;

for j := 1 to kept do nb := nb + blocked[j];
1’: r := nb

kept ; /*r is the current contention*/
if (r < m ∗ C) then return Fail; /* m = 1

N−1 */
2: if (kept �= gs.ul pos) then /*At the beginning of transaction*/

d = kept ∗ 1
C ∗ r−m∗C

r−m ; ul pos := kept − d + 1;
3: SC(&OP [owner].state, (kept, r, ul pos, Unlock));

return Succ;
4: else if (r > gs.rmax) then /*r is the highest contention so far*/

d = gs.init ∗ 1
C ∗ r−gs.rmax

r−m ; ul pos := kept − d + 1;
5: SC(&OP [owner].state, (gs.init, r, ul pos, Unlock));

return Succ;
return Fail;

end.

value type READ(x)
begin
start :

y := LL(x);
while (y.owner �= nil) do

Find index k: OP [y.owner].addr[k] = x;
ver = V ersion[y.owner];
if (not V L(x)) then goto start;
Help(self, y.owner, k, ver); y := LL(x);

return (y.value);
end.

Figure 3.12: Procedures CheckingR in our second reactive multi-word compare-
and-swap algorithm and the procedure for Read operation.

If CASNi satisfies the unlock-condition even after a process has just helped it un-
lock its words, the same process will continue helping theCASNi (line 5 and 6 in
Help). Otherwise, if the process is not processpi, the process initiatingCASNi,
it will return to help the CASN that was blocked byCASNi before (line 9 in
Help). The changed procedures compared with the first implementation areHelp,
Unlocking andCheckingR, which are described in Figure 3.11 and Figure 3.12.

46 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

3.5 Correctness Proof

In this section, we prove the correctness of our methods. Figure 3.13 briefly de-
scribes the shared variables used by our methods and the procedures reading or
directly updating them.

Mem OP[i].state OP[i].blocked
Help(helping, i, pos, ver) LL, SC FAA
Unlocking(i, ul point) LL, SC VL
Releasing(i) LL, SC VL
Updating(i) LL, SC VL
Locking(helping, i, pos) LL, SC VL FAA
CheckingR(owner, blocked, kept, gs) VL, SC
Read(x) LL

Figure 3.13: Shared variables with procedures reading or directly updating them

The arrayOP consists ofP elements, each of which is updated by only one
process, for exampleOP [i] is only updated by processpi. Without loss of gener-
ality, we only consider an element of arrayOP , OP [i], on which many concurrent
helping processes get necessary information to help a CASN,CASN j

i . The sym-
bol CASN j

i denotes that this CASN uses the variableOP [i] and that it is thejth

time the variable is re-used, i.e.j = V ersion[i]. The value ofOP [i] read by pro-
cesspk is correct if it is the data of the CASN that blocks the CASN helped bypk.
For example,pk helpsCASN j1

i1 and realizes the CASN is blocked byCASN j
i .

Thus,pk decides to helpCASN j
i . But if the valuepk read fromOP [i] is the value

of the next CASN,CASN j+1
i , i.e. CASN j

i has completed andOP [i] is re-used
for another new CASN, the value thatpk read fromOP [i], is not correct forpk.

Lemma 3.5.1. Every helping process reads correct values of variable OP [i].

Proof. In our pseudo-code described in Figure 3.7, Figure 3.8, Figure 3.9, Fig-
ure 3.11 and Figure 3.12, the value ofOP [i] is read before the process checks
V L(&OP [i].state) (line 1 in Unlocking, Releasing, Updating andLocking).
If OP [i] is re-used forCASN j+1

i , the value ofOP [i].state has certainly changed
sincepk read it at line 1 in procedureHelp becauseOP [i] is re-used only if the
state ofCASN j

i has changed intoEnds or Endf . In this case,pk realizes the
change and returns to procedureHelp to read the new value ofOP [i].state (line 3
in Unlocking, Releasing, Locking and line 4 inUpdating). In procedureHelp,
pk will realize thatOP [i] is reused by checking its version (line 2 inHelp) and
return, that ispk does not use incorrect values to help CASNs. Moreover, when

3.5. CORRECTNESS PROOF 47

pk decides to helpCASN j
i at line 13 in procedureLocking, the version ofOP [i]

passed to the procedureHelp is the correct version, that is the version correspond-
ing to CASN j

i , the CASN blocking the current CASN on worde.addr. If the
versionpk read at line 9 in procedureLocking is incorrect, that isCASN j

i has
completed andOP [i] is re-used forCASN j+1

i , pk will realize this by checking
V L(e.addr). Because ifCASN j

i has completed, theowner field of worde.addr
will change fromi to nil. Therefore,pk will read the value of worde.addr again
and realize thatOP [i].state has changed. In this case,pk will return and not use
the incorrect data as argued above.

From this point, we can assume that the value ofOP [i] used by processes is
correct. In our reactive compare-and-swap (RCASN) operation, the linearization
point is the point its state changes intoSucc if it is successful or the point when the
process that changes the state intoFail reads an unexpected value. The lineariza-
tion point ofRead is the point wheny.owner == nil. It is easy to realize that our
specificRead operation2 is linearizable to RCASN. TheRead operation is similar
to those in [44] [53].

Now, we prove that the interferences among the procedures do not affect the
correctness of our algorithms.

We focus on the changes ofOP [i].state. We need to examine only four states:
LOCK, UNLOCK, SUCCESS andFAILURE. StateEND is only used
to inform whether the CASN has succeeded and it does not play any role in the
algorithm. Assume the latest change occurs at timet0. The processes helping
CASNi are divided into two groups: group two consists of the processes detecting
the latest change and the rest are in group one. Because the processes in the first
group read a wrong state (it fails to detect the latest change), the states they can
read areLOCK or UNLOCK, i.e. only the states in phase one.

Lemma 3.5.2. The processes in group one have no effect on the results made by
the processes in group two.

Proof. To prove the lemma, we consider all cases where a process in group two
can be interfered by processes in group one. Letpj

l denote processpl in groupj.
Because the shared variableOP [i].block is only used to estimate the contention
level, it does not affect the correctness of CASN returned results. Therefore, we
only look at the two other shared variablesMem andOP [i].state.

2TheRead procedure described in figure 3.12 is used in both reactive CASN algorithms

48 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

Case 1.1 : Assumep1
k interferes withp2

l while p2
l is executing procedureHelp

or CheckingR. Because these procedures only use the shared variable
OP [i].state, in order to interfere withp2

l p1
k must update this variable, i.e.

p1
k must also execute one of the proceduresHelp or CheckingR. However,

becausep1
k does not detect the change ofOP [i].state (it is a member of

the first group), the change must happen afterp1
k readOP [i].state by LL at

line 1 in Help, and consequently it will fail to updateOP [i].state by SC.
Therefore,p1

k cannot interferep2
l while p2

l is executing procedureHelp or
CheckingR, or in other words,p2

l cannot be interfered through the shared
variableOP [i].state.

Case 1.2 : p2
l is interfered through a shared variableMem[x] while executing one

of the proceduresUnlocking, Releasing, Updating and Locking. Be-
causeOP [i].state changed afterp1

k read it and in the new state ofCASNi p2
l

must updateMem[x], the statep1
k read can only beLock or Unlock. Thus,

the valuep1
k can write toMem[x] is (OP [i].exp[y], i) or (OP [i].exp[y], nil),

whereOP [i].addr[y] points toMem[x]. On the other hand,p1
k can up-

dateMem[x] only if it is not acquired by another CASN, i.e.Mem[x] =
(OP [i].exp[y], nil) or Mem[x] = (OP [i].exp[y], i).

• If p1
k wants to updateMem[x] from (OP [i].exp[y], i) to (OP [i].exp[y], nil),

the statep1
k read isUnlock. Because only stateLock is the subse-

quent state fromUnlock, the correct statep2
l read isLock. Because

some processes must help theCASNi successfully release necessary
words, which includeMem[x], before theCASNi could change from
Unlock toLock, p1

k fails to executeSC(&Mem[x], (OP [i].exp[y], nil))
(line 4 inUnlocking, Figure 3.9) and retries by readingMem[x] again
(line 2 in Unlocking). In this case,p1

k observes thatOP [i].state
changed and gives up (line 3 inUnlocking).

• If p1
k wants to updateMem[x] from (OP [i].exp[y], nil) to (OP [i].exp[y], i),

the statep1
k read isLock. Because the current value ofMem[x] is

(OP [i].exp[y], nil), the current statep2
l read isUnlock or Failure.

– If p1
k executesSC(&Mem[x], (OP [i].exp[y], i)) (line 5 inLocking,

Figure 3.8)before p2
l executesSC(&Mem[x], (OP [i].exp[y], nil))

(line 4 inUnlocking/ Releasing, Figure 3.9),p2
l retries by read-

ing Mem[x] again (line 2 inUnlocking/ Releasing) and eventu-
ally updatesMem[x] successfully.

– If p1
k executesSC(&Mem[x], (OP [i].exp[y], i)) (line 5 inLocking)

after p2
l executesSC(&Mem[x], (OP [i].exp[y], nil)) (line 4 in

Unlocking/Releasing), p1
k retries by readingMem[x] again (line

3.5. CORRECTNESS PROOF 49

2 in Locking). Then,p1
k observes thatOP [i].state changed and

gives up (line 3 inLocking).

Therefore, we can conclude thatp1
k cannot interfere withp2

l through the shared
variableMem[x], which together with case 1.1 results in that the processes in
group one cannot interfere with the processes in group two via the shared variables.

Lemma 3.5.3. The interferences between processes in group two do not violate
linearizability.

Proof. On the shared variableOP [i].state, only the processes executing proce-
dureHelp or CheckingR can interfere with one another. In this case, the lin-
earization point is when the processes modify the variable bySC. On the shared
variableMem[x], all processes in group two will execute the same procedure such
asUnlocking, Releasing, Updating andLocking, because they read the latest
state ofOP [i].state. Therefore, the procedures are executed as if they are executed
by one process without any interference. In conclusion, the interferences among
the processes in group two do not cause any unexpected result.

From Lemma 3.5.2 and Lemma 3.5.3, we can infer the following corollary:

Corollary 3.5.1. The interferences among the procedures do not affect the correct-
ness of our algorithms.

Lemma 3.5.4. A CASNi blocks another CASNj at only one position in Mem
for all times CASNj is blocked by CASNi.

Proof. Assume towards contradiction thatCASNj is blocked byCASNi at two
positionx1 andx2 on the shared variableMem, wherex1 < x2. At the time
whenCASNj is blocked atx2, bothCASNi andCASNj must have acquiredx1

already because the CASN tries to acquire an item onMem only if all the lower
items it needs have been acquired by itself. This is a contradiction because an item
can only be acquired by one CASN.

Lemma 3.5.5. The algorithms are lock-free.

50 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

Proof. We prove the lemma by contradiction. Assume that no CASN in the sys-
tem can progress. Because in our algorithms a CASN operation cannot progress
only if it is blocked by another CASN on a word, each CASN operation in the
systems must be blocked by another CASN on a memory word. LetCASNi be
the CASN that acquired the wordwh with highest address among all the words
acquired by all CASNs. Because theN words are acquired in the increasing order
of their addresses,CASNi must be blocked by aCASNj at a wordwk where
address(wh) < address(wk). That meanCASNj acquired a wordwk with the
address higher than that ofwh, the word with highest address among all the words
acquired by all CASN. This is contradiction.

The following lemmas prove that our methods satisfy the requirements of online-
search and one-way trading algorithms [28].

Lemma 3.5.6. Whenever the average contention on acquired wordsincreases dur-
ing a transaction, the unlock-condition is checked.

Proof. According to our algorithm, in procedureLocking, every time a process
increasesOP [owner].blocked, it will help CASNowner. If theCASNowner is in a
transaction, i.e. being blocked by another CASN, for instanceCASNj , the process
will certainly call CheckingR to check the unlock-condition. Additionally, in
our second method the average contention can increase when the CASN releases
some of its words and this increase is checked at line 5 in procedureHelp in
figure 3.11.

Lemma 3.5.6 has the important consequence that the process always detects
the average contention on the acquired words of a CASN whenever it increases,
so applying the online-search and one-way trading algorithms with the value the
process obtains for the average contention is correct according to the algorithm.

Lemma 3.5.7. Procedure CheckingR in the second algorithm computes unlock-
point ul point correctly.

Proof. Assume that processpm executesCASNi and then realizes thatCASNi

is blocked byCASNj on wordOP [i].addr[x] at timet0 and readOP [i].blocked
at timet1. Betweent0 andt1 the other processes which are blocked byCASNi

can updateOP [i].blocked. BecauseCheckingR only sums onOP [i].blocked[k],
wherek = 1, .., x − 1, only processes blocked on words fromOP [i].addr[1] to
OP [i].addr[x−1] are counted inCheckingR. These processes updatingOP [i].blocked
is completely independent of the time whenCASNi was blocked on wordOP [i].addr[x].
Therefore, this situation is similar to one where all the updates happen beforet0,

3.6. EVALUATION 51

i.e. the value ofOP [i].blocked used byCheckingR is the same as one in a se-
quential execution without any interference between the two events thatCASNi

is blocked and thatOP [i].blocked is read. Therefore, the unlock-condition is
checked correctly. Moreover, ifCASNi’s state is changed to Unlock, the words
from OP [i].addr[x] to OP [i].addr[N] acquired byCASNi after timet0 due to
another process’s help, will be also released. This is the same as a sequential exe-
cution: if CASNi’s state is changed to Unlock at timet0, no further words can be
acquired.

3.6 Evaluation

We compared our algorithms to the two best previously known alternatives: i) the
lock-free algorithm presented in [53] that is the best representative of therecursive
helping policy (RHP), and ii) the algorithm presented in [81] that is an improved
version of thesoftware transactional memory [92] (iSTM). In the latter, a dummy
function that always returns zero is passed to CASN. Note that the algorithm in [81]
is not intrinsically wait-free because it needs an evaluating function from the user
to identify whether the CASN will stop and return when the contention occurs.
If we pass the above dummy function to the CASN, the algorithm is completely
lock-free.

Regarding the multi-word compare-and-swap algorithm in [44], the lock-free
memory management scheme in this algorithm is not clearly described. When we
tried to implement it, we did not find any way to do so without facing live-lock
scenarios or using blocking memory management schemes. Their implementation
is expected to be released in the future [43], but was not available during the time
we performed our experiments. However, relying on the experimental data of the
paper [44], we can conclude that this algorithm performs approximately as fast as
iSTM did in our experiments, in the shared memory size range from 256 to 4096
with sixteen threads.

The system used for our experiments was an ccNUMA SGI Origin2000 with
thirty two 250MHz MIPS R10000 CPUs with 4MB L2 cache each. The system
ran IRIX 6.5 and it was used exclusively. An extra processor was dedicated for
monitoring. The Load-Linked (LL), Validate (VL) and Store-Conditional (SC)
instructions used in these implementations were implemented from the LL/SC in-
structions supported by the MIPS hardware according to the implementation shown
in Figure 5 of [80], where fieldstag andval of wordtype were 32 bits each. The
experiments were run in 64-bit mode.

The shared memoryMem is divided intoN equal parts, and theith word inN
words needing to be updated atomically is chosen randomly in theith part of the

52 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

shared memory to ensure that words pointed byOP [i].addr[1]...OP [i].addr[N]
are in the increasing order of their indices onMem. Paddings are inserted between
every pair of adjacent words inMem to put them on separate cache lines. The val-
ues that will be written to words ofMem are contained in a two-dimensional array
V alue[3][N]. The value ofMem[i] will be updated toV alue[1][i], V alue[2][i],
V alue[3][i], V alue[1][i], and so on, so that we do not need to use the procedure
Read, which also uses the procedure Help, to get the current value ofMem[i].
Therefore, the time in which only the CASN operations are executed is measured
more accurately. The CPU time is the average of the useful time on each thread,
the time only used for CASNs. The useful time is calculated by subtracting the
overhead time from the total time. The number of successful CASNs is the sum
of the numbers of successful CASNs on each thread. Each thread executing the
CASN operations precomputesN vectors of random indices corresponding toN
words of each CASN prior to the timing test. In each experiment, all CASN op-
erations concurrently ran on thirty processors for one minute. The time spent on
CASN operations was measured.

The contention on the shared memoryMem was controlled by its size. When
the size of shared memory was 32, running eight-word compare-and-swap opera-
tions caused a high contention environment. When the size of shared memory was
16384, running two-word compare-and-swap operations created a low contention
environment because the probability that two CAS2 operations competed for the
same words was small. Figure 3.14 shows the total number of CASN and the num-
ber ofsuccessful CASN varying with the shared memory size. We think this kind
of chart gives the reader a good view on how each algorithm behaves when the
contention level varies by comparing the total number of CASN and the number of
successful CASN.

3.6.1 Results

The results show that our CASN constructions compared to the previous construc-
tions are significantly faster for almost all cases. The left charts in Figure 3.14
describes the number of CASN operations performed in one second by the differ-
ent constructions.

In order to analyze the improvements that are because of the reactive behav-
ior, let us first look at the results for the extreme case where there is almost no
contention and the reactive part is rarely used: CAS2 and the shared memory size
of 16384. In this extreme case, only the efficient design of our algorithms gives
the better performance. In the other extreme case, when the contention is high,
for instance the case of CAS8 and the shared memory size of 32, the brute force
approach of the recursive helping scheme (RHP) is the best strategy to use. The re-

3.6. EVALUATION 53

����������	
���
���������

�

������

������

������

������

������

������

������

	 �� �� �� ��
	

��
�

��
�

��
��

��
�	

��

�

	�

�

��
�	
�

���
�������
������

�
�
��
��
��
��	

�
�
�

��
��
��
�
�
��

���
��� ���
��� ����
��

���������	�
����

������������

�

������

������

������

������

������

������

� �� �� �� ��
�

��
�

��
�

��
��

��
��

��
	�

��
	�

��
��
�

���	������
	������

��
�

��
��
�
���

�
�
��

�
��
�� ����
�� ���� ���

����������	
���
���������

�

�����

������

������

������

������

������

�� �� �� ��
�

��
�

��
�

��
��

��
��

��
	�

��
	�

��
��
�

���
�������
������

�
�
��
��
��
��	

�
�
�

��
��
�
�
�
��

�
��
�� ����
�� ���� ���

���������	�
����

������������

�

�����

������

������

������

������

������

�� �� �� ��
�

��
�

��
�

��
��

��
��

��
	�

��
	�

��
��
�

���	������
	������

��
�

��
��
�
���

�
�
��

�
��
�� ����
�� ���� ���

����������	
���
����������

�

�����

�����

�����

�����

������

������

������

������

�� �� ��� ��� ��� ���� ���� ��	� ��	� �����
���
�������
������

�
�
��
��
��
��	

�
�
�

��
��
�
�
�
��

�
��
�� ����
�� ���� ���

���������	�
����

������������

�

�����

�����

�����

�����

������

������

������

�� �� ��� ��� ��� ���� ���� ��	� ��	� �����
���	������
	������

��
�

��
��
�
���

�
�
��

�
��
�� ����
�� ���� ���

Figure 3.14: The numbers of CAS2s, CAS4s and CAS8s and the number ofsuc-
cessful CAS2s, CAS4s and CAS8s in one second

cursive scheme works quite well because in high contention the conflicts between
different CASN operations can not be really solved locally by each operation and
thus the serialized version of the recursive help is the best that we can hope for.
Our reactive schemes start helping the performance of our algorithms when the
contention coming from conflicting CASN operations is not at its full peak. In
these cases, the decision on whether to release the acquired words plays the role in
gaining performance. The benefits from the reactive schemes come quite early and
drive the performance of our algorithms to reach their best performance rapidly.
The left charts in Figure 3.14 shows that the chart of RHP is nearly flat regardless
of the contention whereas those of our reactive schemes increase rapidly with the
decrease of the contention.

54 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

The right charts in Figure 3.14 describes the number ofsuccessful CASN op-
erations performed in one second by the different constructions. The results are
similar in nature with the results described in the previous paragraph. When the
contention is not at its full peak, our reactive schemes catch up fast and help the
CASN operations to solve their conflicts locally.

Both figures show that our algorithms outperform the best previous alternatives
in almost all cases. At the memory size 16384 in the left charts of Figure 3.14:

CAS2 : the first reactive compare-and-swap (1stRCAS) and the second one (2ndR-
CAS) are about seven times and nine times faster than both RHP and iSTM,
respectively.

CAS4 : both RCAS are four times faster than both RHP and iSTM.

CAS8 : both RCAS are two times faster than both RHP and iSTM.

Regarding the number of successful CASN operations, our RCAS algorithms
still outperform RHP and iSTM in almost all cases. Similar to the above results, at
the memory size of 16384 in the right charts of Figure 3.14, both reactive compare-
and-swap operations perform faster than RHP and iSTM from two to nine times.

3.7 Conclusions

Multi-word synchronization constructs are important for multiprocessor systems.
Two reactive, lock-free algorithms that implement multi-word compare-and-swap
operations are presented in this paper. The key to these algorithms is for every
CASN operation to measure in an efficient way the contention level on the words
it has acquired, and reactively decide whether and how many words need to be
released. Our algorithms are also designed in an efficient way that allows high
parallelism —both algorithms are lock-free— and most significantly, guarantees
that the new operations spend significantly less time when accessing coordination
shared variables usually accessed via expensive hardware operations. The algo-
rithmic mechanism that measures contention and reacts accordingly is efficient and
does not cancel the benefits in most cases. Our algorithms also promote the CASN
operations that have higher probability of success among the CASNs generating
the same contention. Both our algorithms are linearizable. Experiments on thirty
processors of an SGI Origin2000 multiprocessor show that both our algorithms re-
act quickly according to the contention conditions and significantly outperform the
best-known alternatives in all contention conditions.

In the near future, we plan to look into new reactive schemes that may further
improve the performance of reactive multi-word compare-and-swap implementa-
tions. The reactive schemes used in this paper are based on competitive online

3.7. CONCLUSIONS 55

techniques that provide good behavior against a malicious adversary. In the high
performance setting, a weaker adversary model might be more appropriate. Such
a model may allow the designs of schemes to exhibitmore active behavior, which
allows faster reaction and better execution time.

56 CHAPTER 3. REACTIVE MULTI-WORD SYNCHRONIZATION

Chapter 4

Efficient Multi-Word Locking
Using Randomization1

Phuong Hoai Ha2, Philippas Tsigas2, Mirjam Wattenhofer3, Roger
Wattenhofer4

Abstract

In this paper we examine the general multi-word locking problem, where pro-
cesses are allowed to multi-lock arbitrary registers. Aiming for a highly efficient
solution we propose a randomized algorithm which successfully breaks long depen-
dency chains, the crucial factor for slowing down an execution. In the analysis we
focus on the 2-word lock problem and show that in this special case an execution
of our algorithm takes with high probability at most time O(∆3 log n/ log log n),
where n is the number of registers and ∆ the maximal number of processes in-
terested in the same register (the contention). Furthermore, we implement our al-
gorithm for the general multi-word lock problem on an SGI Origin2000 machine,
demonstrating that our algorithm is not only of theoretical interest.

1This paper appeared in the Proceedings of the 24th Annual ACM SIGACT-SIGOPS Symposium
on Principles Of Distributed Computing (PODC ’05), Jul. 2005, pp. 249-257, ACM Press.

2Department of Computer Science and Engineering, Chalmers University of Technology, S-412
96 Gothenburg, Sweden. Email:{phuong, tsigas}@cs.chalmers.se

3Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.
Email:mirjam.wattenhofer@inf.ethz.ch

4Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland.
Email:wattenhofer@tik.ee.ethz.ch

58 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

4.1 Introduction

Edsger Dijkstra’s dining philosophers problem is widely recognized as a prototyp-
ical resource allocation instance. We are givenn philosophers, sitting at a round
table. Each philosopher is an asynchronous process who cycles through the three
states thinking, hungry, and eating. Between each neighboring pair of philoso-
phers, there is a fork. When becoming hungry, a philosopher tries to grab her
left and right fork. After having acquired both forks, the philosopher eats. When
finished eating, the philosopher returns her forks and goes back to thinking mode.

We can represent the classic dining philosophers problem in a shared memory
multi-processor system by havingn shared registers (the forks) andn processes
(the philosophers). The two registers (“forks”) which are of interest to processpi

(with i = 1, 2, . . . , n) are registersi andi + 1 (with the notable exception that the
“right fork” of processorpn is register1, and notn + 1, to achieve the desired ring
topology). In shared memory dining philosophers, each process repeatedly and
asynchronously tries to lock its two registers (hungry), then performs some atomic
operation on these two registers, such as multi-word compare-and-swap (eating),
and then continues with other operations (thinking).

The dining philosophers problem perfectly illustrates typical multi-process syn-
chronization difficulties. If all philosophers become hungry at the same time, and
pick up their left fork simultaneously, we have adeadlock, since no philosopher
can grab her right fork as well. Similarly, if a process crashes (or behaves awfully
slow) after locking its registers, the two neighbor processes cannot make progress;
as a remedy the research community has proposednon-blocking protocols, such as
recursive helping schemes, or transactional memory.

In this paper we focus on a third fundamental multi-process synchronization
issue,efficiency. In dining philosophers, “even” philosophers (processes with even
process id) do not have a conflict of interest among themselves. An efficient im-
plementation striving for maximum concurrency would therefore always let even
and odd processes eat in turns, thus maximizing the available resources.

In this paper we examine the general multi-word lock problem, where pro-
cesses are allowed to multi-lock arbitrary registers. The remainder of the paper
is organized as follows: In Section 2 we set our paper into context of prior art.
The model is then formally introduced in Section 3. In Section 4 we present our
algorithm and analyze it; in particular we show that a process has to wait at most
O(∆3 log n/ log log n) time until it can eat, wheren is the number of registers
and∆ the maximal number of processes interested in the same register (the con-
tention). In Section 5 we present extensive results from our implementation on an
SGI Origin2000 machine, proving that our idea is not only of theoretical interest.
Finally, in Section 4.6 we conclude the paper.

4.2. RELATED WORK 59

4.2 Related Work

Since processes without a conflict can proceed concurrently, it seems promising to
first compute a minimum coloring of the conflict graph. Yet solving the multi-lock
problem using coloring remained theory.

In a generalized variant of dining philosophers, a process sharesd forks and
can only eat if it has obtained alld forks. For this generalized problem [72] gave
a solution with waiting chains of lengthO(c), assuming that an oracle has colored
the conflict graph1 with c colors. The waiting chain length was reduced toO(log c)
in [97]. Assuming that a vertex coloring withd + 1 colors is known, in [20] this
length was further reduced to 3. For a simplified version of dining philosophers
[83] managed to have waiting chains of length at most 4 in constant time.

Unfortunately, even in a powerful message passing model, coloring is a tough
problem. It was proven in [69] that such colorings cannot be found in constant time.
In fact, even simpler problems (such as independent sets) have logarithmic lower
bounds [69]. More severely, the conflict graph is not available straightforwardly.
To compute the conflict graph, processes need some form of synchronization. We
believe that this synchronization is as hard to achieve as the original multi-lock
problem.

In this paper we present an efficient but blocking algorithm for the general
multi-lock problem, consequently without making a detour through coloring. A
blocking algorithm for the multi-lock problem can be turned into a lock-free algo-
rithm if it is combined with ahelping technique. The basic idea of the so called
cooperative technique [14], a form of helping technique, was improved and is still
developing in a series of nifty research papers [5,40,44,53,81,92].

For readability we do not integrate our algorithm with a helping scheme; how-
ever, it can be added to our algorithm: Each process, before locking registers,
somewhere notes what it wanted to do with that register. In case the process crashes
while holding the lock, others can help it finish by following its steps. The imple-
mentation of our algorithm used in Section 4.5 of this paper includes a helping
scheme, rendering our implementation lock-free.

In distributed graph algorithms (message passing), randomization techniques
are widely used. With a few exceptions [12], the shared memory community does
generally not apply randomization, presumably because its alleged overhead. Our
experiments show that the overhead due to randomization is less than 1% of the
total execution time.

1Here the conflict graph is a graph where each node represents a process and each edge represents
a resource which is shared by the two endpoint processes. Our conflict graph is different, see also
Section 4.3.

60 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

4.3 Problem and Model

In this section we recapitulate the problem we consider and formally define the
model used in the next sections.

We study themulti-lock problem, which is a generalization of dining philoso-
phers. In the multi-lock problem each participating process needs to lock multiple
registers in order to do some operation on the locked registers, like an N-word
compare-and-swap (CASN).

Typically, in a multi-lock implementation a process tries to lock all its registers
one by one. To avoid deadlocks, the registers are totally ordered, conventionally
by their identifiers (id). When executing ak-lock, a processp locks its registers
r1, . . . , rk according to their total order.

As discussed in Section 4.2, there exist several schemes which can be employed
once a process is blocked by other processes from locking its registers. In the anal-
ysis we assume that processes simply wait (spin-lock) until the block is resolved,
yet for the implementation (Section 4.5) we include a helping scheme.

We considerm asynchronous processes which can accessn shared registers. In
the analysis we concentrate on 2-locks. Each process only executes a single 2-lock
and then goes to sleep.

The dependencies between the processes are modeled by a directed acyclic
conflict graph G = (V, E). In G each node represents a register and each edge
represents a process. In the following, we will use the terms node/register and
edge/process interchangeably. There is a directed edgep from noder1 to node
r2 iff processp tries to lock registerr1 first and after being successful tries to lock
registerr2, meaning thatr1 comes beforer2 in the total order of registers. Since all
directed edges point from nodes with lower id to nodes with higher id the resulting
graphG is acyclic.

Following the conventions for asynchronous processes, in the analysis we as-
sume that each atomic operation, like reading, writing, or locking a register, incurs
a delay ofat most one time unit. An operation on multiple locked registers (e.g.
CAS2) incurs a delay. For convenience letc be the longest time which elapses from
the moment a process has locked its last register until it releases the lock on all its
registers.

In the remainder of this section, to illustrate our model, we quickly analyze a
classical implementation of dining philosophers. We show that it is a factorΩ(n)
less efficient than an optimal implementation. The classical implementation pro-
ceeds as follows: the processes try to lock their registers one by one, each starting
with the register with smaller identifier. Consider the following execution: First,
each processpi, i < n, locks registerri, whereaspn fails to lock r1 (due top1).
Then, each process tries to lock registerri+1, yet only processpn−1 succeeds. The

4.4. RANDOMIZED REGISTERS 61

second register of all other processes is locked by another process. Thus, processpi

has to wait until processpi+1 releases its lock onri+1. By induction, after having
waitedΘ(cn) time units,p1 releases its lock onr1 andpn may lock both its reg-
isters. Thus, the execution time isΩ(cn). An optimal implementation needs only
O(c) time and hence the classical algorithm is a factorΩ(n) less efficient than an
optimal algorithm.

4.4 Randomized Registers

In this section we present a more efficient algorithm for multi-lock and analyze it
according to two standard criteria for the special case of 2-lock.

4.4.1 The Algorithm

Alerted by the poor execution time of the classical algorithm for dining philoso-
phers due to its long dependency chain, we aim at breaking dependency chains. A
promising yet simple (allowing for an efficient implementation) approach is ran-
domization. Specifically, we suggest to randomly permute the order of the regis-
ters. LetΠ be a permutation on the registers, chosen uniformly at random. The
permutation represents the new total ordering of the registers. For details on how
the randomization can be implemented we refer to Section 4.5.

In short we henceforth writep = (ri, rj) meaning that processp wants to
acquire registerri and rj and thatΠ(id(ri)) < Π(id(rj)). Thus,ri is p’s first
register andrj is p’s second register.

In the next sections we analyze the efficiency of the suggested 2-lock algo-
rithm which uses a randomized total ordering of registers. As in [97] we evaluate
two related properties: the maximum length of a waiting chain and the longest
time a process needs until it successfully performs a 2-lock. Towards this goal,
we first prove some basic properties of the conflict graph2. Thereafter, we ana-
lyze the length of waiting chains and finally show that with high probability after
O(c∆3 log n/ log log n) time the execution is finished.

4.4.2 Length of Directed Paths

Henceforth, we denote byG the conflict graph as obtained by the random permu-
tation of the registers. Let the maximum degree inG be ∆. In this section we
analyze the length of a directed path inG. The following facts are used for the
analysis, the proofs of which can be found in standard mathematical textbooks.

2Note, that the conflict graph is only needed for analysis purposes. The processes do not know
the conflict graph.

62 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

Fact 4.4.1 (Stirling).

k! ≥ 2

√
kkk

ek
.

Fact 4.4.2 (Markov).
P(X ≥ t) ≤ E[X]/t.

Throughout the paperlog n denotes the logarithm with base two.
To estimate the length of a directed path inG, we first upper bound the number

of distinctundirected paths of lengthk in G: To obtain an undirected path of length
k one can choose one out ofn nodes inG as start node. In any node there are at
most∆ neighbor nodes to continue the path. Therefore:

Observation 4.4.3. There are at most n · ∆k distinct undirected paths of length k
in G.

As a next step we give the probability that a given path of lengthk in G is
directed.

Observation 4.4.4. The probability that a given path of length k in G is directed
is 2

(k+1)! .

Proof. In a path of lengthk there arek + 1 nodesu1, . . . , uk+1. For the path to be
directed, it must hold that eitherΠ(id(u1)) < Π(id(u2)) < . . . < Π(id(uk+1)) or
Π(id(u1)) > Π(id(u2)) > . . . > Π(id(uk+1)). Hence, there are exactly two good
out of (k + 1)! possible choices.

Thus, the probability that a path is directed decreases exponentially with in-
creasing path-length. Combining both Observation 4.4.3 and Observation 4.4.4
gives an upper bound on the number of directed paths of lengthk.

Lemma 4.4.1. Let C be the number of directed paths of length k. Then, E[C] <
1

n∆ , for k ≥ 3∆ log n
log log n .

Proof. Let pi denote a path of lengthk and letXpi be defined as follows

Xpi =
{

1, if pi directed
0, otherwise.

Then by linearity of expectation,

E[C] = E[
∑
∀pi

Xpi]

=
∑
∀pi

E[Xpi]

≤ n∆k 2
(k + 1)!

,

4.4. RANDOMIZED REGISTERS 63

by Observation 4.4.3 and Observation 4.4.4. Applying Stirling’s formula (Fact
4.4.1) and substituting3∆ log n/ log log n for k yields the following inequalities

E[C] < n∆k ek

√
kkk

≤ n∆k ek

(3∆ log n/ log log n)k

< n
1

(log n/ log log n)k

= n
1

23∆ log n/ log log n(log log n−log log log n)

= n
1

n3∆(1−log log log n/ log log n)

≤ 1
n∆

.

Finally, we bound the probability that there exists a directed path inG by ap-
plying Markov’s inequality.

Corollary 4.4.5. With probability at most 1/n∆ there exists a directed path of
length at least 3∆ log n/ log log n.

Proof. By Fact 4.4.2 and Lemma 4.4.1

P(C ≥ 1) ≤ E[C] ≤ 1/n∆.

4.4.3 Length of Waiting Chains

Following the notation of [97] we define awaiting chain as a series of processes
such that each process in the chain is waiting for some action by the next process
in the chain.

A processp is delayed by another processq if q can, by slowing down or
stopping, causep to have a longer total waiting time than ifq stayed in its remainder
section. The maximum length of a waiting chain is the maximum distance between
two processes such that one process can delay the other.

We want to intuitively depict the concept of delaying with the example of Fig-
ure 4.1. Processp can be delayed by all processes in the figure: E.g. processq2

can delayp if q1 locksr1 beforep andq2 locksr6 beforeq1. Thus,q1 has to wait

64 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

r6

r7 q5

p q3 q4
r1 r2 r3

r4

q1

q2

q6

Figure 4.1: Delation ofp.

for q2 until it can acquire (and release) both its locks and consequentlyp (which
waits forq1 to release the lock onr1) also has to wait forq2. Processq6 can also
delayp: q6 locksr3, q3 locksr2 andp locksr1. Thus,p is waiting forq3 to release
r2 which itself is waiting forq6 to releaser3. On the other hand, processp could
not be delayed by a (not shown) processq7 = (r4, x), wherex is some register not
depicted in Figure 4.1. This is because processq7 may acquire registerr4 before
q6 and thusq6 has to wait untilq7 releases this register again before it can proceed.
Yet, this does in no way delayp since it does not impose a longer waiting time on
p. In general:

Lemma 4.4.2. Process q = (R1, R2) can delay process p = (r1, r2) if and only if
R2 lies on a directed path starting in either r1 or r2.

Proof. By definition, if processq delays processp, the waiting time ofp must be
longer ifq slows down or stops than ifq stayed in its remainder section. If processes
q’s second registerR2 lies on a directed path starting inri, i ∈ {1, 2}, then there
exists a directed path of processesq1 = (ri, rj), . . . , qk = (rl, R2), with possibly
qk = q. In the case that each process in this path locked its first register - and given
thatqk �= q q also locked its second register - none of processesq1, . . . , qk makes
any progress as long asq does not make any progress. Thus, processp will not be
able to lock its registerri and hence its waiting time is longer than ifq stayed in its
remainder section, showing thatq delaysp.

In order to show the other direction of the lemma we letQ be the set of
processes which do not lie with their second register on a directed path from
ri, i ∈ [1, 2]. Between any arbitrary processq in Q and any directed pathPi

from ri there is at least one processq̄ which breaks this directed path, that isq̄’s
second register lies onPi whereas its first register does not. By slowing down or
stopping its executionq may hinderq̄ in acquiring its first register, yet it does not
hinderq̄ in acquiring its second register, otherwise one ofq’s registers would also
lie on a directed path fromri, a contradiction to the assumption thatq in Q. Thus,
by slowing down or stoppingq either does not affect̄q or q̄ cannot participate in the

4.4. RANDOMIZED REGISTERS 65

execution at all as long asq does not make any progress. Hence, processq cannot
delayp via q̄ and consequently it cannot delayp via any process onPi. Further-
more,q is not incident top and thus it cannot delayp directly. Sinceq cannot delay
p indirectly via a process on a directed path nor directly,p is not affected ifq slows
down or stops. This concludes the proof

Corollary 4.4.6. The maximum length of a waiting chain in the randomized regis-
ters algorithm is with probability at least 1−1/n∆ at most 3∆ log n/ log log n+1.

Proof. The maximal number of edges between a processp and a processq which
delaysp is at most the length of the longest directed path plus one, since by Lemma
4.4.2 a process which delaysp must be incident with its second register to a directed
path. Hence, we can directly apply Corollary 4.4.5.

4.4.4 Execution Time

Though the length of a waiting chain is an indicator of the efficiency of an algo-
rithm, it is only a lower bound for the execution time. For the execution time we
must bound two values: First, we need to bound the time until a process is able to
lock its first register, then we need to bound the time until it can lock its second
register. Towards this goal we introduce some helpful definitions.

The execution starts at time zero. A processp = (r1, r2) locks its first register
at timet1(p) and its second register at timet2(p). Using the definition of Section
4.3 processp releases both its locks at timet3(p) ≤ t2(p) + c. (See also Figure
4.2.)

c

0 t1 t2 t3

lock of second register

lock of first register

both registers released

start of execution

Figure 4.2:t1, t2 andt3 for a process.

Definition 4.4.7 (Delay Graph). Let p be a process with p = (r1, r2). Then p’s
delay graph, denoted by D(p) contains all processes with q = (R1, R2) where

66 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

R1 lies on a directed path starting in r1. The depth of process p depth(p) is then
defined as the length of the longest directed path (number of processes in the path)
in D(p).

In the example of Figure 4.3 3 processesq1, q2, q3, q4 are inp’s delay graph,
whereas processq5, q6 are not, since there is no a directed path fromr1 to q6’s
first registerr4, respectivelyq5’s first registerr8. Intuitively, processes which are
incident to a directed path fromp merely by their second register, do not delayp
much, since those processes release their lock on the crucial register quickly after
acquiring it. Note that the depth of a process is at least one since at least the process
itself lies in its delay graph.

r6

r7 q5

p q3 q4
r1 r2 r3

r4

q1

q2

q6

r8

Figure 4.3: Processp, q1, q2, q3, q4 are inp’s delay graph. The depth ofp is 3,q1’s
depth is also 3.

We now bound the maximal depth of any process by directly applying Corol-
lary 4.4.5:

Corollary 4.4.8. The maximum depth k∗ of any process is at most 3∆ log n/ log log n
with probability at least 1 − 1/n∆.

The next lemma reveals a key property of the delay graph.

Lemma 4.4.3. Let D(p) be processes p = (r1, r2) delay graph and let q =
(R1, R2) be a process in D(p). Then,

depth(q) ≤ depth(p).

Furthermore, if R1 �= r1 then

depth(q) < depth(p).

Proof. Assume without loss of generality thatPRju = (Rj , u1, . . . , uk, u), j ∈
{1, 2}, is a longest directed path inq’s delay graph. Then, depth(q)= |PRju| =
|{Rj , u1, . . . , uk, u}| − 1. Sinceq ∈ D(p) there is a directed pathPr1R1 =

4.4. RANDOMIZED REGISTERS 67

(r1, v1, . . . , vl, R1) from r1 to R1, where |Pr1R1 | = |{r1, v1, . . . , vl, R1}| − 1
is the length of this path. Consequently, there exists a directed pathPr1u =
(r1, . . . , R1, Rj , . . . , u) from r1 to u. Thus,

depth(p) ≥ |Pr1u|
= |{r1, . . . , vl, R1, Rj , . . . , u}| − 1
≥ |{Rj , . . . , u}| − 1
= depth(q).

If furthermore,r1 �= R1 then

depth(p) = |{r1, . . . , vl, R1, Rj , . . . , u}| − 1
≥ |{r1, . . . , vl}| + |{R1, Rj . . . , u}| − 1
≥ 1 + |PRju|
> depth(q).

The following corollary shows that along a directed path the depth of the pro-
cesses is strictly decreasing.

Corollary 4.4.9. Let P = (r1, r2, . . . , rk+1) be a directed path and let pi =
(ri, ri+1), 1 ≤ i ≤ k, be the processes on this path. Then, depth(pi) > depth(pi+1), 1 ≤
i ≤ k − 1.

Proof. By the definition of a delay graph, a processq = (R1, R2) lies in the delay
graphD(p) of processp = (r1, r2) iff there is a directed path betweenr1 andR1.
Thus, processpi+1 lies in the delay graph of processpi since by the assumptionri

andri+1 lie on a directed path. We hence may apply Lemma 4.4.3 which states that
the depth of a processq which lies in the delay graphD(p) of processp is strictly
smaller thanp’s depth if p’s first register is not equal toq’s first register. Since
in our case the first register ofpi+1 is ri+1 and the first register ofpi is ri, this
condition holds and thus the depth ofpi+1 is strictly smaller thanpi’s depth.

Corollary 4.4.10. There is a process with depth one in any conflict graph G.

Proof. Let p1 = (r1, r2) be a process inG with depthk. Then, there exists
a directed pathP = (r1, r2, , . . . , rk+1) from r1 to some noderk+1 of length
(number of processes inP) k. By Corollary 4.4.9 the depth of the processes
pi = (ri, ri+1), 1 ≤ i ≤ k, in this path is strictly decreasing. Thus, depth(pi+1) ≤
depth(pi) − 1, 1 ≤ i ≤ k − 1, and since depth(p1) = k, we have depth(pk) ≤ 1.
The depth of any process is at least one and consequently depth(pk) = 1.

68 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

In the next lemma we upper boundt3(p) for a processp with depth one.

Lemma 4.4.4. For a process p = (r1, r2) with depth(p)=1 we have t3(p) ≤ 4c∆2.

Proof. A processp has depth one iff the following two conditions hold: A process
qj incident top’s first registerr1 is either incoming inr1 (type a), that isqj =
(x, r1), x an arbitrary register, orqj = (r1, x) and all processes incident toqj ’s
second registerx are incoming inx (type b). A processqi incident top’s second
registerr2 is incoming inr2, that isqi = (x, r2), x an arbitrary register. (See also
Figure 4.4.)

p

typea

typeb

Figure 4.4: Depth(p)=1.

We first concentrate on typea processes: Processes of typea release their lock
on r1 at mostc time units after acquiring it. The next process acquires the lock on
r1 at most one time unit later. Thus each process of typea adjacent tor1 delaysp
for at mostc + 1 ≤ 2c time units.

A processqj = (r1, x) of type b must wait at the utmost for all processes
incident to its second registerx until it can acquire the lock onx and thereafter
releaser1. A process incident tox releases its lock onx at mostc time units after
acquiring it and the next process acquires it at most one time unit later. Thus, each
process incident tox delaysqj for at mostc + 1 ≤ 2c time units. Besidesqj there
are at most∆−1 processes incident tox. We thus immediately get thatqj acquires
its lock onx after at most2c(∆ − 1) + 1 time units and releases its locks after at
mostc more time units. Thus each process of typeb adjacent tor1 delaysp for at
most2c(∆ − 1) + 1 + c ≤ 2c∆ time units.

Besidesp there are at most∆ − 1 processes incident tor1, each of which
releases its lock onr1 at most2c∆ time units after acquiring it. Therefore, we
immediately get

t1(p) = 2c∆(∆ − 1) + 1

The time untilp can lockr2 is by the same argument as the argument for type
a processes at most2c(∆ − 1) + 1 and hence

t3(p) ≤ t2(p) + c

≤ 2c∆(∆ − 1) + 1 + 2c(∆ − 1) + 1 + c

≤ 4c∆2.

4.4. RANDOMIZED REGISTERS 69

Lemma 4.4.5. For a process p with depth(p)=k we have

t3(p) ≤ 4c∆2k.

Proof. We prove the lemma by induction on the depth of a processp = (r1, r2).
By Corollary 4.4.10 there always exists a process of depth one in the conflict graph
G and thus we may base the induction in this case.

Base Case: In case that depth(p)= 1 t3(p) ≤ 4c∆2 by Lemma 4.4.4.
Induction: We henceforth assume that for a processq with depth(q)≤ (k − 1)

it holds thatt3(q) ≤ 4c∆2(k−1) and consider processp with depthk. By Lemma
4.4.3 all processes inp’s dependency graphD(p) which do not haver1 as their
first register have depth less thank and thus –by the induction hypothesis– finished
their operations at time4c∆2(k − 1) at latest. Thus, the only processes inD(p)
which are still active are those which haver1 as their first register and consequently
at time4c∆2(k − 1) p’s depth is at most one. We then apply Lemma 4.4.4 and get

t3(p) ≤ 4c∆2(k − 1) + 4c∆2 = 4c∆2k.

Theorem 4.4.11. A process p finishes its operations after time O(c∆3 log n/ log log n)
with probability at least 1 − 1/n∆.

Proof. By Corollary 4.4.8 the depth of any process is at most3∆ log n/ log log n
with probability at least1 − 1/n∆. Thus, using Lemma 4.4.5,

t3(p) ≤ 4c∆2 · 3∆ log n/ log log n

∈ O(c∆3 log n/ log log n).

In a model where an operation takes exactly timec, clearly an optimal algo-
rithm needs at least the timec to finish. Therefore:

Corollary 4.4.12. With probability at least 1 − 1/n∆ the randomized registers
algorithm is O(∆2 log n/ log log n) competitive.

70 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

4.5 Evaluation

We have proposed amulti-lock algorithm, where the operation performed after all
registers are locked can be defined arbitrarily by the programmer. To evaluate
the algorithm, we chose the operation specifically to be a single-word compare-
and-swap on each register. With this choice, our algorithm became a multi-word
compare-and-swap algorithm.

The multi-word compare-and-swap operations (CASN) extend the single-word
compare-and-swap operations from one word to many. A single-word compare-
and-swap operation (CAS) takes as input three parameters: the address, anold
value and anew value of a word, and atomically updates the contents of the word
if its current value is the same as theold value (cf. Figure 4.5). Similarly, an N-
word compare-and-swap operation takes the addresses,old values andnew values
of N words, and if the current contents of theseN words all are the same as
the respectiveold values, the CASN will write the new values to the respective
words atomically. Otherwise, we say that the CAS/CASN fails, leaving the variable
values unchanged.

CAS(x, old, new)
atomically {

if (x = old) {x ← new; return (true)};
else return (false);
}

Figure 4.5: The single-word compare-and-swap primitive

The multi-word compare-and-swap operations are powerful constructs, which
make the design of concurrent data structures more effective and easier. As ex-
pected, they attracted the attention of many researchers, consequently many CASN
implementations appear in the literature [5, 40, 44, 53, 81, 92]. One approach sug-
gested to construct CASN operations iscooperative technique, which allows pro-
cesses to concurrently access the shared data as long as they write down what they
are doing. Before changing a portion of the shared data that was locked by another
processpj , a processpi must helppj complete its task first. The technique was first
theoretically suggested by Barnes [14] and then was transformed into a more appli-
cable one by Israeli et al. [53], which was used to implement a lock-free multi-word
compare-and-swap operation. This implementation was later improved by Harris
et al. [44] to reduce the per-word space overhead. A wait-free multi-word compare-
and-swap was developed by Anderson based on this technique [5]. However, this
cooperative technique uses a recursive helping policy, where a process has to help
many other processes before completing its own task. The helping chains, where

4.5. EVALUATION 71

processpi helpspi+1, may be very long. All processes related to a chain may do
the same task, the task of the last process in the chain, which reduces parallelism
and creates high collision levels on the shared data needed by the common task.

In order to evaluate the performance of our algorithm (randomized CAS, in
short RaCASN) and also check its feasibility in a real setting we implemented it
and ran it on a ccNUMA SGI Origin2000 multiprocessor that was equipped with
30 CPUs. As discussed in Section 4.2 we equipped our randomized registers algo-
rithm with a helping policy [53]. In order to see in practice the performance bene-
fits of the randomization we also implemented the deterministic recursive helping
policy (DeCASN) presented in [53]. The implementation of RaCASN was similar
to that of DeCASN except that the order of registers/words3 chosen to be locked
was random in RaCASN. In other words, both algorithms are lock-free. For the
tests we used a micro-benchmark and a small application. The micro-benchmark
was designed to generate an execution environment with high contention on the
shared registers. The application was a parallel-prefix application with continuous
input feed and space constraints.

4.5.1 The micro-benchmark

The micro-benchmark aims at generating an environment with high contention on
shared registers. In the micro-benchmark, a set ofN + k virtual registersvi, 1 ≤
i ≤ N +k, are mapped onk system registersr1, r2, · · · , rk, whereN is the number
of registers to be updated atomically by the CASN operations. The mapping used
is

vi =
{

ri if 1 ≤ i ≤ k
ri−k if k + 1 ≤ i ≤ k + N .

The virtual registers are accessed byk N -word compare-and-swap operations
CASN1, CASN2, · · · , CASNk. During the execution of this benchmark, each
CASNi operation tries to update virtual registersvi, vi+1, · · · , vi+N−1 atomically.
Note that two consecutive CASNsCASNi andCASNi+1 haveN − 1 system
registers in common and thus the micro-benchmark can generate helping chains of
length up tok, where a helping chain is a chain of CASN operations that a thread
has to help before completing its own CASN.

In our experiment, we ran the micro-benchmark with DeCASN and RaCASN.
In the RaCASN implementation,k random numbers corresponding to thek sys-
tem registers were precomputed and stored in a shared array. For each execution,
we measured the longest helping chain and then computed the distribution of the

3Termsregister andword can be used interchangeably.

72 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

CAS2: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h
Original
Randomized

CAS4: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h

Original
Randomized

CAS6: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h

Original
Randomized

CAS8: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h

Original
Randomized

Figure 4.6: The distributions of the longest wait-queue lengths in the micro-
benchmark on the SGI Origin2000.

chain lengths over one million executions. We also measured the average execu-
tion time of the micro-benchmark using DeCASN and RaCASN. Our experiment
ran the micro-benchmark with 28 threads on 28 processors of the SGI Origin2000
machine. We tested the benchmark withN = 2, 4, 6 and8, i.e. CAS2, CAS4,
CAS6 andCAS8. The results are presented in Figure 4.6 and Figure 4.7.

Results: Figure 4.6 shows that RaCASN breaks the helping chains much better
than DeCASN, thus making themselves faster. Long helping chains degrade the
efficiency of the whole system since all processors related to a chain try to lock the
same registers of the last CASN in the chain, which generates high collision levels
on these registers.

In the case of CAS2 in Figure 4.6, RaCASN exhibits executions with the
longest helping chain of length 4 in 61% of the total number of executions, of
length 3 in 21% of the total number of executions and of length 5 in 16% of the
total number of executions. The RaCASN longest helping chain over one million
executions has length 7 in 0.2% of the total number of executions. Regarding De-
CASN, it exhibits executions with longest helping chains of length 20 in 32% of

4.5. EVALUATION 73

Micro-benchmark execution time on
Origin2000

0

200

400

600

800

1000

1200

1400

1600

CAS2 CAS4 CAS6 CAS8
Operations

A
ve

ra
ge

 e
xe

c.
 ti

m
e

(m
ic

ro
se

c) Original
Randomized

Figure 4.7: The micro-benchmark execution times on the SGI Origin2000.

the total number of executions, of length 21 in 16% of the total number of execu-
tions and of length 19 in 15% of the total number of executions. The DeCASN
exhibits executions with longest helping chain of length 28, the maximal number
of CASN operations, in 4% of the total number of executions.

When the number of registers to be updated increases, the distribution of RaCASN
longest chain lengths shifts to the right slowly but is still much better than that of
DeCASN as shown in the charts of CAS4, CAS6 and CAS8 (cf. Figure 4.6). Note
that the probability that one CASN must help another grows withN . However, the
length of the longest helping chain may not increase since a successful CASN can
reduce this length by at leastN . We can observe this effect in Figure 4.6 where
the highest bar in the DeCASN longest length distribution shifts to the left slowly
whenN increases from 2 to 8.

Since RaCASN helps the micro-benchmark break long helping chains, which
by itself reduces collision on memory and increases parallelism, RaCASN achieves
better performance on the benchmark as shown in Figure 4.7. The RaCASN is from
20% to 31% faster than DeCASN. The overhead of computingk random numbers
in RaCASN implementation is not significant, which consumed only 0.07 percent
of the execution time.

4.5.2 The application

As we have experienced, an algorithm that gains good performance on a micro-
benchmark may not keep such performance on a real application. This motivated
us to do another comparison between RaCASN and DeCASN on an application.

The application comes from the following problem:

The problem: There aren registersr1, r2, · · · , rn, each of which belongs to
one ofn agentsa1, a2, · · · , an. The agents communicate with the underlying

74 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

computational system via these registers: agentak reads a result in registerrk

written by the system before writing there a new inputik for the system. Input
valuesik are put in registerrk randomly and independently of other agents. The
input values change all the time dynamically. (We can think that they are inputs
from sensors.)

The computational system computes an output/resultok for agentak from the
prefix i1, i2, · · · , ik. For simplicity, we assume that it computes a prefix-sum

ok = i1 + i2 + · · · + ik = ok−1 + ik

for all k in [2, n]. The system writes the resultok back to registerrk only if the
values used to computeok have not changed yet. That means:

• either all registersr1, r2, · · · , rk have not changed yet ifok is computed from
i1, i2, · · · , ik, or

• registersrk−1 andrk have not changed yet ifok is computed fromok−1 and
ik, whereok−1 had been written successfully to registerrk−1 and no new
input ik−1 has been put in this register sinceok−1 was written back.

The efficiency of the computational system is evaluated by the number of re-
sults written successfully. The more results are written successfully, the better the
system is.

A simple algorithm solving the problem: The following two observations can
be made:

• The results must be computed as fast as possible in order to write them back
to the registers before new inputs are put in them.

• Usingok−1 andik to computeok has higher probability of success than using
i1, i2, · · · , ik.

Therefore, we usen threadst1, t2, · · · , tn, where the main task of threadtk is
to computeok fast. The algorithm is illustrated in Figure 4.8.

In our experiment, the CASN operation in the algorithm was in turn replaced
by RaCASN and DeCASN and then the average execution times of the application
were measured over one million executions. The number of registers or threadsn
was varied from 4 to 28. The experiment with highern generates higher collision
level on the registers due to the helping policy. In the experiment, each thread ran
exclusively on one processor of the Origin2000 machine. The result is presented
in Figure 4.9.

4.6. CONCLUSIONS 75

while True do
Read registers from k to k′, where register r′k is the first reg.
that is observed containing an output/result. Note o1 = i1.
Compute ok: ok′+1 := ok′ + ik′+1; · · · ; ok := ok−1 + ik;
if CASN(〈rk′ , rk′+1, · · · , rk〉, 〈ok′ , ik′+1, ..., ik〉,

〈ok′ , ok′+1, ..., ok〉) = Success) then break;
done

Figure 4.8: The algorithm for a threadtk in computing one result/output

Application execution time on Origin2000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 8 12 16 20 24 28
The number of registers

E
xe

cu
tio

n
tim

e
(m

ic
ro

se
c)

Original
Randomized

Figure 4.9: The application execution times on the SGI Origin2000.

Results: The experimental result shows that RaCASN helps the application run
faster compared to DeCASN. It is up to 40% faster in the case of 28 registers
or 28 threads. Figure 4.9 shows that with more threads the DeCASN/ReCASN
speed-up relation grows. This implies that the randomization in RaCASN plays
a significant role in reducing collisions on the shared registers, thus helping the
application achieve better performance. The overhead of pre-computingn random
numbers corresponding ton registers is not significant: it takes at most 0.7% of
the execution time. (This worst case is measured in the case where the number of
register is 4.)

4.6 Conclusions

In this paper we advocated randomization for implementing multi-locking such as
CASN efficiently. We showed that our approach is efficient, in theory as well as in
practice.

In the past, multi-lock algorithms were usually evaluated by random simula-
tions. That is, in an evaluation/simulation of an algorithm it was assumed that
randomly chosen registers were accessed by the processes. We believe that this

76 CHAPTER 4. EFFICIENT MULTI-WORD LOCKING

is a conceptualfaux pas. In fact, shared memory processes operate on shared
data structures (e.g. search trees, linked lists) which are accessed anything but
randomly. In reality, as in dining philosophers, access is not random but well-
structured. For example, in a shared ordered linked list a process needs to multi-
lock the twoneighbor records in order to insert a new record.

By shifting the randomization from the simulation to the actual implementation
our system is efficient in any application, as worst-case as it may be.

Chapter 5

Reactive Spin-locks: A
Self-tuning Approach1

Phuong Hoai Ha2, Marina Papatriantafilou2, Philippas Tsigas2

Abstract

Reactive spin-lock algorithms that can automatically react to contention varia-
tion on the lock have received great attention in the field of multiprocessor synchro-
nization. This results from the fact that the algorithms help applications achieve
good performance in all possible contention conditions. However, to make deci-
sions, the reactive schemes in the existing algorithms rely on (i) some fixed ex-
perimentally tuned thresholds, which may get frequently inappropriate in dynamic
environments like multiprogramming/multiprocessor systems, or (ii) known proba-
bility distributions of inputs, which are not usually feasible.

This paper presents a new reactive spin-lock algorithm that is completely self-
tuning, which means no experimentally tuned parameter nor probability distri-
bution of inputs are needed. The new spin-lock is based on both synchroniza-
tion structures of applications and a competitive online algorithm. Our experi-
ments, which use the Spark98 kernels and the SPLASH-2 applications as applica-
tion benchmarks, on a multiprocessor machine SGI Origin2000 and an Intel Xeon
workstation have showed that the new self-tuning spin-lock helps the applications

1Expanded version of a preliminary result published in the Proceedings of the 8th IEEE Inter-
national Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN ’05), Dec. 2005,
pp. 33-39, IEEE press.

2Department of Computer Science and Engineering, Chalmers University of Technology, S-412
96 Gothenburg, Sweden. Email:{phuong,ptrianta,tsigas}@cs.chalmers.se.

78 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

with different characteristics nearly achieve the best performance in a wide range
of contention levels.

5.1 Introduction

Multiprocessor systems aim at supporting parallel computing environments, where
processes are running concurrently. In such parallel processing environments the
interferences among processes are inevitable. Many concurrent processes may
cause high traffic on the system bus (or network), high contention on memory mod-
ules and high load on processors; all these slow down process executions. These
interferences generate a variable and unpredictable environment to each process.
Such a variable environment consequently affects interprocess-synchronization meth-
ods like spin-locks. Some sophisticated spin-locks such as the MCS queue-lock [77]
are good for high-load environments, whereas others such as thetest-and-test-and-
set lock [2,7] are good for low-load environments [66]. This fact raises a question
on constructing reactive spin-locks that can adapt to load variation in their environ-
ment so as to achieve good performance in all conditions.

There exist reactive spin-lock algorithms in the literature [2, 7, 66, 67]. Spin-
lock using thetest-and-test-and-set operation with exponential backoff (TTSE) [2,
7] is an example: every time a waiting process reads a busy lock, i.e. there is prob-
ably high contention on the lock, it will double its backoff delay in order to reduce
the contention. Another reactive spin-lock that can switch from spin-lock using
TTSE to a sophisticated local-spin queue-lock when the contention is considered
high was suggested in [66,67].

However, these reactive spin-locks suffer some drawbacks. First of all, their re-
active schemes rely on either some experimentally tuned thresholds or known prob-
ability distributions of some inputs. Suchfixed experimental threshold-values may
frequently become inappropriate in variable and unpredictable environments such
as multiprogramming systems. Assumption on known probability distributions of
some inputs is not usually feasible. Further, the reactive spin-locks do not adapt
to synchronization characteristics of applications and thus they are inefficient for
different applications. We observe that characteristics of applications such as de-
lays inside/outside the critical sections have a large impact on which spin-lock will
help the applications achieve the best performance. Lim’s reactive spin-lock [66],
which switches toTTSE when contention is low and to the MCS queue-lock when
contention is high, was showed inefficient to some real applications [59]. A good
reactive spin-lock should not only react to the contention variation on the lock, but
also adapt to a variety of applications with different characteristics.

These issues motivated us to design a new reactive spin-lock that requires nei-

5.1. INTRODUCTION 79

ther experimentally tuned thresholds nor probability distributions of inputs. The
new spin-lock moreover adapts itself to applications, keeping its good performance
on different applications.

while true do Noncritical section; Entry section; Critical section; Exit section; od

Figure 5.1: The structure for parallel applications

We classify spin-locks into two categories:arbitrating locks such as ticket-
locks [61] and queue-locks [21,32,73,77] andnon-arbitrating locks such asTAS
locks [2,7].Arbitrating locks are locks that identify who is the next lock holder in
advance. The rest of spin-locks arenon-arbitrating locks.

Arbitrating locks and non-arbitrating locks each have their own advantages.
Arbitrating locks prevent processors from causing bursts in network traffic as well
as high contention on the lock. This is because they avoid the situation that many
processors concurrently realize the lock available and thus concurrently try to ac-
quire the lock [4, 7, 55, 59, 77]. Although the advantages of arbitrating spin-locks
have been studied so widely, the following advantages of non-arbitrating spin-locks
have not been studied deeply. Non-arbitrating locks have two interesting proper-
ties: i) tolerance to crash failures in the lock-competing phase, theEntry section
in Figure 5.1, and ii) ability of exploitingcache affinity [57, 96, 99, 104, 105] and
the underlying system supports such as page migration [64]. The lock holder can
re-acquire the lock and re-use the exclusive shared data many times before the lock
is acquired by another processor, saving time used for transferring the lock and
the shared data from one to another. From experiments we observe that the non-
arbitrating locks is favored by applications with the critical section much larger
than the non-critical section (cf. Figure 5.1) to exploit locality/cache whereas the
arbitrating locks is favored by ones with the critical section much smaller than the
non-critical section to avoid bursts both in network traffic and in memory con-
tention. This implies that characteristics of a specific application can decide which
kind of locks helps the application achieve better performance. (Further discus-
sions on the advantages of both lock categories continue in Section 5.2.)

5.1.1 Contributions

We designed and implemented a new reactive spin-lock with the following proper-
ties:

• It is completely self-tuning: neither experimentally tuned parameters nor
probability distributions of inputs are needed. The new reactive scheme au-
tomatically adjusts its backoff delay reasonably according to contention on

80 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

the lock as well as characteristics of applications. The scheme is built on a
competitive online algorithm. What it needs from the system is only the ratio
of the latency of remote memory references to the latency of level 1 cache
references, which is available in documents about the system architecture.

• It combines the advantages of both arbitrating and non-arbitrating spin-locks.
In order to achieve this property, the new spin-lock does not usestrict arbi-
trations like ticket-locks, but instead introduces aloose form of arbitration.
This allows the spin-lock to be able to exploit locality. Combining aloose
arbitration with a suitable reactive backoff scheme helps the new spin-lock
achieve the advantages of the both categories.

In addition to proving the correctness of the new spin-lock, in order to test its
feasibility we ran experiments using the Spark98 kernels [84] and the SPLASH-
2 applications [109] as application benchmarks on an SGI Origin2000, a well-
known commercial ccNUMA system, and a popular workstation with two Intel
Xeon processors. These experiments showed that in a wide range of contention
levels the new reactive spin-lock performed nearly as well as the best, which was
manually tuned for each benchmark on each system.

The synchronization primitives related to our algorithms arefetch-and-add
(FAA) andcompare-and-swap (CAS), which are available in most recent systems
either in hardware like Intel, Sun machines or in software like SGI machines. The
definitions of the primitives are described in Figure 5.2.

TAS(x) atomically{ oldx ← x; x ← 1; return oldx; } /* init: x ← 0 */
FAA(x, v) atomically { oldx ← x; x ← x + v; return(oldx) }
CAS(x, old, new) atomically {

if(x = old) then x ← new; return(true); else return(false); }

Figure 5.2: Synchronization primitives, wherex is a variable andv, old, new are
values.

The rest of this paper is organized as follows. Section 5.2 describes our prob-
lem analysis, which led and motivated this work. Section 5.3 models the spin-lock
problem as an online problem. Section 5.4 presents a new competitive algorithm
for reactive spin-locks. Section 5.5 presents correctness proofs of the new spin-
lock. Section 5.6 presents a heuristic for the new reactive spin-lock to adapt to
synchronization characteristics of applications. Section 5.7 presents the perfor-
mance evaluation of the new reactive spin-lock and compares the spin-lock with
representatives of arbitrating and non-arbitrating spin-locks using the application
benchmarks. Finally, Section 5.8 concludes this paper.

5.2. PROBLEM ANALYSIS 81

5.2 Problem analysis

5.2.1 Tuning parameters and system characteristics

In general, besides the cost for experimentally tuning the parameters, the reactive
spin-locks using tuned parameters cannot always achieve good performance be-
cause the parameters depend on the system utilization, which in turn is affected by
other applications running concurrently. Thus, tuned parameters at some point of
time may become obsolete at a later point of time when they are used. Further,
reactive spin-locks may also need to take care of properties of applications such as
delays inside/outside the critical section when choosing locking protocols.

Regarding the algorithm-system interplay, there is also the issue of arbitrating
vs. non-arbitrating locks, which implies different benefits, as explained in the in-
troduction. In arbitrating locks, the lock and the data used in the critical section
must be transferred from one processor to another according to their order in the
waiting queue, regardless of how far the distance between these two processors is
in the system. This generates high transmission cost. Contrarily, in non-arbitrating
locks, the processors closest to the current lock owner, for instance processors in
the same node in NUMA systems, have higher probability to acquire the lock be-
cause they will realize the lock available sooner. Moreover, when there are many
requests for the lock from processors in the same node, the system may move the
memory page containing the lock to the local memory of that node, giving these
processors higher probabilities to acquire the lock the next time. Unlike the ar-
bitrating locks, the non-arbitrating locks also have the ability to tolerate faults in
the Entry section (cf. Figure 5.1). In the Entry section, the non-arbitrating locks
prevent slow or crashed processors from blocking other fast processors.

Although arbitrating locks such as ticket locks and queue-locks are considered
as fair locks in the literature, their fairness may still depends on the applications
using the locks as well as on the architecture of the system on which the appli-
cations are running. Regarding the ticket lock, if processors in the same node of
a NUMA system, whose local memory is storing the ticket variable, execute the
iteration in Figure 5.1 so fast that they continuously get new tickets again before
the ticket variable can be accessed by processors on other nodes, the ticket lock
becomes unfair. Similar for the queue-lock, if processors in the same node of a
NUMA system, whose local memory is storing the pointer used to enqueue the
waiting queue, execute the iteration in Figure 5.1 so fast that they continuously
enter the waiting queue before processors on other nodes have a chance to so, the
queue lock may become unfair.

82 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

5.2.2 Experimental studies

To see whether the above concerns have a sound basis, we conducted an exper-
imental study. We used the Spark98 shared memory programlmv [84] on an
SGI Origin3800. The system has 31 500MHz MIPS R14000 CPUs with 8MB
L2 cache each. These experiments confirmed our observations. In order to com-
pare performance among spin-lock algorithms, we need benchmarks where the
contention level on the lock is high. Therefore, we used only one lock to synchro-
nize updates of the result array in the Spark98 kernel. We used the largest pack file
sf5.1.pack [84] as input.

Spark98_Sgi3k_ExecTime

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31
#processors

tim
e

(m
s)

mcs ticket tts tts0 rh

Spark98_Sgi3k_Fairness

0

20

40

60

80

100

120

1 6 11 16 21 26 31
#processors

Fa
ir

ne
ss

 (%
)

mcs ticket tts tts0 rh

Figure 5.3: The execution time and the lock fairness of the Spark98 benchmark on
an SGI Origin3800.

The left and the right charts in Figure 5.3 show the execution times and the
fairness of the Spark98 kernel using the MCS queue-lock (mcs), the ticket lock
with proportional backoff tuned for the SGI Origin3800 (ticket), TTSE with back-
off parameters tuned for the SGI Origin3800 (tss), TTSE with backoff parameters
mentioned in [88] (tts0) and the RH lock [86] with backoff parameters tuned for
the SGI Origin3800 (rh). The contention level on the lock is adjusted by changing
the number of processors accessing it. For instance, in the case of 31 processors,
there is the highest contention level on the lock. The source codes forTTSE and
MCS are from [88]. The implementation ofticket is similar to Figure 2 in [77].

From the left chart in Figure 5.3, we can see that the non-arbitrating locks
such asTTSE andRH both with tuned parameters outperform the arbitrating
locks such as the MCS queue-lock and the ticket lock when the contention level
increases. That is because theTTSE andRH exploit the locality/caching among
processors within the same node. Moreover, they do not suffer thelock convoy
problem in the entry section.

The left chart also shows the problem of existing reactive spin-locks such as

5.3. MODELING THE PROBLEM 83

TTSE: their performance strongly depends on the experimentally tuned parame-
ters. Inaccurately chosen parameters will lead to bad performance as depicted in
the left chart between the TTSE with parameters tuned for SGI Origin3800 (tss)
and the TTSE with parameters mentioned in [88] (tts0). The latter is about 14
times slower than the former in the case of 31 processors, which is a big difference
on application performance.

The right chart in Figure 5.3 shows the fairness of these spin-locks. Here, the
processor first finishing its own task will send a signal to all other processors to
stop and to count the number of times each processor has successfully acquired
the lock. In this chart, the most interesting is the fairness of the MCS queue-lock,
which is normally considered as a fair lock. Beyond a certain number of proces-
sors, from fairness point of view, the MCS queue-lock does not seem better than
other non-arbitrating locks such asTTSE andRH. From the log file of the exper-
iment in the case of 31 processors, we saw that a group of 16 processors connected
together via the same router, had a number of lock accesses much greater than those
of other processors connected via another router. That means that the group of 16
processors connected via the same router executed their own tasks so fast that they
continuously successfully updated the pointer to enqueue before the pointer could
be updated by other processors of another router. That means that even fair arbi-
trating spin locks cannot always ensure fairness for arbitrary applications running
on arbitrary systems.

All these factors are considered seriously in the design of our new reactive
spin-lock.

5.3 Modeling the problem

In this section we model the spin-lock problem as an online problem. The theoret-
ical model of parallel applications in our research is typically described as a set of
threads with the structure shown in Figure 5.1 [4]. We consider a system withP
sequential processes running onP processors. We assume that each process runs
on one processor, which is common in recent systems such as SGI Origin2000.
In this case, we do not need to switch the process state from spinning to blocking
in theEntry section (cf. Figure 5.1), i.e. there is no context-switching cost in the
spin-lock overhead [58].

First of all, we determine the upper/lower bounds of backoff delays between
two consecutive spins. Let “delay base”basel of a lock l be the average inter-
val in which the lock holder keeps the lock locally before yielding it to another
process/processor. In order to obtain a high probability of spinning a free lock, a
backoff delaydelayi between two consecutive spins of a processpi on the lockl

84 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

should not be smaller thanbasel, basel ≤ delayi. On the other hand, according to
Anderson [7] the upper bound of backoff delays should equal the number of pro-
cesses potentially interested in acquiring the lock so that the backoff has the same
performance as statically assigned slots when there are many spinning processes.
This impliesdelayi ≤ P · basel, whereP is the number of processes potentially
interested in acquiring the lock. In conclusion,

basel ≤ delayi ≤ P · basel (5.1)

wheredelayi is a time-varying measure.
Secondly, we look at the problem of how to compute a reasonabledelayi for

the next backoff every time a waiting processpi observes a busy lock. In the
TTSE spin-lock [7], the backoff delaydelayi is doubled up to some limit every
time a waiting process reads a busy lock. In fact, the backoff scheme in theTTSE
spin-lock comes from Ethernet’s backoff scheme for networks with characteristics
different from those of spin-locks. In networks the cost to a collision is equal and
independent of the number of processes whereas in spin-locks the cost depends on
the number of participating processes [7]. Therefore, the backoff scheme in the
TTSE spin-lock is not competitive and its performance strongly depends on how
well its base/limit values are chosen.

Let “delay surplus”surplusi of a processpi be

surplusi = (P · basel − delayi) (5.2)

We have0 ≤ surplusi ≤ (P −1) · basel . Like delayi, surplusi is a time-varying
measure.

Definition 5.3.1. A load-rising (resp. load-dropping) transaction phaseis a max-
imal sequence of processes’ subsequent visits at the lock with monotonic non-
decreasing (resp. non-increasing) contention level on the lock1. A load-rising
phase ends when a decrease in contention is observed. At that point, a load-
dropping phase begins.

Our goal at this moment is to design a reactive non-arbitrating spin-lock whose
backoff delay (or delay in short) is dynamically and optimally adjusted to con-
tention variation on the lock. This implies that we need to minimize two opposite
factors: i) the delay between a pair of lock release and lock acquisition due to the
backoff and ii) the communication bandwidth used by spinning processes as well
as the load on the lock.

1The contention level on a lock is measured by the number of processes that are competing for
the lock, cf. Section 5.4.

5.3. MODELING THE PROBLEM 85

This is an online problem. Whenever a spinning processpi observes a load
increase on the lock, it has to decide whether it should increase itsdelayi now.
If it increases its delay too soon, it will waste time on a long backoff delay when
the lock becomes available. If it does not increase its delay in time, it will cause
the same problems as the spin-lock usingTTS like high network traffic and high
contention on the lock, which consequently delay the lock holder to release the
lock. If the process knew in advance how contention on the lock would vary in the
whole competing period, it would be able to find an optimal solution. However,
there is no way for processes to know that information, the information about the
future in an unpredictable environment.

We are interested in designing a deterministic online algorithm against a ma-
licious adversary for the spin-lock problem. In such kind of problems, random-
ization cannot improve competitive performance [28]. For deterministic online
algorithms the adversary with the knowledge of the algorithms generates the worst
possible input to maximize the competitive ratio. The adversary creates transaction
phases that fool the player, a process competing for the lock, to increase/decrease
his delay incorrectly. This makes the player end up with a bad result whereas the
adversary still achieves the best result.

Figure 5.4 illustrates how the adversary can create such transaction phases.
Assume that the adversary designsA as an optimal load-point to increase the delay
and B as an optimal load-point to decrease the delay. Since the adversary has
both knowledge of the deterministic algorithm used by the player and full control
on creating load inputs, the malicious adversary can add a sequence of load-rising
points· · · ≤ a1 ≤ a2 ≤ · · · ≤ an < A that fools the player to increase his delay
up to the maximum before the load reachesA (i.e. to fool the player to increase
his delay too soon). When the player observes a load increase on the lock, he
will increase his delay according to his deterministic algorithm, and eventually his
delay reaches the maximum at some pointai before the load reaches pointA.

The goal of online/offline algorithms is to maximizeP =
∑

t∈Tj
∆surplusi,t ·

lt for each transaction phaseTj , wherelt is the load at timet ∈ Tj and∆surplusi,t

is the additional amount of surplus that the player/processpi spends at loadlt. The
idea behind this goal is to put a longer delay at a higher contention level reasonably.
For the game in Figure 5.4, the adversary achieves the best valueP at A since he
will use all his surplus “budget”,(P − 1) · basel, at the suitable load-pointA
wherelt becomes maximum in the load-rising transaction phaseTj . That means
the player increases his delay too soon, wasting time on a long backoff delay when
the lock becomes available.

Similarly, the adversary can fool the player on the load-dropping phase from
A to B by adding a sequence of load-dropping pointsb1 ≥ b2 ≥ · · · ≥ bm > B.
When the player observes a load decrease on the lock, he decreases his delay, and

86 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

B

A

a1
a2

an b1
b2

bm

load

time
load−rising phase load−dropping phase

Figure 5.4: The transaction phases of contention variations on the lock.

eventually his delay reaches the minimum at some pointbj before the load reaches
pointB. That means the player decreases his delay too soon, causing high network
traffic and high contention on the lock.

Lastly, we determine upper/lower bounds of loadslt on the lock. The load is
the number of processes currently waiting for the lock, i.e.lt ≤ P . On the other
hand, a process needs to delay only if it could not acquire the lock, so we have
1 ≤ lt ≤ P .

In summary, the spin-lock problem can be described as the following online
game. With known upper/lower bounds of loadslt on the lock,1 ≤ lt ≤ P , the
player (a processii) needs to spend his initial delay surplus (e.g.(P −1) · basel) at
lt efficiently. Loadslt are unfolded on-the-fly and when a new valuelt is observed,
a new period starts. Given a current load value, the player has to decide how much
of his delay surplus should be spent at the current load, i.e. how much his current
backoff delay should be lengthened at the current load.

5.4 The algorithm

In order to play against the malicious adversary, the player needs acompetitive
online algorithm for computing his backoff delay. When the load on the lock in-
creases, the player has to reduce his delay surplus,surplus, by exchanging it with
another asset calledsavings. When the load decreases, he increasessurplus by
exchanging thissavings back tosurplus.

The idea of our spin-lock algorithm is as follows. During a load-rising phase
Tj , when the player observes a load increase on the lock, he increases his delayjust
enough to keep a bounded competitive ratio even if the load suddenly drops to the
minimum in the next observation. The amount of time by which the player’s delay
increases is computed similarly to thethreat-based method of [28]. The online
algorithm for computing the delay can be described by the following rules:

5.4. THE ALGORITHM 87

• The delay is increased only when the load is the highest so far in the present
transaction phase.

• When increasing delay, increasejust enough to keep the competitive ratio
c = P − P−1

P 1/(P−1) , even if the load drops to the minimum in the next obser-
vation.

The amount of time by which the delay should increase is:

∆delay = ∆surplus = initSurplus · 1
c
· load − load−

load − 1
(5.3)

whereinitSurplus is surplus at the beginning of a load-rising transaction phase,
load is the present load on the lock observed by the player, andload− is the highest
load on the lock before the present observation (cf. procedureSurplus2Savings
in Figure 5.5).

The online algorithm is presented via pseudo-code in Figure 5.5. Every time
a new load-rising transaction phase starts, the valueinitSurplus is set to the last
value ofsurplus in the previous transaction phase (lines C2, C3). At the beginning
of a transaction, the load is initialized tocounter anddelay = counter · basel,
wherecounter, a sort of ordering tickets, shows how many processes are compet-
ing for the lock. Thecounter is obtained when the process reads the lock at the
first time (line A1). Each process chooses an initialsurplus with respect to its own
ticket/counter (line A2)

initSurplus = (P − counter) · basel (5.4)

This helps the new spin-lock partly prevent processes from concurrently observing
a free lock, the worst situation for non-arbitrating spin-locks.

Symmetrically, in a load-dropping phase the amount of time by which the
player’s delay should decrease is computed by applying the same method with only
one change, namely that the value of load on the lockload, which is decreasing, is
replaced by the inverse1

load (cf. procedureSavings2Surplus).
Finally, we briefly explain the whole spin-lock algorithm via the pseudo-code

in Figure 5.5. In order to know the load on a lock, we need a counter to count how
many processes are concurrently competing for the lock. If we used a separate
counter, we would generate additional bottleneck beside the lock. Therefore, we
use a single-word variable to contain both the lock and the counter (cf.LockType
in Figure 5.5).

A processpi calls procedureAcquire(L) when it wants to acquire lockL. The
structure of the procedure is similar to the spin-lock usingTTS except for the

88 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

ways to compute the delay and to update the lock. First,pi increases both values
〈lock, counter〉 by 1 (lineA1). The lockL has been occupied ifL.lock �= 0. When
spinning the lock locally (line A5), ifpi observes a free lock, i.eL.lock = 0, it will
try to acquire the lock by increasing only fieldL.lock by 1 (fieldL.counter is kept
intact, line A7). It will successfully acquire the lock if no other processes have
acquired the lock in this interval, i.e.cond.lock = 0 (line A8).

Processpi calls procedureRelease() when releasing the lock. The procedure
has to do two tasks atomically: i) reset thelock field and ii) decrease thecounter
field by 1. TheCAS primitive can do these tasks atomically (line R2).

Lemma 5.4.1. In each load-rising/load-dropping phase, the new deterministic
spin-lock algorithm is competitive with a competitive ratio c = P − P−1

P 1/(P−1) =
Θ(log P), where P is the number of processes potentially interested in the lock.

Proof. The proof is similar to that of the threat-based policy in [28].

Theorem 5.4.2. The new spin-lock algorithm guarantees mutual exclusion and
non-livelock. Its space complexity is Θ(log P) for systems with P processors.

Proof. The proof can be found Section 5.5.

5.5 Correctness

The correctness of the new algorithm follows almost straightforward from its de-
scription. In particular, due to the atomicity properties ofFAA andCAS, we have
that:

Lemma 5.5.1. The number of processors currently waiting for the lock L.counter
is counted correctly.

Lemma 5.5.2. The space need for the lock field of LockType is log(P) for systems
with P processors.

Proof. Let ∆t denote an interval since thelock field of a lockL is increased to
1 at lineA1 or A7 until it is reset to0 at line R2. In ∆t, each processorpi can
increase thelock field by at most one. Indeed, ifpi increaseslock by 1 at lineA1
or A7, it no longer increaseslock at lineA7 because lineA7 is executed only if
lock = 0 (line A6); it cannot also increaselock at lineA1 because each processor
only executesA1 once at the beginning of procedureAcquire.

Therefore, in∆t thelock field is increased by at mostP . That means the value
of the lock field is never greater thanP , the number of processors.

5.5. CORRECTNESS 89

type LockType = record lock, counter : [1..MaxProcs]; end; /*stored in one word*/
LockStruct = record L : LockType; base : int; end;
InfoType = record load− : [1..MaxProcs]; phase : {Rising, Dropping};

surplus, initSurplus : int; savings, initSavings : int; end;
private variables info : InfoType;

ACQUIRE(LockStruct pL)
A1 L := FAA(&pL.L, 〈1, 1〉); /*increase counter,try to take lock*/

if L.lock then /*lock is occupied*/
A2 info.initSurplus := info.surplus := (P − L.counter) · pL.base; /*initialize variables*/

info.initSavings := info.savings := (L.counter · pL.base) · L.counter;
A3 delay := ComputeDelay(info, L.counter, pL.base);

cond := 〈1, 0〉; /*conditional variable for while loop*/
do

A4 sleep(delay);
A5 L = pL.L; /*read lock again*/
A6 if L.lock then /*lock is still occupied*/

delay := ComputeDelay(info, L.counter); continue;
A7 cond = FAA(&pL.L, 〈1, 0〉); /*try to take lock*/
A8 while cond.lock;

int COMPUTEDELAY (InfoType I, int load, int base)
FirstInPhase := False;
if I.phase = Rising and load < I.load− then

C1 I.phase := Dropping; I.initSavings := I.savings; FirstInPhase := True;
else if I.phase = Dropping and load > I.load− then

C2 I.phase := Rising; I.initSurplus := I.surplus; FirstInPhase := True;
C3 if I.phase = Rising then Surplus2Savings(I, load, F irstInPhase);
C4 else Savings2Surplus(I, 1

load
, F irstInPhase);

C5 I.load− := load;
C6 return (P · base − I.surplus);

SURPLUS2SAVINGS (InfoType I, int load, bool FirstInPhase)
X := I.surplus; initX := I.initSurplus; Y := I.savings; rXY := load; rXY − := I.load−;
if FirstInPhase then

if rXY > mXY · C then /*mXY: lower bound of rXY*/
S1 ∆X := initX · 1

C
· rXY −mXY ·C

rXY −mXY
; /*C: comp. ratio*/

else

S2 ∆X := initX · 1
C

· rXY −rXY −
rXY −mXY

;
S3 I.surplus := I.surplus − ∆X; I.savings := I.savings + ∆X · rXY ;

SAVINGS2SURPLUS(InfoType I, 1
load

, bool FirstInPhase)
/* Symmetric to procedure Surplus2Savings with:

X := I.savings; initX := I.initSavings; Y := I.surplus; rXY := 1
load

; rXY − := 1
I.load− ; */

RELEASE (LockType pL)
R1 do L := pL.L;
R2 while not CAS(&pL.L, L, 〈0, L.counter − 1〉); /*release lock & decrease counter*/

Figure 5.5: The Acquire and Release procedures

90 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

Lemma 5.5.3. The new reactive spin-lock allows only one processor to enter the
critical section at a point of time.

Proof. A processorpi can enter the critical section only if the lock field of the
value thatpi gets from theFAA primitive at line A1 or A7 is 0. Due to the
atomicity properties ofFAA primitives, at one point of time at most one processor
can observe that the lock field is0, and can become the lock holder. Only when
the lock holder exits the critical section, the field is reset to0 (line R2), allowing
another processor to enter the critical section.

These lemmas imply the following theorem:

Theorem 5.5.4. The new spin-lock algorithm guarantees mutual exclusion and
non-livelock. Its space complexity is Θ(log P) for systems with P processors.

5.6 Estimating the delay base

So far we have assumed that the basic intervalbasel in which a processpi keeps
the lockl locally before yielding it to other processes is known. This section de-
scribes how the new spin-lock estimates thebasel based on characteristics of each
parallel application such as delays outside/inside the corresponding critical section
(cf. Definitions 5.6.3).

Like thedelay base in theTTSE spin-lock, thebasel is just a basic value at
the beginning from which the online algorithm in Section 5.4 starts to adjust the
backoff delay according to contention variation. Instead of forcing programmers
to tune the value manually, the new spin-lock estimates the value automatically.

First, we define terms used in this section.
Fairness: In order to evaluate fairness of spin-locks, we consider them on ap-

plications whose threads do the same task but on different data. Fairness is intro-
duced to evaluate unbalanced situations where a thread may successfully acquire
the lock many times more than the others may. Fairness is an interesting aspect of
spin-lock algorithms, which may help the application gain performance in multi-
processor systems by utilizing all processors concurrently in high-load cases. Since
threads cannot make any progress when waiting for the lock, only the lock holder
utilizes one of system processors. If the lock holder continuously and successfully
re-acquires the lock, only one processor will be used for useful task. In contrast, if
the spin-lock is so fair that each thread can acquire the lock in turn, all threads will
concurrently utilize system processors to execute their non-critical section task in
parallel (cf. Figure 5.1).

Assume that in a period∆t there areN processors concurrently executing the
code with structure as in Figure 5.1. These processors start and end outside∆t.

5.6. ESTIMATING THE DELAY BASE 91

That means we are only interested in the fairness for periods∆t in which all N
processorsare concurrently and continuously competing for the lock.

Definition 5.6.1. Call ni the number of times each of N processors pi has suc-
cessfully acquired a lock in a period ∆t. Fairnessof the lock in the period can be
computed using the following formula:

fairness∆t =
∑

i ni

maxi ni · N (5.5)

The lock that can keep its fairness in a shorter∆t is the better.
Overhead and delay: In most systems, the latencies of memory references

vary with memory levels. Let the latency of accessing L1 cache be a time unit, we
have the following definition:

Definition 5.6.2. Overheadof yielding a cached variable such as a lock to another
processor in order to achieve good fairness is:

overhead =
latency of remote memory reference

latency of L1 cache reference
(5.6)

Definition 5.6.3. Delay outside a critical section (DoCS)is the interval since the
lock holder releases the lock in the Exit section until the first attempt to re-acquire
it in the Entry section (cf. Figure 5.1). Delay inside a critical section (DiCS)is the
interval when the lock holder is in the Critical section.

In the new spin-lock, the delays outside/inside a critical section (DoCS/DiCS)
are estimated by an individual process when needed. In fact,DoCS andDiCS
influence the backoff delay strongly. If the backoff delay is chosen inaccurately,
application performance degrades significantly (cf.tts (TTSE with tuned thresh-
olds) andtts0 (TTSE without tuned thresholds) in Figure 5.3).

We have found a reasonable heuristic to estimate the delay base byDoCS.

The heuristic: The delay base for a lock l, basel, can be estimated by the delay
outside the corresponding critical section, DoCS, using the following formula:

basel =
a · DoCS + b

DoCS2
(5.7)

where a and b are constants.
Indeed, if the DoCS approaches 0, i.e. the whole execution time of the appli-

cation is inside the critical section, the application should be executed by only one
processor to reduce the cost of transferring data among processors, i.e.basel → ∞.
In this case, the profit of concurrently executing non-critical sections on processors

92 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

is too small compared to the cost of transferring critical data from one proces-
sor to another. On the other hand, if the DoCS approaches infinite, a processor
after finishing its current iteration (cf. Figure 5.1) should immediately yield the
lock to other processors so that other processors can use the lock, i.e.basel is ap-
proximately zero2. In this case, without knowledge of interference pattern among
processes/processors the lock holder should immediately yield the lock to others
since he will almost not acquire the lock again due toDoCS → ∞. Therefore, the
functiong(x) to compute the delay basebasel from DoCS has the following form

y = g(x) =
fn(x)

fn+k(x)
(5.8)

wherek ≥ 1 is an integer andfn(x) = anxn + · · · + a1x
1 + a0

On the other hand, the benefit of successfully acquiring the lock, i.e. the period
of using the lock locally, should not be smaller than the overhead of yielding the
lock to another processor in order to support the fairness (cf. Definition 5.6.2).
Therefore,overhead ≤ basel. If all processors keep the lock in the minimum time
basel = overhead to minimize∆t in Definition 5.6.1, the time for the lock to visit
all P − 1 other processors and then come back topi is

(basel + transmission delay) · P
= (overhead + overhead) · P = 2 · overhead · P

If DoCS = 2 · overhead · P , this is an optimal situation. This is because each
processorpi always successfully acquires the lock when it needs, i.e. the lock
comes back topi after DoCS, and all other processors can exploitpi’s interval
DoCS to successfully acquire the lock. Therefore, the chart of functiong(x) must
contain a pointM = (2 · overhead · P, overhead).

Moreover, whenDoCS = overhead, which is small, in order to support the
fairness thebasel should be long enough so that the ticket/counter in the new al-
gorithm (Figure 5.5) can be accessed byP − 1 other processors before the current
lock holder gets another ticket, i.e.

basel = transmission delay · (P − 1)
= overhead · (P − 1)

Therefore, the chart of functiong(x) must contain a pointN = (overhead, overhead·
(P − 1)).

Since the chart ofg(x) must contain both pointsM andN , the simplest form
of g(x) that can satisfy this requirement is

y = g(x) =
a · x + b

x2
(5.9)

2Accurately,basel = DiCS. Nevertheless, becauseDoCS → ∞, i.e DiCS is too small
compared withDoCS, we ignoreDiCS, i.e basel ≈ 0

5.7. EVALUATION 93

wherea, b are constants and can be found via pointsM andN . Each lockl in a
parallel application has its own basebasel, which is estimated once at the beginning
via the delay outside the corresponding critical sectionDoCS.

Applications using many small locks3: Timing functions are costly and thus
the new spin-lock should estimatebasel only for locksl with significant impact on
the application performance, i.e. those are accessed many times during application
execution. Moreover, in order to avoid oscillation at the beginning of application,
which may makebasel be estimated inaccurately, the new spin-lock starts to esti-
matebasel after an interval that is long enough for all processes/processors to be
able to acquire the lockl once. As discussed above, the benefit of acquiring the
lock should be greater than the overhead of transferring the lock, so each proces-
sor should keep the lock in a period not smaller thanoverhead. Therefore, the
new spin-lock starts to estimatebasel after an interval of2 · overhead · P since
the beginning of the execution. In this initial interval, the new spin-lock uses the
ticket lock with proportional backoff andbasel is initialized tooverhead. After
thebasel is estimated, the new spin-lock uses the reactive spin-lock in Figure 5.5.

5.7 Evaluation

Choosing non-arbitrating/arbitrating representatives : To keep graphs unclut-
tered we chose an efficient representative for each category (i.e.arbitrating and
non-arbitrating).

We chose the ticket lock with proportional backoff (TicketP) as the represen-
tative for thearbitrating lock since:

• theTicketP performs better than the MCS queue-lock4 when using appli-
cation benchmarks Spark98 (cf. Figure 5.3) and SPLASH-2 (cf. [59]), and

• from the fairness point of view, theTicketP is better than the queue lock
(cf. Figure 5.3).

Although the ticket lock is considered not as scalable as the MCS queue-lock since
in the former processes spin on centralized variables, this is not a performance
issue for the ticket lock on recent machines with cache-coherent support as long
as the backoff delay of the ticket lock is tuned well. Moreover, the ticket lock
gains further performance due to its simplicity and fairness. The implementation
of ticketP was similar to Figure 2 in [77], where the time unit was experimen-
tally tuned for both the benchmarks and the evaluation systems to achieve the best
performance.

3Thesmall locks are locks that are used very few times and on which contention level is low.
4The MCS queue-lock performance is comparable with those of other queue-locks [77,88]

94 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

For non-arbitrating spin-locks, we chose as the representative theTTSE with
backoff parameters tuned for both the benchmarks and the evaluation systems.
The RH lock in [86] shows its advantages compared to theTTSE lock only if
the system has two nodes and the latency of local memory references within a
node is much smaller than the latency of remote memory references to the other
node, which is not the case in our experiments. The source code forTTSE was
from [88].

Choosing application benchmarks: In order to compare performance among
different spin-lock algorithms, the application benchmark chosen should have highly
contended lock, which will noticeably promote efficient lock algorithms (cf. Per-
formance Goals for Locks in [22]). Therefore, we chose as our application bench-
marks the shared memory program using lockslmv from the Spark98 kernel [84]
and the applications from the SPLASH-2 suite [109]: Volrend, which uses one
lock, instead of an array of locksQLock, to protect a global queue, and Radiosity.
Both Volrend and Radiosity have highly unstructured access patterns to irregu-
lar data structures [109]. The Radiosity application has a special feature different
from the Spark98 and the Volrend: it has too manysmall locks besides some high
contention locks. Therefore, the Radiosity is a “malicious” benchmark for sophis-
ticated spin-lock algorithms like the new reactive spin-lock. The input data for
the benchmarks weresf5.1.pack for the Spark98,head.den for the Volrend and
-room option for the Radiosity, which are the largest data sets available for the
Spark98 and the Volrend, and the recommended data set for the Radiosity.

Platforms used in the evaluation: The main system used for our experiments
was a ccNUMA SGI Origin2000 with twenty eight 250MHz MIPS R10000 CPUs
with 4MB L2 cache each. The system ran IRIX 6.5 and it was used exclusively. In
the system, each thread ran exclusively on one processor. The system latencies of
memory references are available in [64].

We also used as an evaluation platform a popular workstation with two Intel
Xeon 3GHz CPUs with 1MB L2 cache each. The workstation ran Linux kernel
2.6.8. Since each Xeon processor with hyper-threading technology can concur-
rently execute two threads, the workstation can concurrently execute four threads
without preemption. The system latencies of memory references are available
in [15].

We compared our new reactive spin-lock withTTSE andTicketP , both of
which weremanually tuned for each application benchmark on each platform. The
tuned parameters for both are presented in Figure 5.6. Contention on the lock was
varied by changing the number of participating processors/threads. The execution
times of the application benchmarks were measured.

5.7. EVALUATION 95

Spark98 Volrend Radiosity
TTSE/Origin2k be = 50000 be = 400 be = 200

le = 650000 le = 1400 le = 1200
TicketP /Origin2k bp = 100 bp = 50 bp = 130
TTSE/Xeon be = 80 be = 50 be = 120

le = 700 le = 350 le = 1100
TicketP /Xeon bp = 60 bp = 30 bp = 90

Figure 5.6: The table of manually tuned parameters forTTSE andTicketP in
Spark98, Volrend and Radiosity applications on the SGI Origin2000 and the Intel
Xeon workstation, wherebe, le are respectivelyTTSE’s delay base anddelay up-
per limit for exponential backoff, andbp is TicketP ’s delay base for proportional
backoff delays. Thebe, le andbp are measured by the number of null-loops.

5.7.1 Results

Spark98_Complete_Sgi2k_ExecTime

0

200

400

600

800

1000

1200

1 4 8 12 16 20 24 28
#processors

ti
m

e
 (

m
s
)

tts ticket reactive

Volrend_Sgi2k_ExecTime

0

100

200

300

400

500

600

700

800

900

1000

4 8 12 16 20 24 28
#processors

ti
m

e
 (

m
s
)

tts ticket reactive

Radiosity_Sgi2k_ExecTime

0

2000

4000

6000

8000

10000

12000

14000

16000

4 8 12 16 20 24 28
#processors

ti
m

e
 (

m
s

)

tts ticket reactive

Figure 5.7: The execution time of Spark98, Volrend and Radiosity applications on
the SGI Origin2000.

The new reactive spin-lock in Figure 5.5 involved in all locks with high con-
tention5. Such locks play significant roles in application execution time and pro-
mote efficient spin-lock algorithms. Working on such high contention locks, pro-
cesses always have to delay between two consecutive accesses. The new reactive
spin-lock utilizes the delay interval to compute a reasonable value for the next
delay. This is reason why even though the new reactive spin-lock appears quite
heavy compared with the non-arbitrating/arbitrating representatives, it is actually
efficient.

5The new reactive spin-lock algorithm does not involve in locks with low contention (cf. the last
paragraph in subsection 5.6)

96 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

Spark98_Complete_Xeon_ExecTime

0

50

100

150

200

250

300

350

1 2 3 4
#threads

ti
m

e
 (

m
s
)

tts ticket reactive

Volrend_Xeon_ExecTime

0

100

200

300

400

500

600

700

1 2 3 4
#threads

ti
m

e
 (

m
s

)

tts ticket reactive

Radiosity_Xeon_Exectime

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4
#threads

ti
m

e
 (

m
s
)

tts ticket reactive

Figure 5.8: The execution time of Spark98, Volrend and Radiosity applications on
a workstation with 2 Intel Xeon processors.

Figure 5.7 shows average execution times of applications Spark98, Volrend and
Radiosity usingTTSE (tts), TicketP (ticket) and the new reactive spin-lock
(reactive) on the SGI platform. All the three charts show that the new reactive
spin-lock approaches the best performances, which are thetts performance in the
case of Spark98 and theticket performance in the cases of Volrend and Radiosity.
Note that the new reactive algorithmwithout tuning performed similarly to the
better of two representativeswith manual tuning of non-arbitrating and arbitrating
categories.

In the left chart on the Spark98 execution times, the reactive spin-lock ap-
proaches the best one, theTTSE. The reason why on the Spark98TTSE is
better thanTicketP is as follows. In the Spark98, theDoCS is not large and thus
the Spark98 benchmark favors the spin-lock that exploits thelocality, i.e. non-
arbitrating spin-locks. With the large valuesbe = 50000 andle = 650000 (cf. Fig-
ure 5.6), contention on the lock was kept low and the lock holder could re-acquire
the lock and re-use the shared resource many times before the other processors re-
tried to acquire the lock. This saved the time for transferring the lock as well as the
shared data to another processor, the time for reading and writing data and the time
for re-acquiring the lock because everything was cached locally. For the arbitrat-
ing spin-lock such asTicketP , all processors were in a waiting queue. Regardless
of whether the distance between two consecutive processors in the waiting queue
was too far, the lock and the shared data were transferred back and forth on the
interconnect network, degrading the performance ofTicketP on the Spark98.

In the new spin-lock, the necessary backoff delay was computed reasonably
by a competitive online algorithm that increased/decreased the backoff delayjust
enough to alleviate contention on the lock. That means the algorithm tried to kept
changes as small as possible compared with the initial value. The initial value was

5.7. EVALUATION 97

large due to the small delay outside the critical section (cf. Section 5.6). Since the
new reactive spin-lock is a non-arbitrating spin-lock, it got benefit from exploiting
the locality likeTTSE.

In the middle chart on the Volrend execution times, the reactive spin-lock still
approaches the best one, theTicketP . The reason why on the VolrendTicketP
is better thanTTSE is as follows. Since the high contention lock in the Volrend
has largeDoCS and smallDiCS, TTSE’s backoff delay had to be small to min-
imize the interval from the last lock release to the next lock acquisition. Therefore,
the Volrend hadbe = 400 and le = 1400 (cf. Figure 5.6), which are too small
compared with those in the Spark98.TTSE spinning the lock with such a high
frequency generated high contention on the lock, degrading performance of the
whole system as mentioned in [4, 7, 55, 59, 77]. Therefore, the Volrend bench-
mark favored arbitrating locks such asTicketP , which reduced overhead due to
the arbitration among processors and thus reduced contention on the lock.

However, the Volrend did not degrade the new reactive spin-lock performance,
a non-arbitrating spin-lock. This is because the reactive spin-lock automatically
and reasonably adjusted backoff delaydelayi for each processorpi according to
contention on the lock, keeping contention on the lock low. On the other hand, the
fact that the initial delay for each processorpi was proportional to theticket that
pi obtained prevented partly processors from concurrently observing a free lock.
These helped the new reactive spin-lock solve problems caused by high contention
situation on the lock, which degraded theTTSE performance.

Similar to the Volrend, the Radiosity benchmark shows that even applications
with manysmall locks as Radiosity could not stop the reactive spin-lock algorithm
from approaching the best performance, theTicketP performance.

Experiments on the Intel platform showed a similar result: the new spin-lock
performed as well as the best representative (cf. Figure 5.8). On this platform,
performances of well-tunedTTSE and TicketP were similar for Volrend and
Radiosity and were slightly different for Spark98. In the Spark98 benchmark, the
new spin-lock still performed as the best. Although the benchmarks did not scale
on the Intel platform, the result is still interesting since it shows how well the
new spin-lock automatically tuned itself on different architectures compared with
manually-tuned spin-locks.

In summary, the experiments on different platforms showed that the new reac-
tive spin-lock without need of manually tuned parameters reacts well to contention
variation as well as to a variety of applications. This helped the applications using
the new reactive spin-lock approach the best performance gained byTTSE and
TicketP , the spin-locks that weremanually tuned for both each application and
each platform.

98 CHAPTER 5. REACTIVE SPIN-LOCKS: A SELF-TUNING APPROACH

5.8 Conclusions

We have presented a new reactive spin-lock that is completely self-tuning, namely
neither experimentally tuned thresholds nor probability distributions of inputs are
required. The new spin-lock combines advantages of both arbitrating and non-
arbitrating spin-locks. These features are achieved by a competitive algorithm
for adjusting backoff delay reasonably to contention on the lock. Moreover, the
new spin-lock also adapts itself to synchronization characteristics of applications to
keep its good performance on different applications. Experimental results showed
that the new spin-lock almost achieved the best performance on different platforms.

Chapter 6

Self-Tuning Reactive Diffracting
Trees for Counting and
Balancing1

Phuong Hoai Ha2, Marina Papatriantafilou2, Philippas Tsigas2

Abstract

Reactive diffracting treesare an efficient distributed data structure that sup-
ports synchronization. They distribute a set of processes to smaller subsets that
access different parts of memory in a global coordinated manner. They also adjust
their size to attain good performance in the presence of different contention lev-
els. However, their adjustment is sensitive to parameters that have to be manually
tuned and determined after experimentation. Since these parameters depend on
the application as well as on the system configuration, determining their optimal
value is hard in practice. On the other hand, as the trees grow or shrink by only
one level at a time, the cost of multi-level adjustments is high.

This paper presents new reactive diffracting trees for counting and balancing
without the need to fix parameters manually. The new trees balance the trade-off
between the tree traversal latency and the latency due to contention at the tree
nodes in an on-line manner. Moreover, the trees can grow or shrink by several lev-
els in one adjustment step, improving their efficiency. Their efficiency is illustrated

1Expanded version of a preliminary result published in the Proceedings of the 8th International
Conference on Principles of Distributed Systems (OPODIS ’04), Dec. 2004, LNCS 3544, pp. 213-
228, Springer-Verlag.

2Department of Computer Science and Engineering, Chalmers University of Technology, S-412
96 Gothenburg, Sweden. Email:{phuong, ptrianta, tsigas}@cs.chalmers.se.

100 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

via experiments on the SGI Origin2000, a well-known commercial ccNUMA mul-
tiprocessor, which compare the new trees with the traditional reactive diffracting
trees. The experiments have showed that the new trees select the same tree depth,
perform better and react faster than the traditional trees.

6.1 Introduction

It is hard to design distributed data structures for synchronization that perform ef-
ficiently over a wide range of contention conditions. Typically, simple centralized
data structures are sufficient for low concurrency levels, for instance test-and-test-
and-set locks with backoff [2, 7, 32, 58]; however, at higher levels of concurrency,
sophisticated data structures are needed to reduce contention by distributing con-
current memory accesses to different banks, for instance queue-locks [7, 32, 77],
combining trees [31, 111], counting pyramids [106, 107], combining funnels [95],
counting networks [8,9] and diffracting trees [93,94]. Whereas queue-locks aim at
reducing contention on locks generally, the other sophisticated data structures focus
on specific problems such as counting and balancing in order to enhance efficiency.
Combining trees [31, 111] implement low-contentionfetch-and-Φ operations
by combining requests along paths upward to their root and subsequently distribut-
ing results downward to their leaves. The idea has been developed to counting
pyramids [106,107] that allow nodes to randomly forward their requests to a node
on the next higher level and also allow processors to select their initial level accord-
ing to their request frequency. A similar idea has been used to develop combining
funnels [95]. Opposite to the idea of combining requests, diffracting trees [93,94]
reduce contention for counting problems by distributing requests downward to the
leaves, of which each works as a counter in a coordinated manner. The trees have
been developed to elimination trees [91] that are suited for stack and pool construc-
tions. Another approach for counting problems is counting networks [8, 9], which
ensure low contention at each node. Linearizability [50] in counting network in
general and with timing assumptions has been studied in [71, 76]. Empirical stud-
ies on the Proteus [17], a multiprocessor simulator, have showed that diffracting
trees are superior to counting networks and combining trees under high loads [94].

Diffracting trees [93, 94] are well-known distributed data structures with the
ability to distribute concurrent memory accesses to different memory banks in a
coordinated manner. Each process(or) accessing the tree can be considered as lead-
ing a token that follows a path with mediate nodes from the root to a leaf. Each
node receives tokens from its single input (coming from its parent node) and sends
tokens to its outputs. The node is calledbalancer and acts as atoggle mechanism
that, given a stream of input tokens, alternately forwards them to its outputs, from

6.1. INTRODUCTION 101

left to right (i.e. send them to the left and right child nodes, respectively). The
result is an even distribution of tokens at the leaves. In the trees, the contention
at the root and balancers is alleviated using anelimination technique that evenly
balances each pair of incoming tokens left and right without accessing thetoggle
bit. Diffracting trees have been introduced forcounting problems, and hence their
leaves are counters. The trees also satisfy thestep property, which states that: when
there are no tokens present inside the tree and ifouti denotes the number of tokens
that have been output at leafi, 0 ≤ outi − outj ≤ 1 for any pairi andj of leaves
such thati < j (i.e. if one draws the tokens that have exited from each counter as
a stack of boxes, the combined outcome will have the shape of a single step). Yet
the fixed-size diffracting tree is optimal only for a small range of contention levels.
To solve this problem, Della-Libera and Shavit proposedreactive diffracting trees,
where nodes can shrink (to a counter) or grow (to subtrees with counters as leaves)
according to their local load [25].

However, the reactive diffracting tree [25] uses a set of parameters to make its
reactive decisions, namely folding/unfolding thresholds and the time interval for
consecutive reactions. The parameter values depend on the multiprocessor system
in use, the applications using the data structure and, in a multiprogramming envi-
ronment, the system utilization by the other concurrent programs. The parameters
must be manually tuned using experimentation and information that is not easily
available (e.g. future load characteristics). Besides, the tree can shrink or grow by
only one level at a time, making multi-level adjustments costly.

As we know, the main challenge in designing reactive objects in multiproces-
sor/ multiprogramming systems is to deal with unpredictable regular changes in
execution environments. Therefore, reactive schemes usingfixed parameters can-
not be an optimal approach indynamic environments such as multiprogramming
systems. An ideal reactive object should not rely on experimentally tuned parame-
ters and should react fast.

In this work we show that it is possible to construct such ideal reactive objects.
In particular, we present a tree-type distributed data structure that has the same
semantics as the reactive diffracting trees and moreover can react fast without the
need of manual tuning. To circumvent the need of manually tuned parameters,
we analyze the problem of balancing the trade-off between the two key measures,
namely the contention level and the depth of the tree, as an online problem and
subsequently develop an efficient on-line solution. The new reactive tree is also
considerably faster than the reactive diffracting tree because of the low-overhead
multilevel reaction: it can shrink and grow by many levels at a time without using
expensive system clock reading. The new tree like the reactive diffracting tree is
generally aimed at applications where such distributed data structures are needed.
Since the latter were introduced in the context of counting problems, we use similar

102 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

0

0

0

1

1

1

C:2

D:3

B1

B2

B3

C4

C7

F, E, D, C, B, A

C5

C6

(A)

E:4, A:0

F:5, B:1
0

1

B1F, E, D, C, B, A

0

1

C2

B3

C6

C7 D:3

(B)

E:4, C:2, A:0

F:5, B:1

Figure 6.1: A diffracting tree(A) and a reactive diffracting tree(B).

terms in our description.
The rest of this paper is organized as follows. The next section provides basic

background information about (reactive) diffracting trees. Section 6.3 presents the
key idea and the algorithm of the self-tuning reactive tree. Section 6.4 describes
the implementation of the tree. Section 6.5 shows the correctness of our algo-
rithm. Section 6.6 presents an experimental evaluation of the self-tuning reactive
trees, compared with the reactive diffracting trees, on the Origin2000 platform, and
elaborate on a number of properties of our algorithm. Section 6.7 concludes this
paper.

6.2 Background

In this section, we briefly describe (reactive) diffracting trees and present the fun-
damental concepts of online algorithms, which are used in the new self-tuning
reactive trees.

6.2.1 Diffracting and Reactive-Diffracting Trees

Figure 6.1(A) depicts a diffracting tree. A set of processors{A, B, C, D, E, F}
is balanced on all leaves in which leavesC4 andC6 are accessed by only two
processors, and leavesC5 andC7 by only one processor. LeavesC4, C6, C5
andC7 return valuesf(4k), f(4k + 1), f(4k + 2) andf(4k + 3) respectively,
wherek is the number of processors that have visited the corresponding leaf andf
is an arbitrary function, which may be costly. For counting problems,f(k) simply
returnsk. Tokens passing one of these counters receive integeri, i+4, i+2∗4, · · ·
wherei is initial value of the counter. In the figure processorsA, B, C, D, E andF
receive integers0, 1, 2, 3, 4 and5, respectively. Even though the processors access
separate shared data (counters), they still receive numbers that form a consecutive
sequence of integers as if they accessed a centralized counter.

6.2. BACKGROUND 103

Della-Libera and Shavit extended the trees toreactive diffracting trees where
each counter can independently shrink or grow according to its local load in order
to attain optimal performance [25]. Trees(A) and (B) in Figure 6.1 depict the
folding action of a reactive diffracting tree. Assume at the beginning the reactive
diffracting tree has a shape like tree(A). If the load on two countersC4 andC5
is small, the sub-tree whose root isB2 shrinks to counterC2 as depicted in tree
(B). After that, if processorsA, B, C, D, E andF sequentially traverse the tree
(B), three processorsA, C andE will visit counter C2. That is, the latency for
processors to go from the root to the counter decreases whereas the load on each
counter is still kept low.

6.2.2 Online Algorithms

Online problems are optimization problems where both the input is received online
and the output is produced online so that the cost of processing the input is minimal
or the outcome is best. If we know the whole input in advance, we may find an
optimal offline algorithm OPT processing the whole input with minimal cost. In
order to evaluate how good an online algorithm is, the concept ofcompetitive ratio
has been suggested.

Competitive ratio: An online algorithmALG is considered competitive with
a competitive ratioc (or c-competitive) if there exists a constantα so that for any
finite inputI [28]:

ALG(I) ≤ c · OPT (I) + α (6.1)

whereALG(I) andOPT (I) are the costs of the online algorithmALG and the
optimal offline algorithmOPT to service inputI, respectively.

A common way to analyze an online algorithm is to consider a game between
an online player and a maliciousadversary. In this game, i) the online player
applies the online algorithm on the input generated by the adversary and ii) the
adversary with the knowledge of the online algorithm tries to generate the worst
possible input whose processing cost is very expensive for the online algorithm but
relatively inexpensive for the optimal offline algorithm.

The online algorithms together with the competitive analysis are a promising
approach to resolve the problems where i) if we had some information about the
future, we could find an optimal solution, and ii) it is impossible to obtain such
kind of information.

104 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

6.3 Self-tuning reactive trees

6.3.1 Problem description

The problem we are interested in is to construct a tree-type data structure that
satisfies the following requirements:

• It must evenly distribute a set of concurrent memory accesses to many small
groups locally accessing shared data (counters at leaves) in a coordinated
manner like (reactive) diffracting trees. It must guarantee the step-property.

• Moreover, it must automatically and efficiently adjust its size according to its
load in order to achieve good performance over a wide range of load levels.
It must not require any manually tuned parameters.

In order to satisfy these requirements, we have to tackle the following algorith-
mic problems:

• Design a dynamic mechanism that allows the tree to predict when and how
much it should resize in order to obtain good performance while its load is
changing unpredictably. Moreover, the overhead this mechanism introduces
should not exceed the performance benefits the dynamic behavior gains.

• This dynamic mechanism should not only adjust the tree size to improve
efficiency, but, more significantly, guarantee also the tree fundamental prop-
erties such as the step property.

6.3.2 Key ideas

The ideal reactive tree is the one in which each leaf is accessed by only one pro-
cess(or) –or token1– at a time and the costs for a token to travel from the root to a
leaf are kept to a minimum. However, these two latency-related factors are oppo-
site to each other, i.e. if we want to decrease the contention at the leaves, we need
to expand the tree and so the travel costs increases.

What we are looking for is a tree where theoverall overhead, including the
latency due to contention at the leaves and thelatency due to travel from the root
to a leaf, is minimum. The tree must also be able to cope with the problem of
how to adjust the tree size so that this reaction does not become obsolete at the
time when it takes effect. If the tree grows immediately whenever the contention
level increases, it will pay high costs of travel, which will be subsequently wasted
if right after that the contention level suddenly decreases. On the other hand, if
the tree does not grow in time when the contention level increases, it may have to
pay high costs due to high contention. If the tree knew in advance the contention

1The termsprocessor, process andtoken are used interchangeably throughout the paper.

6.3. SELF-TUNING REACTIVE TREES 105

right left

1 1

2 2 3

4 4 5 5 6 6 7 7

8 9 10 11 12 13 14 15

3

leaf

balancer IN

A

0

1

2

3

level

Figure 6.2: A self-tuning reactive tree

variation over its operative interval, it could adjust its size at each time point in such
a way that the overall overhead is minimized. Since the contention level changes
unpredictably, there is no way for the tree to collect such information.

To overcome this problem, we have designed a reactive algorithm based on the
online techniques that have been used to solve the online currency trading prob-
lem [28].

Definition 6.3.1. Let surplusdenote the subtraction of the number of leaves from
the number of processors that access the tree. The surplusrepresents the contention
level on the tree since it is the surplus processors that cause contention on the
leaves.

Definition 6.3.2. Let latencydenote the latency due to travel from the root to a
leaf.

The challenge is to balance the trade-off betweensurplus and latency. Our
solution for the problem is inspired by an optimal online algorithm calledthreat-
based algorithm [28]. The algorithm is an optimal solution for the one-way trading
problem, where the player must decide whether to accept the current exchange rate
as well as how many of her dollars should be exchanged to yens at this rate without
knowledge of how the exchange rate will vary in the future.

6.3.3 The tree structure

To adapt to contention variation efficiently, each leaf in the tree should be able to
shrink and grow freely to any level suggested by the reactive scheme in one ad-
justment step. This motivates us to design a data structure for the tree in which

106 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

the adjustment time and the time in which processors are blocked due to an adjust-
ment are kept to a minimum. Figure 6.2 illustrates the self-tuning reactive tree data
structure. The squares in the figure are balancers and the circles are leaves. The
numbers in the squares and circles are their labels. Each balancer has amatching
leaf with the same label number. Symmetrically, each leaf that is not at the lowest
level of the tree has amatching balancer. Each balancer has two outputs,left and
right, of which each is a pointer that can point to either a leaf or a balancer. A
shrink or expand operation is essentially a switch of such a pointer (from a bal-
ancer to the matching leaf or vice-versa). Solid arrows in the figure represent the
current pointer directions.

To traverse the tree, a processorpi first visits the tree at its rootIN and then
follows the root pointer to visit balancer1. When visiting a balancer,pi switches
the balancer toggle-bit to the other position (i.e. from left to right and vise-versa)
and then follows the current direction of the corresponding pointer to visit the next
node. If contention on the toggle-bit is high, the elimination technique [94] can
be used here to alleviate the contention. Whenpi visits a leafL, before taking an
appropriate counter value and exiting, it executes areactive scheme with respect to
the current load atL. The reactive scheme estimates which tree level is the best for
the current load.

6.3.4 The reactive scheme

Definition 6.3.3. A load-rising (or load-dropping) transaction phaseis the longest
sequence of subsequent visits at a leaf node with a monotonic non-decreasing (or
non-increasing) estimated contention level over all the tree. A load-rising phase
ends when a decrease in contention is observed; at that point a load-dropping
phase begins.

The trade-off betweensurplus and latency can be described as a game con-
sisting ofload-rising andload-dropping transaction phases. During a load-rising
phase, a processorpi visiting a leafL may decide to expand the leaf to a subtree
whose depth depends on the rising contention level. The depth is computed using
thethreat-based online method [28] with a principle: “expandjust enough to guar-
antee a bounded competitive ratio even in the case that the contention level drops
to the minimum in the next measurement step”. The case of a load-dropping phase
is symmetric: a reaction is to shrink a subtree to an appropriate level depending
on the contention level. The results of the online method trigger the corresponding
reaction.

If the recommended action is to grow to a levelllower, i.e. the current load
at the leafL is too high andL should grow to a levelllower, the processorpi,

6.3. SELF-TUNING REACTIVE TREES 107

before exiting the tree, must helpL carry out the growth task. The task consists of
constructing the corresponding subtree (if it did not already exist) and switching
the corresponding pointer fromL to its matching balancer, which is the root of the
subtree. For instance, assume that a processorpi is visiting leaf3 in Figure 6.2 and
the recommendation is to grow to a sub-treeA with a depth of 3. The processor first
constructs the sub-tree while other processors normally access the leaf3 and exit
the tree without any disturbance. After that,pi locks leaf3 in order to (i) switch
the pointer to balancer3 and (ii) assign proper values to counters12, 13, 14 and
15; then it releases leaf3. At this point, the new coming processors following the
left pointer of balancer1 traverse the new sub-tree while the old processors that
were already directed to leaf3 continue to access leaf3 and exit the tree. After
completing the task,pi increases the counter value of leaf3 and exits the tree.

If the recommended action is to shrink to a levellhigher, i.e. the current load at
the leafL is too low andL should shrink to a higher levellhigher so as to reduce the
travel latency, the pointer to the ancestral balancer ofL at levellhigher must switch
to the matching leaf whose counter value must be set properly. LetB denote that
balancer. Since the sub-tree withB as a root contains other leaves that may have
not decided to shrink tolhigher, an asynchronous vote-collecting scheme is needed.
The leafL votes for the levellhigher by adding its vote to the balancerB ”vote
box”.

Definition 6.3.4. The weight of a leaf’s vote is the number of leaves at the lowest
level in the subtree rooted at the matching balancer.

For instance, in Figure 6.2 the weight of leaf4 vote is2 since the vote represent
two leaves8 and9 at the lowest level.

The processor that helpsL vote for B checks if there are enough votes for
B. If more than half leaves of the subtreeB vote to shrink to the matching leaf,
the processor will execute the shrinkage task. It locks the matching leaf and the
leaves of the sub-treeB in order to (i) collect their counter values, (ii) compute the
proper counter value for the matching leaf and (iii) switch the pointer fromB to its
matching leaf. Note that all the leaves of subtree B need to be lockedonly if the load
on the subtree isso small that the subtree should shrink to a leaf. Therefore, from
the performance point of view locking the subtree in this case affects as locking a
leaf in the traditional reactive diffracting tree.

For instance, assume that a processorpi visits leaf10 in Figure 6.2 and the
recommendation is to shrink to level1. Assume that leaf4 has voted for balancer
2 too. The weight of leaf4’s vote is two since the vote represents leaves8 and9 at
the lowest level. Leaf10’s vote has a weight of1. Therefore, the sum of the vote
weights at balancer2 is 3. In this case, processorpi helps balancer2 execute the
shrinkage task since three of four leaves at the subtree lowest level, leaves8, 9 and

108 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

10, have voted for the balancer. Thenpi locks leaf2 and all the leaves of the sub-
tree rooted at balancer2, collects the counter values, computes the next counter
value for leaf2 and finally switches the pointer from balancer2 to leaf 2. After
that, all the leaves of the sub-tree are released immediately so that other processors
can continue to access their counters. As soon as the counter at leaf2 is assigned
the new value, new processors going along the right pointer of balancer1 access
the new leaf and exit the tree while old processors continue traversing the old sub-
tree. After completing the shrinkage task, the processor increases the counter value
of leaf10 and exits the tree.

Both the growing and shrinking processes support high parallelism: new com-
ing processors follow the new sub-tree/leaf while pending processors continue
traversing the old leaf/sub-tree.

6.3.5 Space needs of the tree

In a system withn processors, the algorithm needsn− 1 balancer nodes and2n−
1 leaf nodes. Although it seems that the self-tuning reactive tree requires more
memory than the traditional reactive diffracting tree since the former introduces an
auxiliary node (matching leaf) for each balancer of the tree, this is not the case.
Actually, the former only splits the function of each node into two components:
one is enabled when the node plays the role of a balancer and another is enabled
when the node plays the role of a leaf (cf. Section 6.4.4 and Section 6.4.5). In other
words, their memory requirements are similar.

6.4 Implementation

6.4.1 Preliminaries

Data structure and shared variables: Figure 6.3 describes the tree basic data struc-
ture and shared variables used in the implementation.

Synchronization primitives: The synchronization primitives used for the im-
plementation aretest-and-set (TAS), fetch-and-xor (FAX) andcompare-and-swap
(CAS). The definitions of the primitives are described in Figure 6.3, wherex is a
variable andv, old, new are values .The synchronization primitives used in the tree
are comparable with those used in the traditional reactive diffracting tree, which are
test-and-set, swap andcompare-and-swap [25].

6.4. IMPLEMENTATION 109

type NodeType =record Nid : [1..MaxNodeId]; kind : {BALANCER, LEAF}; mask: bit; end;
/*in one word*/

BalancerType = record state : {ACTIV E, OLD}; level : int; toggleBit : boolean;
left, right : NodeType; end;

LeafType = record state : {ACTIV E, OLD}; level, count, init : int;
transPhase : {RISING, DROPPING}; end;

shared variables
Balancers : array[0..MaxNodeId] of BalancerType; Leaves : array[1..MaxNodeId] of LeafType;
TokenToReact : array[1..MaxNodeId] of boolean; Tracing : array[1..MaxProcs] of [1..MaxNodeId];

TAS(x) atomically{ oldx := x; x := 1; return oldx; } /* init: x := 0 */
FAX(x, v) atomically{ oldx := x; x := x xor v; return oldx; }
CAS(x, old, new) atomically{ oldx := x; if(x = old) then {x := new}; return oldx; }

Figure 6.3: The tree basic data structure and the synchronization primitives

6.4.2 Traversing self-tuning reactive trees

A processorPid traverses the tree by calling functionTraverseTree() in Fig-
ure 6.4. First, it visitsBalancer[0] (the “IN” node in Figure 6.2), whose left child
points to eitherBalancers[1] or Leaves[1]. Before visiting a node on the next
level, it updates its new location inTracing[Pid] (line T0). It records to its private
variableMyPath the path along which it traverses the tree, whereMyPath[i] is
the node visited at leveli. At each node, its behavior depends on the node type.

If the node is a balancer, the processor callsTraverseB procedure to fol-
low a proper child link (line T2 inTraverseTree()) and subsequently updates
its new location toTracing[pid] (lines B1, B2 inTraverseB()). In TraverseB
procedure, the toggle mechanism for toggle-bits can be implemented using either
advanced techniques like elimination techniques [94] to alleviate contention on the
toggle-bits or low-contention hardware primitives likefetchop primitives in the SGI
Origin2000 [64].

If the node is a leaf, in all cases the processor callsTraverseL procedure to
read and increase the leaf counterL.count (line T8) and resetsTracing[pid] to the
value ofRoot. If exiting the tree through a leaf whose state isACTIV E2 , the pro-
cessor must actively execute a reactive process. It acquires the leafTokenToReact
and, upon succeeding, it invokes theCheckCondition procedure. According to
the procedure result the processor invokes eitherGrow procedure to expand the
leaf orElect2Shrink procedure to shrink the tree. TheGrow andElect2Shrink
procedures are presented in subsections 6.4.4 and 6.4.5.

2Meaning that its state is notOLD; intuitively, old leaves (and old balancers) are those that a
new processor traveling from the root cannot visit at that time.

110 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

int TRAVERSETREE(int Pid)
T0 n := Assign(&Tracing[Pid], &Balancers[0].left);

for(i := 1; ; i + +) do
T1 MyPath[i] := n;
T2 if IsBalancer(n) then

n := TraverseB(Balancers[n.Nid], P id)
else /*IsLeaf*/

T3 Leaves[n.Nid].contention + +;
T4 if (Leaves[n.Nid].state = ACTIV E) and

(TAS(TokenToReact[n.Nid]) = 0) then
react := CheckCondition(Leaves[n.Nid]);

T5 if react = SHRINK then
Elect2Shrink(n.Nid, MyPath);

T6 else if react = GROW then
Grow(n.Nid);

T7 Reset(TokenToReact[n.Nid]);
T8 result := TraverseL(n.Nid);
T9 Leaves[n.Nid].contention −−;
T10 Assign(&Tracing[Pid], &Balancers[0]);

/*reset Tracing[Pid]*/
T11 return result;

NodeType TRAVERSEB(BalancerType B, intPid)
B0 if ((k := Toggle(B.toggleBit)) = 0) then
B1 return (Assign(&Tracing[Pid], &B.right));
B2 else

return (Assign(&Tracing[Pid], &B.left));

int TRAVERSEL(int Nid)
L0 L := Leaves[Nid];
L1 AcquireLock(L.lock, Nid); /*lock the leaf*/
L2 result := L.count;

L.count := L.count + 2L.level;
L3 Release(L.lock); /*release the leaf*/
L4 return result;

int CHECKCONDITION(LeafType L)
C0 Load := MIN(MaxProcs, L.cont ∗ 2L.level);
C1 FirstInPhase := False;
C2 if (L.transPhase = RISING) and

(Load < L.load) then
L.transPhase := DROPPING;
FirstInPhase := True;

C3 else if (L.transPhase = DROPPING) and
(Load > L.load) then
L.transPhase := RISING;
FirstInPhase := True;

C4 if L.transPhase = RISING then
Surplus2Latency(L, Load, F irstInPhase);

C5 else
Latency2Surplus(L, 1

Load
, F irstInPhase);

C6 L.newLevel := log2(MaxProcs − L.surplus);
C7 if L.newLevel < L.level then return SHRINK;
C8 else if L.newLevel > L.level then return GROW ;
C9 else return NONE;

SURPLUS2LATENCY(L, Load, F irstInPhase)
SL0 X := L.surplus; baseX := L.baseSurplus;

Y := L.latency;
SL1 rXY := Load; LrXY := L.totLoadEst;
SL2 if FirstInPhase then

if rXY > mXY ∗ C then
/* mXY: lower bound of rXY, C: comp. ratio*/

∆X := baseX ∗ 1
C

∗ rXY −mXY ∗C
rXY −mXY

;
SL3 else

∆X := baseX ∗ 1
C

∗ rXY −LrXY
rXY −mXY

;
SL4 L.surplus := L.surplus − ∆X;
SL5 L.latency := L.latency + ∆X ∗ rXY ;

LATENCY2SURPLUS(L, 1
Load

, F irstInPhase)
/* symmetric to the above with: X := L.latency;
Y := L.surplus; */

Figure 6.4: The TraverseTree, TraverseB, TraverseL, CheckCondition, Sur-
plus2Latency and Latency2Surplus procedures

6.4. IMPLEMENTATION 111

6.4.3 Reaction conditions

Each leaf of the self-tuning reactive tree, via visiting processors, locally estimates
which level is the best for the current load. A leafL estimates the total load on the
tree using the following formula (line C0 inCheckCondition() in Figure 6.4):

Load = L.contention ∗ 2L.level (6.2)

whereMaxProcs is the maximum number of processors potentially accessing the
tree andL.contention, contention on the leaf, is the number of processors that are
currently visiting the leaf. The value ofL.contention is increased by one every
time a processor visits the leafL (line T3 in Figure 6.4) and is decreased by one
when a processor leaves the leaf (lineT9 in Figure 6.4). At the beginning, the
tree degenerate to a leaf. A processor considers to expand the root leaf to a tree
only if it collides with other processors at the root leaf. Therefore,2 ≤ Load ≤
MaxProcs.

Since the tree is actually a leaf at the beginning, we have the following initial
values:

surplus = baseSurplus = MaxProcs − 1
latency = baseLatency = 0

Then, according to the contention variation on each leaf, the values ofsurplus
and latency will be changed using an online algorithm. The number of surplus
processors that the tree should have at that time is adjusted bySurplus2Latency
andLatency2Surplus procedures in Figure 6.4. The surplus value is subsequently
used to compute the number of leaves the tree should have and consequently the
level the leafL should shrink/grow to (lineC8).

TheSurplus2Latency procedure exchangingL.surplus to L.latency is in-
spired by thethreat-based algorithm [28] usingLoad as exchange rate. In a load-
rising transaction phase, the procedure complies with the following rules:

• The tree grows only when the load is the highest so far in the present trans-
action phase.

• When growing, it growsjust enough to keep the competitive ratioC =
ϕ − ϕ−1

ϕ1/(ϕ−1) , whereϕ = MaxProcs
2 , even if the load drops to the minimum

possible in the next measurement.
The number of leaves the tree should have more is

∆Surplus = baseSurplus · 1
C

· Load − Load−

Load − 2

whereLoad− is the highest load before the present measurement andbaseSurplus
is the number of surplus processors at the beginning of the present transaction

112 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

phase (line SL3). Every time a new transaction phase starts,baseSurplus is set to
the last value ofsurplus in the previous transaction phase. At the first exchange of
a new transaction phase, whereLoad− has not been set yet, the value is replaced
by the product of the competitive ratio and the minimum load (lineSL2). Both
variablesLoad− andbaseSurplus are stored in the current leaf where the reaction
occurs.

Symmetrically, theLatency2Surplus procedure computes how much the tree
should shrink to reduce the travel latency when the load is decreasing. In the pro-
cedure, the exchange rate is the inverse of the load,rXY = 1

Load and is increasing.
In this case, the value ofsurplus increases and that oflatency decreases.

Lemma 6.4.1. In each load-rising/load-dropping transaction phase, the reactive
adjustment scheme is competitive with competitive ratio C = Θ(lnP), where P is
the number of processors potentially accessing the tree.

Proof. The proof is similar to that of the threat-based policy in [28].

6.4.4 Expanding a leaf to a sub-tree

An expansion of a leafL to a subtreeT whose root isL’s matching balancerB
and depth isL.newLevel−L.level essentially needs to set the counters at the new
leaves inT to proper values so as to ensure the step property. Figure 6.7 illustrates
the steps taken inGrow procedure whose pseudo-code is in Figure 6.5. The ex-
pansion occurs only if there are no pending tokens inT (step G1). Otherwise, it
will cause “old” tokens to get “new” values, which causes “holes” in the sequence
of numbers received by all tokens in the end. As soon as the condition is satisfied,
an expansion will be activated by subsequent tokens visitingL sinceL is under a
high load. The process locks leaves in the new subtree (step G3) and sets proper
values to their counters with respect to the step property (step G10). The values
are computed on a consistent measurement ofL’s counter value and the number
of pending processors inL (cf. Figure 6.6). Consistency is ensured by lockingL
(step G4) and switching the pointer fromL to B (step G5) since the latter leaves
a “non-interfered” set of processors inL. The lock acquisition isconditional, i.e.
if some ancestor ofL holds a lock,L’s attempt to acquire the lock will return fail.
In such a case, the operation aborts since a failure to acquire the lock means that
there is an overlapping shrinkage operation being executed by an ancestor ofL.
(Note that overlapping growth operations by an ancestor ofL must abort due to the
existence of the token/processor atL (step G1), which is carrying out the growth
process.) The leaf-locks are acquired in adecreasing order of node labels to avoid
deadlock. Finally, the state of nodes in the new subtree is set toACTIV E to let
new coming processors traverse them (step G9,G10).

6.4. IMPLEMENTATION 113

GROW (int Nid) /*Leaves[Nid] becomes OLD;
Balancers[Nid] and its subtree become ACTIVE*/

G0 L := Leaves[Nid]; B := Balancers[Nid];
G1 forall i, Read(Tracing[i])

if ∃ pending processors in the subtree B then
return; /*abort*/

G2 for each balancer B′ in the subtree rooted at B,
B′.toggleBit = 0;

G3 for each leaf L′ at level L.newLevel of the
subtree B, in decreasing order of nodeId do
if not AcquireLock cond(L′.lock, Nid) then

Release all acquired locks; return; /*abort*/
G4 if (not AcquireLock cond(L.lock, Nid))

or (L.state = OLD) then
/*1st: an ancestor activated an overlapping Shrink*/
/*2nd:someone already made the expansion*/

Release all acquired locks; return; /*abort*/
G5 Switch parent’s pointer from L to B;
G6 forall i, Read(Tracing[i])

ppL := #(pending processors at L);
/*Miss no processor since the new ones go to B*/
G7 CurCount := L.count; L.state := OLD;
G8 Release(L.lock);
G9 for each balancer B′ as in step G2 do

B′.state := ACTIV E;
G10for each leaf L′ as in step G3 do

L′.count := NextCount(ppL, CurCount);
L′.state := ACTIV E;
Release(L′.lock);

return;/*Success*/

ELECT2SHRINK(int Nid, NodeType MyPath[])
E0 L := Leaves[Nid];/*the leaf asks to shrink*/

if L.oldLevel < L.newLevel then
/*new suggested level is lower than older suggestion*/

for(i := L.oldLevel; i < L.newLevel; i + +) do
E1 Balancers[MyPath[i].Nid].votes[Nid] := 0;

else for (i := L.newLevel; i < L.oldLevel; i + +) do
E2 B := Balancers[MyPath[i].Nid];
E3 B.votes[Nid] := 2MaxLevel−L.level;
E4 bWeight := 2MaxLevel−B.level;

/*weight of B’s subtree*/

E5 if
P

i B.votes[i]

bWeight
> 0.5 then Shrink(i); break;

SHRINK (int Nid)/*Leaves[Nid] becomes ACTIVE;
Balancers[Nid] and its subtree become OLD*/

S0 B := Balancers[Nid]; L := Leaves[Nid];
S1 forall i : Read(Tracing[i])

if ∃ pending processor at L then return;/*abort*/
S2 if (not AcquiredLock cond(L.lock, Nid))

or (B.state = OLD) then
/*1st: some ancestor is performing Shrink*/
/*2nd: someone already made the shrinkage*/
Release possibly acquired lock; return; /*abort*/

S3 L.state := OLD; /*avoid reactive adjustment at L*/
S4 forall leaf L′ in B’s subtree, in increasing order

of nodeId do
AcquireLock cond(L′.lock, Nid);

S5 Switch the parent’s pointer from B to L
S6 forall i : Read(Tracing[i])

eppB := #(effective processors in B’s subtree;
/*can’t miss any since the new ones go to L*/

S7 for each balancer B′ in the subtree rooted at B do
B′.state := OLD;

SL := ∅; SLCount := ∅;
S8 for each leaf L′ in the subtree rooted at B do

if (L.state = ACTIV E) then
SL := ∪{L′};SLCount := ∪{L′.count};
L′.state := OLD;

Release(L′.lock);
S9 L.count := NextCount(eppB, SL, SLCount);
S10 L.state := ACTIV E;
S11 Release(L.lock);

Figure 6.5: TheGrow, Elect2Shrink andShrink procedures

114 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

Computing proper values for new leaf-counters: Since toggle-bits of balancers
in the new subtree are reset to0, the first processor traversing the new subtree will
arrive at the right most leaf3 at levelL.newLevel. Therefore, the values for the
counters at new leaves (line G10) are computed as in Figure 6.6, whereL’s current

next count value := CurCount + ppL ∗ 2L.level; increment = next count value − MostRightLeaf.init;
for every leaf L’ at level L.newLevel do L′.count = L′.init + increment;

Figure 6.6: TheNextCount function in theGrow procedure

counter valueCurCount and the number of pending processorsppL are read at
lines G7 and G6 in the procedure, respectively. Local variablenext count value
is the successive counter value after all the pending processors leave leafL. Field
init in the leaf data structure (Figure 6.3) is the base to calculate counter values
and is unchanged. For instance, in Figure 6.1 the baseinit of counterC6 is 1 and
thenth counter value is1 + n ∗ 4.

parent

after growbefore grow

Nid Nid

...

L B
G1: proceed only if no pending
processors in B’s subtree

L.sugLevel

L.level

G4−G8: lock L, switch parent ptr from L to B,
=> guarantee non−interfered set of proc’s at L

all balancers here
G2,G9: update & activate

G3,G10: lock, update
& activate leaves here

"not effective"
token here is

magnified view of (*)

=> get consistent leaf data at S9
NOTE: no performance bottleneck

S5: lock all leaves in B’s subtree
after shrink before shrink

BL

...

NidNid

parent

S8: all balancers here are old

include token T

T
in my counter

(*)

S10−13: update L’s data,
release L’s lock &
TokenToReact

S1: get TockenToReact
S2: proceed only if no pending proc’s at L

=> correctly count effective pending processors
S3,S6,S7: lock L, switch parent ptr from B to L,

leaves in B’s subtree
S9: collect data from

=> prevent unnecessary reactions

Figure 6.7: Illustrations forGrow andShrink procedures

6.4.5 Shrinking a sub-tree to a leaf

A processor at a leafL0 with recommended reaction to shrink to levelL0.newLevel
addsL0’s vote to vote-boxes of balancers on itsMyPath from levelL0.newLevel

3The right side is shown in Figure 6.2.

6.4. IMPLEMENTATION 115

down to levelL0.level− 1 (lines E2,E3 in Figure 6.5). It also removes the leaf old
votes at levels above the new level (line E1). When reaching a balancerB with
enough votes, the processor starts a shrinkage process at the balancer (line E5).
The process is illustrated in Figure 6.7 and its pseudocode is in Figure 6.5

Symmetrically to the growth process, a shrinkage process of a subtreeT rooted
at balancerB to B’s matching leafL, essentially needs to setL’s counter to a
proper value so as to ensure the step property. The process occurs only if there are
no pending tokens inL. Otherwise, it will cause “old” tokens get “new” values
(step S1 inShrink). The process lockL (step S2) and sets a proper value to its
counter with respect to the step property (step S9). The value forL’s counter is
computed on a consistent measurement of the number of pending processors inT
and the counter values of each leafL′ in T (cf. Figure 6.8). Consistency is ensured
by locking leavesL′ in T (step S4) and switching the pointer fromB to L since
the latter leaves a “non-interfered” set of processors inT . Similarly to theGrow
procedure, the lock acquisition is conditional. The process locks leaves inT in
an increasing order of node labels to avoid deadlock. Note that an overlapping
shrinkage process byL’s ancestors cannot cause any of the attempts to lockL′ to
fail since the overlapping process must already lockL (and if it had succeeded,
it would have caused the shrinkage fromB to L to abort earlier, at step S2 in
Shrink). Finally, the shrinkage process sets state of balancers and leaves inT to
OLD (steps S7,S8 inShrink).

Computing a proper value for the new leaf-counter: The counter value for the
new leaf is computed on the set of active leavesSL, their counter valuesSLCount
and the number of effective pending processorseppB in the subtreeB (line S9).
The value is the result of theNextCount function, which is implemented as in
Figure 6.8.

int NEXTCOUNT (int eppB, list t SL, list t SLCount)
Convert leaves in B to the same level, the lowest level ⇒ new sets of leaves SL’ & counter values SLCount’;
Distribute the number of effective processors eppB on the leaves in SL’ so that step-property is satisfied.;
Call the leaf last visited by the pending processors lastL;
return (lastL.count − 2lastL.level + 2B.level);

Figure 6.8: TheNextCount function inShrink procedure.

For instance, in Figure 6.2 if the subtree of balancer2 shrinks to leaf2 and the
set of active leavesSL is {4, 10, 11}, leaf 4 needs to be converted to two leaves
8 and9 at the same level with leaves10 and11, the lowest level. Thus, the new
set of leavesSL′ is 8, 9, 10, 11. After converting, the subtree becomes balanced
and the step-property must be satisfied on the subtree. The following feature of
trees satisfying the step-property was exploited to distribute the set of effective

116 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

processorseppB among leaves inSL′. Call the highest counter value of leaves
at the lowest levelMaxV alue. The counter values of leaves must be in range
(MaxV alue − 2LowestLevel, MaxV alue].

6.4.6 Efficiency enhancement

In order to improve the efficiency of the new tree, we define and implement two
advanced synchronization operations:read-and-follow-link and conditional lock
acquisition. The former is a lock-free operation that maximizes parallelism at bal-
ancers. The latter is to minimize disturbance due to reactive adjustments for the
processors. The operations are described in this subsection and their pseudo-code
is in Figure 6.9.

BASICASSIGN(NodeType ∗ tracei, NodeType ∗ child)
A0 ∗tracei := child;/*mark tracei, clear mask-bit*/
A1 temp := ∗child; /*get the expected value*/
A2 temp.mask := 1; /*set the mask-bit*/
A3 CAS(tracei, child, temp);

NodeType ASSIGN(NodeType ∗ tracei, NodeType ∗ child)
AR0 BasicAssign(tracei, child);
AR1 return Read(tracei);

boolean ACQUIRELOCK COND(int lock, int Nid)
AL0 while ((CurOccId := CAS(lock, 0, Nid)) �= 0) do
AL1 if IsParent(CurOccId, Nid) then return Fail;
AL2 Delay using exponential backoff;
AL3 return Success;

NodeType READ(NodeType ∗ tracei)
R0 do
R1 local := ∗tracei;
R2 if local.mask = 0 then

/*tracei is marked*/
R3 temp := ∗local; /*help Assign() ...*/
R4 temp.mask := 1;
R5 CAS(tracei, local, temp);
R6 while(local.mask = 0);

/*... until it completes*/
R7 return local;

RELEASE(int lock)
lock := 0;

Figure 6.9: The BasicAssign, Assign, Read, and AcquireLockcond operations

The read-and-follow-link operation: In order to support high parallelism, we
apply a non-blocking synchronization technique, instead of mutual exclusion, for
balancers, where the collision among visiting processors is high. The technique
allows all processors to concurrently pass a balancer, helping the tree achieve bet-
ter performance. However, this may make the number of pending processors be
counted incorrectly, which consequently causes the tree output to not satisfy the
step-property.

Figure 6.10 illustrates the problem of incorrectly counting the number of pend-
ing processors. A processorp2 reads a pointerptr that shows which node the pro-
cessor is going to visit. Before the processor updates its new location inTracing[2],
another processorp1 executes a reactive adjustment that switches the pointer to an-
other position and counts the number of pending processors in the old branch via

6.4. IMPLEMENTATION 117

Tracing array. Sincep1 reads a obsolete value ofTracing[2], it does not count
p2. Then,p2 follows the old value ofptr and visit the old branch. That means the
number of pending processors in the old branch is higher than whatp1 has counted,
leading to compute incorrect values for the new leaf-counters in theGrow and
Shrink procedures (step G10 and S9 in Figure 6.5).

��
timep1

Read(Tracing[2])

p2

Write(ptr, new)

tmp = Read(ptr) Write(Tracing[2], tmp)

Figure 6.10: An illustration for the need ofread-and-follow-link operation

Intuitively, if both Read(ptr) andWrite(Tracing[2]) onp2 occur atomically
to Read(Tracing[2]) on p1, the problem will be solved. This motivates us to im-
plement advanced operations calledBasicAssign andRead(cf. Figure 6.9). Each
elementTracing[i] can be updated by only one processorpi via theBasicAssign
operation and can be read by many other processors via theRead operation. The
former reads the variable pointed bychild and then writes its value to the variable
pointed bytracei. The latter reads the variable attracei. TheBasicAssign()
operation is atomic toRead() operation4 and only the operations can access array
Tracing. The two operations are lock-free [46] and thus they improve parallelism
and performance of the tree.

Conditional lock-acquisition operation: In order to minimize adjustment de-
lay for processors, we need to minimize locking intervals forworking leaves: the
Grow procedure acquires necessary leaves indecreasing order of their labels so as
to acquire the working leafL at latest, and theShrink procedure acquires neces-
sary leaves inincreasing order of their labels. Moreover, since the tree allow con-
current adjustments at any level, adjustments at high levels should have higher pri-
orities than ones at lower levels when there is collision among adjustments. How-
ever, this optimization may lead to deadlock due to interferences between growth
and shrikage processes. We solve this problem by designing an advanced operation
calledconditional lock acquisition.

During both the growth and shrinkage processes, a processor on behalf of a
nodeNid must invokeAcquireLock cond to acquire a leaf locklock by writing
the node labelNid to the lock. If the lock is occupied by an ancestor of the node,
the procedure returnsFail (line AL1, Figure 6.9). The procedure is built on the

4The proof is given in Lemma 6.5.1

118 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

busy-waiting with exponential backoff technique instead of queue-lock because
the contention at the leaf of the tree is kept low. In a low-contention environment,
the busy-waiting with exponential back-off technique achieves better performance
than the queue-lock, which requires more complicated data structures [77].

For acquiring leaf locks to increase counter values (i.e. not perform adjustment
tasks), processors invokeAcquireLock procedure without condition. The proce-
dure is similar toAcquireLock cond but does not check the ancestor-condition
(line AL1, Figure 6.9). ProcedureAcquireLock always returnsSucceed.

The way these locking mechanisms interact and ensure safety and liveness for
the tree accesses is explained in descriptions of theGrow andShrink procedures
and is proven in Section 6.5.

6.5 Correctness Proof

We first prove that theBasicAssign operation is atomic to theRead operation
(cf. Figure 6.9) as mentioned in subsection 6.4.6.

Lemma 6.5.1. The BasicAssignoperation is atomic to the Readoperation.

Proof. In the BasiceAssign operation, the variable pointed bytracei is first
locked by writing a pointerchild to it (line A0, Figure 6.9). The last bit in a pointer
(mask bit in NodeType, Figure 6.3), which is unused because of word-alignment
memory architecture, is exploited to determine if a variable is locked or not. If the
last bit of the∗tracei variable is zero, the variable is locked and its value is the ad-
dress of another variable whose value must be written to∗tracei. After reading the
expected value∗child, the operation sets the last bit to1 so as to unlock∗tracei

and subsequently writes the value to∗tracei using acompare and swap primitive
(lines A1-A3). If ∗tracei still contains the pointerchild, the primitive will suc-
cessfully write the value to∗tracei. Otherwise, another operation has helped the
operation complete the assignment.

When reading the value of a variable∗tracei, theRead operation checks if the
variable is locked (line R2). If the last bit of the variable is zero, the operation will
help the correspondingBasicAssign operation to write the expected value to the
variable before trying to read it again (lines R3-R5). Therefore, theBasicAssign
operation is atomic to theRead operation. The linearization point [50] of the
Read operation is the point it reads a value with a non-zero last bit (line R1); the
linearization point of theBasicAssign() operation is the point it writes a pointer
with a zero last bit to∗tracei (line A0).

Second, since leaves are locked in decreasing order of leaf identities in the
Grow procedure but in increasing order in theShrink procedure, we need to

6.5. CORRECTNESS PROOF 119

prove that deadlock never occurs due to interferences between growth and shrink-
age processes.

Lemma 6.5.2. Self-tuning reactive trees are deadlock-free.

Proof. Interferences between two balancers that are trying to lock leaves5 occur
only if one of the balancers is the other’s ancestor in thefamily tree. Assume that
there are two balancersbi andbj , wherebi is bj ’s ancestor.

• Case 1: If both balancersbi andbj execute shrinkage processes that shrink
their sub-trees to leaves, both will lock leaves in increasing order of leaf
identities by using theAcquireLock cond operation. If the leaf with small-
est identity thatbj needs is locked bybi, the operation called bybj will return
Fail immediately. This is because the leaf is locked by an ancestor ofbj . If
the leaf is locked bybj , bi must wait at the leaf untilbj completes its own
work and thenbi continues locking necessary leaves. If no processor locking
the leaves on behalf of a balancer crashes, no deadlock will occur.

• Case 2: bi executes a shrinkage process, which shrinks its subtree to a leaf,
andbj executes a growth process, which expands its matching leaf to a sub-
tree. In this case,bi tries to lock all necessary leaves in increasing order
of leaf identities andbj does that in decreasing order of leaf identities. As-
sume thatbi locked leafk successfully and is now trying to lock leaf(k + 1)
whereasbj locked leaf(k + 1) successfully and is trying to lock leafk.
Becausebi andbj use the procedureAcquireLock cond that conditionally
acquires the locks,bj will fail to lock leaf k, which is locked by its ancestor,
and will release all the leaves it has locked so far (lines G3 and G4, Fig-
ure 6.5). Eventually,bi successfully locks leafk + 1 and continues locking
other necessary leaves. That is, deadlock does not occur in this case either.

Note that there is no the case thatbi executes a growth process. This is be-
cause in its subtree there is at least one pending processor that helpsbj execute its
adjustment process.

Corollary 6.5.3. In the shrinkage process, if the corresponding balancer success-
fully locked the necessary leaf with smallest identity, it will successfully lock all the
leaves it needs.

Therefore, theShrink procedure returnsFail only if the matching leaf of the
corresponding balancer is locked by an ancestor of the balancer.

5recall that processors lock leaves on behalf of balancers

120 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

Lemma 6.5.4. There is no interference between any two growth processes in the
self-tuning reactive tree.

Proof. Similarly as in the proof of the previous lemma: i) the interference between
two balancers who are trying to lock leaves occurs only if one of the balancers is
the other’s ancestor in thefamily tree and ii) there is no case that two expansion
phases are executed at the same time and one of the two corresponding balancers
is an ancestor of the other.

Lemma 6.5.4 explains why theGrow procedure does not lock balancers before
resetting their variables (line G2, Figure 6.5).

Finally, we prove that the number of processors used to calculate counter value
for new leaves in bothGrow andShrink procedures is counted accurately via the
global arrayTracing.

Definition 6.5.5. Old balancers/leaves are the balancers/leaves whose states are
OLD

Definition 6.5.6. Effective processors/tokensare processors/tokens that are not in
old balancers nor in old leaves of a locked sub-tree.

Only theeffective processors affect the next counter values calculated for new
leaves. An illustration to enhance the understanding of this definition is given in
Figure 6.7-Shrink, where the token marked as “T” at the lower part of the figure
is not effective.

Lemma 6.5.7. The number of effective processorsthat are pending in a locked sub-
tree or a locked leaf is counted accurately in the Grow and Shrink procedures.

Proof. A processorpi executing an adjustment process switches a pointer from
one branch of the tree to the other before counting pending processors in the old
branch (lines G5, G6 inGrow and lines S5, S6 inShrink, Figure 6.5). Since the
BasiceAssign() operation is atomic to theRead operation (by Lemma 6.5.1), the
processor counts the number of pending processors accurately. Recall that the old
branch is locked as a whole so that no processor can leave the tree from the old
branch as well as no other adjustment can concurrently take place in the old branch
until the counting completes. The pending processors counted includeeffective
processors andineffective processors.

In the case of tree expansion, the number of pending processors in the locked
leaf is the number of effective processors.

6.6. EVALUATION 121

In the case of tree shrinkage, we lock both old and active leaves of the locked
sub-tree so that no pending processor in the sub-tree can switch any pointers. Re-
call that to switch a pointer, a processor has to successfully lock the leaf corre-
sponding to that pointer. On the other hand, (i) we set states of all balancers and
leaves in a locked sub-tree/locked leaf toOld before releasing them (lines S7, S8
in Shrink and line G7 inGrow), and (ii) after locking all necessary balancers and
leaves, processors continue processing the corresponding shrinkage/growth pro-
cesses only if the switching balancers/leaves are still in an active state (line G4 in
Grow and line S2 inShrink). Therefore, a pending processor in the locked sub-
tree that visited anOld balancer or anOld leaf will never visit anActive one in
this locked sub-tree. Similarly, a pending processor in the locked sub-tree that vis-
ited anActive balancer or anActive leaf will never visit anOld one in this locked
sub-tree. Hence, by checking the state of the node that a pending processorpj in
the locked sub-tree is currently visiting, we can know whether the processorpj is
effective (line S6 inShrink). In conclusion, the number of effective processors
in a locked sub-tree is counted accurately inShrink procedure in the case of tree
shrinkage.

Since the number of effective pending processors is counted accurately (by
Lemma 6.5.7), the counter values that are set at leaves after adjustment steps in the
self-tuning trees are correct, i.e. the step-property is guaranteed. That means the re-
quirements mentioned in subsection 6.3.1 are satisfied. This implies the following
theorem:

Theorem 6.5.8. The self-tuning tree obtains the following properties:

• Evenly distribute a set of concurrent memory accesses to different banks in
a coordinated manner like the (reactive) diffracting tree. The step-property
is guaranteed.

• Automatically and efficiently adjust its size according to its load in order to
gain performance. No manually tuned parameters are needed.

6.6 Evaluation

In this section, we evaluate the performance of the self-tuning reactive tree. We
implemented two versions of the tree: one calledST-Tree(P) uses the elimination
technique [93, 94] to alleviate contention at toggle-bits as the traditional reactive
diffracting tree does, and the other calledST-Tree uses a low-contention hardware
primitive fetchop supported by the SGI Origin2000 [64] instead. It is interesting
to see how much the new tree can speed up if the system supports low-contention
synchronization primitives.

122 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

We used the traditional reactive diffracting tree [25] as a basis of compari-
son since they are the most efficient reactive counting constructions in the litera-
ture. The most difficult issue in implementing the tree is to find the best folding
and unfolding thresholds as well as the number of consecutive timings calledUN-
FOLDING LIMIT, FOLDING LIMIT and MINIMUM HITS in [25]. Subsection
Load Surge Benchmark in [25] has described that the tree sized to a depth 3 tree
when the authors ran the index-distribution benchmark [94] with 32 processors in
the highest possible load (work = 0) and the number of consecutive timings was
set to10. Following the description, we ran our implementation of the tree on the
ccNUMA Origin2000 with thirty 250MHz MIPS R10000 processors. The result is
that folding and unfolding thresholds are3 and10 microseconds, respectively. This
selection of parameters did not only keep our experiments consistent with the ones
presented in [25] but also gave the best performance for the reactive diffracting tree
in our system. Regarding the prism size, an algorithmic construct to implement the
elimination technique, each node hasc2(d−l) prism locations, wherec = 0.5, d is
the average value of the tree depths estimated by processors traversing the tree and
l is the level of the node [25, 93]. The upper bound for adaptive spinMAXSPIN is
128 as mentioned in [94].

We used the full-contention benchmark and the surge-load benchmark that are
similar to the index-distribution benchmark withwork = 0 and the surge-load
benchmark in [25]. The benchmarks ran on a ccNUMA SGI Origin 2000 with
thirty 250MHz MIPS R10000 processors. The system ran IRIX 6.5. In order
to make these empirical results accessible to other researchers and practitioners,
C code for the tested algorithms is available athttp://www.cs.chalmers.
se/˜phuong/satNov05.tar.gz.

Throughput_SGI_FullContention

0

2

4

6

8

10

12

14

4 8 12 16 20 24 28
#processors

P
ro

po
rt

io
n

to
 R

D
-T

re
e

RD-Tree ST-Tree(P) ST-Tree

Depth_SGI_FullContention

0

0.5

1

1.5

2

2.5

3

3.5

4 8 12 16 20 24 28
#processors

A
ve

ra
ge

 d
ep

th

RD-Tree ST-Tree(P) ST-Tree

Figure 6.11: Throughput and average depth of trees in the full-contention bench-
mark on SGI Origin2000.

6.6. EVALUATION 123

6.6.1 Full contention benchmark

In the benchmark, each processor continuously traverses the respective tree and
gets a counter value. The benchmark was run for the different numbers of proces-
sors from 4 to 28, which simulates different loads on trees. We ran the benchmark
for one minute and measured the average size of trees and the average number
of traversing operations (or the number of tokens passing a tree) in one second.
The results are shown in Figure 6.11, where the right charts show the tree average
depths and the left charts show the proportion of the ST-tree throughput to that of
the RD-tree. The tree with higher throughput is the better.

The right shows that both ST-Tree(P) and ST-Tree perform better than RD-
Tree. In the case of 28 processors, the ST-Tree(P), which uses the same elimination
technique as RD-Tree, is36% faster than RD-Tree and ST-Tree is 10 times faster.
Since each treecontinuously adjusts its current size around the average value due
to load variation on its leaves even in the case that the number of participating pro-
cessors is fixed (cf. Figure 6.12), a tree with more efficient adjustment will achieve
better performance in the full-contention benchmark. The reactive adjustments of
the ST-Tree(P)/ST-Tree and RD-Tree have algorithmic differences:

• The former reacts to load variation faster with lower overhead as described
in Section 6.3.3, whereas in the latter leaves shrink or grow only one level
in one reaction step and then have to wait for a given number of processors
traversing themselves before shrinking or growing again.

• In the latter, whenever a leaf shrinks or grows, all processors visiting the
leaf are blocked completely until the reaction process completes. Moreover,
some processors may be forced to go back to higher nodes many times before
exiting the tree. In the former, this problem is avoided with the introduction
of matching leaves, which provide high parallelism.

Another interesting result is that when the load on trees increases, the ST-Tree
automatically adjusts its size close to that of the RD-tree that requires three experi-
mental parameters for each specific system. Since the RD-Tree throughput is lower
than the ST-Tree throughput, the result implies that the longer lock-based adjust-
ments at leaves of the RD-Tree block more processors at leaves, causing loads on
them as high as those on the ST-Tree leaves. On the other hand, the size difference
between ST-Tree and ST-Tree(P) implies that the elimination technique [93,94] not
only alleviates contention on toggle-bits but also delays processors at balancers,
consequently reducing loads on leaves. However, the low loads at leaves are at the
cost of low throughput.

124 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

Depth_SGI_surgeload_FastestReaction

0

0.5

1

1.5

2

2.5

3

3.5

4

45
00

54
59

64
18

73
77

83
36

92
95

10
25

4

11
21

3

12
17

2

13
13

1

14
09

0

15
04

9

16
00

8

16
96

7

17
92

6

18
88

5

19
84

4

20
80

3

21
76

2

22
72

1

#intervals

A
ve

ra
ge

 d
ep

th

ST-Tree(P)

ST-Tree

RD-Tree

Depth_SGI_surgeload_AverageReaction

0

0.5

1

1.5

2

2.5

3

3.5

45
00

55
63

66
26

76
89

87
52

98
15

10
87

8

11
94

1

13
00

4

14
06

7

15
13

0

16
19

3

17
25

6

18
31

9

19
38

2

20
44

5

21
50

8

22
57

1

23
63

4

24
69

7

#intervals

A
ve

ra
ge

 d
ep

th

ST-Tree

ST-Tree(P)

RD-Tree

Figure 6.12: Average depths of trees in the surge load benchmark on SGI Ori-
gin2000, the fastest and the average reactions.

6.6.2 Surge load benchmark

The benchmark shows how fast the trees react to load variation. In this benchmark,
we measured the average depth of each tree in each interval of 400 microseconds.
The measurement was done by a monitor processor. At interval 5000, the number
of processors was changed from 4 to 28. The depth of the trees at the interval
5001 was measured after synchronizing the monitor processor with all the new
processors, i.e. the period between the end of interval 5000 and the beginning of
interval 5001 was not 400 microseconds.

Figure 6.12 shows depths of the trees from interval 4500 to interval 25000. The
left chart shows the fastest reaction experiment for each tree over 15 experiments.
It also shows the amplitude in which the tree sizes vary when the number of pro-
cessors is fixed to 28. The RD-Tree size amplitude is showed to be the largest.
The right chart shows the average reaction time figures for the trees over 15 exper-
iments. In the case of 28 processors, the ST-tree reached a depth 3 at interval 5009,
i.e only after 9 intervals since the time all 28 processors started to run. The ST-
Tree(P) reached a depth 2.2 at interval 5362 and the RD-tree reached level 2.4 at
interval 17770. The difference between the average reaction times of ST-Tree and
ST-Tree(P) implies that the elimination technique delays processors at balancers
when the load surges, making loads at leaves increase gradually. The difference
between ST-Tree(P) and RD-Tree reaction delays re-confirms the advantage of the
fast multi-level adjustment scheme used in ST-Tree/ST-Tree(P).

Moreover, in the surge-load benchmark, it is interesting to see not only how fast
the trees adjust their size but also how efficient they are with respect to throughput.
We extended the benchmark so that the number of processors accessing the trees
changes from 4 to 28 or from 28 to 4 for each period of 0.1 second. The benchmark
was run in 1 minute or in 600 cycles. We measured the average number of travers-

6.7. CONCLUSION 125

ing operations, i.e. the number of tokens passing a tree, in one second. The result
is showed in Figure 6.13. As expected, the ratio of ST-Tree/ST-Tree(P) throughput
to RD-Tree throughput in the benchmark is higher than in the full-load benchmark
in which loads on leaves vary slightly due to the number of processors fixed. In the
surge-load benchmark, the ST-Tree(P) throughput is 2.4 times higher than that of
RD-Tree and ST-Tree throughput is 15.3 times higher.

Throughput_SGI_surgeload

371.144

58.250

24.228

0 100 200 300 400

RD-Tree

ST-Tree(P)

ST-Tree

#tokens per second (thousands)

Figure 6.13: Throughput of trees in the surge load benchmark on SGI Origin2000.

6.7 Conclusion

This paper has presented the self-tuning reactive tree, a data structure that dis-
tributes concurrent memory accesses to different banks in a coordinated manner.
The tree extends the reactive diffracting tree, a successful result in the area of
reactive concurrent data structures, in many aspects. The new tree iscompletely re-
active: its reactive adjustment does not need any tuned parameters. To circumvent
the need of manually tuned parameters, the trade-off between tree depth and loads
at leaves is analyzed as an online problem and subsequently an efficient online so-
lution is suggested. The solution is inspired by an optimal online algorithm for an
online financial problem [28], which helps the tree make precise reactive decisions.
The precise decisions contribute a significant factor to the tree efficiency. Another
considerable factor to the tree efficiency is the new construction that allows the tree
to freely grow and shrink by several levels in just one adjustment step. The new
construction is designed to reduce overhead due to expensive system calls (e.g.
timing calls) and adjustment delays (e.g. delays of locking tokens or moving to-
kens upward and downward) in the traditional reactive diffracting tree. Moreover,
the new construction has space complexity comparable with that of the traditional
reactive diffracting trees. It also exploits low-contention occasions on subtrees to
make its locking process as efficient as in the traditional reactive diffracting trees

126 CHAPTER 6. SELF-TUNING DIFFRACTING TREES

although its locking process locks more nodes at the same time. As a result, the
new tree can react quickly to load variations, and at the same time offers good
latency to the traversing processors and good scalability behavior.

We have also presented an experimental evaluation of the new tree on the SGI
Origin2000, a well-known commercial ccNUMA multiprocessor. We think that it
is of interest to evaluate the tree performance on real multiprocessor systems that
are widely used in practice.

In the near future, we plan to look into new reactive schemes that may further
improve the performance of reactive shared objects. Ideally, reactive shared objects
should be able to observe the changes in execution environments and react accord-
ingly in time. In unpredictable environments such as multiprocessor/multiprogramming
systems, online algorithms and competitive analysis seem to be a promising ap-
proach for designing such reactive objects. In the approach, choosing appropriate
adversary models may allow faster reaction and better execution time.

Chapter 7

Competitive Freshness
Algorithms for Wait-free Data
Objects1

Peter Damaschke2, Phuong Hoai Ha2, Philippas Tsigas2

Abstract

Wait-free concurrent data objects are widely used in multiprocessor systems
and real-time systems. Their popularity results from the fact that they avoid locking
and that concurrent operations on such data objects are guaranteed to finish in a
bounded number of steps regardless of the other operations interference. The data
objects allow high access parallelism and guarantee correctness of the concurrent
access with respect to its semantics. In such a highly-concurrent environment,
where many wait-free write-operations updating the object state can overlap a
single read-operation, the age/freshness of the state returned by this read-operation
is a significant measure of the object quality, especially for real-time systems.

In this paper, we first propose a freshness measure for wait-free concurrent data
objects. Subsequently, we model the freshness problem as an online problem and
present two algorithms for the problem. The first one is a deterministic algorithm
with freshness competitive ratio

√
α, where α is a function of execution-time upper-

bound of wait-free operations. Moreover, we prove that
√

α is asymptotically the

1Expanded version of a preliminary result published in Technical report no. 2005-17, Department
of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden,
Oct. 2005.

2Department of Computer Science and Engineering, Chalmers University of Technology, S-412
96 Gothenburg, Sweden. Email:{ptr, phuong, tsigas}@cs.chalmers.se

128 CHAPTER 7. COMPETITIVE FRESHNESS ALGORITHMS

optimal freshness competitive ratio for deterministic algorithms, implying that the
first algorithm is optimal. The second algorithm is a competitive randomized algo-
rithm with freshness competitive ratio ln α

1+ln 2− 2√
α

.

7.1 Introduction

Concurrent data objects play a significant role in multiprocessor systems, but also
create challenges on consistency. In concurrent environments like multiproces-
sor systems, consistency of a shared data object is guaranteed mostly by mutual
exclusion, a form of locking. However, mutual exclusion degrades the system’s
overall performance due to lock convoying, i.e. other concurrent operations can-
not make any progress while the access to the shared object is blocked. Mutual
exclusion also contains risks of deadlock and priority inversion. To address these
problems, researchers have proposednon-blocking algorithms for shared data ob-
jects. Non-blocking methods do not involve mutual exclusion, and therefore do not
suffer the problems that blocking can cause. Non-blocking algorithms are either
lock-free or wait-free.Lock-free [47] algorithms guarantee that regardless of both
the contention caused by concurrent operations and the interleaving of their sub-
operations, always at least one operation will progress. However, there is a risk
for starvation as progress of other operations could cause one specific operation
to never finish.Wait-free [46] algorithms are lock-free and moreover they avoid
starvation. In a wait-free algorithm every operation is guaranteed to finish in a
limited number of steps, regardless of actions of other concurrent operations. Non-
blocking algorithms have been shown to be of big practical importance [42,45,78],
and recently NOBLE, which is a non-blocking inter-process communication li-
brary, has been introduced [98]. As a result, many aspects of concurrent data
objects have been researched deeply such as consistency conditions [13, 50, 90],
concurrency hierarchy [30] and fault-tolerance [74].

In this paper, we look at another aspect of concurrent data objects: the freshness
of the object states returned by read-operations. Freshness is a significant property
for shared data in general and has achieved great concerns in databases [18,56,85]
as well as in caching systems [60, 65, 68]. Briefly, freshness is a yardstick to eval-
uate how fresh/new a value of a concurrent object returned by its read-operation
is, when the object is updated and read concurrently. For concurrent data objects,
although read-operations are allowed to return any value written by other concur-
rent operations, they are preferred to return the freshest/latest one of these valid
values, especially in reactive/detective systems. For instance, monitoring sensors
continuously concurrently input data via a concurrent object and the processing
unit periodically reads the data to make the system react accordingly. In such sys-

7.2. PRELIMINARIES 129

tems, the freshness of data influences how fast the system reacts to environment
changes.

However, there are few results on the freshness problem in the literature. Simp-
son [51,52] suggested a freshness specification for a single-writer-to-single-reader
asynchronous communication mechanism, which is different from atomic register
suggested by Lamport [62]. Simpson’s communication model with a single writer
and a single reader is not suitable for fully concurrent shared objects that many
readers and many writers can concurrently access.

These issues motivate us to define and attack the freshness problem for wait-
free shared objects. We model the problem as an online problem and then present
two algorithms for it. The first one is a deterministic algorithm, which is a non-
trivial adaptation from an online search algorithm calledreservation price pol-
icy [28]. The algorithm achieves a competitive ratio

√
α, whereα is a function of

execution-time upper-bound of wait-free operations. Subsequently, we prove that
the algorithm is optimal by proving that

√
α is the best freshness competitive ratio

for deterministic algorithms. The second is a new competitive randomized algo-
rithm with competitive ratio ln α

1+ln 2− 2√
α

. The randomized algorithm is nearly opti-

mal since our results [24] from an elaboration on the EXPO search algorithm [28]
showed thatO(lnα) is an asymptotically optimal competitive ratio for randomized
freshness algorithms.

The rest of this paper is organized as follows. Section 7.2 briefly introduces the
concept of competitive ratio, which will be used throughout the paper. Section 7.3
describes the freshness problem and models it as an online problem. Section 7.4
presents the optimal deterministic algorithm for the freshness problem. Section 7.5
presents the randomized algorithm. Finally, Section 7.6 concludes the paper.

7.2 Preliminaries

In this section, we give a brief introduction to the competitive ratio of online algo-
rithms that will appear frequently in this paper.

Online problems are optimization problems, where the input is received online
and the output is produced online so that the cost of processing the input is min-
imum or the outcome is best. If we know the whole input in advance, we may
find anoptimal offline algorithm OPT processing the whole input with the min-
imum cost. In order to evaluate how good an online algorithm is, the concept of
competitive ratio is suggested.

130 CHAPTER 7. COMPETITIVE FRESHNESS ALGORITHMS

Competitive ratio : An online algorithmALG is considered competitive with a
competitive ratioc (or c-competitive) if there exists a constantβ such that for any
finite inputI [16]:

ALG(I) ≤ c · OPT (I) + β (7.1)

whereALG(I) andOPT (I) are the costs of the online algorithmALG and the
optimal offline algorithmOPT to service inputI, respectively. The competitive
ratio is a well-established concept and the comparison with the optimal off-line
algorithm is natural in scenarios where either absolute performance measures are
meaningless or assumption on known probability distributions of some inputs is
not feasible.

A popular way to analyze an online algorithm is to consider a game between an
online player and a maliciousadversary. In this game, i) the online player applies
the online algorithm on the input generated by the adversary and ii) the adversary
with the knowledge of the online algorithm tries to generate the worst possible
input for the player. The input processing costs are very expensive for the online
algorithm but still inexpensive for the optimal offline algorithm.

Adversary : For deterministic online algorithms, the adversary with knowledge
of the online algorithms can generate the worst possible input to maximize the
competitive ratio. However, the adversary cannot do that if the online player uses
randomized algorithms. In randomized algorithms, depending on whether the ad-
versary can observe the output from the online player to construct the next input,
we classify the adversary into different categories. The adversary that constructs
the whole input sequence in advance regardless of the output produced by the on-
line player is calledoblivious adversary. A randomized online algorithm isc-
competitive to an oblivious adversary if

E[ALG(I)] ≤ c · OPT (I) + β (7.2)

whereE[ALG(I)] is the expected cost of the randomized online algorithmALG
on the inputI. The other adversary that observes the output produced by the online
player so far and then based on that information constructs the next input element is
calledadaptive adversary. Since the oblivious adversary is more natural and more
practical for modeling real problems, we design a new competitive randomized
freshness algorithm against an oblivious adversary.

The competitive analysis that uses the competitive ratio as a yardstick to eval-
uate algorithms is a valuable approach to resolve the problems where i) if we had
some information about the future, we could have found an optimal solution, and
ii) it is impossible to obtain that kind of information.

7.3. PROBLEM AND MODEL 131

7.3 Problem and Model

Linearizability [50] is the correctness condition for concurrent objects. It requires
that operations on the objects appear to take effect atomically at a point of time in
their execution interval. This allows a read operation to return any of values written
by concurrent write operations, which is illustrated by Figure 7.1.

W(0) A W(1) B

R(0 or 1) C

Freshness problemConcurrent reading & writing

W3

p2
W2 W4

W1

e3

e2

e1
p3

p4
s0

R0

e0 e0 + De0 + t

p1

Figure 7.1: Illustrations for concurrent reading/writing and freshness problem

We use “W(x) A” (“R(x) A”) to stand for a write (read) operation of valuex
to (from) a shared register by processA. It is correct forC to return either 0 or
1 with respect to linearizability. However, from freshness point of view we prefer
C to return 1, the newer/fresher value of the register. The freshness problem is
to find a solution for read operations to obtain the freshest value from a shared
object. Intuitively, if a read operation lengthens its execution interval by putting
some delay between the invocation and the response, it can obtain a fresher value
but it will respond more slowly from application point of view. Therefore, the
freshness problem is to design read-operations that both respond fast and return
fresh values.

The freshness problem is especially interesting in reactive systems, where mon-
itoring sensors continuously and concurrently input data for a processing unit via
a concurrent data object. The unit periodically reads the data from the object and
subsequently makes the system react to environment changes accordingly. In order
to react fast, the read-operation used by the unit must both respond fast and return
a value as fresh as possible. If the read-operation responds immediately at timee0

and an environment change occurs at timee0 + ε, the system must wait for a period
T until the next read in order to observe the change. In this scenario, the system
will react faster if the read-operation delays a bit to return the fresh value ate0 + ε.
The system will subsequently react according to the change at timee0 + ε instead

132 CHAPTER 7. COMPETITIVE FRESHNESS ALGORITHMS

of waiting until timee0 + T to be able to observe the change, whereε << T
(Assume that processing time is negligible.).

The freshness problem is illustrated by Figure 7.1. In the illustration, a read
operationR0 runs concurrently to three write operationsW1, W2 andW3 on a
concurrent shared object. In this paper, read/write operations imply operations on
the same object. The actual execution interval of a operationi is defined from
the timesi the operation starts to the timeei it takes effect (i.e. linearization
point [50]). A time axis runs from left to right. The value returned byR0 be-
comes fresher if there are more end-pointsei appear in the interval[s0, e0]. In the
illustration, if R0 delays the time-pointe0 to e′0 = e0 + d, the execution interval
[s0, e

′
0] will include two more end-pointse1 ande2 and thus the value returned is

newer. However, the delay will also make the read-operation respond more slowly.
This implies thatR0 needs to find the time delayd so as to maximize the freshness
valuefd = k(#wed)

h(d) , where#wed is the number of new write-endpoints earned
by delayingR0’s read-endpoint an intervald andk, h are increasing functions that
depend on real applications. Each application may specify its own functionsk and
h according to the relation between the latency and freshness in the application.

Assume that the shared object supports a function for read operations to check
how many write operations (with their timestamp) are ongoing at a time1. A write-
timestampwt shows thestart-point of the corresponding write operation whereas
a read-timestamprt shows theend-point of the corresponding read operation. The
timestamp objective is to helpR0 ignoreW4 due tort0 < wt4. Note thatR0 only
needs to consider write-endpoints of write operations that occur concurrently to
R0 in its original execution interval[s0, e0], e.g. R0 will ignore W4. Therefore,
in the freshness problem, the number of concurrent write operations that have not
finished at the original read-endpointe0 is known and is calledM . This number is
also the total number of considered write-endpoints, i.e.#we ≤ M .

The most challenging issue in the freshness problem is that the end-points of
concurrent write operations appear unpredictably. In order to analyze the problem,
we consider it as an online game between a player and an oblivious adversary
where the malicious adversary decides when to place the write-endpointsei on-
the-fly and the player (the read operation) decides when she should stop and place
her read-endpointe′0. The online game starts at the original read-endpointe0 and
the player knows the total number of write-endpointsM that the adversary will use
throughout the game. At a timet, the player knows how many ofM end-points
have been used by the adversary so far, i.e.#wet, (by comparingM with the
number of ongoing write operations that ran concurrently with the original read

1The assumption is practical since this can be done by adding a list of timestamps of ongoing
write operations to the shared object.

7.4. OPTIMAL DETERMINISTIC ALGORITHM 133

operation) and computes the current freshness valueft = k(#wet)
h(t) . For eachft

observed, without knowledge of how the value will vary in the future, the player
must decide whether she accepts this value and stops or waits for a better one. In
this online game, the player’s goal is to minimize the competitive ratioc = fmax

fchosen
,

wherefchosen is the freshness value chosen by the player andfmax is the best
value in this game, which is chosen by the adversary. The duration of this gameD
is the upper bound of execution time of the wait-free read/write operations and is
known to the player. This implies that all theM write-endpoints must appear at a
time-point in the interval, i.e.#weD = M .

In summary, we define the freshness problem as follows. LetM be the number
of ongoing wait-free write operations at the original read-endpointe0 of a wait-
free read operation andD be the execution-time upper-bound of these wait-free
read/write operations. The read operation needs to find a delayd ≤ D for its new
end-pointe′0 so as to achieve an optimal freshness valuefd = k(#wed)

h(d) , where
#wed is the number of write-endpoints earned by the delayd and k, h are in-
creasing functions that reflect the relation between latency and freshness in real
applications. The read-operation is only allowed to read the object data and check
the number of ongoing write-operations. The write-operation is only allowed to
write data to the object. We assume the time is discrete, where a time unit is the
period with which the read operation regularly checks the number of ongoing write
operations on the shared object. The extended read operation is still wait-free with
an execution-time upper-bound2D.

The rest of this paper presents two competitive online algorithms for the fresh-
ness problem. The first one is an optimal deterministic algorithm with competitive
ratio

√
α , whereα = h(D)

h(1) . The second one is a nearly-optimal randomized al-

gorithm with competitive ratio ln α
1+ln 2− 2√

α

. Note that the competitive ratios do not

depend onk andM , the parameters related to the number of end-points.

7.4 Optimal Deterministic Algorithm

Modeling the freshness problem as an online game, we observe that the freshness
problem is a variant of the online search problem [28]. In the online search prob-
lem, a player searches for the maximum (minimum) price in a sequence of prices
that unfolds daily. For each dayi, the player observes a pricepi and she must de-
cide whether to accept this price or to wait for a better one. The search game ends
when the player accepts a price, which is also the result.

Inspired by an online search algorithm calledreservation price policy [28], we
suggest a competitive deterministic algorithm for the freshness problem. In the

134 CHAPTER 7. COMPETITIVE FRESHNESS ALGORITHMS

freshness problem, in addition to the fact that the player is searching for the best
in a sequence of freshness values that unfolds sequentially in a foreknown range,
there are more restrictions on the adversary, particularly on how the adversary can
vary the freshness valueft at a timet:

ft−1 ∗ h(t − 1)
h(t)

=
k(#wet−1)

h(t)
≤ ft =

k(#wet)
h(t)

≤ k(M)
h(t)

(7.3)

The restrictions come from the fact that the adversary cannot remove the end-
points she has placed, i.e.#wet−1 ≤ #wet ≤ M , where#wet is the number
of end-points that have appeared until a timet, and the freshness value at the time
t is ft = k(#wet)

h(t) , wherek, h are increasing functions. The restrictions make the
adversary in the freshness problem weaker than the adversary in the online search
problem, and intuitively the player in the freshness problem should benefit from
this. However, we will prove that this is not the case for deterministic algorithms
(cf. Theorem 2).

Before presenting the deterministic freshness algorithm, we need to find up-
per/lower bounds on freshness valuesft. Since1 ≤ t ≤ D, from Equation (7.3)
it follows ft ≤ k(M)

h(1) . On the other hand, sinceM ongoing write-operations
must end at time-points in the intervalD, the player is ensured a freshness value
fmin = k(M)

h(D) by just waiting untilt = D. Therefore, the player considers to stop

at a freshness valueft only if ft ≥ k(M)
h(D) . We havek(M)

h(D) ≤ ft ≤ k(M)
h(1) .

Deterministic Algorithm: The read operation accepts the first freshness value
that is not smaller thanf∗ = k(M)√

h(1)h(D)
.

Indeed, letf∗ be the threshold for accepting a freshness value andfmax be the
highest value chosen by the adversary. The player (the read operation) waits for a
valueft ≥ f∗. If such a value appears in the intervalD, the player accepts it and
returns it as the result. Otherwise, when waiting until the timeD, the player must
accept the valuefmin = k(M)

h(D) .

Case 1: If the player chooses a big value asf∗, the adversary will choosefmax <
f∗, causing the player to wait until the timeD and accept the valuefmin =
k(M)
h(D) . The competitive ratio in this case isc1 = fmax

k(M)
h(D)

< f∗
k(M)
h(D)

.

Case 2: If the player chooses a small value asf∗, the adversary will placef∗ at a
time t, causing the player to accept the value and stop. Right after that, the
adversary places allM end-points, achieving a valuefmax = k(M)

h(t) ≤ k(M)
h(1)

(equality occurs when the adversary choosest = 1). The competitive ratio

in this case isc2 =
k(M)
h(1)

f∗ .

7.4. OPTIMAL DETERMINISTIC ALGORITHM 135

In order not to be fooled by the adversary, the player should choosef∗ so as to
makec1 = c2, which results inf∗ = k(M)√

h(1)h(D)
and the competitive ratioc =

c1 = c2 =
√

h(D)
h(1) .

Let α = h(D)
h(1) . This leads to the following theorem.

Theorem 1. The suggested deterministic algorithm is competitive with competitive
ratio c =

√
α, where α = h(D)

h(1) .

We now prove that there is no deterministic algorithm for the freshness problem
that achieves a competitive ratio better than

√
α.

We use a logarithmic vertical axis for freshness. Let LF denote the logarithm
of freshness. More specifically, we normalize the LF axis so that freshnessk(M)

h(D)

corresponds to point0 and freshnessk(M)
h(1) corresponds to pointln h(D)

h(1) = lnα.
One unit on the LF axis multiplies the freshness by factore (Euler’s number).

We also introduce some parameters that characterize the status of a game. Lett
be the time, initiallyt = 1. At any moment, letf be the maximum LF the adversary
has already reached during the history of the game, andg the maximum LF the
adversary can still achieve at a given time. LF valueg(t) at time t corresponds
to freshnessk(M)/h(t), unlessf is already larger, in which case we haveg =
f . However in the latter case the game is over, without loss of generality: The
adversary cannot gain more and would therefore decrease the freshness as quickly
as possible, in order to make the player’s position as bad as possible, hence an
optimal player would stop now. (The dotted polyline in Figure 7.2 illustrates the
casef = g(t) in which the player should stop at timet.)

The horizontal axis is for the logarithm ofh(t). We normalize it so thath(1)
corresponds to point0 andh(D) corresponds to pointln h(D)

h(1) = lnα). Note that,
in these logarithmic coordinates,g simply decreases at unit speed, starting at point
lnα. Finally, letc denote the current LF. We remark thatc can decrease at most at
unit speed but can jump upwards arbitrarily as long asc ≤ g.

Theorem 2. The optimal deterministic competitive ratio is asymptotically (subject
to lower-order terms)

√
α, where α = h(D)

h(1) .

Proof. To prove the theorem, we only need to show one of the adversary’s strate-
gies against which no online deterministic algorithm can achieve a competitive
ratio better than

√
α. We work in the logarithmic coordinates as defined above,

which makes the argument rather simple.

The adversary starts withc = ln α
2 =

ln
h(D)
h(1)

2 . Then she decreasesc at unit
speed until the player stops. Immediately after this moment,c jumps tog if c > 0

136 CHAPTER 7. COMPETITIVE FRESHNESS ALGORITHMS

at the stop time (Case 1), otherwisec keeps on decreasing at unit speed (Case 2).
Clearly, we have constantlyg − c = ln α

2 until the stop time. Letp be the player’s
value of LF. In Case (1) we finally getf = g, hencef − p = g − c = ln α

2 (cf.
the dashed polylinec1 in Figure 7.2). In Case (2),f has still its initial valueln α

2

whereasp ≤ 0, hencef − p ≥ ln α
2 (cf. the linec2 in Figure 7.2). Thus the

competitive ratio is at leaste
ln α
2 =

√
α. The player can achieve this competitive

ratio by applying the deterministic algorithm given above.

This result shows that a deterministic player cannot take advantage of the con-
straints on the behavior of freshness in time (compared to online search on unre-
stricted sequences of profit values).

(logarithm)
h(time)

(logarithm)
h(time)

0

g
f

t

c
a

LF: freshness(logarithm)

(A)

0

g

t

f

LF: freshness(logarithm)

0

x

x+r

r

c

f

worst

(B) (C)

T=2

T=0

T=2

f

c

x

ln α

ln α

Randomized algorithmTheorem 2

f1

c1

c2

ln α

ln α

ln α/2

f2

r+ln α
2

Figure 7.2: Illustrations for Theorem 2 and the randomized algorithm

7.5 Competitive Randomized Algorithm

In this section, we present a competitive randomized algorithm for the freshness
problem. The algorithm achieves a competitive ratioc = ln α

1+ln 2− 2√
α

, whereα =

h(D)
h(1) .

As discussed in the previous section, our problem is a restricted case of on-
line search. We model the problem by a game between an (online) player and
an adversary. The adversary’s profit is the highest freshness ever reached. The
player’s profit is the freshness value at the moment when she stops. Note that for

7.5. COMPETITIVE RANDOMIZED ALGORITHM 137

a player running a randomized strategy, the profit is the expected freshness value,
with respect to the distribution of stops resulting from the strategy and input. We
shall make use of a known simple transformation of (randomized) online search
to (deterministic) one-way trading [28]: The player has some budget of money
she wants to exchange while the exchange rates may vary over time. Her goal is
to maximize her gain. The transformation is given as follows: The budget corre-
sponds to probability 1, and exchanging some fraction of money means to stop the
game with exactly that probability. Note that a deterministic algorithm for online
search has to exchange all money atone point in time. For the freshness problem, it
is possible to apply a well-known competitive randomized algorithm EXPO [28].
Applying the EXPO algorithm on the freshness problem achieves a competitive
ratio � 2�−1+1/ ln 2

2�−1+1/ ln 2− 1
ln 2

, where� = log2 α. That means for the freshness problem

our randomized algorithm is better than the EXPO algorithm by a constant factor
1+ln 2
ln 2 whenα becomes large.

Theorem 3. There is a randomized algorithm for the freshness problem with com-
petitive ratio ln α

1+ln 2− 2√
α

, where α = h(D)
h(1)

Proof. We start with some conventions. We imagine that the money, both ex-
changed and non-exchanged, is “distributed” on the LF axis. Formally, the allo-
cation of money on the LF axis at any time is described by two non-negative real
density functions S andT , whereS(x) is the density of not yet exchanged money
in point x of the LF axis,T (x) is similarly defined for the money that has been
already exchanged. What functionsS andT specifically are, and how they are
modified by the opponents’ actions, will be described below. Let the total amount
of money belnα by convention. (Recall that scaling factors do not influence the
competitive ratio.)

The value of every piece ofexchanged money is the freshness value of its
position on the LF axis. Note that the total value of exchanged money defined in
this way, i.e. the integral over the value-by-density product, is the player’s profit
in the game. Moreover, the player can temporarily have some of the money in her
pocket.

The idea of the strategy is to guarantee some concentration of exchanged money
immediately below the finalf , either some constant minimum density ofT or, even
better, a constant amount at one point not too far fromf . We want to keepT simple
in order to make the calculations simple. (The well-knownδx symbol used below
denotes the distribution with infinite density at a single pointx but with integral 1
on any interval that containsx. We also use the same notationsf, g, c as earlier.)
Locating much money instantaneously is risky becausec may jump upwards, and
then this money has little value compared to the adversary’s. On the other hand,

138 CHAPTER 7. COMPETITIVE FRESHNESS ALGORITHMS

sincec decreases at most with unit speed, the player may completely abstain from
exchanging money as long asc is increasing, and wait untilc goes down again.
These preliminary thoughts lead to the following strategy.

In the beginning, let the not-yet-exchanged money be located on the LF axis on
interval[0, lnα] with density 1, that is, we haveS = 1 on this interval. Remember
thatg decreases at unit speed. The player puts the money aboveg in her pocket.
Wheneverf increases, she also puts the money below the newf in her pocket.
Hence we always haveS = 1 on[f, g], andS = 0 outside. The player continuously
locates exchanged money on the LF axis, observing the following rule:If you have
money in your pocket and c is positive and decreasing, and T (c) < 2 at the current
c, then set T (c) := 2. If the game is over (because of f = g) and not all money is
exchanged yet, put the rest r on the current c. Note that the adversary must set the
final c nonnegative.

Filling-up densityT to 2 is always possible, by the following argument: The
player uses the one unit of money fromS that she gets per time unit from the region
above the fallingg, and the money fromS that she got directly from the current
pointsc whenf went upwards.

Obviously, the player produces a density functionT that is constantly 2 on
certain intervals and 0 outside, plus some componentrδc. We make some crucial
observations regarding the final situation: (1)T has density 2 on interval(c, f], or
we havec = f . (2) Thegaps with T = 0 between the “T = 2 intervals” have a
total length not exceedingr.

These claims follow easily from the strategy: (1) Eitherc begins decreasing,
starting from the lastf , andT is filled up to 2 all the time whenc > 0, as we saw
above, or the finalc equals the finalf . (2) Wheneverf went upwards, the player
has taken fromS the money corresponding to the increase off , and later she has
transferred it toT and located it at the same points again. Hence, only on intervals
not “visited” again byc we haveT = 0, and the money taken fromS on these
intervals is still in the player’s pocket and thus contributes tor.

Figure 7.2-(A) illustrates the player’s behavior. The dashed line represents a
variation ofc in a game; pointc is the final value ofc when the game ends, i.e.
f = g(t). For all valuesv on the LF axis betweenf anda and betweena andc,
the player setsT (v) = 2.

Using (1),(2) we now analyze the profit the player can guarantee herself. Re-
member that the value of exchanged money located on the LF axis decreases expo-
nentially. Letx = f − c (final values). Bothr andx depend on the input, i.e., the
behavior ofc in time. The total amount of money is fixed, it equalsln α. For any
fixed r, x, the worst case is now that the gaps inT sum up to the maximum length
r and are as high as possible on the LF axis, that is, immediately below pointc,
because in this case all exchanged money outside[c, f] has the least possible value.

7.6. CONCLUSIONS 139

That is,T has only one gap, namely interval[c − r, c].
Figure 7.2-(C) illustrates the worst case corresponding to an instance -(B),

where solid lines represent ranges on the LF axis withT = 2. In the worst case,
the adversary shifts all solid lines except for[c, f] to the lowest possible position
so as to minimize the player’s profit.

Hence, a lower bound on the player’s profit, divided by the value atf , is given
by

min
r,x

(
2

∫ x

0
e−tdt + re−x + 2

∫ (r+ln α)/2

x+r
e−tdt

)
,

where we started integration (witht = 0) at pointf and go down the LF axis (cf.
Figure 7.2-(C)). Verify that, in fact,

∫
Tdt = lnα. The above expression evaluates

to

2 + (r − 2 + 2e−r)e−x − 2e−(r+ln α)/2 > 2 + (r − 2 + 2e−r)e−x − 2/
√

α.

For any fixedx, this is minimized if2e−r = 1, that is,r = ln 2. Since now
r−2+2e−r = ln 2−2+1 < 0, the worst case isx = 0, which gives1+ln 2−2/

√
α.

The adversary earnslnα times the value atf .

7.6 Conclusions

To the best of our knowledge, this paper is the first paper that defines the freshness
problem for wait-free data objects. Within this paper, we have modeled the fresh-
ness problem as an online problem and then have presented two online algorithms
to solve it. The first one is a deterministic algorithm with freshness competitive
ratio

√
α, whereα is a function of execution-time upper-bound of wait-free oper-

ations. The functionα is specified by real applications according to their purpose.
Subsequently, we prove that

√
α is asymptotically the optimal freshness competi-

tive ratio for deterministic algorithms. The second is a randomized algorithm with
freshness competitive ratio ln α

1+ln 2−2/
√

α
. The randomized algorithm is nearly opti-

mal. In [24] it has been showed thatO(lnα) is a lower bound on competitive ratios
for the one-way trading with time-varying exchange-rate bounds corresponding to
the freshness problem. This gives a lower boundO(lnα) to competitive ratios of
randomized freshness algorithms.

This paper provides a starting point to further research the freshness problem on
concurrent data objects as an online problem. The paper has presented algorithms
that can apply on general wait-free data objects without any restrictions. However,
wait-free data objects are just one kind of concurrent data objects while freshness
itself is an interesting problem for concurrent data objects in general.

140 CHAPTER 7. COMPETITIVE FRESHNESS ALGORITHMS

Chapter 8

Trading Latency for Freshness:
One-Way Trading with
Time-Varying Exchange Rate
Bounds1

Peter Damaschke2, Phuong Hoai Ha2, Philippas Tsigas2

Abstract

This paper studies the problem of trading latency for freshness when accessing
concurrent data objects. We observe that it can be modeled as variants of the
one-way trading problem, a fundamental online problem in finance.The difference
between these variants and the original one is that the bounds of the exchange rates
are not constant but vary with time in certain ways.

The main question this paper addresses is whether these new variants can con-
duce to better algorithms with respect to freshness compared to the original model.
The answer is “yes”. The key results obtained in this paper are the followings.
First, for the variants we provide an algorithm that achieves a better competitive
ratio compared with the threat-based algorithm, an optimal algorithm for the orig-
inal one-way trading model. Second, we prove lower bounds of competitive ratios
for the variants, showing that our algorithm is optimal for one of the variants.

1Expanded version of a preliminary result published in Technical report no. 2005-17, Department
of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden,
Oct. 2005.

2Department of Computer Science and Engineering, Chalmers University of Technology, S-412
96 Gothenburg, Sweden. Email:{ptr, phuong, tsigas}@cs.chalmers.se

142 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

8.1 Introduction

The one-way trading problem is a fundamental on-line problem in finance [26–
28]. In the problem, a player is exchanging her initial wealth in one currency
(e.g. dollar) to another currency (e.g. yen) so as to maximize her profit while the
exchange rate (from dollar to yen) varies unpredictably. El-Yaniv et al. suggested
optimal solutions for several slight variants of the problem. Since the optimal
solutions for these variants are quite simple computationally (that is, the amounts
to exchange are easy to compute, but the analysis is quite sophisticated), practical
issues can be transformed to one-way trading in order to find optimal solutions [40].

However, there are still natural problems that cannot be transformed to any
of these variants in a tight way. One of them comes from the freshness problem
of concurrent data objects. The freshness problem is to design access operations
for concurrent objects that quickly return the freshest/latest values of data while
the objects are modified concurrently by other operations. For concurrent data
objects, read-operations are allowed to return any value written by a concurrent
write-operation. However, from an application point of view the read-operations
are preferred to return the latest valid value, especially in reactive/detective sys-
tems. For instance, monitoring sensors continuously concurrently input data via a
concurrent object and the processing unit periodically reads the data to make the
system react accordingly. In such systems, the freshness of data influences how
fast the system reacts to environment changes.

8.1.1 Freshness of Concurrent Data Objects

Concurrent data objects like stacks [45, 87, 103], queues [78, 82, 103] and linked
lists [34,42,103] play a significant role in distributed computing. As a result, many
aspects of concurrent data objects have been researched deeply such as consis-
tency conditions [13, 50, 90], concurrency hierarchy [30] and fault-tolerance [74].
In this paper, we look at another aspect of concurrent data objects: freshness of
states/values returned by read-operations of read-write objects.

Figure 8.1 illustrates the freshness problem. A read-operationR0 runs con-
currently with three write-operationsW1, W2 andW3 on the same object, where
the execution-time upper-boundD of the wait-free read/write operations on the
object is known. Each operation takes effect at an endpointei (i.e. linearization
point [50]) that appears unpredictably before timeD. At the endpointe0, the num-
ber of ongoing write-operationsM is given. The freshness problem is to find a
delayt, a real number in[0, D], so that the new endpointe′0 = e0 + t of the read-

operationR0 has an optimal freshness valueft = k(#wet)
h(t) , where#wet is the num-

ber of further write-operation endpoints earned by the delayt, e.g. #weD = M ;

8.1. INTRODUCTION 143

W4

W1

e2

e1

p3

p4
s0

R0

e0

p2

p1
W3

e3

W2

e0 + t e0 + D

Figure 8.1: Freshness problem

andk, h are increasing functions that reflect the relation between freshness and la-
tency in real applications. The read-operation is only allowed to read the object
data and check the number of ongoing write-operations. The write-operation is
only allowed to write data to the object.

In Figure 8.1, read-operationR0 earns two more endpointse1, e2 of concur-
rent write-operationsW1, W2 due to delaying endpointe0 by t, and thus returns a
fresher value. Intuitively, ifR0 delays the endpointe0 by durationD, it will return
the freshest value at endpointe3

1. However, from the application point of view
the read-operationR0 in this case will respond most slowly. Therefore, the goal
in the freshness problem is to design read-operations thatrespond fast as well as
return fresh values. Since there are two conflicting objectives for read-operation:
fast response andfresh value, we define a measure of freshness as a function that
is monotone increasing in the number of earned endpoints and decreasing in time.
The delay is chosen by a randomized policy. In this view the freshness problem is
an online search problem with freshness values as profits.

In an online search problem, the player searches for the maximum price in a
sequence of prices that are unfolded sequentially. When observing a new price,
she must decide whether to accept this current price or to wait for a better one.
The game ends when she accepts a price. The online search problem can be trans-
formed to an one-way trading problem in which the player exchanges all her money
at once. It is well-known that randomized online search is equivalent to (determin-
istic) one-way trading: The amount of money exchanged at every moment corre-
sponds to the probability to stop and to accept the current profits.

The freshness problem is especially interesting in reactive/detective systems

1Note thatR0 only needs to consider write-endpoints of write operations that occur concurrently
to R0 in its original execution interval[s0, e0], e.g.R0 will ignore W4.

144 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

where monitoring sensors continuously concurrently input data via a concurrent
data object and a processing unit periodically reads the data with periodT to make
the system react accordingly. If the read-operationR0 of the processing unit returns
data ate0, the system will change its state according to the old data and will keep
this state until the next period. IfR0 delays its endpointe0 by time t < T , the
system will change its state according to the data ate1, which means the system in
this case may react faster to environment changes.

In particular, in this paper, we consider the freshness problem with the simple
definitionfd = #wed

d , whered is a natural number in[1, D] ,but our study may be
extended to more general freshness functions. Since endpoints cannot disappear,
the number of endpoints observed on-line cannot decrease in time. This implies

fd−1(d − 1)
d

≤ fd ≤ M

d
,∀d ∈ [1, D] (8.1)

Since all concurrent write-operations finish at timeD at the latest, the freshness
at timeD is alwaysM/D. This implies that the online player can always achieve
at least the freshnessM/D by just waiting until timeD and thus she can ignore all
freshness values smaller thanM/D.

8.1.2 Our contributions

Based on the observation in the previous subsection, in this paper we consider the
following new one-way trading models. The first one is a continuous model on
time interval[1, D] with known durationD and exchange ratesr that fulfill r(t) ≤
r(u)u

t for any timest < u andr(t) ≥ M
D ∀t ∈ [1, D], whereM is the maximal

allowed exchange rate att = 1. The model is motivated by Inequality (8.1). The
second model is time-discrete with known durationD and exchange rates that are
bounded from above by any decreasing function of timeM(t) and bounded from
below by a constantm. Note that the second model “contains” the first one when
D is large. Any instance of the first model can be transformed to the second model
wherem = M

D and M(t) = M
t . For the first model we prove that no online

algorithm can achieve a competitive ratio less than, asymptotically,(ln D)/2. For
the second model, we suggest an optimal threat-based algorithm with competitive
ratio

c∗ = max
1≤k≤D


c

∣∣∣∣∣∣ c = k


1 −

(
c − 1

M(k)
m − 1

)1/k




 (8.2)

Since this expression is hard to evaluate analytically, we add some numerical re-
sults forM(t) = M

t andm = M
D in order to compare the competitive ratios in

the case of the freshness problem at the end of Section 8.3. As for the relation

8.2. THE LOWER BOUND OF COMPETITIVE RATIOS 145

between the two results, since the adversary in the second model is less restricted
(or stronger) than one in the first model, the lower bound of competitive ratios
(ln D)/2 holds also for the second model. We chose to consider the stronger ad-
versary in the second model because the threat-based algorithm exchanges money
only at increasing rates, thus it does not even exploit the limited decay speed of ex-
change rates in the first model. Our numerical experiments suggest that the threat-
based algorithm with the new competitive ratioc∗ is still not too far from the lower
bound, despite the stronger adversary. This is explained by the observation that
slowly increasing exchange rates seem to be the worst case for the online player.
In the lower-bound proof we consider continuous time only because this simplifies
the arguments. Note that whenD is large, the difference between continuous and
discrete time models disappears.

The rest of this paper is organized as follows. Section 8.2 presents the lower
bound of competitive ratios. Section 8.3 presents an optimal threat-based algorithm
for the second model. Section 8.4 concludes the paper with some remarks.

8.2 The Lower Bound of Competitive Ratios

In this section, we present the lower bound of competitive ratios for the first model.
Theδ notation we use once in our proof below is well-known:δc is the distribution
with infinite density at a single pointc but with integral 1 on any interval that
containsc.

Theorem 4. For every ε > 0 there exists Dε such that for all D > Dε, no algorithm
for the first model can achieve a competitive ratio better than (ln D)/2 − ε.

Proof. (1) We start with newnotations that will make the argument easier, as they
are adapted to the geometry of the problem. In particular, we work with logarithmic
axes for both exchange rate and time.

In the following, let LF be the logarithm of the exchange rate (freshness, in our
case). We normalize the LF axis in such a way that exchange rateM/D corre-
sponds to point0 and exchange rateM to point lnD. This is convenient because
now, going one unit upwards on the LF axis increases the exchange rate by factor
e (Euler’s number). We also normalize the amount of money of the online player
to lnD. (Note that scaling factors do not affect the competitive ratios.)

(2) Next we introduce someparameters that characterize the status of the game
between online player and adversary at any moment. Lett denote the time, initially
t = 1.

Defining f : Let f be the maximum LF the adversary has already reached dur-
ing the history of the game. But initially we setf = 0, sinceM/D is the guar-

146 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

anteed exchange rate that the adversary can use (according to the definition of the
model). In particular we havef ≥ 0 at any time.

Defining g: Let g be the maximum LF the adversary can still achieve in at the
considered time. In more detail,g corresponds to exchange rateM/t at time t,
unlessf is already larger, in which case we haveg = f . In the latter case the game
is over, without loss of generality: Note that the adversary cannot gain more than
g and would therefore decrease the exchange rate as quickly as possible, in order
to make the player’s position worse, hence the player should stop immediately. We
also remark that, on the logarithmic time axis,g decreases at unit speed, starting at
point lnD.

Defining c: Let c denote the current LF, as determined by the adversary. Hence
an instance of the problem is given byc as a function of time. Note that on the
logarithmic time axis, parameterc, like g, can decrease at most at unit speed, butc
can jump upwards arbitrarily, according to the model.

(3) After the definition of key parameters we describe the “court” for our game.
We imagine that the money, both the exchanged and non-exchanged money, is
distributed on the LF axis. Moreover, the player can temporarily have some of
the money in herpocket. Formally, the allocation of money on the LF axis at any
time will be described by two non-negative realdensity functions S andT , where
S(x) is the density of not yet exchanged money in pointx of the LF axis, and
T (x) is similarly defined for the money that has already been exchanged. What the
functionsS andT specifically are and how they are modified by the opponents’
actions will be described below.

Thevalue of every piece ofexchanged money is the exchange rate correspond-
ing to its position on the LF axis. Therefore the total value of exchanged money,
which is the integral over the value-by-density product, gives the player’s profit in
the game.

(4) Next we describe twoprimitives that our adversary will use in her strategy
specified below.

The adversary can take parts of the not-yet-exchanged money, that is, diminish
S(x) at certain pointsx. This money is handed out to the player, i.e., moved to
the player’s pocket. The rest is always uniformly spread out on a certain interval
[h, g], so that densityS is constant on[h, g]. The numberh with f ≤ h < g will
be decided below in the adversary’s strategy.

The adversary can also modifyT in a special way: She canmove pieces of ex-
changed money on the LF axis, and increase their amount (!) by factore (decrease
their amount by factor1/e) if they are moved one unit downwards (upwards): The
effect is that the total value of exchanged money, i.e., the player’s profit, remains
the same. This manipulation is only used for easier bookkeeping, in order to sim-
plify function T .

8.2. THE LOWER BOUND OF COMPETITIVE RATIOS 147

g

h

N

P

Q

ln(D)

c’

ln(D)

s*ln(D)

time (logarithm)

LF: freshness(logarithm)

M

f

c

t0

Figure 8.2: Illustration for the proof of Theorem 4

According to the one-way trading setting, the player can only place money
continuously on the LF axis at the current pointc and thus increaseT (c).

Finally, let s be some constant between 0 and 1 that we fix later. It has only
technical importance.

(5) Now we are prepared to specify theadversary’s strategy. At start let be
c = h = s lnD. Hence we have initiallyS = 1/(1 − s) on [h, g]. (Recall that
the total amount of money islnD.) As g decreases with time, the adversary gives
the money above pointg to the player. Simultaneously she increasesh at unit
speed and gives the money below pointh to the player, too. Thus,S on [h, g]
remains constantly1/(1− s) all the time, and the player obtains2/(1− s) units of
money per time unit. As long as the player has money in her pocket, the adversary
decreasesc at unit speed. Whenever the player runs out of money, the adversary
sets immediatelyc := h. Also, if the player “raises a loan” and takes extra money
from [h, g], which is of course allowed by the game, the adversary increasesh
accordingly, so as to keepS = 1/(1 − s) in all points of [h, g]. We remark that
whenh = g is reached,h has to decrease together withg in the remaining time,
due to the specification ofh.

Figure 8.2 illustrates the adversary’s strategy. At pointM , the player withholds
all money in her pocket and thus the adversary decreasesc at unit speed. At point
N , the player spends all money in her pocket and the adversary in response sets
immediatelyc := h. The game ends when the player has exchanged all money at
Q, whereg = f .

(6) We show the followinginvariant: Before the game ends, the adversary can
always holdT (x) ≤ 2/(1 − s) at every pointx.

This is vacuously true in the beginning, since no money has been exchanged
yet. As long as the player exchanges all her money immediately, we havec =

148 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

h = f , andc increases at unit speed, hence the invariant remains true. The more
complicated case is that the player withholds some money in her pocket. By the
adversary’s strategy,h keeps going upwards, butc goes downwards at unit speed.
Now, whenever the player exchanges some money at the currentc, the adversary
moves it upwards and fills the gap betweenf andh, without ever makingT (x) >
2/(1 − s) at any pointx. This is always possible, since the pocket contains an
amount of at most2(h − f)/(1 − s), due to the adversary’s policy of adjustingh
and giving money. As soon as the player decides again to exchangeall money that
is currently in her pocket, we are back to casec = h. Continuing in this way, the
adversary always recovers the claimed invariant.

(7) The finalanalysis step of our proof compares the profits of both players. At
the end of the game the player has exchanged all money, henceg = h = f , and all
money inT is belowf . Moreover, the adversary must go toc = 0, and the player
can exchange all remaining money at pointc. Since the adversary would instead
exchange all money at the finalf ≥ s ln D, andT (x) ≤ 2/(1 − s) holds at every
pointx �= 0, the best possible competitive ratio would be achieved in the following
case:f = s lnD, T (x) = 2/(1 − s) at every pointx > 0, and the remaining
(1 − 2s

1−s) lnD units of exchanged money are atx = 0 (line c′ in Figure 2), which
adds a term1−3s

(1−s) lnDδ0 to T . Since the value of exchanged money decreases

exponentially down the LF axis, ande−s ln D = 1/Ds, we can now calculate the
inverse competitive ratio in this best case, as the player’s profit divided bylnD:

2
(1 − s) ln D

∫ s ln D

0
e−xdx+

1 − 3s

(1 − s)Ds
=

2
(1 − s) ln D

− 2
(1 − s)Ds ln D

+
1 − 3s

(1 − s)Ds
.

GivenD, the adversary would chooses so as to minimize this expression. Now
the Theorem follows: Consider anys > 0, arbitrarily small but fixed. For large
enoughD, factor 1/Ds becomes negligible compared to1/ lnD, hence we can
ignore the last two terms, and the inverse competitive ratio comes arbitrarily close
to 2

ln D .

For concrete small values ofD we computed numerically thes that gives the
minimum, and the resulting lower bounds (cf. Figure 8.3). We remark that our
analysis can be easily extended to models with exchange rates decreasing like
1/tB, B any constant. The only feature we needed is linearity on the logarith-
mic scale.

8.3 Optimal threat-based policy for the second model

In this section, we find a new optimal competitive ratio for the second model,
where the upper bound of exchange ratesM(t) is a decreasing function with time

8.3. OPTIMAL THREAT-BASED POLICY FOR THE SECOND MODEL 149

t and the lower bound is a constantm. The ratio is then used in the threat-based
policy [28] to create an optimal algorithm for the second model. The algorithm is
computationally simple: the amount of money to exchange in every step follows a
simple formula. This makes the algorithm suitable for real applications.

We repeat our second one-way trading model. With a known durationD and
known upper/lower bounds for exchange rates (yen per dollar)ri: m ≤ ri ≤ M(i),
wherethe upper bound M(i) is a decreasing function of time i, the online player
or trader needs to trade her initial wealthW0 given in dollar to yen efficiently.
Exchange rates are unfolded on-the-fly over a discrete time interval and when a
new exchange rate is observed, a new period starts. Given a current exchange rate,
the trader has to decide how much of her dollars should be exchanged to yen at the
current rate. Without loss of generality, assume that the trader’s initial wealth is
one dollar,W0 = 1.

Obviously, we can not achieve an optimal competitive ratio by directly apply-
ing the threat-based algorithm of the original model [28], where the upper bound
of exchange rates is constant, to the new model, where the upper bound decreases
with time. In the new model the adversary is clearly more restricted and thus the
player should benefit from that. Hence, the analysis must adapt to the new model.
Although the flow of the following analysis looks similar to that in the original
model, the technical details have to be adapted non-trivially at various places.

Let k ≤ D be the length of anincreasing sequence of exchange ratesm ≤
p1 < p2 < · · · < pk ≤ M(K), whereK is the index ofpk in the original
sequence,k ≤ K. SinceM(i) is a decreasing function,M(K) ≤ M(k). This
follows m ≤ p1 < p2 < · · · < pk ≤ M(k).

For instance, if we have a sequenceR of exchange rates{1, 2, 4, 3, 7, 5, 6}
with D = 7, then the corresponding increasing sequenceP of the exchange rates
is{1, 2, 4, 7} with k = 4. Note thatR[5] = 7 is included in the increasing sequence
asP [4] andR[4] = 3 is ignored sinceR[3] > R[4]. We haveP [4] ≤ M(5) <
M(4), sinceP [4] corresponds toR[5] (i.e. time/step5) in the original sequenceR
andM(i) is a decreasing function.

We will prove that the optimal competitive ratioc∗ is

c∗ = max
k=1···D


c

∣∣∣∣∣∣ c = k


1 −

(
c − 1

M(k)
m − 1

)1/k




 (8.3)

For eachD given, we always find the ratioc∗ that satisfies Equation 8.3 by
simply computingc for eachk = 1, 2, · · · , D and then choose the maximumc as
c∗. With the competitive ratioc∗ found, the player follows the threat-based policy
as in [28]:

150 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

• Consider trading dollar to yen at the current exchange rate only if it is the
highest seen so far;

• When converting dollar, convertjust enough dollar at the current exchange
rate to ensure the competitive ratioc∗ even if the adversary then drops the
rate to the minimum and keeps it there until the end.

The amount of dollarsi that should be put at the current exchange rateri is:

s1 =
1
c
· r1 − mc

r1 − m
and si =

1
c
· ri − ri−1

ri − m
,∀i ≥ 2. (8.4)

wherec = c∗,r1 ≥ mc∗ andri−1 is the highest exchange rate before the current
one. If none of exchange rates given is larger thanmc∗ until the end of game, the
player can achieve the competitive ratioc∗ by just converting all her dollars at the
minimal exchange ratem at the end of game.

Since the threat-based algorithms is influenced only by the increasing sequence
of given exchange rates (cf. Rule 1), henceforth we consider threat-based algo-
rithms on the increasing sequenceP = p1, p2, · · · , pk, wherep1 < p2 < · · · < pk.
This implies

s1 =
1
c
· p1 − mc

p1 − m
and si =

1
c
· pi − pi−1

pi − m
,∀i ≥ 2. (8.5)

As we know, the competitive ratioc used in formula (8.5) is the target competi-
tive ratio that the player tries to achieve. Obviously, the ratio cannot be an arbitrary
small number. For instance, if the player choosesc = 1, she will convert all her
dollars at the first exchange rater1 sinces1 = 1. Then she will run out of dollars
to convert when the adversary issues a higher exchange rater2 in the next step and
thus the player fails to achieve the competitive ratioc = 1. Therefore, the player
following the threat-based policy achieves a competitive ratio only if the chosen
ratio is large enough.

The following lemmas are inspired by the analysis of the original threat-based
policy in [28].

Definition 8.3.1. Given a sequence R of exchange rates, a threat-based algorithm
Ac as defined by formula (8.5) with a ratio c, is c-properwith respect to R if

• the sum of daily exchanged dollars si computed by Ac, when the exchange
rate sequence is R, is not larger than 1, the initial wealth; and

• the resulting ratio of optimal offline return over online return Ac(R) with
respect to R is not larger than c.

8.3. OPTIMAL THREAT-BASED POLICY FOR THE SECOND MODEL 151

Lemma 8.3.1. The threat-based algorithm following Formula (8.5) with c = c′ is
guaranteed to achieve the competitive ratio c′ as long as there are enough dollars
to exchange until the end of a game.

Proof. Let Di andYi be the number of dollars and yen after the exchange at a step
i of an increasing sequenceP of exchange rates. We will prove that at any stepi
the algorithm always achieves a competitive ratioc′ even if the adversary drops the
rate to minimum in the next step and keeps it there until the end of a game, i.e.

pi

Yi + mDi
≤ c′, ∀1 ≤ i ≤ k (8.6)

We prove this lemma by induction. For the casei = 1, we have

p1

Y1 + mD1
=

p1

s1 + m(1 − s1)
= c′

Therefore, Inequality (8.6) is correct fori = 1. Assume that the inequality is
correct fori = k − 1, i.e.,

pk−1

Yk−1 + mDk−1
≤ c′ (8.7)

We will prove that the inequality is also correct fori = k, i.e.,

pk

Yk + mDk
≤ c′ (8.8)

Indeed, as long as there are enough dollars to exchange until the end, we have

pk

Yk + mDk
=

pk

(Yk−1 + skpk) + m(Dk−1 − sk)

=
pk

(Yk−1 + mDk−1) + sk(pk − m)

≤ pk
pk−1

c′ + pk−pk−1

c′
= c′ (Inequality (8.7) and Formula (8.5))

Lemma 8.3.2. If Ac is c-proper with respect to an exchange rate sequence R, then
for any c′ ≥ c, Ac′ is c’-proper with respect to R.

Proof. This lemma comes from Lemma 3 in [28]. Letsi ands′i are amount of
dollars converted on day/stepi by Ac andAc′ , respectively. Following formula
(8.5), we have

s1 − s′1 =
p1

p1 − m

(
1
c
− 1

c′

)
≥ 0

152 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

si − s′i =
pi − pi−1

pi − m

(
1
c
− 1

c′

)
≥ 0,∀i ≥ 2

Therefore,
∑

i s
′
i ≤ ∑

i si ≤ 1, i.e. Ac′ satisfies the first condition ofc’-
proper. Moreover, from Lemma 8.3.1 it follows thatAc′ achieves a competitive
ratio c′ with respect toR, satisfying the second condition ofc’-proper.

Lemma 8.3.2 implies the following Corollary.

Corollary 8.3.1. If c∗ is the maximumcompetitive ratio that is achievable by the
adversary when the player follows the improved threat-based policy, Ac∗ is c∗-
proper regardless of any actual sequence of exchange rates created by the adver-
sary.

Indeed, for each sequenceR of exchange rates, there exists the smallest com-
petitive ratioc so thatAc is c-proper with respect toR. Sincec∗ is themaximum
competitive ratio that is achievable by the adversary,c∗ ≥ c. From Lemma 8.3.2 it
follows thatAc∗ is c∗-proper with respect toR.

The main idea of the following analysis is to find the maximum competitive
ratio c∗ that is achievable by the adversary when the player follows the threat-
based policy. The competitive ratio will then become the competitive ratio of the
threat-based policy for the generalized one-way trading problem and will be known
by the player since it is computed using only known information: the durationD,
the lower boundm and the upper bound functionM(i) (cf. Equation 8.3).

Lemma 8.3.3. For fixed k > 1 and p1, the maximum competitive ratio that the
adversary can achieve is

c(k)(p1) = 1 +
p1 − m

p1
· (k − 1)

(
1 −

(
p1 − m

M(k) − m

)1/(k−1)
)

(8.9)

The maximum is achieved when

pk = M(k) and
pi − pi−1

pi − m
= 1 −

(
p1 − m

M(k) − m

)1/(k−1)

,∀i ∈ [2, k]. (8.10)

Proof. This lemma comes from Lemma 5 in [28]. Since the player spends his
dollars only on the increasing sequencep1, p2, · · · , pk, we have

∑k
i=1 si = 1.

Replacesi using formula (8.5), we obtain

1
c

p1 − cm

p1 − m
+

1
c

k∑
i=2

pi − pi−1

pi − m
= 1

8.3. OPTIMAL THREAT-BASED POLICY FOR THE SECOND MODEL 153

which conduces towards a formula forc

c = 1 +
p1 − m

p1
·

k∑
i=2

pi − pi−1

pi − m
(8.11)

On the other hand,

k∑
i=2

pi − pi−1

pi − m
=

k∑
i=2

(
1 − pi−1 − m

pi − m

)
= k − 1 −

k∑
i=2

pi−1 − m

pi − m

≤ k − 1 − (k − 1)

(
k∏

i=2

pi−1 − m

pi − m

)1/(k−1)

(geometric-arithmetic mean inequality)

= (k − 1)

(
1 −

(
p1 − m

pk − m

)1/(k−1)
)

Equality occurs if and only ifpi−1−m
pi−m =

(
p1−m
pk−m

)1/(k−1) ∀i ∈ [2, k]
Applying the inequality on Equations 8.11 follows

c ≤ 1 +
p1 − m

p1
· (k − 1)

(
1 −

(
p1 − m

pk − m

)1/(k−1)
)

Since the right side increases withpk andpk ≤ M(k), we have

c ≤ 1 +
p1 − m

p1
· (k − 1)

(
1 −

(
p1 − m

M(k) − m

)1/(k−1)
)

The equality occurs when

pk = M(k) and
pi − pi−1

pi − m
= 1 −

(
p1 − m

pk − m

)1/(k−1)

,∀i ∈ [2, k].

Now the adversary needs to find a value forp1 so as to maximizec(k)(p1) in
Lemma 8.3.3 whereask is still considered as a constant.

Lemma 8.3.4. For fixed k > 1, there exists a unique number p∗ in [m, M(k)] such
that c(k)(p∗) = maxp1 c(k)(p1) and

c(k)(p∗) =
kp∗

km + (p∗ − m)
(8.12)

154 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

Proof. This lemma comes from Lemma 6 in [28]. Letu = (p1 − m)1/(k−1) ≥ 0
andv = (M(k) − m)1/(k−1) > 0, Equation 8.9 becomes

c(k)(p1) = 1 + (k − 1)
(

uk−1v − uk

p1v

)

The derivative ofc(k)(p1) can be written as follows

dc(k)(p1)
dp1

= −uk + mku − m(k − 1)v
p2
1v

Let f(u) = uk + mku − m(k − 1)v. Since i)f(u) increases withu ≥ 0 and ii)
f(0) = −m(k − 1)v < 0 as well asf(v) = vk + mv > 0 for all v > 0, k > 1,
equationf(u) = 0 has a unique positive rootu∗. Moreover,

d2c(k)(u∗)
dp1

= − k((u∗)k−1 + m)
p2
1v(k − 1)(u∗)k−2

< 0

Therefore,c(k)(p1) achieves its maximum atu∗ or atp1 = p∗ = (u∗)k−1 + m.
Fromf(u∗) = (u∗)k + mku∗ − m(k − 1)v = 0, we have

u∗

v
=

m(k − 1)
(u∗)k−1 + mk

, or

(
p∗ − m

M(k) − m

)1/(k−1)

=
m(k − 1)

p∗ + m(k − 1)

Replacingp1 by p∗ in Equation 8.9 follows

c(k)(p∗) = 1 +
p∗ − m

p∗
· (k − 1)

(
1 −

(
p∗ − m

M(k) − m

)1/(k−1)
)

= 1 +
p∗ − m

p∗
· (k − 1)

(
1 − m(k − 1)

p∗ + m(k − 1)

)

=
kp∗

km + (p∗ − m)

Lemma 8.3.5. For fixed k > 1, against the worst sequence created by the adver-
sary above, amount of dollars exchanged at each step by the improved threat-based
algorithm is s′i = 1/k,∀i ∈ [1, k].

8.3. OPTIMAL THREAT-BASED POLICY FOR THE SECOND MODEL 155

Proof. This lemma comes from Lemma 7 in [28]. The worstk-step sequenceP ′ =
p′1, · · · , p′k created by the adversary has the following properties from Lemma 8.3.3
and Lemma 8.3.4.

p′i − p′i−1

p′i − m
= 1 −

(
p′1 − m

M(k) − m

)1/(k−1)

,∀i ∈ [2, k], and

p′1 = p∗, where c(k)(p∗) =
kp∗

km + (p∗ − m)

Sinces′i = 1
c · p′i−p′i−1

p′i−m
,∀i ∈ [2, k], we haves′2 = · · · = s′k. On the other hand,

s′1 =
1
c
· p′1 − cm

p′1 − m

=
1

c(k)(f∗)
· p∗ − c(k)(p∗)m

p∗ − m

=
p∗ + m(k − 1))

kp∗
· p∗(p∗ − m)
(p∗ − m)(p∗ + m(k − 1))

=
1
k

Since
∑k

i=1 s′i = 1, we haves′1 = s′2 = · · · = s′k = 1/k.

Lemma 8.3.6. For fixed k > 1, c(k) is the unique root, c, of

c = k ·

1 −

(
c − 1

M(k)
m − 1

)1/k

 (8.13)

Proof. This lemma comes from Lemma 8 in [28]. From Formula (8.5), we have:

s′i =
1

c(k)
· p′i − p′i−1

p′i − m
,∀i ≥ 2

⇒ 1
k

=
1

c(k)
·
(

1 −
(

p′1 − m

M(k) − m

)1/(k−1)
)

(Lemma 8.3.5 and Lemma 8.3.3)

⇒ c(k) = k

(
1 −

(
p′1 − m

M(k) − m

)1/(k−1)
)

156 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

On the other hand, from formula (8.5) and Lemma 8.3.5, we also have:

1
k

= s′1 =
1

c(k)
· p′1 − c(k)m

p′1 − m

⇒ p′1c
(k) − mc(k) = p′1k − kmc(k)

⇒ p′1 =
mc(k)(k − 1)

k − c(k)

Replacingp′1 in c(k) by the right side of the last equation follows

c(k) = k


1 −

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)1/(k−1)

 (8.14)

Expanding Equation (8.14) follows

k − c(k)

k
=

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)1/(k−1)

⇒ k − c(k)

k

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)
=

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)k/(k−1)

⇒
(

c(k) − 1
M(k)

m − 1

)1/k

=

(
mk(c(k) − 1)

(k − c(k))(M(k) − m)

)1/(k−1)

Replacing the right side by the left side of the last equation in Equation (8.14),
we obtain:

c(k) = k ·

1 −

(
c(k) − 1
M(k)

m − 1

)1/k



Let

f(c) = c + k

(
c − 1

M(k)
m − 1

)1/k

− k

Since i)f(c) is an increasing function withc ≥ 1 and ii)f(1) = 1− k < 0 as well
aslimc→+∞ f(c) > 0 due tok > 1, M(k) > m, equationf(c) = 0 has a unique
root c ≥ 1.

Up to this point, we have proved that for a fixedk, the maximum competitive
ratio with respect tok that the adversary can achieve is the unique root of Equa-
tion (8.13). Therefore, the maximum competitive ratio achievable by the adversary
for the whole game with a known durationD, wherek is any value in range[1, D],
is the maximum root of Equation (8.13), wherek = 1, · · · , D.

8.3. OPTIMAL THREAT-BASED POLICY FOR THE SECOND MODEL 157

Corollary 8.3.2. The maximum competitive ratio c∗ achievable by the adversary
for the whole game with a known duration D is

c∗ = max
k=1···D


c

∣∣∣∣∣∣ c = k


1 −

(
c − 1

M(k)
m − 1

)1/k




 (8.15)

For eachD given, we always find the ratioc∗ that satisfies Equation (8.15) by
simply computingc for eachk = 1, · · · , D and then choose the maximumc asc∗.
SinceAc∗ is c∗-proper regardless of any actual sequence of exchange rates created
by the adversary (cf. Corollary 8.3.2), the player that uses the algorithmAc∗ is
guaranteed to achieve the competitive ratioc∗ regardless of any actual sequence of
exchange rates created by the adversary.

Theorem 5. The maximum competitive ratio c∗ achievable by the adversary is
the lowest possible competitive ratio for the one-way trading game with a time-
decreasing upper bound.

Proof. The proof is inspired by the proof of Theorem 5 in [28]. LetALG be any
(deterministic) algorithm.

The adversary behaves as follows. Letk∗ is thek that corresponds toc∗ in
Equation (8.15). Let the worst sequence of exchange rates beR′ = p′1, p′2, · · · , p′k∗ ,
mk∗+1, · · · , mD, wherep′i are computed as those in the worstk-step sequenceP ′

in the proof of Lemma 8.3.5. This also impliesp′i < p′i+1, i = 1, · · · , k∗ − 1.
At the first step, the adversary presents exchange ratep′1 to ALG. If ALG

spends less than1/k∗ at this rate, i.e.s1 < 1/k∗, the adversary drops the exchange
rate to the minimumm and keep it there until the end of game. Sincep′1 was
chosen so that1/k∗ is the minimal amount that need to be convert so as to keep the
competitive ratioc∗ even if the adversary drops the exchange rate to the minimum
(cf. Lemma 8.3.5),ALG with s1 < 1/k∗ cannot achieve the competitive ratioc∗.

If ALG spends more than1/k∗ atp′1, the adversary presentsp′2 to ALG in the
next step. At each stepi = 2, · · · , k∗, if amount of dollarsALG has exchanged
so far is smaller thani/k∗, the adversary stops (i.e., drops the exchange rate to the
minimum and keeps it there until the end of game). Otherwise, she presents the
next exchange ratep′i+1 to ALG. Clearly the adversary will stop at a stepj ≤ k∗

since the trader’s initial wealth is one dollar. We have

j−1∑
i=1

si ≥ j − 1
k∗

j∑
i=1

si <
j

k∗

158 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

ALG could have achieved a better competitive ratio by exchanging1/k∗ dol-
lars at each stepi = 1, · · · , j − 1 and exchangings−j = sj + (

∑j−1
i=1 si − j−1

k∗)
at a higher exchange ratep′j . Even in the case thatALG exchangeds−j at the
ratep′j , ALG could not achieve the competitive ratioc∗. This is becauses−j =∑j

i=1 si − j−1
k∗ < j

k∗ − j−1
k∗ = 1

k∗ andp′j was chosen so that1k∗ is the minimal
amount of dollars to exchange atp′j in order to ensure the competitive ratioc∗ even
if the adversary drops the exchange rate to the minimum and keep it there until the
end of game.

That meansALG achieves the competitive ratioc∗ only if ALG keepss1 =
s2 = · · · = sk∗ = 1

k∗ , otherwiseALG will end up with a higher competitive
ratio.

Theorem 5 implies the following corollary

Corollary 8.3.3. The threat-based algorithm Ac∗ is an optimal competitive algo-
rithm for the one-way trading problem with time-decreasing upper bound.

Figure 8.3 shows the competitive ratioc with correspondingk for each value of
D (rows Improved TBPc∗ and Improved TBPk), which result from applying the
improved threat-based policy to the freshness problem, that is,M(t) = M/t and
m = M/D. The competitive ratiosc∗ of the improved TBP turn out to be better
than in the original threat-based policy (row Original TBP) and are very close to the
lower bounds. Note that the discrepancy between the proved lower bound and the
algorithmic result for smallD comes from the fact that our lower bound refers to
the continuous time model, so there is no contradiction. This discretization effect
apparently disappears with growingD as expected.

Value ofD
2 4 8 16 32 64 128 · · ·

Lower boundC 1.12 1.26 1.40 1.56 1.72 1.89 2.07· · ·
Correspondings 0.29 0.29 0.29 0.28 0.28 0.28 0.28· · ·
Original TBPc 1.17 1.48 1.85 2.28 2.75 3.25 3.77· · ·
Improved TBPc∗ 1 1.17 1.33 1.52 1.73 1.99 2.25· · ·
Correspondingk 1 2 2 3 3 4 5 · · ·

Figure 8.3: Numerical comparison of competitive ratios among different algo-
rithms. The last row shows values ofk corresponding to the ratiosc in the improved
TBP.

8.4. CONCLUSIONS 159

8.4 Conclusions

We have extended the set of practical issues that can be transformed to one-way
trading by presenting new one-way trading models. Unlike the available models,
they either limit the change speed of exchange rates or allow the bounds of ex-
change rates to vary with time. For the new models, we first proved a lower bound
that is asymptotically optimal subject to a small constant factor. We have also pre-
sented an optimal competitive algorithm against a stronger adversary, where the
maximum possible exchange rate decreases with time and the minimum is con-
stant. The practicality of the new models is demonstrated by their use for the
freshness problem of concurrent data objects.

160 CHAPTER 8. ONE-WAY TRADING WITH TIME-VARYING BOUNDS

Chapter 9

Conclusions and Future Research

In this thesis, we have proposed and developed a new approach for designing re-
active concurrent data structures and algorithms. The approach does not require
experimentally tuned thresholds nor probability distributions of inputs as previous
reactive concurrent data structures in the literature do. Instead, to deal with the
uncertainty, we have successfully synthesized non-blocking synchronization tech-
niques and on-line algorithmic techniques, in the context of reactive concurrent
data structures. Based on the approach, we have successfully developed funda-
mental concurrent data structures like trees, multi-word compare-and-swap and
locks into reactive ones that efficiently adapt their size or algorithmic behavior to
the contention in the system. Moreover, we have improved the applicability of our
approach by developing new models for the one-way trading problem. We have
also provided optimal solutions for these models. The new models extend the set
of practical problems that can be transformed to the one-way trading so as to find
an optimal solution. We have used the new models to provide an optimal solution
for the freshness problem in the context of concurrent data structures.

In the future, we will continue researching and developing reactive non-blocking
synchronization techniques.There are many fundamental concurrent data structures
used in synchronization that we would like to look at and develop into reactive
ones. On the other hand, we will research and develop practical online models for
reactive non-blocking synchronization. Competitive analysis, which compares the
performance of online algorithms to an optimal offline algorithm, is too conserva-
tive in practice. The drawback of the competitive analysis can be eliminated using
either weaker adversary models (e.g. statistical adversary [19]) or risk manage-
ment models [3] in which the online player forecasts what will happen and makes
decision based on that forecast. If her forecast is correct, she will benefit from it.
Otherwise, she can control her risk of performing too poorly. Regarding our re-

162 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

search, even though variation in execution environments is unpredictable, reactive
protocols can forecast what will happen with high confidence, especially when they
run at operating systems level. At that level, protocols can collect more information
about processes and have more control on them.

Bibliography

[1] Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. InProc. of ACM Symp.
on Theory of Computing (STOC), pages 538–547, 1995.

[2] A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques. InProc.
of the Annual Intl. Symp. on Computer Architecture, pages 396–406, 1989.

[3] S. al Binali. The competitive analysis of risk taking with applications to online
trading. InProc. of the IEEE Symp. on Foundations of Computer Science (FOCS),
pages 336–344, 1997.

[4] J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memory mutual exclusion:
Major research trends since 1986.Distributed Computing, 16(2-3):75–110, 2003.

[5] J. H. Anderson and M. Moir. Universal constructions for large objects. InProc. of
the Intl. Workshop on Distributed Algorithms, pages 168–182, 1995.

[6] J. H. Anderson, S. Ramamurthy, and R. Jain. Implementing wait-free objects on
priority-based systems. InProc. of ACM Symp. on Principles of Distributed Com-
puting (PODC), pages 229–238, 1997.

[7] T. E. Anderson. The performance of spin lock alternatives for shared-money mul-
tiprocessors.IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, 1990.

[8] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks and multi-processor coor-
dination. InProc. of ACM Symp. on Theory of Computing (STOC), pages 348–358,
1991.

[9] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks.J. ACM, 41(5):1020–
1048, 1994.

[10] H. Attiya and A. Fouren. Adaptive wait-free algorithms for lattice agreement and
renaming. InProc. of ACM Symp. on Principles of Distributed Computing (PODC),
pages 277–286, 1998.

[11] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and writes in the
absence of step contention. InProc. of the Intl. Symp. on Distributed Computing
(DISC), pages 122 – 136, 2005.

[12] H. Attiya, F. Kuhn, M. Wattenhofer, and R. Wattenhofer. Efficient adaptive collect
using randomization.Proc. of the Intl. Symp. on Distributed Computing (DISC),
pages 159–173, 2004.

[13] H. Attiya and J. L. Welch. Sequential consistency versus linearizability.ACM
Trans. Comput. Syst., 12(2):91–122, 1994.

[14] G. Barnes. A method for implementing lock-free shared-data structures.Proc. of
the ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 261–270,
1993.

163

164 BIBLIOGRAPHY

[15] D. Besedin. Detailed platform analysis in rightmark memory analyzer. part 6 - intel
xeon. Inhttp://www.digit-life.com/articles2/rmma/rmma-nocona.html, 2005.

[16] A. Borodin and R. El-Yaniv. Online computation and competitive analysis.Cam-
bridge University Press, 1998.

[17] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. Proteus: A high-
performance parallel architecture simulator. Technical report, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, 1991.

[18] J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. In
SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 117–128, 2000.

[19] A. Chou, J. Cooperstock, R. El-Yaniv, M. Klugerman, and T. Leighton. The sta-
tistical adversary allows optimal money-making trading strategies. InProc. of the
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 467–476, 1995.

[20] M. Choy and A. K. Singh. Efficient Fault Tolerant Algorithms for Resource Alloca-
tion in Distributed Systems.Proc. of ACM Symp. on Theory of Computing (STOC),
pages 593–602, 1992.

[21] T. S. Craig. Queuing spin lock algorithms to support timing predictability. InProc.
of Real-Time Systems Symp., pages 148–157, 1993.

[22] D. E. Culler, J. P. Singh, and A. Gupta. Parallel computer architecture: A hard-
ware/software approach.Morgan Kaufmann Publisher, 1999.

[23] P. Damaschke, P. H. Ha, and P. Tsigas. Competitive freshness algorithms for wait-
free objects. Technical report CS:2005-18, Chalmers University of Technology,
Sweden, 2005.

[24] P. Damaschke, P. H. Ha, and P. Tsigas. One-way trading with time-varying ex-
change rate bounds.Technical report CS:2005-17, Chalmers University of Tech-
nology, Sweden, 2005.

[25] G. Della-Libera and N. Shavit. Reactive diffracting trees.J. Parallel Distrib. Com-
put., 60(7):853–890, 2000.

[26] R. El-Yaniv. Competitive solutions for online financial problems.ACM Comput.
Surv., 30(1):28–69, 1998.

[27] R. El-Yaniv, A. Fiat, R. Karp, and G. Turpin. Competitive analysis of financial
games. InProc. of the 33rd Symp. on Foundations of Computer Science, pages
327–333, 1992.

[28] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search and one-way
trading online algorithms.Algorithmica, 30(1):101–139, 2001.

[29] K. Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, Univer-
sity of Cambridge, Computer Laboratory, 2004.

[30] E. Gafni, M. Merritt, and G. Taubenfeld. The concurrency hierarchy, and algorithms
for unbounded concurrency. InProc. of ACM Symp. on Principles of Distributed
Computing (PODC), pages 161–169, 2001.

[31] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchronization primitives
for large-scale cache-coherent multiprocessors. InProc. of the Intl. Conf. on Ar-
chitectural support for programming languages and operating systems(ASPLOS),
pages 64–75, 1989.

[32] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory mul-
tiprocessors.IEEE Computer, 23(6):60–69, 1990.

BIBLIOGRAPHY 165

[33] M. Greenwald. Non-blocking synchronization and system design.PhD thesis,
STAN-CS-TR-99-1624, Stanford University, 1999.

[34] M. Greenwald. Two-handed emulation: how to build non-blocking implementa-
tions of complex data-structures using dcas. InProc. of ACM Symp. on Principles
of Distributed Computing (PODC), pages 260–269, 2002.

[35] M. Greenwald and D. Cheriton. The synergy between non-blocking synchroniza-
tion and operating system structure. InProc. of the USENIX Symp. on Operating
Systems Design and Implementation, pages 123–136, 1996.

[36] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. InProc. of ACM Symp. on Principles of Distributed Computing
(PODC), pages 258–264, 2005.

[37] P. H. Ha, M. Papatriantafilou, and P. Tsigas. Self-tuning reactive distributed trees
for counting and balancing. InProc. of the Intl. Conf. on Principles of Distributed
Systems (OPODIS ’04), LNCS 3544, pages 213–228, 2004.

[38] P. H. Ha, M. Papatriantafilou, and P. Tsigas. Reactive spin-locks: A self-tuning
approach. InProc. of the IEEE Intl. Symp. on Parallel Architectures, Algorithms
and Networks (I-SPAN ’05), pages 33–39, 2005.

[39] P. H. Ha and P. Tsigas. Reactive multi-word synchronization for multiprocessors.
In Proc. of the IEEE/ACM Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT ’03), pages 184–193, 2003.

[40] P. H. Ha and P. Tsigas. Reactive multi-word synchronization for multiprocessors.
The Journal of Instruction-Level Parallelism, Special issue with selected papers
from PACT’03:http://www.jilp.org/vol6/v6paper3.pdf, 2004.

[41] P. H. Ha, P. Tsigas, M. Wattenhofer, and R. Wattenhofer. Efficient multi-word
locking using randomization. InProc. of ACM Symp. on Principles of Distributed
Computing (PODC), pages 249–257, 2005.

[42] T. Harris. A pragmatic implementation of non-blocking linked lists. InProc. of the
Intl. Symp. on Distributed Computing (DISC), pages 300–314, 2001.

[43] T. L. Harris. InPersonal Communication, August 2002.
[44] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap

operation. InProc. of the Intl. Symp. on Distributed Computing (DISC), pages
265–279, 2002.

[45] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In
Proc. of the ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages
206–215, 2004.

[46] M. Herlihy. Wait-free synchronization.ACM Transaction on Programming and
Systems, 11(1):124–149, 1991.

[47] M. Herlihy. A methodology for implementing highly concurrent data objects.ACM
Transactions on Programming Languages and Systems, 15(5):745–770, 1993.

[48] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
Double-ended queues as an example. InProc. of the IEEE Intl. Conf. on Distributed
Computing Systems (ICDCS), pages 522–529, 2003.

[49] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer. Software trans-
actional memory for dynamic-sized data structures. InProc. of ACM Symp. on
Principles of Distributed Computing (PODC), pages 92–101, 2003.

166 BIBLIOGRAPHY

[50] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[51] H.R.Simpson. Correctness analysis for class of asynchronous communication
mechanisms.Computers and Digital Techniques, IEE Proc.-, 139(1):35– 49, 1992.

[52] H.R.Simpson. Freshness specification for a class of asynchronous communica-
tion mechanisms.Computers and Digital Techniques, IEE Proc.-, 151(2):110–118,
2004.

[53] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong
shared memory primitives. InProc. of ACM Symp. on Principles of Distributed
Computing (PODC), pages 151–160, 1994.

[54] D. N. Jayasimha. Parallel access to synchronization variables. InProc. of the Intl.
Conf. on Parallel Processing (ICPP’87), pages 97–100, 1987.

[55] A. Kägi and D. B. J. R. Goodman. Efficient synchronization: Let them eat QOLB.
In Proc. of the Annual Intl. Symp. on Computer Architecture (ISCA-97), Computer
Architecture News, pages 170–180, 1997.

[56] K.-D. Kang, S. H. Son, and J. A. Stankovic. Managing deadline miss ratio and
sensor data freshness in real-time databases.IEEE Transactions on Knowledge and
Data Engineering, 16(10):1200–1216, 2004.

[57] H. D. Karatza. Cache affinity and resequencing in a shared-memory multiprocess-
ing system.Journal of Systems and Software, 51(1):7–18, 2000.

[58] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical studies of com-
petitve spinning for a shared-memory multiprocessor. InProc. of the ACM Symp.
on Operating Systems Principles, pages 41–55, 1991.

[59] S. Kumar, D. Jiang, J. P. Singh, and R. Chandra. Evaluating synchronization on
shared address space multiprocessors: Methodology and performance. InProc. of
the ACM SIGMETRICS Intl. Conf. on Measurement and Modeling of Computing
Systems (SIGMETRICS-99), pages 23–34, 1999.

[60] A. Labrinidis and N. Roussopoulos. Exploring the tradeoff between performance
and data freshness in database-driven web servers.The VLDB Journal, 13(3):240–
255, 2004.

[61] L. Lamport. A new solution of dijktra’s concurrent programming problem.Com-
mun. ACM, 17(8):453–455, 1974.

[62] L. Lamport. On interprocess communication. part ii: Algorithms.Distributed
Computing, 1(2):86–101, 1986.

[63] L. Lamport. A fast mutual exclusion algorithm.ACM Trans. Comput. Syst., 5(1):1–
11, 1987.

[64] J. Laudon and D. Lenoski. The sgi origin: A ccnuma highly scalable server. In
Proc. of the Annual Intl. Symp. on Computer Architecture (ISCA-97), pages 241–
251, 1997.

[65] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal. Engineering and
hosting adaptive freshness-sensitive web applications on data centers. InProc. of
the Intl. Conf. on World Wide Web, pages 587–598, 2003.

[66] B. Lim. Reactive synchronization algorithms for multiprocessors.PhD. Thesis,
MIT-LCS-TR-664, Massachusetts Institute of Technology, 1995.

BIBLIOGRAPHY 167

[67] B.-H. Lim and A. Agarwal. Reactive synchronization algorithms for multiproces-
sors. InProc. of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 25–35, 1994.

[68] Y. Ling and W. Chen. Measuring cache freshness by additive age.SIGOPS Oper.
Syst. Rev., 38(3):12–17, 2004.

[69] N. Linial. Locality in Distributed Graph Algorithms.SIAM Journal on Computa-
tion, 21(1):193–201, 1992.

[70] S. S. Lumetta and D. E. Culler. Managing concurrent access for shared memory
active messages. InProc. of the Intl. Parallel Processing Symp. (IPPS), page 272,
1998.

[71] N. Lynch, N. Shavit, A. Shvartsman, and D. Touitou. Timing conditions for lin-
earizability in uniform counting networks.Theor. Comput. Sci., 220(1):67–91,
1999.

[72] N. A. Lynch. Upper bounds for static resource allocation in a distributed system.
Journal for Computer and System Sciences, 23(2):254–278, 1981.

[73] P. Magnussen, A. Landin, and E. Hagersten. Queue locks on cache coherent multi-
processors. InProc. of the Intl. Parallel Processing Symp., pages 165–171, 1994.

[74] D. Malkhi, M. Merritt, M. K. Reiter, and G. Taubenfeld. Objects shared by byzan-
tine processes.Distrib. Comput., 16(1):37–48, 2003.

[75] V. J. Marathe, W. N. S. III, and M. L. Scott. Adaptive software transactional mem-
ory. In Proc. of the Intl. Symp. on Distributed Computing (DISC), pages 354 – 368,
2005.

[76] M. Mavronicolas, M. Papatriantafilou, and P. Tsigas. The impact of timing on lin-
earizability in counting networks. InProc. of the Intl. Symp. on Parallel Processing
(IPPS), pages 684–688, 1997.

[77] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors.ACM Trans. Comput. Syst., 9(1):21–65, 1991.

[78] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. InProc. of ACM Symp. on Principles of
Distributed Computing (PODC), pages 267–275, 1996.

[79] M. M. Michael and M. L. Scott. Relative performance of preemption-safe locking
and non-blocking synchronization on multiprogrammed shared memory multipro-
cessors. InProc. of the IEEE Intl. Parallel Processing Symp. (IPPS, pages 267–273,
1997.

[80] M. Moir. Practical implementations of non-blocking synchronization primitives.
In Proc. of ACM Symp. on Principles of Distributed Computing (PODC), pages
219–228, 1997.

[81] M. Moir. Transparent support for wait-free transactions. InProc. of the Intl. Work-
shop on Distributed Algorithms, pages 305–319, 1997.

[82] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to imple-
ment scalable and lock-free fifo queues. InProc. of the ACM Symp. on Parallel
Algorithms and Architectures (SPAA), pages 253–262, 2005.

[83] M. Naor and L. Stockmeyer. What can be computed locally?SIAM Journal on
Computation, 24(6):1259–1277, 1995.

168 BIBLIOGRAPHY

[84] D. R. O’hallaron. Spark98: Sparse matrix kernels for shared memory and mes-
sage passing systems. Technical Report CMU-CS-97-178, Computing Science,
Carnegie Mellon University, 1997.

[85] E. Pacitti and E. Simon. Update propagation strategies to improve freshness in lazy
master replicated databases.The VLDB Journal, 8(3-4):305–318, 2000.

[86] Z. Radovic and E. Hagersten. Efficient synchronization for nonuniform communi-
cation architectures. InProc. of the IEEE/ACM SC2002 Conf., page 13, 2002.

[87] W. N. Scherer and M. L. Scott. Nonblocking concurrent data structures with condi-
tion synchronization. InProc. of the Intl. Symp. on Distributed Computing (DISC),
pages 174–187, 2004.

[88] M. L. Scott and W. N. Scherer. Scalable queue-based spin locks
with timeout. In Proc. of the ACM SIGPLAN Symp. on Principles
and Practices of Parallel Programming, pages 44–52, 2001. Source
code is available atftp://ftp.cs.rochester.edu/pub/packages/
scalable synch/PPoPP 01 trylocks.tar.gz.

[89] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization.IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[90] C. Shao, E. Pierce, and J. L. Welch. Multi-writer consistency conditions for shared
memory objects. InProc. of the Intl. Symp. on Distributed Computing (DISC),
pages 106–120, 2003.

[91] N. Shavit and D. Touitou. Elimination trees and the construction of pools and
stacks: preliminary version. InProc. of the ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 54–63, 1995.

[92] N. Shavit and D. Touitou. Software transactional memory.Proc. of ACM Symp. on
Principles of Distributed Computing (PODC), pages 204–213, 1995.

[93] N. Shavit, E. Upfal, and A. Zemach. A steady state analysis of diffracting trees.
Theory of Computing Systems, 31(4):403–423, 1998.

[94] N. Shavit and A. Zemach. Diffracting trees.ACM Trans. Comput. Syst., 14(4):385–
428, 1996.

[95] N. Shavit and A. Zemach. Combining funnels: a new twist on an old tale.̇. In
Proc. of ACM Symp. on Principles of Distributed Computing (PODC), pages 61–
70, 1998.

[96] M. S. Squillante and E. D. Lazowska. Using processor-cache affinity information
in shared-memory multiprocessor scheduling.IEEE Transactions on Parallel and
Distributed Systems, 4(2):131–143, 1993.

[97] E. Styer and G. L. Peterson. Improved Algorithms for Distributed Resource Al-
location. Proc. of ACM Symp. on Principles of Distributed Computing (PODC),
pages 615–628, 1988.

[98] H. Sundell and P. Tsigas. NOBLE: A non-blocking inter-process communication
library. In Proc. of the Workshop on Languages, Compilers and Run-time Systems
for Scalable Computers, LNCS, 2002.

[99] J. Torrellas, A. Tucker, and A. Gupta. Benefits of cache-affinity scheduling in
shared-memory multiprocessors a summary. InProc. of the 1993 ACM Sigmetrics
Conf., pages 272–274, 1993.

BIBLIOGRAPHY 169

[100] P. Tsigas and Y. Zhang. Evaluating the performance of non-blocking synchroniza-
tion on shared-memory multiprocessors. InProc. of the ACM SIGMETRICS Intl.
Conf. on Measurement and Modeling of Computer Systems, pages 320–321, 2001.

[101] P. Tsigas and Y. Zhang. Integrating non-blocking synchronisation in parallel appli-
cations: Performance advantages and methodologies. InProc. of the ACM Work-
shop on Software and Performance (WOSP’02), pages 55–67, 2002.

[102] J. Turek and D. Shasha. The many faces of consensus in distributed systems.IEEE
Computer, 25(2):8–17, 1992.

[103] J. Valois. Lock-free data structures.PhD. Thesis, 1995.
[104] R. Vaswani and J. Zahorjan. The implications of cache affinity on processor

scheduling for multiprogrammed shared memory multiprocessors. InProc. of the
ACM Symp. on Operating System Principles, pages 26–40, 1991.

[105] Y. M. Wang, H. H. Wang, and R. C. Chang. Clustered affinity scheduling on large-
scale numa multiprocessors.Journal of Systems and Software, 36(1):61–70, 1997.

[106] R. Wattenhofer and P. Widmayer. An adaptive distributed counting scheme. In
Proc. of Intl. Colloquium on Structural Information and Communication Complex-
ity (SIROCCO), pages 145–157, 1998.

[107] R. Wattenhofer and P. Widmayer. The counting pyramid: an adaptive distributed
counting scheme.J. Parallel Distrib. Comput., 64(4):449–460, 2004.

[108] I. William N. Scherer and M. L. Scott. Advanced contention management for dy-
namic software transactional memory. InProc. of ACM Symp. on Principles of
Distributed Computing (PODC), pages 240–248, 2005.

[109] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 pro-
grams: Characterization and methodological considerations. InProc. of the An-
nual Intl. Symp. on Computer Architecture, ACM SIGARCH Computer Architecture
News, pages 24–36, 1995.

[110] J.-H. Yang and J. H. Anderson. A fast, scalable mutual exclusion algorithm.Dis-
tributed Computing, 9(1):51–60, 1995.

[111] P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributing hot-spot addressing in
large-scale multiprocessors.IEEE Trans. Comput., 36(4):388–395, 1987.

