THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

On Composability, Efficient Design
and Memory Reclamation
of Lock-free Data Structures

NHAN D. NGUYEN

Division of Networks and Systems
Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

On Composability, Efficient Design and Memory Reclamation
of Lock-free Data Structures

Nhan D. Nguyen

ISBN: 978-91-7597-014-1

Copyright (©) Nhan D. Nguyen, 2014.

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie 3695
ISSN 0346-718X

Technical report 107D
Department of Computer Science and Engineering

Distributed Computing and Systems

Division of Networks and Systems
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31-772 10 00

Author e-mail: nhann@chalmers. se

Printed by Chalmers Reproservice
Gothenburg, Sweden 2014

On Composability, Efficient Design and Memory Reclamation
of Lock-free Data Structures

Nhan D. Nguyen

Division of Networks and Systems, Chalmers University of Technology

ABSTRACT

The transition to multicore processors has brought synchronization, a funda-
mental challenge in computer science, into focus. In looking for solutions to
the problem, interest has developed in the lock-free approach, which has been
proven to achieve several advantages over the traditional mutual exclusion ap-
proach. This thesis studies challenges in interprocess synchronization in shared
memory multicore systems using the lock-free approach. Our contributions fo-
cus on efficient design and implementation, composition, and dynamic memory
reclamation of lock-free data structures, a key component in lock-free solutions
to synchronization problems.

First, we show that lock-free synchronization offers several advantages.
Lock-free implementations of data structures can achieve decent throughput
performance while managing to provide competitive fairness among the shar-
ing participants in accessing the shared data. We also show that although lock-
freedom does not guarantee starvation-freedom, it is composable in terms of
the progress guarantee. Multiple lock-free data objects can concurrently use
another lock-free object without compromising their lock-free progress guaran-

tees because operations they invoke at that object get starved.

Having shown that lock-free synchronization possesses several advantages,
we then propose lock-free implementations of data structures, as they play a vi-
tal role in solving synchronization problems. We present a lock-free hash table
based on cuckoo hashing scheme and a lock-free skip-list with extended func-
tionality. Cuckoo hashing uses two hash tables to offer two positions for any
key, so hashing conflicts are solved efficiently and simply by placing conflicted
keys in different positions. We develop a lock-free implementation by address-
ing challenges in manipulating elements in their two possible positions. The

evaluation results show that our lock-free cuckoo hash table outperforms other

ii

state-of-the-art hash tables in the literature. The extended functionality for the
skip-list is motivated by the parallelization of mark-split, an algorithm in the
literature designed to reclaim unused memory.

Programming lock-free data structures raises a challenge in reclamation of
dynamic memorys; this is the subject that we study in the last part of the thesis.
Reclaiming dynamically allocated memory blocks of data structures has always
been a big issue, because they can be accessed, removed, or freed by any paral-
lel processes. In lock-free programming the problem becomes even more com-
plicated; because no process is allowed to wait for others. Automatic memory
reclamation, or garbage collection, can free programmers from such a challeng-
ing task by safely reclaiming memory blocks that are no longer used. Based on
the introduced skip-list, we propose a parallel design and implementation of the
mark-split, a garbage collection algorithm that collects garbage using two steps:
mark live objects and split free memory chunks to exclude occupied spaces from
free memory. Furthermore, we address performance bottlenecks in the garbage
collection when working on Non-uniform Memory Access (NUMA) multicore
systems and introduce a NUMA-aware mark-compact garbage collector which

is implemented in the OpenJDK’s HotSpot virtual machine.

Keywords: Multicore Programming, Concurrent Data Structure, Synchronization, Non-
blocking, Lock-free, Composability, Garbage Collection, Parallel Garbage Collection,
Mark-Split, Mark-Compact, NUMA

Preface

This thesis is based on the work contained in the following publications:

I Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Nikolakopoulos, Ma-
rina Papatriantafilou and Philippas Tsigas: “A Study of the Behavior of Syn-
chronization Methods in Commonly Used Languages and Systems”, Proceed-
ings of the 27" International Parallel and Distributed Symposium (IPDPS 2013),
pages 1309-1320, IEEE Press 2013.

II Nhan Nguyen, Philippas Tsigas: “Progress Guarantees when Composing Lock-
free Objects”, Proceedings of the 17" International European Conference on
Parallel and Distributed Computing (Euro-Par), Lecture Notes in Computer Sci-
ence Vol.: 6853, pages 148 - 159, Springer-Verlag 2011.

III Nhan Nguyen and Philippas Tsigas: “Lock-free Cuckoo Hashing”, Proceedings
of the 34th International Conference on Distributed Computing Systems (ICDCS
- to appear), 2014.

IV Nhan Nguyen, Philippas Tsigas and Hakan Sundell: “ParMarkSplit: A Parallel
Mark-Split Garbage Collector Based on a Lock-Free Skip-List”, Proceedings
of the 27" International Symposium on DIStributed Computing (DISC, Brief
Announcement), Lecture Notes in Computer Science Vol.: 8205, pages 557 - 558,
Springer-Verlag 2013.

V Nhan Nguyen, Lokesh Gidra, Gdel Thomas, Julien Sopena, Marc Shapiro: “A
NUMA-Aware Parallel Mark-Compact Garbage Collector”, Technical Report
2014:04, ISNN 1652-926X, Department of Computer Science and Engineering,
Chalmers University of Technology, 2014.

iii

v

PREFACE

This thesis is dedicated to the loving memory of my beloved Mom

and my dear sister Thuy.

vi

DEDICATION

Acknowledgments

First of all, I would like to express my gratitude to my supervisor Philippas
Tsigas for his guidance, experiences and encouragement throughout my PhD
journey. This thesis could not have been possible without his support.

I am honored to have Michael Spear from Lehigh University as my oppo-
nent. I would like to thank Marina Papatriantafilou for her support and many
helpful insights for my research. I thank Thierry Coquand - my examiner, Pa-
trik Jansson and Gerardo Schneider for their constructive discussions during
my follow-up meetings. I also would like to thank Hakan Sundell from Boras
University, and Marc Shapiro, Lokesh Gidra, Gdel Thomas, and Julien Sopena
from LIP6, Université Pierre et Marie Curie for their collaboration.

I thank my two cool office mates, Zhang and Bapi, for fun times and for
a lot of interesting discussions. I want to give my appreciation to Daniel and
Yiannis from Distributed Computing and Systems group for their support and
collaboration. I thank the rest of the colleagues in the group: Giorgos, Andreas,
Elad, Farnaz, Olaf, Magnus, Valentin, Iosif, Thomas, Oscar, Vincenzo, Ivan,
Aras, and Paul. You all have made the group such a great place to work.

I also take this opportunity to thank all my colleagues in the Department
of Computer Science and Engineering, for their effort to make the department
such an excellent environment to work. I would like to specially thank Eva,
Tiina and Peter for always being helpful and responsive.

I have not only worked during these years and a bunch of time I have spent
off-campus with my friends. I sincerely thank to my friends Duy, Quynh, co
Lan, Cuong, Q.Anh, Dzung, Huyen, and other Vietnamese gangs in Gothen-

vii

viii ACKNOWLEDGMENTS

burg: Phu-Anh, Tung-Thuy, Khoa-Thanh, Cong, Nam-Dung, Nam-Thi, Tang-
Linh for sharing a lot of joys during the years and recharging my mental bat-
teries whenever they were getting low. To all friends I have not thanked yet,
both near and far away, I am appreciated for all the fun and sad things we have
shared.

Most importantly, I wish to thank my parents and my family for their endless
and unconditional love, for their sustained support and encouragement. I am so
grateful that they have always been there for me.

Nhan D. Nguyen
Goteborg, 2014

Contents

Abstract i
Preface iii
Dedication v
Acknowledgments vii
I INTRODUCTION 1
1 Introduction 3
1.1 Shared-memory Multicore Systems 6

1.2 Synchronization 7
1.2.1 Atomic Primitives 8

1.2.2 Blocking Methods 9

1.2.3 Non-blocking Methods 10

1.2.4 Concurrent Data Structures 12

1.2.5 Composition of Lock-free Objects 14

1.2.6 Safe Memory Reclamation 15

1.3 Garbage Collection 17
1.3.1 Garbage Collection Algorithms 18

1.3.2 Generational Heap Layout 20

1.3.3 Garbage Collection in OpenJDK’s HotSpot 21

ix

X CONTENTS

1.4 Contributions e 23
1.4.1 Statement of Personal Contributions 26

1.5 Conclusion e 27
Bibliography oo 29
II PAPERS 37

2 PAPERI - A Study of the Behavior of Synchronization Methods in

Commonly Used Languages and Systems 41
2.1 Introduction 42
2.2 Synchronization Methods 45
2.3 Behavior: Throughput and Fairness 48
24 CaseStudies 49
2.4.1 DataStructures 49
2.42 Programming Environments 50
2.5 Experimental Setup 52
26 Analysis 54
2.6.1 Queue: General Discussion 54
2.6.2 Queue: Environment Specific Discussion 63
2.6.3 Hash table: General Discussion 64
2.6.4 Hash table: Environment Specific Discussion 72
277 Conclusions 74
Bibliography 75

3 PAPER II - Progress Guarantees when Composing Lock-free Ob-

jects 81
3.1 Introduction 82
3.2 Progress Guarantees when Composing 84

3.2.1 Lock-free Implementations of Data Objects 84

3.2.2 Examining Lock-free Progress Guarantees
in Object-Oriented Programs 85

3.3 A Synchronization Mechanism for Composing 86

CONTENTS xi

3.3.1 Opverview of Our Proposed Approach 86

3.3.2 The Operation Descriptor 87

3.3.3 The Synchronization Mechanism 87

3.3.4 Addressing the ABA Problem 90

3.3.,5 Linearizability 91

3.3.6 Progress Guarantees 92

3.4 Experimental Evaluation 94
35 Conclusions 98
Bibliography 99
4 PAPERIII - Lock-free Cuckoo Hashing 103
4.1 OVerview e e e 104
4.2 Lock-free cuckoo hashing algorithm 106
4.3 Detailed Algorithmic Description. 110
43.1 Searchoperation 110

43.2 Findoperation 113

433 Insertoperation 116

43.4 Removeoperation 116

4.3.5 Relocationoperation 117

4.4 Proofofcorrectness 120
4.5 Experimental Evaluation 129
4.5.1 The Experimental Setup 129

452 Results L 130

46 Conclusions e 133
Bibliography 133

5 PAPERIYV - ParMarkSplit: A Parallel Mark-Split Garbage Collec-

tor Based on a Lock-Free Skip-List 137
5.1 Imtroduction 138
5.2 RelatedWork 141
5.2.1 The Mark-Split Algorithm 141
5.2.2 Garbage Collection in Java Virtual Machine 142

5.2.3 Parallelizing Mark-Split 143

Xii

CONTENTS
5.3 Concurrent Skip-List with Extended Functionality 144
5.3.1 Implementation 147
532 Correctnessi e 153
5.4 Parallel Mark-Split L 154
54.1 LazySplitting 155
54.2 Implementation 156
5.5 BEBvaluationo 158
5.5.1 Evaluation Methodology 158
5.5.2 Stop-the-world Scenario 160
5.5.3 Concurrent Scenario, 163
554 MemoryUsage, 166
5.5.5 Characterization of Applications that Benefit from Par-

MarkSplit o 167
5.6 Conclusion 169
Bibliography 169

PAPER V - A NUMA-Aware Parallel Mark-Compact Garbage Col-

lector 173
6.1 Introduction 174
6.2 Parallel Throughput Collector 176
6.2.1 Heaplayout. 176
6.22 Allocation. 177
6.2.3 Young Generation Collection. 177
6.2.4 Old Generation Collection 178
6.3 The Old Generation NUMA Space 180
6.3.1 Current Old Generation Space 180
6.3.2 Performancelssues 181
6.3.3 Fragmented Space 182
6.3.4 NUMA-awareOldSpace 182
6.4 NUMA-aware Parallel Mark-Compact 183
6.4.1 MarkingPhase 183

6.4.2 SummaryPhase. 184

CONTENTS xiii

6.5
6.6
6.7

6.4.3 CompactionPhase 185
Discussions 187
Related Works oL 188
Conclusions e 189

Bibliography 189

Xiv CONTENTS

1.1
1.2

2.1

22

23

24

2.5
2.6

3.1
32
3.3
3.4

4.1

List of Figures

Semantics of synchronization primitives.

Heap Layout of the HotSpot’s Parallel Collector.

Throughput of the lock-free and fine-grained queues on the

Intel system under high contention

Fairness of the lock-free and fine-grained queues on the Intel

SYStEIM e e e e

Fine-grained and lock-free queues which show major differ-

ences in fairness across platforms at 24 threads

Throughput of all hash tables on the Intel system under high

contention
Fairness of all hash tables on the Intel system

Hash tables which have major differences in fairness across

platforms at24 threads

Measurement results in high contention level
Measurement results in medium contention level
Measurement results in low contention level

Performance of DCASand CAS

State transition of two possible positions of a key in primary

(upper) and secondary sub-tables

XV

8
21

67

XVi

4.2

43
4.4
45

5.1

52
53

54

6.1
6.2

LIST OF FIGURES

Concurrent inserts can create the existence of two instances of
akeyinthetable
Throughput as a function of concurrency at load factor 40% .
Throughput as a function load factor at 16 and 32 threads

The number of cache-misses per operation.

Multiple-step process for marking and deleting blocks simul-
taneously with inserting new nodes, thus fulfilling the corre-
sponding (to the right) abstract operations on the free-list. . .
Garbage collection time in the stop-the-world scenario
Pause time when the old generation’s garbage collectors work

concurrently with the mutator

Benchmark time for the HotSpot with different concurrent GCs

Heap Layout of the HotSpot for Parallel Collector

An example of regions of different types

. 131
. 132

132

. 145

161

163
165

BST
CAS
CMS
DCAS
FA¢
G1

GC
HTM
JVM
LL/SC
LSB
NUMA
PC
PMC
PLAB
PMS
PMS _Lock
PMS O
PS
TAS
TTAS
TLAB
UMA

List of Acronyms

Binary Search Tree
Compare-And-Swap

Concurrent Mark-Sweep
Double-Compare-And-Swap
Fetch-And-¢

Garbage-First

Garbage Collector, or Garbage Collection
Hardware Transactional Memory
Java Virtual Machine
Load-Link/Store-Conditional
Least Significant Bit

Non-Uniform Memory Access
Parallel Throughput Collector
Parallel Mark-Compact
Promotion-Local Allocation Buffer
Parallel Mark-Split

Parallel Mark-Split based on Lock
Parallel Mark-Split Optimized with lazy splitting
Parallel Scavenge

Test-And-Set

Test and Test-And-Set

Thread Local Allocation Buffer

Uniform Memory Access

Xvii

Xviii LIST OF FIGURES

Part I

INTRODUCTION

Introduction

One of the guiding principles of computer architecture is known as Moore’s
Law [63], named after Intel’s co-founder Gordon E. Moore. In 1965, he stated
that the number of transistors on a chip would roughly double every 2 years.
Greater transistor density packed in smaller chips has made it possible to achieve
speedup by increasing clock frequency. Until the mid-2000s, microprocessor
frequency was synonymous with performance; higher frequency meant a faster,
more capable computer. However, it became harder and harder to achieve
higher clock speeds due to several issues, notably heat, power consumption,
and current leakage problems. Instead of driving clock speed higher, major pro-
cessor manufacturers turned to packing multiple processing cores into a single

chip [50], [64], starting the multicore era.

In multicore systems, multiple processors can perform computation simul-

3

4 CHAPTER 1. INTRODUCTION

taneously, thus achieving concurrency. They can execute independent compu-
tations or cooperate to complete a single task. This presents to the processors
the possibility of contending to get access to shared resources where they must
be synchronized. In fact, synchronization appears as a generic term everywhere
in the real world. A train approaching a platform at a station must synchro-
nize with the station control center to ensure that the platform is available. Two
trains that share a single track segment and are traveling from opposite direc-
tions must synchronize so that only one train can occupy the segment during a
certain period. Two computers that share a printer synchronize so that they are

not printing at the same time.

An example of synchronization in computer systems is a shared First-In-
First-Out job queue. The queue can be used in operating systems to manage
jobs to be completed. Jobs are executed by processes running on hardware pro-
cessors. A spare process extracts a job from the head of the queue and executes
it, while a new job can be added to the tail of the queue. The queue main-
tains two variables, a head pointing to the first element and a tail pointing to the
last element. In a multicore system where processes can concurrently access
the queue, they probably fetch the job from the head at the same time. That
both of them succeed in fetching the same job results in waste of computational
resources, because multiple processes execute the same job. There are also sce-
narios where concurrency, if not handled properly, results in failure. To ensure
that the head always points to the first job, any process, after successfully fetch-
ing a job, updates head to point to the next job in queue. An interleaving of
such two-step operations executed by different processes can happen as in the
following scenario. A process A fetches a job. Before it updates head, another
process B manages to fetch two jobs and update head to point to the third job
in queue. Process A now continues by trying to update the head to the job next
to the first one, i.e. the second one. However, that job has been already ex-
tracted and completed by process B, and might have been removed from the
system. If process A proceeds to update head without such awareness, head
can be updated to an invalid element. Such a scenario, if not handled properly

by a synchronization algorithm, can bring the queue to invalid state and/or the

involving processes to memory access violation or wrong results. Similar sce-
narios in which processes or processors contend to access shared resources are

ubiquitous in multicore systems. So are synchronization problems.

The transition to multicore computing has brought synchronization, a fun-
damental challenge in computer science, into focus. Solutions to the synchro-
nization problems are, in general, difficult to achieve because of the nature of
concurrency and interleaving among processes, as well as asynchrony. Multi-
core computers, similar to other modern computer systems, are asynchronous:
each core can run at a different speed, activities can be halted or delayed, with-
out warning, by interrupts, cache misses, preemption, failures, and so on. One
way to synchronize accesses to a shared resource is to use mutual exclusion,
which basically allows one process to access the resource during a period. How-
ever, synchronization algorithms based on such an approach are not able to
tolerate even a single process failure, eliminate concurrency, and suffer from
performance degradation. In the last two decades, interests in solutions to syn-
chronization problems based on non-blocking approaches have developed. An
implementation is non-blocking if no process can be blocked by the inaction of
other processes. Non-blocking implementations have been proved to provide
several advantages over their blocking counter-parts, such as high performance,
progress guarantees, and fault tolerance. However, they are usually hard to de-

sign, implement, and prove their correctness.

This thesis studies challenges in interprocess synchronization in shared mem-
ory multicore systems. We focus on the composability, algorithmic design and
implementation, and memory reclamation issues in order to achieve efficient
lock-free solutions to the synchronization problems. We are motivated by the
lock-free, a non-blocking, approach because our study of the behavior of dif-
ferent synchronization methods finds that lock-free implementations manage to
balance the throughput performance and the fairness among contending par-
ticipants in accessing shared data [10]. Our next study [18] also suggests that
lock-free data objects can become composable in the sense that multiple lock-
free objects can concurrently use another lock-free object while their lock-free

progress guarantees are not compromised because of the starvation of the oper-

6 CHAPTER 1. INTRODUCTION

ations that they invoked at the latter object. As it is known that data structures
play a key role in solving the synchronization problem [58], we then propose
an efficient design and implementation of a lock-free cuckoo hash table [67]
and an extended design of a lock-free skip-list [68]. Along with algorithmic
design and implementation challenges to achieve lock-free data structures, it
has always been a difficult task to safely reclaim dynamically allocated memory
blocks of the structures because those blocks can be accessed, removed, or freed
by any concurrent processes. It is then natural for lock-free implementations
to employ some sorts of safe memory reclamation schemes or an automatic
garbage collector. We develop a parallel version of the mark-split garbage col-
lection algorithm based on the extended skip-list in OpenJDK’s HotSpot virtual
machine [68]. Furthermore, we address performance bottlenecks introduced
by new NUMA multicore architecture to the current parallel garbage collec-
tion implementations and introduce a NUMA-aware parallel collector for the
HotSpot [66].

The thesis is organized to two parts: Introduction and Papers. This Intro-
duction continues with background knowledge, including synchronization and
garbage collection in shared memory multicores, followed by a summary of our
contributions, and discussions of the future research directions. The Papers part

presents our contributions in the form of published papers.

1.1 Shared-memory Multicore Systems

A multicore processor is a multiprocessor in which all processors, or cores,
are on the same chip and share the same memory. Each core can function as
an independent computational unit. A basic multicore processor usually has
very fast on-chip Level 1 cache and off-chip Level 2 cache, privately to a core.
Some architectures have a shared Level 3 cache. Caches provide fast accesses to
cached data but are usually small. Meanwhile, main memory is slower in access
speed but is much larger in size than caches. Communications among cores and
to main memory are accomplished either using a single communication bus or

an interconnection network.

1.2. SYNCHRONIZATION 7

All the processors in a multicore system can share the physical memory
uniformly as in the uniform memory access (UMA) architecture [3] or non-
uniformly, as in the non-uniform memory access (NUMA) architecture [46].
In a NUMA system, access time to a memory location is dependent on the
physical distance between the processor making the request and the memory
chip containing the data. A processor can access its local memory faster than
non-local memory, i.e., memory local to other processors or memory commonly
shared among processors. In a UMA system, however, access time to a memory
location is independent of which processor makes the request or which memory

chip contains the data.

1.2 Synchronization

In multicore systems, a process or a thread corresponds to a given computation
and runs on a hardware processor. A thread is also called a lightweight process;
however, modern computing distinguishes between a process and a thread. A
process generally has a complete, private set of basic run-time resources; in
particular, each process has its own memory space. A process creates multiple
threads to perform computation which share the process’s resources, such as
memory. In some cases, it is all right not to distinguish between a process and
a thread, which is the case of this thesis. We refer to a process or a thread as
an execution computation on a processor and they can share resources, espe-
cially memory. Concurrency is achieved when multiple processes are running
simultaneously on different processors.

There is a natural demand for exchanging information among processes as
they often cooperate to complete a common task or compete with each other
to access a shared resource. Interactions among processes are of two types
[78]: either data communications or synchronization. Data communications
involve exchanges of data by sending/receiving messages, or by reading/writing
of shared memory. Synchronization involves exchanges of control information
among processes or processors. Synchronization is required when operations

of processes need to obey certain order restrictions. Such a restriction can be

8 CHAPTER 1. INTRODUCTION

TAS (ref X) LL (ref X)
(0old + x; x « 1; return (return the value of X;)
old;)
SC(ref X; in new)
FA¢ (ref X; in v) (
< 0old « X; X « op(X,v); if (no process has written
return old;) to X since the last LL
(X))
CAS (ref X; in old, new) {X < new; return true;}
(if (X=o0ld) {X¢new; return else return false;)
true; }

else return false;)

Figure 1.1: Semantics of synchronization primitives.

that no two processes can modify a shared variable at them same time, or a read
must happen after a write has been completed.

Synchronization among processes in a shared memory multicore is made
possible through reading from and writing to the shared memory. Multicore
processors provide atomic primitives as a tool to synchronize concurrent ac-
cesses and to make consistent updates to one or a few memory words. Syn-
chronization of concurrent accesses to a larger data set often requires the use of

concurrent data structures and synchronization algorithms.

1.2.1 Atomic Primitives

A primitive is atomic meaning that no other process is able to interfere with
or interrupt the execution of. There are different kinds of atomic primitives
available on different platforms. Some commonly used primitives for synchro-

nization, whose semantics are presented in Figure 1.1, are:

e Test-And-Set (TAS) - TAS sets the value of a variable to 1 if it has not

been set

1.2. SYNCHRONIZATION 9

e Fetch-And-¢ (FA¢) - FA¢ atomically reads and performs a numeric or
binary operation ¢ (e.g., add or binary AND) on a variable.

e Compare-And-Swap (CAS) - CAS is a more powerful primitive. It can
atomically change a variable to a given new value only if the current value

is equal to a given value.

e [oad-Link/Store-Conditional (LL/SC) - LL and SC are a pair of instruc-
tions and together implement an atomic Read/Write. LL first reads the
current value of a variable. If no other processor changes the content of
the variable in-between, the subsequent SC operation of the same process

succeeds and modifies the value stored; otherwise it fails.

One of the key differences among atomic primitives is their power in solving
the synchronization problem. Herlihy [36] introduced a universality hierarchy
that ranks atomic primitives according to their relative computational power.
The power is represented by a primitive’s consensus number, which indicates
the number of processes that can agree on a value, using the primitive after
each process executes a finite number of its own steps. Read/write to a reg-
ister or a memory word has consensus number 1, TAS or FA¢ has consensus
number 2. Meanwhile, CAS and LL/SC are universal operations with con-
sensus number infinity, which means it is possible for any n processes using
those primitives to agree on a value within a finite number of any process’s own
steps. Using atomic primitives, it is possible to implement several synchroniza-
tion algorithms, which can be categorized into two types: blocking methods and

non-blocking methods.

1.2.2 Blocking Methods

The traditional way of synchronizing accesses to shared resources is to use mu-
tual exclusion. Mutual exclusion defines certain blocks of code, usually those
that access a shared resource, as a critical section and ensures that only one pro-
cess can be in the critical section at a time. The standard way to approach mutual

exclusion is through a lock object. Other ways are, for example, semaphores,

10 CHAPTER 1. INTRODUCTION

and monitors [78], [39]. As a process accessing the shared resource blocks
other processes from accessing it, synchronization methods based on mutual
exclusion are also referred to as blocking methods.

Blocking synchronization methods are widely used in several systems nowa-
days thanks to the simplicity, ease of implementation, as well as longer history
compared to other methods. Mutual exclusion is often provided by the operat-
ing systems as a primitive. Modern programming languages also provide rich
supports for the blocking synchronization through the language built-in con-
structs or libraries. Synchronization algorithms based on blocking approaches
are often easier to design and to prove for their correctness than those based on
non-blocking methods introduced in the next subsection.

Blocking synchronization methods suffer from many drawbacks. The major
one is that they do not tolerate even a single process failure: if a process never
releases a lock it has taken, all other concurrent processes that are waiting for
the lock are halted. Second, the extensive use of blocking methods can make
an algorithm vulnerable to dead-locks or live-locks, a situation that causes the
involved processes to not make progress. Third, algorithms based on blocking
methods also suffer several performance issues. The blocking behavior also
means that processes that are eligible to run have to wait for some other pro-
cess to complete its access to the shared resource, which results in serializing
accesses to shared resources and kills the parallelization. Performance can also
be degraded because of lock-convoying or priority inversion. In lock convoy-
ing, when processes fail to acquire the lock, they force context switches, which
in general are computationally intensive. Priority inversion happens when a
high priority task that wants to access a critical section is preempted by a lower

priority process that is holding the lock.

1.2.3 Non-blocking Methods

Non-blocking property guarantees that a stalled process cannot cause all other
processes to be stalled indefinitely [40]. Non-blocking synchronization can be

implemented in the forms of obstruction-freedom [38], lock-freedom, and wait-

1.2. SYNCHRONIZATION 11

freedom [36], in the order from weak to strong progress guarantees. Stronger
progress guarantees are usually provided at the cost of reduced overall perfor-
mance compared to the weaker ones.

Wait-freedom [36], the strongest progress guarantee, ensures per-process
progress. An algorithm is wait-free if it guarantees that a process finishes the
execution of an operation after a finite number of its own steps. In practice, it
means that a wait-free algorithm can tolerate any number of process failures, is
starvation-free, deadlock-free, and livelock-free.

Lock-freedom [36] ensures system-wide progress but allows some processes
to starve. An algorithm is lock-free if and only if at any given point in time a
process completes the execution of an operation after a finite number of steps.
In practice, it means that a lock-free algorithm can tolerate any number of pro-
cess failures, is deadlock-free and livelock-free, but is not starvation-free.

Obstruction-freedom [38], the weakest non-blocking progress guarantee,
ensures progress only in the absence of contention. An algorithm is obstruction-
free if and only if a process completes the execution of an operation after it has
executed in isolation a finite number of steps. This means that in the case of
contention among concurrent processes, obstruction-freedom does not guaran-
tee progress for any contended thread.

Herlihy [37] introduced a universal construction proving that any sequen-
tial algorithm can be implemented wait-free using universal objects' and read-
write registers. The implementation serves as a proof of concept rather than for
any practical use. Herlihy’s universal construction has been improved in many
ways [4], [14], [20]; however, they are still far from being efficient enough for
practical uses.

The strong progress guarantee that wait-freedom provides is usually needed
in real-time systems. Weaker progress guarantees, such as lock-freedom or
obstruction-freedom, are usually enough in most use cases and have been im-
plemented in several libraries and software systems, such as Intel Threading
Building Block [43], Java Concurrency Package [47], the NOBLE library [75],

In-consensus object is a fundamental abstraction that allows any number of processes to agree

on one of their input values

12 CHAPTER 1. INTRODUCTION

and the ConcurrencyKit library [2]. These algorithms are capable of achieving
several advantages over the blocking counter-parts but do not require extreme
effort to design compared to the wait-free ones. In this thesis, we have evalu-
ated different synchronization methods, ranging from locking to non-blocking
ones and the results reassure the advantages of lock-free synchronization over
the blocking one. Our evaluation results suggest that lock-free implementa-
tions manage to balance between throughput performance and fairness among

processes involving in accessing the shared data.

1.2.4 Concurrent Data Structures

Data structures have been one of the key components in software design. The
choice of data structures is a very important decision in designing a non-blocking
environment [58]. Research interest has developed in creating efficient and scal-
able concurrent data structures that satisfy the lock-freedom property. A large
number of such lock-free implementations have been introduced in the litera-
ture. We revisit some representatives in this section.

A linked list is a general data structure that can be used to implement other
abstract data types. Valois [82] and Harris [35] have constructed lock-free im-
plementations of singly-linked lists using the CAS atomic primitive. One re-
mark from Harris’s linked list is the mark-bit technique, which uses the unused
least significant bits of a pointer representation to indicate a deletion intention
before actually removing the deleted node from the linked list using the CAS
primitive. The technique has been widely used in later works. Lock-free algo-
rithms for doubly linked list were introduced by Valois [83] and Greenwald [33]
based on the double-word CAS primitive, i.e. a primitive which can perform a
CAS operation on two distinct words. Later, lock-free double-linked lists was
improved by Michael [56] based on the double-width CAS primitive, i.e. CAS
on a two-word block, and by Sundell and Tsigas [77] using the single-word
CAS.

A stack is a last-in first-out type of buffer and a queue is a first-in first-out

type of buffer. Lock-free implementations of stacks and queues based on linked-

1.2. SYNCHRONIZATION 13

list implementations were proposed by Valois [82] and by Michael [55]. Gong
and Wing [32], Shann et al. [73], and then Tsigas and Zhang [80] presented
lock-free queues based on a cyclic array and the CAS primitive. Recently, Pe-
trank and Krogan [45] introduced a practical wait-free queue based on the lock-
free queue implementation of Michael and Scott [59]. It achieves wait-freedom
by employing a priority-based helping scheme in which faster processes help

the slower peers to complete their pending operations.

The dictionary abstract data type allows association of values with keys to
be stored and to be searched for. Hash tables, skip-lists, and binary search
trees (BSTs) can implement this abstract data type. Non-blocking BSTs have
been extensively studied recently. Ellen et al. [21] introduced a design, without
implementation, of an internal non-blocking BST based on single-word CAS.
The algorithm achieves non-blocking by using a helping mechanism to help
any possibly on-going update operation that is encapsulated in an operation
descriptor. Howley et al. presented a non-blocking internal BST [41] based on
a similar technique. Natarajan et al. [65] presented a wait-free red-black tree
using Tsay and Li’s window-based framework [79] for designing lock-free tree
algorithms. The framework allows designing a non-blocking update operation
by making a copy of a part of the tree, i.e., a window, performing updates on that
part, and then transforming the updates to the tree. However, such an approach

introduces high overhead to the update operations.

A skip-list stores elements in several ordered linked lists with different den-
sities. Skip-lists offer probabilistic logarithmic search complexity similar to
tree but does not require a complicated balance operation like balanced trees.
Hakan and Tsigas [76] introduced a lock-free algorithm for a concurrent skip-
list data structure based on the CAS atomic primitive. The algorithm makes use
of the basic idea of Harris singly linked list, which uses CAS to give hints for
the concurrent operations to help an in-progress deletion. Similar constructions
were presented later by Fraser [27] and Fomitchev and Rupert [25].

A hash table is a data structure that associates keys to values. A hash table
uses a hash function to compute the location of a key in an array. A hash table

offers amortized constant search time, thus is more efficient than a binary search

14 CHAPTER 1. INTRODUCTION

tree in several cases. For this reason, they are widely used in computer software,
particularly for database indexing, caches, and sets. Michael [54] presented a
lock-free hash table that uses a lock-free ordered linked list presented in the
same paper to store the chain of keys that are hashed to the same bucket, i.e.
conflicted keys. Shalev and Shavit [72] introduced a solution that combines a
hash table with an ordered linked list to allow the hash table to dynamically
increase (but not shrink) in size. Gao et al. [29] presented a lock-free hash
table that allows fully resizing. However, due to its open addressing and that it
marks deleted elements as tombstones rather than removing them, the algorithm
requires an intensive migration process (to a new table) after many insertions
and deletions have been performed. Click [15] presented a similar design and
implementation in Java with more architectural and language-based tunings.
Efficient and scalable data structures are a key component in solutions for
the synchronization challenges. This thesis introduces an efficient lock-free
implementation of cuckoo hashing, a simple but effective hashing scheme that
makes use of multiple hash tables to resolve hash conflicts. We also design ex-
tended functionality for a lock-free skip-list. The extension allows it to perform

composite operations composed of multiple basic ones.

1.2.5 Composition of Lock-free Objects

Software, on an abstract level, consists of (a set of) data structures interacting
with each other. In choosing data structures, a designer needs to consider min-
imum requirements as well as desirable characteristics. When lock-freedom is
a desirable property, it is important that the software composed of selected data
structures also achieves lock-freedom.

Lock-free composition from different perspectives has previously been stud-
ied in the literature. Composition of data structures is usually referred to as how
to compose distinct atomic operations of two data objects into one atomic oper-
ation. Gidenstam et al. [31] and Cederman et al. [11] study the problem of com-
bining two operations from two different lock-free objects into one compound

atomic operation. These results make it possible to perform complex atomic op-

1.2. SYNCHRONIZATION 15

erations such as moves that can move an item from one lock-free data object to
another in a lock-free way. Petrank and Steensgaard [69], meanwhile, studied
the problem of composing lock-free programs and services. The authors for-
mally prove a composition theorem which states that lock-free progress is guar-
anteed for a lock-free program when composing with a service supporting lock-
freedom. This contribution is a step towards formally studying lock-freedom.
However, the paper does not consider the case when multiple programs share a
service and compete with each other to use it. This way of composing programs
and services can affect their progress guarantees.

We investigate progress guarantees in a composition of multiple lock-free
objects. Let us take an example of a composition of three lock-free objects:
a Queue, a Stack, and a Memory Manager. The Memory Manager is lock-
free, so it provides lock-free progress guarantee to the Stack and the Queue.
Both the Stack and the Queue are designed lock-free, if their memory allocation
requests are satisfied by the Memory Manager. They can also be used by other
objects in the program and therefore, are expected to provide lock-free progress
guarantees. Though as we figure out in this thesis, with this way of composing
objects, the lock-freedom of the Stack and the Queue is compromised, i.e., can
no longer guarantee progress; because the operations they invoke to the Memory
Manager get starved. A solution to regain lock-free progress guarantee when

composing objects is proposed in this thesis.

1.2.6 Safe Memory Reclamation

A memory block no longer used should be reclaimed and returned to the mem-
ory allocator or the operating system. Answering the question of when to re-
claim a memory block can be difficult in non-blocking synchronization due to
the concurrent accesses to the shared data by different threads and no waiting
among them. A non-blocking operation, by definition, does not either wait
for actions by other operations or prevent other operations from taking actions.
Pointers to dynamic structures can be referenced in some operations while they

can also be removed and freed by other operations. Without precautions, a non-

16 CHAPTER 1. INTRODUCTION

blocking operation is vulnerable to accessing a memory block that has been
removed from the structure and freed by another operation. This leads to prob-
lematic outcomes such as access violation to free memory, corruption of another
structure that happens to allocate the freed memory blocks, or other unexpected
outcomes. It is natural for non-blocking implementations to employ certain
safe memory reclamation schemes, i.e., mechanisms that allow memory blocks
that are no longer used to be reclaimed without harming the implementation’s
correctness.

In addition to that, a well-known issue in non-blocking data structures based
on the widely deployed CAS primitive is the ABA problem. The CAS primitive
is usually used to assign a new value to a variable if the variable contains the
same value as a previously read value. However, the CAS could not distinguish
if the variable holds the read value A, or it has changed the value from A to
B and then back to A. In the latter case, the CAS operation still succeeds as if
the value has never changed. This is known as the ABA problem. The problem
usually appears when the CAS is performed on a pointer variable where the
pointed memory object is freed and reclaimed for reuse (possibly for another
structure) when a concurrent thread is still referring to the original object.

One way to avoid the ABA problem is by attaching a timestamp to the vari-
able, which is increased every time the variable changes. The CAS, which op-
erates on the variable and compares it with the variable’s original value, will not
succeed if the variable has been changed because of the difference of the time
stamps. As the time stamp occupies some bits, the amount of information that
the variable can store is decreased. There are methods to solve the ABA prob-
lem without using time stamps through a memory reclamation scheme based
on reference counting or hazard pointers. A brief list of memory reclamation
solutions that are also ABA-safe, along with their implications, has been sum-
marized by McKenney [53] and Michael [58]:

e Automatic garbage collection (GC) - On systems with GC, such as Java
or C# applications, memory safety is implicitly guaranteed. The GC does
not reclaim the memory as long as some thread is holding a reference to
it. This makes sure that the ABA problem caused by freeing and reusing

1.3. GARBAGE COLLECTION 17

an in-use memory object no longer happens.

o RCU(Read-Copy-Update) - RCU-like solutions provide a mechanism to
establish quiescence points where no thread is holding references to a
block that is set to be freed. When reaching that point, the block is safely
freed [53].

e Reference counting - Each memory block is associated with a counter
that is incremented and decremented when a reference to that block is
established. Typically, a block is freed only when its reference count
goes to zero [82], [30].

e Hazard pointers - Each thread maintains a list of hazardous pointers that
point to shared memory blocks that the thread is referencing but can be
freed by other threads. When a thread dereferences a block, the pointer is
removed from its list. Other threads that may remove the block guarantee

that the block is not freed until no hazard pointer is poiting to it [57].

Automatic garbage collection reclaims memory blocks when they are no
longer used, thus freeing programmers from dealing with difficult and error-
prone dynamic memory reclamation. It is also a solution for safe memory
reclamation and ABA prevention for non-blocking algorithms (though it raises
the question of whether the GC itself is lock-free [58]). Vice versa, the advan-
tages of lock-free data structures can be applied to improve the performance of

garbage collectors.

1.3 Garbage Collection

Automatic memory reclamation has been studied since the 1950s [52]. Al-
though garbage collectors benefit the program’s simplicity and robustness, they
had not been widely used compared to the traditional explicit memory man-
agement because of performance concerns. Only since the wide acceptance
of Java programming language has garbage collection (GC) entered the main

stream [70] and been used in large systems. Nowadays, garbage collectors have

18 CHAPTER 1. INTRODUCTION

been deployed as a part of many modern programming languages, for example
C# [60], Haskell [51], Python [26].

As mentioned, memory reclamation is one of the important features in de-
signing a non-blocking synchronization solution. Garbage collection offers a
safe memory reclamation; however performance has always been a concern for
its wide acceptance. The development of multicore processors and systems
has brought opportunities to improve the performance of GC. As a safe mem-
ory reclamation solution for non-blocking data structures, GC also can take
advantage of the lock-free data structures, which is part of this thesis’s con-
tributions. We also address the new challenges created by the contemporary
multicore hardware to the current garbage collectors. Our studies of GC are
based on the implementations of garbage collectors in the OpenJDK’s Hotspot
Java virtual machine. In this section, we briefly review different garbage col-
lection algorithms, both sequential and parallel. Then, we introduce some GC
features that the HotSpot offers.

1.3.1 Garbage Collection Algorithms

Garbage collection algorithms have been extensively studied in the literature.
Common garbage collectors can be categorized into either reference counting,
mark-sweep, or copying, or derivations of them. Reference counting methods
[17] record the number of references to each object and identify an object as live
as long as its reference count is greater than zero. An object whose reference
count is zero is considered dead and its memory can be reclaimed. Reference
counting is simple to implement but has some disadvantages such as overhead
space and memory fragmentation. Its major weakness is the inability to reclaim
objects that contain cyclic references. The issue has also been addressed [28],
[48], [7].

Copying collectors [23], [12], [8] divide memory into two semispaces, ac-
tive and inactive. Objects are allocated from the active region only. When the
active region is full of allocated objects, program execution is stopped and the
heap is traversed. The garbage collector copies all live objects from the active to

1.3. GARBAGE COLLECTION 19

inactive space. Then, the roles of the two spaces are swapped. Copying collec-
tors need to traverse the heap only once with the complexity proportional to the
size of live spaces and they can avoid heap fragmentation. However, copying
collectors usually waste half of the heap, and require moving objects. Moreover,
copying collections must be performed when the program is stopped. A varia-
tion of copying collectors that is used to collect recently allocated, i.e., young,
objects has three spaces: an eden space and two survivor spaces, called From
and To. Objects are allocated in the eden space, and objects surviving from the
eden space in the previous collection has been placed in the From-Space. Dur-
ing a collection, live objects in the eden space are copied to To-Space, which has
been inactive after the previous collection, and all live objects from the From-
Space are promoted to another space which store rather long live objects. After

a collection, the From-Space and the To-Space flip their roles.

Mark-sweep algorithms [52] collect garbage in a two-phase procedure. In
the mark phase, they perform a transitive closure from the root set to find and
mark all reachable objects (the root set is the set of global and local (stack/reg-
ister) variables visible to the active program). Objects that are not reachable
are identified as garbage and can be reclaimed in the sweep phase. The advan-
tages of mark-sweep are little overhead space, and that it does not move objects.
However, mark-sweep has complexity proportional to the size of the collected
heap and it suffers from heap fragmentation. The latter issue can be taken care
of using an additional compaction phase or a mark-compact algorithm [16], a
derivation of the mark-sweep algorithm. After the mark phase, mark-compact
algorithms perform a compact phase by traversing the heap in three passes to (i)
calculate the new addresses, (ii) update all references, and (iii) then move all the
live objects to one end of the collected space. The result is that free memory is
a contiguous chunk at the other end of the space. The problem with this method

is that the compacting phase is really expensive.

Great effort has been made to design parallel GC. Halstead [34] developed
a parallel version of Baker’s semi-space copying GC for Multilisp on shared
memory multiprocessors. During collection, the heap is logically partitioned

into per-thread From-Space and To-Space, and a thread traces objects from its

20 CHAPTER 1. INTRODUCTION

set of roots and copies them to its To-Space. Since then, parallel copying GCs
have been improved in many ways, especially on the work-stealing mechanism
among GC threads, by Imai and Tick [42], Siegwart and Hirzel [74], Flood et
al. [24], Attanassio et al. [6], and Cheng and Blelloch [13]. Endo et al. [22]
developed a parallel mark-sweep collector for shared memory multiprocessors
that balances the loads among GC threads in the mark phase by per-object work-
stealing, and in the sweep phase by fine-grained partitioning of the heap into
several small blocks that are processed in parallel. Ben-Yitzhak et al [9] aug-
mented a parallel mark-sweep collector with periodically selecting and clearing
a certain area, which reduces heap fragmentation. The mark-compact algo-
rithm that performs compaction in three heap passes was parallelized by Flood
et al. [24], which divides the heap into several areas to be compacted in paral-
lel by GC threads. The number of heap passes in compaction is improved to
two, then one pass by Aboaiadh et al. [1] and by Kermany and Petrank [44],
respectively.

In 2006, Sagonas and Wilhelmsson [71] introduced the mark-split algo-
rithm, which combines advantages of the copying algorithm and the mark-
sweep algorithm. It marks all reachable objects as the mark-sweep does and
creates the list of free memory on-the-fly while marking, rather than leaving
that task to the sweeping phase. The evaluation shows promising results but the

algorithm has not yet been parallelized since then.

1.3.2 Generational Heap Layout

Studies in the literature across applications and languages show that most ob-
jects die young: most objects have a higher probability to become garbage soon
after being allocated, while those surviving GCs tend to live long [49], [62],
[5], [81]. The young objects should be garbage collected more frequently. A
generational garbage collector exploits this by dividing the heap into several
generations and collecting the younger generations more frequently.

When generational collection is used, memory is divided into separate pools
holding objects of different ages, aka generations. The heap in the OpenJDK’s

1.3. GARBAGE COLLECTION 21

To |From
Space | space

*—

Eden space

[) - 4
CO,
o— Y|) °
PY O —copy»

» & >
L >

Young generation Old Generation Perm. Generation

A
\4
A

Figure 1.2: Heap Layout of the HotSpot’s Parallel Collector.

HotSpot virtual machine contains three generations: young, old (also called
tenured), and permanent generations. An example of the heap layout of the Par-
allel Throughput Collector in the HotSpot is presented in Figure 1.2. The young
generation collection occurs relatively frequently and fast because the genera-
tion is usually small and contains mostly garbage. Objects that survive some
collections of the young generation are promoted to the old generations. As
it contains older objects, which tend to live long, the old generation is usually
bigger and its occupancy grows slowly. Therefore, the old generation collection
is less frequent but usually takes longer to complete. The permanent generation
mostly contains objects that usually live throughout the lifetime of programs,
and is not usually of interest in the study of garbage collection. It is not uncom-
mon to use different GC algorithms to collect different generations in order to

achieve efficiency.

1.3.3 Garbage Collection in OpenJDK’s HotSpot

The OpenJDK’s HotSpot offers a wide range of garbage collector choices for
both sequential and parallel environments. Both throughput collectors and low
pause collectors are available. The objective of the throughput-oriented col-
lectors is, by decreasing the overhead of the GC, to increase the application
throughput. Meanwhile, the low pause collectors prioritize the application re-

sponse time. Their objective is to minimize the pause time of the application

22 CHAPTER 1. INTRODUCTION

during the garbage collection. For parallel environments, the HotSpot has Par-
allel Throughput Collector, Concurrent Mark-Sweep, and recently introduced

Garbage-First. All the collectors are generational.

Parallel Throughput Collector (PC)
The PC is a throughput collector that is designed to minimize the amount of time
that the application spends to collect garbage. It is a stop-the-world parallel
collector, which means it works in parallel using many processors when the
application is suspended. The memory heap layout of PC is presented in figure
1.2. The collector uses Parallel Scavenge which implements a parallel copying
algorithm [61] to garbage collect the young generation, which consists of one

Eden space and two survivor spaces called 7o and From.

The old generation is collected by the Parallel Mark-Compact collector,
which implements a two-phase parallel mark-compact algorithm. In the mark
phase, the GC threads trace the object graph from the root set and mark all the
live objects. The new addresses are then calculated from the mark bit map. The
compact phase performs a sliding compaction in one heap pass to move objects
to one end of the space and updates all the references to the new addresses,
similar the Compressor collector [44].

Concurrent Mark-Sweep Collector (CMS)

CMS is an almost concurrent garbage collector that operates most of its tasks
concurrently with the execution of the applications and only pauses the applica-
tion for some short periods of time. CMS is suitable for applications that have
a strict latency requirement.

CMS has a similar generational heap layout as Parallel Scavenge, except
for its old space, which is not compacted and therefore consists of several free
chunks spreading over the space, rather than a single contiguous free chunk. It
uses a parallel copying collector, similar to the Parallel Scavenge, for the young
generation. The old generation collection uses the concurrent mark-sweep algo-
rithm [70] with only initial mark and remark phase being stop-the-world while
other phases are executed concurrently with the execution of the application.
To deal with fragmentation, it either joins free blocks if they are contiguous or

performs a stop-the-world compaction.

1.4. CONTRIBUTIONS 23

Garbage-First Collector (G1)
Garbage-First is a concurrent and parallel collector that can achieve real-time
goal with high probability [19]. It is a low pause collector that is aimed to re-
place CMS collector in the future. It partitions the heap into equal-size heap
regions, each with a remembered set of recording pointers from all other re-
gions. Any set of regions can be chosen for collection to ensure a short pause
time. The G1 heap retains the similar types of Eden, Survivor, and Old memory
pools as the above collectors; but instead of these being contiguous blocks of
memory, each region is logically categorized into one of these pools. A col-
lection of G1 starts with a global marking phase that marks all the live objects.
The marking phase runs concurrently with the application. Concurrent marking
can give hints to identify a collection set of regions that contain mostly garbage
for reclamation. The compacting evacuation then copies all live objects in those
regions to other locations in the heap, thus freeing the collection set of regions.
This evacuation is performed in parallel on multi-processor systems.

The work of this thesis on garbage collection relates to the Parallel Through-
put collector and the CMS collector in the HotSpot.

1.4 Contributions

The contribution of this thesis is solutions to challenges in order to achieve com-
posability, efficient design and implementation of concurrent data structures, as
well as parallel safe memory reclamation in multicore hardware. The results in
this thesis have been published in the following technical papers:

Paper I - A Study of the Behavior of Synchronization Methods in Commonly
Used Languages and Systems: We investigate the effects of different software
and hardware factors on the behavior of synchronization methods. The varia-
tion in the behavior is measured using two metrics: throughput that a method
achieves in an application and fairness among the cooperating threads. The syn-
chronization methods that we studied range from atomic-primitive-based locks,
language built-in synchronization constructs, to lock-free methods. Several pa-

rameters and factors affect the behavior of the synchronization methods through

24 CHAPTER 1. INTRODUCTION

complex interactions among (i) the language and the language constructs that it
supports, (ii) the system architecture, (iii) possible run-time environments, vir-
tual machine options, and memory management supports, and (iv) applications.
The study provides a comprehensive and systematic view of the considered fac-
tors to the throughput and the level of fairness that the synchronization methods
can offer in different applications. The results can be used as reference guide-
lines for selection of programming environments and synchronization methods

in connection to the application and the system characteristics.

Paper Il - Progress Guarantees when Composing Lock-free Objects: The
level of progress guarantee is an important characteristic that a designer needs
to consider when designing software involving synchronization. By choosing
data structures with the lock-freedom property, it is natural for a designer to ex-
pect that the data structures keep providing such property in any composition of
the data structures. In this paper, we investigate the consequences of the fact that
lock-freedom suffers from starvation to the composition of multiple lock-free
objects. Since lock-freedom does not guarantee starvation-free, starvation of
operations of a lock-free object can prevent the invokers, which are also lock-
free objects, from making progress. This would mean that the lock-freedom
is not composable in such a scenario. We propose a synchronization mech-
anism, based on a software implemented Double-Compare-And-Swap opera-
tion, which can atomically perform compare-and-swap on two distinct memory
words, to help with fixing this issue. Using our mechanism, the lock-freedom
of every object participating in the sharing combination is regained, making the

lock-freedom a composable property.

Paper III - Lock-free Cuckoo Hashing: Data structures are a key component
in solutions for synchronization challenges. A hash table is an associative data
structure that associates keys to values, by using a hash function to calculate the
index of a key in an array of slots. Hash tables offer constant search time, thus
are widely used in computer software. This paper presents an efficient lock-free
implementation of the cuckoo hashing algorithm. Cuckoo hashing uses two
hash tables with two distinct hash functions to store elements, and elements can

be moved between its two possible positions on the tables. Efficiently managing

1.4. CONTRIBUTIONS 25

two hash tables in a single data structure while respecting its correctness is
challenging in lock-free programming. One challenge comes from the different
existing instances of the same key on different tables, which can violate the
hash table’s semantics. Another challenge comes from the interleaving between
query and movement of a key, which causes the key to be invisible to the query.
We have addressed those challenges using a combination of several concurrent
programming techniques, such as a two-round query protocol, lazy deletion a
duplicated key, fine-grained design for the relocation process, etc. The result
is, to the best of our knowledge, the first efficient lock-free implementation of
cuckoo hashing in the literature, which experimentally outperforms other state-

of-the-art concurrent hash tables.

Paper IV - ParMarkSplit: A Parallel Mark-Split Garbage Collector Based
on a Lock-Free Skip-List: Automatic garbage collection offers safe memory
reclamation for the non-blocking data structures. In a broader context, it is an
important component in several programming languages and runtime systems.
In the multicore era, garbage collection can take advantage of computational
power brought by multicore architectures. One way to do that is to exploit the
advantages of high performance lock-free data structures in the parallelization
of GC. In this paper, our introduction of an extended design of a lock-free skip-
list makes it natural to parallelize the mark-split garbage collection algorithm.
Mark-split collects garbage in two steps: mark live objects and split memory
chunks to exclude spaces occupied by the live objects. The extension means
that, besides basic operations, the skip-list supports composite operations of
multiple basic ones, like the split operation. The parallel mark-split garbage col-
lector is implemented in OpenJDK’s HotSpot virtual machine. The evaluation
results show that our new design outperforms a parallel mark-split using coarse-
grained locking binary search tree. Our ParMarkSplit also performs better than
the HotSpot’s Concurrent Mark-Sweep collector in applications satisfying cer-

tain characteristics.

Paper V- A NUMA-aware Parallel Mark-Compact Garbage Collector: The
paper presents a NUMA-aware garbage collector for managed runtime environ-

ment. Current garbage collectors, in particular those in OpenJDK’s HotSpot,

26 CHAPTER 1. INTRODUCTION

are lacking of NUMA-awareness. This leads to performance issues such as
overload of a single node, memory imbalance, and poor locality, which prevent
the GCs from scaling well in NUMA machines. We have redesigned the current
throughput-oriented garbage collector, including the heap layout and the paral-
lel mark-compact collection algorithm so that it can work efficiently and scale

in the NUMA multicore architecture.

1.4.1 Statement of Personal Contributions

I hereby state my personal contribution on joint-work publication.

A Study of the Behavior of Synchronization Methods in Commonly
Used Languages and Systems - This paper was written under the supervision
of Philippas Tsigas and Marina Papatriantafilou, and support from Daniel Ced-
erman in technical writing. The development and evaluation of the data struc-
tures, and the writing of the technical material regarding C#, Java, and C++ pro-
gramming languages, were performed by Bapi Chattejee, Yiannis Nikolakopu-
lous, and me, respectively. We equally share in writing the remaining technical
material.

Progress Guarantees when Composing Lock-free Objects - This paper
was written under the supervision of Philippas Tsigas. I have designed, imple-
mented and evaluated the synchronization mechanism. I wrote and developed
most of the technical material.

Lock-free Cuckoo Hashing - This paper was written under the supervision
of Philippas Tsigas. I designed, implemented, and evaluated the algorithm. I
wrote and developed most of the technical material.

ParMarkSplit: A Parallel Mark-Split Garbage Collector Based on a
Lock-Free Skip-List - I designed, implemented, and evaluated the ParMark-
Split garbage collector in the HotSpot environment, while Hakan Sundell con-
tributed the lock-free skip-list implementation. I wrote most of the technical
material.

A NUMA-aware Parallel Mark-Compact Garbage Collector - I am the
main contributor to the paper. I studied the old generation collector, i.e Paral-

1.5. CONCLUSION 27

lel Mark-Compact, and introduced NUMA-awareness to it. I have developed
and implemented the collector under the supervision of Géel Thomas, Julien
Sopena, and Marc Shapiro. The NUMA-aware fragmented space policy was
contributed by Lokesh Gidra. The technical material was mainly written by

myself.

1.5 Conclusion

Designing efficient parallel algorithms for multicore platforms is still a chal-
lenging task for most software developers. In this thesis, we have studied
different aspects in algorithmic design and implementation, composability of
lock-free data structures, as well as memory reclamation in multicore program-
ming. We have studied the influences of multiple design factors and implemen-
tation environments of synchronization methods to their behaviors and sug-
gested guidelines to programmers in a selection of synchronization methods
in the constraints of different software and hardware factors. We have found
that the lock-free methods balance throughput and fairness among the involved
threads. We have also discovered that progress guarantees can be compromised
when composing multiple lock-free objects, and we proposed a method to re-
gain them. Regarding the design and implementation of lock-free data struc-
tures, we introduced a new lock-free algorithm for cuckoo hashing and extended
the functionality of a lock-free skip-list. The lock-free cuckoo hash table sup-
ports total concurrency among operations in a lock-free manner. It outperforms
state-of-the-art concurrent hashing designs such as hopscotch and lock-based
chain hashing. The skip-list design, besides providing basic operations such
as search, insert, and remove, is extended to support composite operations of
multiple basic operations.

As memory reclamation is an important component in lock-free program-
ming, as well as in multicore programming in general, we have also explored
this domain, especially the application of concurrent data structures to improve
garbage collection. Our parallel version of the mark-split garbage collection al-
gorithm was made possible through the use of the extended lock-free skip-list.

28 CHAPTER 1. INTRODUCTION

We explored further the new challenges to performance and scalability of the
garbage collectors created by the contemporary multicore hardware with high
core counts. In order to exploit the parallelism of the new hardware, the de-
sign of garbage collection algorithms must realize new design factors such as
NUMA topology, memory locality, and memory balance. We have improved
the current garbage collectors with such realization and introduced a NUMA-

aware parallel mark-compact algorithm.

Synchronization is still a hot research topic in multicore programming. Study-
ing high performance and scalable algorithms for more complex data structures,
such as trees or graphs, is still an open research direction. Recently, processors
with the hardware transactional memory (HTM) feature, e.g. Intel’s Haswell,
which can perform an update to a set of memory locations in one atomic step,
have been introduced. HTM has increased the amount of data that can be pro-
cessed in one atomic operation. Non-blocking data structures can take advan-
tage of HTM to achieve higher performance within a simpler implementation.
However, current HTM implementations like the one in the Haswell proces-
sor have limitations, such as spurious transactional abortion and no progress
guarantees. Further study of using HTM for non-blocking data structures is re-
quired. As different synchronization methods are used, composability among
data structures based on those methods is still an issue. The scenario in which a
developer must compose data structures implemented using different blocking
and non-blocking synchronization methods in one application is a reality. How-
ever, the interaction among methods has not been well studied. What kind of
progress guarantees does such a composition provide? What should be expect
in terms of performance?

Studying synchronization algorithms in their application contexts exposes
them to new design and implementation challenges in order to meet the func-
tionality and performance requirements. Such study can also introduce oppor-
tunities for the algorithms to evolve. Recent concerns regarding energy con-

sumption create a new design dimension.

The NUMA multicore architecture has introduced new challenges to algo-

rithmic design and implementation of concurrent data structures. In order to ex-

BIBLIOGRAPHY 29

ploit the parallelism, the algorithmic design of concurrent data structures must
realize new design factors. Many NUMA-aware synchronization algorithms
have recently been introduced. Studying concurrent data structures for NUMA
architectures can pose more challenges in both algorithmic design and imple-
mentation, which is an interesting future study. The study of garbage collection
in NUMA architectures also opens more research questions. One of the issues is
the influence of memory allocation patterns to the garbage collector. Another is
the possibility to apply our method to bring NUMA-awareness to other garbage

collectors such as the low pause Garbage-First.

Bibliography

[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient parallel heap
compaction algorithm. SIGPLAN Not., 39(10):224-236, Oct. 2004.

[2] S. Al Bahra. Nonblocking algorithms and scalable multicore programming. Com-
mun. ACM, 56(7):50-61, July 2013.

[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model
of computation. Algorithmica, 12(2-3):72-109, 1994.

[4] J. H. Anderson and M. Moir. Universal constructions for multi-object operations.
In Proceedings of the 14th ACM Symposium on Principles of Distributed Comput-
ing, PODC 95, pages 184-193, New York, NY, USA, 1995. ACM.

[S] A. W. Appel. Simple generational garbage collection and fast allocation. Softw.
Pract. Exper., 19(2):171-183, Feb. 1989.

[6] C.R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A comparative evaluation
of parallel garbage collector implementations. In Proceedings of the 14th interna-
tional conference on Languages and compilers for parallel computing, LCPC’01,
pages 177-192, Berlin, Heidelberg, 2003. Springer-Verlag.

[7] D.F Bacon and V. T. Rajan. Concurrent cycle collection in reference counted sys-
tems. In J. L. Knudsen, editor, Proceedings of the Fifteenth European Conference
on Object-Oriented Programming, volume 2072 of Lecture Notes in Computer Sci-
ence, pages 207-235, Budapest, Hungary, June 2001. Springer-Verlag.

[8] H. G. Baker, Jr. List processing in real time on a serial computer. Commun. ACM,
21(4):280-294, Apr. 1978.

30

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

CHAPTER 1. INTRODUCTION

O. Ben-Yitzhak, I. Goft, E. K. Kolodner, K. Kuiper, and V. Leikehman. An algo-
rithm for parallel incremental compaction. SIGPLAN Not., 38(2 supplement):100—

105, June 2002.
D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou,

and P. Tsigas. A study of the behavior of synchronization methods in commonly
used languages and systems. In Proceedings of the IEEE 27th International Sym-
posium on Parallel and Distributed Processing, IPDPS 13, pages 1309-1320, Los

Alamitos, CA, USA, 2013. IEEE Computer Society.
D. Cederman and P. Tsigas. Supporting lock-free composition of concurrent data

objects. In Proceedings of the 7th Conference on Computing Frontiers, pages 53—

62. ACM, 2010.
C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM, 13:677—

678, November 1970.
P. Cheng and G. E. Blelloch. A parallel, real-time garbage collector. SIGPLAN

Not., 36(5):125-136, May 2001.

P. Chuong, F. Ellen, and V. Ramachandran. A universal construction for wait-
free transaction friendly data structures. In Proceedings of the 22nd Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA *10, pages 335—

344, New York, NY, USA, 2010. ACM.
C. Click. A lock-free wait-free hash table. http://www.stanford.edu/

class/ee380/Abstracts/070221_LockFreeHash.pdf, 2007. Lec-

ture notes in Course EE380 (2006-2007), Stanford University.
J. Cohen and A. Nicolau. Comparison of compacting algorithms for garbage col-

lection. ACM Trans. Program. Lang. Syst., 5(4):532-553, Oct. 1983.
G. E. Collins. A method for overlapping and erasure of lists. Commun. ACM,

3:655-657, December 1960.
N. Dang and P. Tsigas. Progress guarantees when composing lock-free objects.

In E. Jeannot, R. Namyst, and J. Roman, editors, Proceedings of the 17th Interna-
tional Conference on Parallel Processing (Euro-Par 2011), volume 6853 of Lecture

Notes in Computer Science, pages 148—159. Springer Berlin Heidelberg, 2011.
D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage collec-

tion. In Proceedings of the 4th International Symposium on Memory Management,

ISMM °04, pages 37-48, New York, NY, USA, 2004. ACM.
F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and C. Travers. Universal construc-

tions that ensure disjoint-access parallelism and wait-freedom. In Proceedings of
the 31st ACM Symposium on Principles of Distributed Computing, PODC ’12,
pages 115-124, New York, NY, USA, 2012. ACM.

BIBLIOGRAPHY 31

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search
trees. In Proceedings of the 29th ACM Symposium on Principles of Distributed

Computing, PODC ’10, pages 131-140, New York, NY, USA, 2010. ACM.
T. Endo, K. Taura, and A. Yonezawa. A scalable mark-sweep garbage collector

on large-scale shared-memory machines. In Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, Supercomputing *97, pages 1-14, New York, NY,

USA, 1997. ACM.
R. R. Fenichel and J. C. Yochelson. A lisp garbage-collector for virtual-memory

computer systems. Commun. ACM, 12:611-612, November 1969.
C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang. Parallel garbage collection for

shared memory multiprocessors. In Proceedings of the 2001 Symposium on Ja-
vaTM Virtual Machine Research and Technology Symposium - Volume 1,]IVM’01,

pages 21-21, Berkeley, CA, USA, 2001. USENIX Association.
M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In Proceedings

of the 23rd ACM Symposium on Principles of Distributed Computing, PODC ’04,

pages 50-59, New York, NY, USA, 2004. ACM.
T. P. S. Foundation. The python standard library: Garbage collector interface.

2010.
K. Fraser and T. L. Harris. Concurrent programming without locks. ACM Trans-

actions on Computer Systems (TOCS), 25(2), 2007.
D. Friedman, Daniel P.; Wise. Reference counting can manage the circular envi-

ronments of mutual recursion. Information Processing Letters, 8(1), January 1979.
H. Gao, J. Groote, and W. Hesselink. Almost wait-free resizable hashtables. In

Proceedings. 18th International Parallel and Distributed Processing Symposium,

2004, page 50a, 2004.
A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas. Efficient and reliable

lock-free memory reclamation based on reference counting. IEEE Trans. Parallel

Distrib. Syst., 20(8):1173-1187, Aug. 2009.
A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Allocating memory in a lock-free

manner. Algorithmica, 58:304-338, 2005.
C. Gong and J. M. Wing. A library of concurrent objects and their proofs of cor-

rectness. Technical report, Computer Science Department, Carnegie Mellon Uni-

versity, 1990.
M. Greenwald. Two-handed emulation: How to build non-blocking implemen-

tations of complex data-structures using dcas. In Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing, PODC *02, pages 260-269,
New York, NY, USA, 2002. ACM.

32

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

CHAPTER 1. INTRODUCTION

R. H. Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor. In
Proceedings of the 1984 ACM Symposium on LISP and Functional Programming,
LFP ’84, pages 9-17. ACM, 1984.

T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Lecture
Notes in Computer Science, pages 300-314. Springer-Verlag, 2001.

M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, pages 124-149, 1991.

M. Herlihy. A methodology for implementing highly concurrent objects. ACM
Trans. Program. Lang. Syst., 15(5):745-770, 1993.

M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
Double-ended queues as an example. In Proceedings of the 23rd International
Conference on Distributed Computing Systems, ICDCS ’03, pages 522—, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

M. Herlihy and N. Shavit. On the nature of progress. In Principles of Distributed
Systems, volume 7109 of Lecture Notes in Computer Science, pages 313-328.
Springer Berlin Heidelberg, 2011.

S. V. Howley and J. Jones. A non-blocking internal binary search tree. In Pro-
ceedings of the 24th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 12, pages 161-171, New York, NY, USA, 2012. ACM.

A. Imai and E. Tick. Evaluation of parallel copying garbage collection on a shared-
memory multiprocessor. IEEE Trans. Parallel Distrib. Syst., 4(9):1030-1040, Sept.
1993.

Intel. Threading building blocks. 2009.

H. Kermany and E. Petrank. The compressor: Concurrent, incremental, and paral-
lel compaction. SIGPLAN Not., 41(6):354-363, June 2006.

A. Kogan and E. Petrank. Wait-free queues with multiple enqueuers and dequeuers.
SIGPLAN Not., 46(8):223-234, Feb. 2011.

R. P. LaRowe. Page Placement For Non-Uniform Memory Access Time (NUMA)
Shared Memory Multiprocessors. PhD thesis, Duke University, Durham, North
Carolina, USA, 1991.

D. Lea. The java concurrency package (jsr-166). 2009.

Y. Levanoni and E. Petrank. An on-the-fly reference-counting garbage collector
for java. ACM Transactions on Programming Languages and Systems, 28(1):1-69,
2006.

H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes

of objects. Commun. ACM, 26(6):419—-429, June 1983.

BIBLIOGRAPHY 33

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]
[61]
[62]

[63]

[64]

G. Lowney. Why intel is designing multi-core processors. In Proceedings of
the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA 06, pages 113-113, New York, NY, USA, 2006. ACM.
S. Marlow, T. Harris, R. P. James, and S. Peyton Jones. Parallel generational-

copying garbage collection with a block-structured heap. In Proceedings of the 7th
International Symposium on Memory Management, ISMM ’08, pages 11-20, New
York, NY, USA, 2008. ACM.

J. McCarthy. Recursive functions of symbolic expressions and their computation

by machine, part i. Commun. ACM, 3:184-195, April 1960.
P. E. McKenney. Structured deferral: Synchronization via procrastination. Com-

mun. ACM, 56(7):40-49, July 2013.
M. M. Michael. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the fourteenth annual ACM symposium on Parallel algo-

rithms and architectures, pages 73-82. ACM, 2002.
M. M. Michael. Safe memory reclamation for dynamic lock-free objects using

atomic reads and writes. In Proceedings of the 21st ACM Symposium on Principles
of Distributed Computing, PODC 02, pages 21-30, 2002.

M. M. Michael. Cas-based lock-free algorithm for shared deques. In Proceedings
of the International Conference of Parallel Processing (EuroPar), volume 2790 of
Lecture Notes in Computer Science, pages 651-660. Springer Berlin Heidelberg,
2003.

M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst., 15(6):491-504, 2004.

M. M. Michael. The balancing act of choosing nonblocking features. Commun.
ACM, 56(9):46-53, 2013.

M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, pages 267-275. ACM, 1996.
Microsoft. Garbage collection. 2010.

S. Microsystems. Memory management in the java hotspot virtual machine. 2006.
D. A. Moon. Garbage collection in a large lisp system. In Proceedings of the 1984
ACM Symposium on LISP and Functional Programming, LFP *84, pages 235-246,
New York, NY, USA, 1984. ACM.

G. E. Moore. Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. Solid-State Circuits
Society Newsletter, IEEE, 11(5):33-35, Sept 2006.

J. H. Moreno. Chip-level integration: the new frontier for microprocessor archi-

tecture. In Proceedings of the 18th Annual ACM Symposium on Parallelism in

34

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

CHAPTER 1. INTRODUCTION

Algorithms and Architectures, SPAA °06, pages 328-328, New York, NY, USA,
2006. ACM.

A. Natarajan, L. Savoie, and N. Mittal. Concurrent wait-free red black trees. In
Proceedings of the 15th International Symposium on Stabilization, Safety, and Se-
curity of Distributed Systems, volume 8255 of Lecture Notes in Computer Science,
pages 45-60. Springer International Publishing, 2013.

N. Nguyen, L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A numa-aware par-
allel mark-compact garbage collector. Technical Report 2014:04, Chalmers Uni-
versity of Technology, Department of Computer Science and Engineering, January
2014.

N. Nguyen and P. Tsigas. Lock-free cuckoo hashing. In Proceedings of the 34th
International Conference on Distributed Computing Systems (to appear), ICDCS
2014, 2014.

N. Nguyen, P. Tsigas, and H. Sundell. Brief announcement: Parmarksplit: A par-
allel mark-split garbage collector based on a lock-free skip-list. In Y. Afek, edi-
tor, The 27th International Symposium on Distributed Computing (DISC), volume
8205 of Lecture Notes in Computer Science, pages 557-558. Springer Berlin Hei-
delberg, 2013.

E. Petrank, M. Musuvathi, and B. Steesngaard. Progress guarantee for parallel
programs via bounded lock-freedom. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI *09,
pages 144-154, 2009.

T. Printezis and D. Detlefs. A generational mostly-concurrent garbage collector.
SIGPLAN Not., 36:143-154, October 2000.

K. Sagonas and J. Wilhelmsson. Mark and split. In Proceedings of the 5th In-
ternational Symposium on Memory Management, ISMM °06, pages 29-39. ACM,
2006.

O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash tables.
Journal of the ACM, 53(3):379-405, May 2006.

C.-H. Shann, T.-L. Huang, and C. Chen. A practical nonblocking queue algorithm
using compare-and-swap. In Parallel and Distributed Systems, 2000. Proceedings.
Seventh International Conference on, pages 470475, 2000.

D. Siegwart and M. Hirzel. Improving locality with parallel hierarchical copying
gc. In Proceedings of the 5th International Symposium on Memory Management,
ISMM 06, pages 52—63, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 35

[75]

[76]

(771

(78]

[79]

[80]

(81]

[82]

[83]

H. Sundell and P. Tsigas. Noble: A non-blocking interprocess communication
library. In Proceedings of the 6th Workshop on Languages, Compilers and Run-

time Systems for Scalable Computers, LNCS. Springer Verlag, 2002.
H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-

thread systems. J. Parallel Distrib. Comput., 65(5):609-627, 2005.
H. Sundell and P. Tsigas. Lock-free deques and doubly linked lists. J. Parallel

Distrib. Comput., 68(7):1008-1020, July 2008.
G. Taubenfeld. Synchronization Algorithms and Concurrent Programming.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.
J.-J. Tsay and H.-C. Li. Lock-free concurrent tree structures for multiprocessor

systems. In Parallel and Distributed Systems, 1994. International Conference on,

pages 544-549, 1994.
P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent fifo

queue for shared memory multiprocessor systems. In Proceedings of the 13th An-
nual ACM Symposium on Parallel Algorithms and Architectures, SPAA 01, pages
134-143, 2001.

D. Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the First ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments,
SDE 1, pages 157-167, New York, NY, USA, 1984. ACM.

J. D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the
14th ACM Symposium on Principles of Distributed Computing, PODC ’95, pages

214-222. ACM, 1995.
J. D. Valois. Lock-free Data Structures. PhD thesis, Rensselaer Polytechnic Insti-

tute, Troy, NY, USA, 1996. UMI Order No. GAX95-44082.

36

CHAPTER 1. INTRODUCTION

Part 11

PAPERS

PAPER 1

Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Nikolakopoulos,
Marina Papatriantafilou and Philippas Tsigas

A Study of the Behavior of Synchronization Methods
in Commonly Used Languages and Systems
In the proceedings of
the 27" IEEE International Parallel and Distributed Symposium (IPDPS)
Boston, Massachusetts USA. May 20-24, 2013
pp. 1309-1320, IEEE Press 2013.

PAPER I - A Study of the Behavior of
Synchronization Methods in
Commonly Used Languages and

Systems

Abstract

Synchronization is a central issue in concurrency and plays an important role in
the behavior and performance of modern programmes. Programming languages
and hardware designers are trying to provide synchronization constructs and
primitives that can handle concurrency and synchronization issues efficiently.
Programmers have to find a way to select the most appropriate constructs and

41

42 CHAPTER 2.

primitives in order to gain the desired behavior and performance under con-
currency. Several parameters and factors affect the choice, through complex
interactions among (i) the language and the language constructs that it sup-
ports, (ii) the system architecture, (iii) possible run-time environments, virtual
machine options and memory management support and (iv) applications.

We present a systematic study of synchronization strategies, focusing on
concurrent data structures. We have chosen concurrent data structures with
different number of contention spots. We consider both coarse-grain and fine-
grain locking strategies, as well as lock-free methods. We have investigated
synchronization-aware implementations in C++, C# (.NET and Mono) and
Java. Considering the machine architectures, we have studied the behavior of
the implementations on both Intel’s Nehalem and AMD’s Bulldozer. The prop-
erties that we study are throughput and fairness under different workloads and
multiprogramming execution environments. For NUMA architectures fairness
is becoming as important as the typically considered throughput property. To
the best of our knowledge this is the first systematic and comprehensive study
of synchronization-aware implementations.

This paper takes steps towards capturing a number of guiding principles and
concerns for the selection of the programming environment and synchronization

methods in connection to the application and the system characteristics.

2.1 Introduction

Synchronization has always been a core research problem in parallel and con-
current programming. Synchronization is required to assure the correctness
of multi-threaded applications, but it can also become a bottleneck for perfor-
mance. It becomes even more crucial in the multi-core and many-core era when
multiprocessor computers are widely used.

Modern processors are provided with machine instructions for synchroniza-
tion primitives such as test-and-set, compare-and-swap and many more. Us-
ing them, several synchronization methods have been proposed in the litera-

ture, ranging from traditional lock-based methods, such as locks, semaphores

2.1. INTRODUCTION 43

and monitors, to non-blocking approaches, such as lock-free/wait-free synchro-
nization and software transactional memory [4, 9, 13, 18]. Building on them,
programming languages can now provide built-in support for synchronization
constructs as either an API in the language (Java and C#) or as user-friendly
libraries (e.g. Intel TBB, NOBLE [24] or PEPPHER [3]). This means that
when selecting a language to write an application in, a programmer has im-
plicitly chosen the synchronization constructs offered by the language API or
language-specific third-party libraries. In addition, selecting a programming
language to use also involves several other options, which in turn have their
own importance to the performance of the concurrent applications. For exam-
ple, C++ offers basic memory management functionality, but also allows the
programmer to access low level memory. Java or C#, on the other hand, offer
automatic garbage collection, but they limit direct access to the memory. Still,
even after selecting a language, the programmer has a wide range of synchro-
nization methods to choose from. We argue that selecting the best synchroniza-
tion constructs to achieve the desired behavior is a non-trivial job, which re-
quires thorough consideration of different aspects. Besides languages and their
features, the selection is also governed by several other parameters and factors,
and the interplay among them, e.g. the system architecture of the implemen-
tation platforms; possible run-time environments, virtual machine options and

memory management support; and the characteristics of the applications.

The implementation hardware platforms have their own role to play in this
context. Although the widely available multi-core processors are mainly based
on a cache-coherent NUMA design, they differ in the way they have imple-
mented multi-threading to exploit instruction-level and thread-level parallelism.
These differences are not only in the size and speed of the cache, but also in the
number of threads that can share resources simultaneously [14], the memory-
controller mechanism and the inter-processor connector designs that are em-
ployed on and off the chip [2]. After selecting the language, the subsequent
selection of a virtual machine and/or operating system, from a wide range of

options, increases the complexity of the problem even further.

There are several available synchronization methods to select from. None of

44 CHAPTER 2.

them is even close to be the silver bullet which can solve all the synchronization
issues that the application developers have to address in all possible hardware
and software environments in the domain of concurrent programming. In the
literature a number of efforts have been made to evaluate such methods through
micro benchmarks [4, 16, 22] as well as macro benchmarks [21, 26, 27]. These
benchmarks try to rank synchronization constructs by measuring their poten-
tial for high throughput and also examine a subspace of the parameters that
we examine in this paper. Evaluating synchronization mechanisms exclusively
for high throughput [6] could give misleading results. For example, consider
evaluating the throughput of a simple concurrent data structure, with little or
no inherent potential for concurrency, using different synchronization methods.
Among the methods that give the best throughput, methods that consistently
favor the same set of threads to get access to the data structure, while leaving
others to starve, have the potential to rank among the best. This underpins the
importance to measure fairness of the synchronization methods for a particular

application.

In this paper we evaluate different types of lock-based (from fine-grained
to coarse-grained), as well as lock-free, synchronization methods with regard
to their potential for high throughput as well as fairness. We will focus the
discussion on how these two measurements relate to each other. The studied
synchronization mechanisms are applied to two different types of data struc-
tures, that have different potential for concurrency. Considering the variation in
contemporary multi-core architectures, the experiments are performed on two
multiprocessor machines, one with two Intel (Nehalem) processors and another
with four AMD (Bulldozer) processors. Further, to explore the variation due to
the choice of language and runtime, as well as memory management, we have
implemented the algorithms in C++, Java and C#. To the best of our knowl-
edge this is the first head-to-head, systematic evaluation that considers the in-
teractions among (i) the programming language and the language constructs
that it supports, (ii) the system architecture where the application is running
on, (iii) possible run-time environments, virtual machine options and memory

management support, and (iv) characteristics of the applications.

2.2. SYNCHRONIZATION METHODS 45

Our experiments put forward an interesting observation that the change in
the multi-threading model at the level of architecture brings a big difference
in the behavior of synchronization primitives, even though the processors have
comparable speed and inter-processor connection design. Furthermore, our ex-
periments show that high performing synchronization methods may have very
poor fairness, and a wise selection is very important to make a good trade-off
between the two. We also show that the choice of memory management, run-
time and operating system may significantly change the performance and be-
havior of a concurrent application. This paper takes a step towards improving
methodologies for choosing the programming environment and synchronization
methods in connection to the application and the system characteristics.

The structure of the paper is the following. In Section 2.2 we go through
the different synchronization mechanisms that we have examined. In Sec-
tion 2.3 we discuss the concepts of fairness and throughput and how they relate
to each other. Here, we also give a new quantitative measure of fairness for
synchronization-aware implementations and give arguments as to why the mea-
surement we have selected is useful in this context. In Section 2.4 we present
the algorithmic designs of the data structures that were used in the experiments.
Further in Section 2.5, we present the design and the setup of the experiments,
as well as the detailed architectures that we have chosen for implementation.

Analysis of the results is presented in Section 2.6. Section 2.7 concludes the

paper.

2.2 Synchronization Methods

There exists a multitude of common methods for synchronization. These can be
divided into different categories depending on what kind of progress guarantees
they provide. If no progress guarantee can be provided, which is the most com-
mon case and holds true for most locks, the synchronization construct is said
to be blocking. If a synchronization construct can guarantee that at least one
thread, out of the contending set, can finish its operation in a finite number of

its own steps, the construct is said to be lock-free. What lock-free synchroniza-

46 CHAPTER 2.

tion means in practice is that a thread does not need to wait for another thread
to finish.

Of this great variety of synchronization methods, some are quite popular and
well established in the literature. Many of them are available through the API
specification of some of the tested languages (Java, C#). Others can be easily
implemented by a programmer in many languages, while some more complex
ones are usually implemented in standard or third party libraries. To allow for
comparison, the following synchronization methods have been implemented in

a similar manner for all the programming platforms that we have examined:

o Test-And-Set-based lock (TAS) — Mutual exclusion is achieved by repeat-
edly trying to set a flag using an atomic exchange primitive. The thread

that manages to set the flag is given access to the critical section.

o Test-Test-And-Set-based lock (TTAS) — To lower the number of expen-
sive atomic operations, the value of the flag is read before attempting to

change it. If it is already set, no atomic operation is needed.

e Array lock — The lock consists of an array of flags and an index to the first
flag. Initially only the first flag is set. A thread trying to acquire the lock
atomically increments the index and spins on the flag in the array that the
old index was pointing to. When the flag is set, the thread can enter the
critical section. Upon exiting, it sets its own flag to false and raises the
flag for the thread waiting at the next index [1, 12].

e Lock-free — The lock-free implementations used depend on the specific
data structures and for the cases of our study they are described in Sec-
tion 2.4.

Moreover, in today’s great need of concurrency, every programming en-
vironment provides their own toolset of internal libraries or implicit language
constructs. They are usually well integrated and easy to use, while they can also
be optimized by the underlying virtual machine or just-in-time compiler. Below

them the host operating system can also provide valuable tools for synchroniza-

2.2. SYNCHRONIZATION METHODS 47

tion. In detail, the following are the common platform specific methods for

synchronization that we also consider in our study:

e Reentrant lock — The Reentrant lock, provided by Java’s concurrent . locks
package, comes in two variations; a simple and a fair one. The Reentrant
lock is based on an internal waiting queue which is a variant of the CLH
lock [7, 17]. Specifically, the nodes of the queue are used to block the
competing threads, while every node that releases the lock that it owned
signals its successor. However, an important design difference is that be-
ing the first node in the queue does not guarantee the lock acquisition,
but only the right to contend for the lock itself. A thread that tries to
acquire the lock first contends for it using a compare and swap (CAS) op-
eration. If it fails, it gets enqueued. This first step is not performed when
the fair version of the Reentrant lock is used. An interesting observation
here is that this internal queue acts as a backoff mechanism for the lock’s

contention.

e Synchronized/Lock — In Java and C# every object is associated with an
intrinsic monitor. The use of a synchronized or 1lock statement re-
spectively, with a specified object as an argument before a block of code,
assures that the execution of that critical section will not take place un-
less the object’s monitor is locked. The actual monitor implementation is

platform and virtual machine dependent [23].

e Mutex in C# — Compared to the 1ock keyword, the Mutex construct in
C# is a heavyweight implementation with a high overhead, as it is de-
signed to work across multiple processes. Mutex can be used to synchro-

nize threads across processes and requires inter-process communications.

e Pthread Mutex (PMutex) in C++ — The Pthread mutex construct is avail-
able in the Linux kernel from version 2.6.x and above. It is implemented
using Fast Userlevel Locking (Futex), created by Franke H. et al. [8]. A
futex consists of a shared variable in user space indicating the status of the

lock and an associated waiting queue in kernel space. In the uncontended

48 CHAPTER 2.

case, acquiring or releasing a futex involves only atomic operations on its
lock status word in user space. In the contended case, a system call into
the kernel is required to add the calling thread to the waiting queue or to

wake up any waiting processes.

2.3 Behavior: Throughput and Fairness

One of the most desired properties of a synchronization method is having high
throughput. The more successful operations that can be achieved in a unit of
time, the more efficient the method is. Throughput is one of the two main
properties that we consider in our study.

As NUMA architectures are becoming the standard in industry, and dif-
ferent ways of Simultaneous Multi-Threading are being presented, fairness of
synchronization constructs is becoming important. Possible differences in the
access latencies of competing threads for a memory location may even lead
some of them to starvation. In preliminary experiments we observed that be-
tween different architectures, under identical conditions, different levels of fair-
ness were provided to threads that were competing for atomically swapping a
memory location.

A relevant definition of fairness was introduced into this context by Ha et
al. [10] comparing the minimum number of operations a thread had with the
average number of operations of all threads. This helps distinguishing cases
of starving or less served threads. For identifying the opposite cases we can
compare the average number of operations with the maximum ones among the
threads. Since our goal is to detect any unfair behavior, we use as a fairness
measure the minimum of the above values, formally:

N -min(n;,,) D i Mias }

Zi LN "N - ma’x(niAt)

where n; ,, is the number of successfully performed operations by the thread 4,

fairnessay = min{

in the time interval At¢. Fairness index values close to 1 indicate fair behavior,
while lower values imply the existence of a set of threads being treated differ-

ently from the rest. The fairness index achieves value 1 when all the threads

2.4. CASE STUDIES 49

perform equal number of operations, i.e. perfect fairness. The fairness index is
0 when at least one thread completely starves. For a critical analysis of quanti-

tative measures of fairness, one may refer to the paper by Jain et al. [15].

2.4 Case Studies

2.4.1 Data Structures

We study the synchronization behavior of two types of data structures: FIFO
queues and hash tables. They are both widely used and represent data struc-
tures with different number of contention points. The queues we are using in
our case study are the lock-based and the lock-free linked list based queues in-
troduced by Michael and Scott [20]. The lock-based queue uses locks to grant
the enqueuer/dequeuer mutually exclusive access to either the head or the tail of
the queue. Two locking strategies are applied to the lock-based queue: coarse-
grain and fine-grain locking. The coarse-grained lock-based queue uses only
one lock for both the head and the tail, while the fine-grained one uses two
different locks, one for each of them. Hereafter, we refer to them as coarse-
grained queue and fine-grained queue, respectively. The lock-free queue uses
the CAS synchronization primitive to atomically modify the head or the tail
without any locking mechanism.

The second case study is on the hash table data structure. The hash table
we used is implemented as an array of buckets, each one pointing to a linked
list that contains the key-value pairs which are hashed to the same bucket. The
hash tables provide search, insert and remove operations. Insertion, removal
or search for a key operate only on the linked list associated with the bucket
to which the key is hashed to. This is where the synchronization is required.
Both a lock-based and a lock-free hash table are implemented. The lock-based
version has one lock for each bucket which, once locked, provide mutually
exclusive access to the associated linked list. The lock-free version uses the
implementation introduced by Maged Michael [19]. In this implementation,
insertion of an item, i.e a node between two nodes in a linked list, is done with

50 CHAPTER 2.

the help of a CAS to atomically swap the next pointer of the previous node to
the new node. A thread which wants to remove a node first marks the last bit of
the pointer to that node, so that other concurrent operations know its intention.
Then the node is removed by using CAS, to make the previous node point to
the next node. The design is proved to be correct and lock-free [19]. The reader

can refer to that paper for more technical details.

2.4.2 Programming Environments

In our study of the behavior of synchronization methods, we have examined

three different programming environments, C++, Java and C#.

C++ with POSIX threads

C++, prior to the C++11 standard, does not contain built-in support for multi-
threaded applications. Instead it relies on libraries and the operating system to
provide such functionality. On Unix-like operating systems, POSIX threads,
a.k.a Pthreads, is widely used to provide multithreaded programming support.
The Pthreads library provides mutex constructs as means of implementing thread
synchronization. In the C++ environment, it is possible for a programmer to pin
a thread to a specific core, This prevents the scheduler from moving the thread
from one core to another, thus avoiding unnecessary overhead. As we observed
that pinning threads to cores benefited the throughput of the concurrent data
structures, we applied it to all experiments in C++. We pin the threads to fill up
one processor before assigning threads to the next one.

C++ provides very basic memory management functionality. Memory allo-
cation/deallocation are done with the help of new and delete. In concurrent
programming, especially lock-free programming, allocating and de-allocating
memory is performed by multiple concurrent threads, which might need to be
synchronized very often at runtime. Many implementations of lock-free data
structures try to avoid that by using their own lock-free memory manager on
top of C++ new/delete. In our context, we want to examine if user level
memory management plays a significant role as a synchronization component.

2.4. CASE STUDIES 51

Lock-free Memory Manager We have implemented a lock-free memory man-
ager (MM) for allocating and de-allocating memory for lock-free implementa-
tions in C++. The scheme contains two parts: one main memory allocator
shared by all threads and per-thread allocators. The main allocator contains a
number of blocks of pre-allocated memory that it gets from the system memory.
It provides blocks of memory to the per-thread allocators. Every thread has one
per-thread allocator. Whenever a thread wants to allocate memory for the data
structure, it gets one from the per-thread allocator. When this allocator runs out
of memory, it can request new blocks of memory from the main allocator. When
a block of memory is no longer used by the data structure, it will be returned to
the memory block where it is allocated from, to be reused later.

This memory manager can provide fast allocation for each thread since al-
locating new memory usually only involves operation on its local block, which
does not require synchronization. Synchronization is only needed when the
thread uses up the block assigned to it and needs to allocate a new block from

the main allocator.

Java

Java offers an extensive API for concurrent programming via its concurrent
package. In addition to several standard data structures, it also includes most of
the low level synchronization primitives needed, such as TAS, CAS or Fetch-
And-Add. However, whether these methods actually implement the respective
machine instructions or include some implicit locks, depends entirely on the
implementation of Java’s Virtual Machine for each architecture and operating
system [23]. Also, a well specified memory model accompanies the implicit
synchronization constructs of the language. Memory management has been left

to Java’s implicit garbage collector.

C#

The native runtime environment for C# is the .NET framework provided by

Microsoft which runs exclusively on Windows. To be able to perform our ex-

52 CHAPTER 2.

Languages C++ C# Java

Memory management | malloc, implicit memory management
customized

Synch. constructs & | PMutex Mutex, Reentrant,

language features lock Synchronized

TAS, TTAS, Lock-free, Array lock

Contention Low, High

Number of Threads 2,4,6,8, 12,24, 48
Measurement intervals 0.2,04,06,08,1,2,3,4,5,10
(sec)

Table 2.1: Experimental Setup

periments in the same Linux environment used for the other languages, we have
also used Mono. This is an open source runtime for the .NET framework which
allows programs written in C# to be executed both on Windows and on Linux.
The System. Threading namespace provides classes — Mutex, Monitor and
Interlocked — for synchronizing thread activities. Mutex and Monitor classes
represent locking synchronization whereas the Interlocked class comes with
atomic primitives which can be used to create various non-blocking synchro-

nization methods.

2.5 Experimental Setup

Our purpose is to evaluate the throughput and fairness values of the test cases
in all the languages and for different contention levels. For every data structure
—as discussed in Section 2.4 — we ran a set of experiments consisting each time
of a different number of threads, that were concurrently competing to access
the data structure. Every such experiment ran for a fixed amount of time and
multiple different time intervals were used. All the different parameters of our

experiments along with their values can be seen in Table 2.1. Every experiment

2.5. EXPERIMENTAL SETUP 53

was replicated 10 times resulting in a sample satisfying normality with o =
0.05 level of significance (Shapiro-Wilk test). The means of these values are
presented in our results. Furthermore, limited according to time and resources,
samples from cases where the means were different but close were compared
with ANOVA tests in order to confirm their difference, with the same level of

significance.

In the queue case the operations were an enqueue or a dequeue with equal
probability. Each thread was assigned the same probability distribution in all
the experiment sets, across the different parameters respectively. In order to
calculate the throughput value we used the 10 seconds long tests. There we
counted the total number of successful operations for all the threads and divided
by the exact duration on each experiment. The shorter time intervals were used
for calculating the fairness index according to our definition in Section 2.3.
The reason for this variety of shorter intervals, is that fairness results can be
deceiving the longer an execution runs. In order to vary the contention level in
the queue experiments, dummy work was introduced in every thread between
the operations on the data structure.

The operations on the hash table were insert and delete with 10% probability
each and search with 80% probability. Again the same probability distributions
were assigned per thread in all the experiments. The fairness index this time was
furthermore calculated per operation basis. The contention level was varied by
changing the number of buckets, 8 for the high contention and 32 for the low.

For the implementations in Java, the IcedTea6 version 1.11.3 of the Open-
JDK6 Runtime Environment was used. We ran the C# implementations using
version 2.10.5 of Mono. For the C++ case GCC 4.4.1 was used. The host oper-
ating system for all of the above was based in version 3.0.0 of the Linux kernel.
The C# implementation was also tested in the .NET Framework version 4.0 on
Windows 7.

We performed our experiments on an Intel based workstation with 2 sockets
of 6-core Xeon E5645 (Nehalem) processors with Hyper Threading (24 logi-
cal cores in total). In order to investigate how a different hardware architecture
can influence the fairness values of our case studies we also performed the ex-

54 CHAPTER 2.

periments on a second contemporary workstation. That consists of 4 sockets
with AMD Opteron 6238 (Bulldozer) 12-core processors (48 logical cores in
total). The processors had comparable CPU clock speeds (2.4 and 2.6 GHz
respectively) and both the machines had DDR3 at 1366 MHz main memory.
The Intel machine is provided with Quick-Path Interconnect for connectivity
between chips and I/O subsystem, whereas, the AMD machine had Hyper-
Transport for the same [11]. However, the implementation of Simultaneous
Multi-Threading [28] on the two architectures differ. In an Intel (Nehalem) pro-
cessor two threads can share the resources on each physical core [25], making
it appear as two logical cores to the operating system. The AMD (Bulldozer)
processor follows a modular architecture [5]. Here inside each module, two

threads share resources other than their individual integer cores.

2.6 Analysis

In order to present, comprehend and describe the observations of the wide extent
of experiments performed, a summary of the main observations regarding each
of the test cases are available in Table 2.2 and 2.3. There, they are divided in
common observations that stand for all the programming environments tested
and then per language basis. In every type of measurement the observations are
also grouped according to the most influential parameters (contention regarding
throughput, architecture regarding fairness). A third column in every case exists
for observations regarding the relation between throughput and fairness.

The discussion in the following subsections also follows a similar structure,
namely key comments on common behavior for all the environments appear

before comments regarding specific environments.

2.6.1 Queue: General Discussion

The throughput of all queue implementations in different programming lan-
guages is presented in Figure 2.1. A summary of the main observations for

throughput, fairness and their relation can be found in Table 2.2.

2.6. ANALYSIS

C++ Java
_ 14 16
3
12T % 1 ./\ / \
10 \\ 2 / V \
vv
£ 10
g8 / \
o 8
6 - / \
6
4
PE:
k-’ 2 \ 2 7
0 0 =
2 4 6 8 12 2 48 2 4 6 8 12 2 28
Threads Threads
~-TAS ~m-TTAS ~—#—Lock-free ~—TAS ~B-TTAS ~#—Lock-free
«>=Array lock “#=PMutex ~@-Lock-free, MM «>é=Array lock ~=Synchronized ~@-Reentrant
N C# (.NET) \ C# (Mono)
18 T~ P . _

15 N/
4

2 4 6 8 12 24 a8
Threads
——TAS —B-TTAS —#—Lock-free
~>é=Array lock ~#=Lock keyword ~ ~@-Mutex

7 /-\.

. o¥ \‘ b

2 4 6 8 12 24 48
Threads
——TAS ~m-TTAS ~#—Lock-free
=>¢=Array lock —%#-Lock keyword ~ ~@-Mutex

55

Figure 2.1: Throughput of the lock-free and fine-grained queues on the Intel

system under high contention

56

CHAPTER 2.

Ct++ Java
1 1
0.8 0.8
9 06 06 +
o
©
& 04 0.4
\t ¥
0.2 \ 0.2
0 0
2 4 6 8 12 2 48 2 4 6 8 12 24 48
Threads Threads
——TAS -B-TTAS ——Lock-free —*=TAS —B-TTAS —A—Lock-free
~>=Array lock ~#=Synchronized ~®-Reentrant
—>Array lock —#=PMutex ~®-Lock-free, MM i RoontrantFair
C# (.NET) C# (Mono)
1 1
0.8 08
0.6 0.6
04 \ 04 \
0.2 0.2
0 0
2 4 6 8 12 24 48 2 4 6 8 12 24 48
Threads Threads
~—TAS ~B-TTAS ~#—Lock-free ~—-TAS ~B-TTAS ~#—Lock-free
=>Array lock —#=Lock keyword =@—Mutex =>&=Array lock —#=Lock keyword ~@-Mutex

Figure 2.2: Fairness of the lock-free and fine-grained queues on the Intel system

(600 ms time interval)

2.6. ANALYSIS 57

. C++ . Java
— —
e — o s eV o8
@0 06 0.6
4
£
£ o4 04
0.2 0.2
0 0 —
400 600 800 1000 2000 3000 4000 5000 10000 400 600 800 1000 2000 3000 4000 5000 10000
Measurement interval (ms) Measurement interval (ms)
—o—Intel - TAS ~#-AMD - TAS ~&—Intel - TAS ~#-AMD - TAS
—&—Intel - TTAS =>AMD - TTAS —#—Intel - TTAS =>&AMD - TTAS
~>=Intel - Lock-free ~®-AMD - Lock-free == Intel - Synchronized ~®-AMD - Synchronized
~+=Intel - Lock-free, MM ~==AMD - Lock-free, MM ~+=Intel - Lock-free ~==AMD - Lock-free
\ c# (.NET)) C# (Mono)
./-’._./-_J—-I—“—‘.“— v
0.8 08
0.6 0.6
0.4 0.4 0\'/‘\’/._./0/._.
0.2 0.2
0 0
400 600 800 1000 2000 3000 4000 5000 10000 400 600 800 1000 2000 3000 4000 5000 10000
Measurement interval (ms) Measurement interval (ms)
—#—Intel - Lock-free =>=AMD - Lock-free —#=Intel - Lock-free ~®-AMD - Lock-free
~—+=Intel - TAS ~—AMD - TAS ~+—=Intel - TAS ~=—AMD - TAS
Intel - Lock keyword ~ ~#~AMD - Lock keyword —&—Intel - Mutex ~—AMD - Mutex

Figure 2.3: Fine-grained and lock-free queues which show major differences in

fairness across platforms at 24 threads

CHAPTER 2.

58

a5ed 3xou uo ponunuod

‘Ssouurej pue
ndySnoIy) usomioq dduereq Iej € 9pIA
-o1d [e1oual ur senonb 9a1y-j00] YL, -

*SPOYJAW UOTIRZIUOIYOUAS
a1y Jo jsour ur ssauirej pue ndy3noiyy

u9oM)aq opew 9q ISnw Jjo-open y -

'San[eA AIN[OSqe 19)19q Ym Inq

‘59SED UONUJUOD YIIY 9y} 0) Je[IWIS I8 1Y)
spuan 9y, ‘speay) Sunedwoo jo roqunu) £q
pasearour A[feonoead st uonualuod Ay} [IIUN ITR)
SI SUIYIAIOAS SOLIBUQDS UONIUIUOD IOMO] U] -
-o[qeoriddeur se pa1apIsuod aq ued UoTNos 9y}
JBY) MO] OS aTe JO0[ABIIE 9Y) JO S}NSI oY) JTUIT]
QIempIey 9U) UBY) QIOW Ie SPEAIY)) UYA -
's11edI0)UNO0d pauTeIS-9sI80d IIAY) URY) JOITR]
sAemle jsowie ore sononb pourei3-ouy Ayg, -
'S9seaIOUl

SpeaIy) JO IOqUINU 9} S SOJRIOLIS)OP SSIUIIR,] -

‘spealy) 8y Jo
ased SurwwresSordnnuw oy ur sonyea ind
-ySnoxy) 1s10Mm 9U) AR A[JUI)SISUOD
SUOTIONIISUOD Paseq OO[Aewre dYJ, -

"S9sBD A}
JO JSOW Ul SQUO PauTeIS-9sIB0D J) URY]

1010q wuojrad senonb pourerS-our -

sadvnsuvy 11y

ssauare] snsadA jndysnoay,

ssauIre |

ndygnoay,

Apnys ased ananb 9y 3urpIeIal SUONBAIISQO UIBW Y} JO ArewIwuns y :g7°Z 9[qeL

59

2.6. ANALYSIS

a5ed 1xou uo penunuod

‘ssouire] pue Indy3noiy) ueam)

-9q Qouereq e apraoid o3 ofeuew Aoy
snyJ, ‘ssourrej ‘doj Jou ysnoyy ‘poos e
Sururejurewr o[y Isoy3ry oY) Suowe nd
-y3noIyy aAdIyoe sananb aa1j-o0] YT, -
"SpeaIy) 8§ pue

¢ e ssourej pue ndySnoryy Isoy3Iy
QY SOAIS OO XANJAJ Y} pue Speary)
¢ 01 dn ssourrej pue ndySnoiyy y3y
SOAJIYOR YOO[AelIe dUJ, ‘SpoylowW Y}
[T J9A0D JOU SQOP UONEB[I 9SISAUT Y], -
“JOTARY

-oq aysoddo 10ex9 9y} 2ARY XN pue
paseq SVI °1Somof dy) Suowre SsouIrey
s3I pue 1s9yS1y o3 Juowre ndysnory) i
sy Yo0[SVLL oyl ‘speanp g 03 dp -

"spoyjow SuTUTEWaI Y} Uey) JoITeJ Sut
-wtoprad A[rensn ononb paseq XA Yl PIm
‘ITey 3sowr Ay} ST ananb paseq Yoo[Aeire JyJ, -

"QUIYOBW [JU] 9} UO UBY) ITBJ

SS9 aIe aulyorw NV 9Y} UO SO0 pue sain}
-onI)s Ay ‘Terauas uy “(SpeaIy) ¢ SA 1) 9Sed [}
-uJ 9y} Uey} JOUOOS JBIOLIAOP SIN[BA SSAUIIR -
any

*Z1 10 9 e 950U} UBY) JOMO] I8 SPeaIy}
g Je SonjeA SSQUIIE] 9Y) SPOYIOW JSOW IO -

g

IempIey 9Y) 9A0QE PUE Je san[eA ssauIrej Y3y
urejurew sananb paseq XAINAJ pue 991j-)007] -
"SON[BA SSUITe] YSTY AIOA QASIYOR SUOT)RIUSW
-o[dwr ot Jo Jsowr YW SIRMPIRY Y} MO -

[omu]

‘SIOY)O
oy suojradino juowdSeuew AJowrowr
Q01-00[WIm onanb de1-yoo[oyl -

UONUIIUOD) MOT

-onfea ndysnoiyy 3soS1Y oy} SOAIYIE I1
QI9YM SPEAIY} 84 0} 4, WIOIJ 19))q SI[BIS
nq ‘spealy) g pue 4 ueamjaq sonanb
19130) uey) Jomo[suojrad xanuy -
"SSBAIOUI SPBAIY) JO JqUINU) SB 19}
-39q swograd SYLL ‘speaiyy Sunadwod
01 dn Jo sased oy ur JndySnoay) 3say3y
AU} aAdmyor yorym sononb oyy Suowre
are senonb peseq SVII pue SVIL -
" 01 7] WOIJ SISBAID

-ur speary) Sunedwiod jo roquinu Iy
uoym sonyea indy3noay) jo doip doaig -
uoyuaju0)) Y31

++)

ssouare,] sns1aa jndygnoay,

ssauware

ndygnoay,

a5ed snoraard woiy panunuod — 7'z 9[qeL,

CHAPTER 2.

60

a5ed 3xou uo ponunuod

‘ssou
-1mey pue ndySnoIy) usomioq Jjo-open e
soprao1d uonjejuawerdwt 99I1}-00] oY, -
‘ndy3noxy) mog

M JNq “IeJ AIoA dIe SJONIISUOD JYOO]
pop1aoid-oen3ue| oy} pue sYo0[ALy -
"ssouarej mof inq ‘nd

-ysnoyy ysy apraoxd Y20 SYLL YL -

"019z 0 2509 sdoIp 20 SV

Jy) JO SSoulIe} AU ‘SPealy) g UBY) AIOW 10 -
"puaI) JR[IWIS B SMOUS UOISIOA 921)

-[90[/YL "SYI0[SVILL PUB SVI 34} 10} %0¢
Kq sdo1p ssauItey oy ‘SpeaIy) § ULy} AIOW IO -
“19yS1Y ST SpeaIy) JO s1qunu

JUQIQIJIP SUOTE SONJEA SSOUITE] JO UOTJBLIBA Y], -
anv

"A[Teonserp

sdoip ssouirej oy} osed peoIy) Q4 oYy Ul Jaruf
"SSQUITeJ JO 92139p y3Iy B

OUS SPOYIAU [[E ‘SPLAIY) JO JOqUINU MOJ B IO -
*[[BISAO QINSLOW SSAUITE] Y31y AIoA

© 9ARY S10N1SU0D Y00 papraoid aFenSue oy, -

‘promAY
00T popraoid aSen3ue| oy ueyy nd
-ySnoay} Jomoj Ae[dsip sY00[SVIL U} -

*Spojouw JOYJO [[€ UBY) 19))9q SULIOJ

-10d uoneyuowerdwr 991j-00] YL, -
UOYUIIUOD) MO

‘;ndy3noiy) 1oy3y

ApueoyruSis seq sY00[SVILL 9YL -
uoyuajuo)) Y31

*SPOYJOW UOT)BZIUOIYIUAS

o0 o) uey ndySnory) romoy A[eAn
-ounsIp Sey $JONISUOD YOO[XANA Y, -
"OUOJA] 0} paredwod yIomowely AN oY}
yIm Joy31y Apuaisisuod st indy3nory, -

#O

ssauare] snsadA jndysnoay,

ssauITe |

ndygnoay,

a5ed snoiaaid woty panunuod — z'z dqe],

61

2.6. ANALYSIS

"SOpIS 30q UT S)[NSax
poo3 A[oAne[al)M Jjodpen SIy) oue
-[eq 0} soSeuew ananb daxy-yo0[YT, -
"SV.LL ST 20ue[eq 2y} JO 9pIs duwIes) U0
‘[[e 1& pedjuerens jou st ssauirej jnq nd
-ySno1y} 9Injosqe 9AIS YO0[q PIZIUOIYD
-u£s 9U) pue JO0[JUBIUIY Irejun Y], -

‘y3noyy Indysnoy) Suroyrioes
9010UD Y} A[o1uyep are ‘(300] Aelre 10
Juenuady Irej) armjonns Sunrem ananb
QAR AQJULISUUI YOTYM SpPOTjoll SU{o0]

uay} ‘9Ano9(qo TeONLIO B SI SSQuIre) Jy -

*SJONIISUOD JOO0] AeIIe oy} pue

JUBT)UASY ITej 9} J9)Je JOPIO UT PIIY) Y} (1S ST
J1 INQ SON[BA JOMO] SIASTYIE T JBY) I0)Jy “JoIIe]
ST anenb oaxg-300[ay speary) g1 0 dn 10q -
"[IU] 9Y} UT UBY) 9SIOM SABM[E QI8 SYO0[paseq
SVLL Pue SVI ‘YO0[q PazIUuoIyduks oyJ, -
*S9SED PRI} JOMO[JOJ SONJBA SSOUITR) ISIOM -
any

‘sananb paseq SV, ay) uey) 10139q APYSIIS SI

J1 2I9UM SISED PEaIYy) 84 AY) 0] 1da0Xa J01ABYQq
Te[TwIs € YiIm JXau oy} ST ananb a13-300] oy, -
"POUIPIM QTE SOOUAIJJIP Y}

Qf UL 9[IYM ‘SpeaIy) ¢ JO ased ay} ur Aqeroad
-89 ‘K190 MO[[0} sonanb paseq SV, Ay} OS]V -
"0 AeIIe oy} pue JYO0[JUBIUAIY

ITeJ 9} 9I€ SISED JSOW UT SIQUUTM JN[0Sqe YT, -

[omu]

‘spea1y) 8¢ ur sdoip K[e10Aas jerp)
¥oo] Aeire oy} 10§ 1dooxa JSOMOTS) ST
OO0 JUenUaay 9y} JO UOISIOA ITef oy, -

‘ndySnoxyy
1soyS1y oy juesard SYO0[q pozIuoIyd
-uAS pue SVLIL ‘SVL uo paseq senanb
paureIs-ouy Ay} pue 2IJ-Y00] JYL -

UONUIUOD) MOT

‘;ndySnoiy) poos

AJ9ATIE[aI B PUB IOIABYQQ 9[qR[eDS B 9ARY
uonejuawe[dwr 991j-300] 9yl AQ pamog
-[0J SYOO0[Paseq PAZIUOIYOUAS Y], -
'S9sED 9Y) JO Jsow

ur 3521 9y) [[& WwiI0j1adino sYO0[JUenuay
9rduurs oy uo paseq sUOTIONISUOD AT, -

uoyuaju0)) Y31

papf

ssouare,] sns1aa jndygnoay,

ssauware

ndygnoay,

a5ed snoraard woiy panunuod — 7'z 9[qeL,

62 CHAPTER 2.

The fine-grained queues achieve in most of the cases higher throughput than
their coarse-grained counterparts. This is expected, as doubling the locks allows
up to two threads to operate in parallel, one enqueueing and one dequeueing.
The trends among the different lock types in the coarse-grained queues are sim-
ilar comparing to the respective in the fine-grained ones. Therefore, unless
explicitly mentioned, from now on all references to lock based queues will be

based on the ones of the fine-grained kind.

The throughput results of lock-free and fine-grained queues of the case are
presented in Figure 2.1. The constructions based on the array lock consistently
achieve the worst throughput value in the case of 48 threads in all the studied
programming environments. Since this is more than the number of the system’s
hardware threads, i.e. the hardware limit, any thread waiting in the array might
be swapped out by the scheduler. This forces the remaining threads in the array
to wait, until the former is swapped back in. Of course this also affects the
fairness index of the method besides the throughput value. Due to the above,
the results are in fact so low that we consider this solution inapplicable for this

number of threads.

At first, for low numbers of threads and/or low contention, all methods show
a high index of fairness. An interesting observation that occurs as the number of
threads increases, and particularly in the high contention setting, is the sensitiv-
ity of the fairness values along the different time intervals. It is quite reasonable
that during a small time interval even the slightest scheduling unfairness would
affect the measured value. This is even more visible the more the threads are,
since the one with the maximum or minimum number of operations affects less

the average fairness.

The fairness experiments are also studied for the AMD system, to gain better
understanding of the influence of the hardware architecture. The methods where
major differences were observed are presented in Figure 2.3. We should also
point out that while the 48 threads exceed the hardware limit on the Intel system,
this is not the case on the AMD system, which can support up to 48 hardware
threads.

2.6. ANALYSIS 63

2.6.2 Queue: Environment Specific Discussion

As mentioned in Section 2.4.2, in C++ the option to pin specific threads to spe-
cific processors is used. That explains the drop of throughput values showed
in Table 2.2. When the number of competing threads is up to 12, our pinning
strategy schedules them in one processor in a socket. When the number exceeds
12, the next 12 threads, i.e. threads number 12 to 24, are scheduled on a sec-
ond processor which do not share the same L3 cache with the first one. This
increases the possibility of cache conflicts among threads, which results in the
throughput drop at 24 threads.

Continuing in the C++ case, the TAS based and TTAS based queues are
among the queues which achieve the highest throughput in the cases of up to
4 competing threads. This advantage comes from the fact that the lock is con-
structed from just one atomic operation. However, as the number of threads
increases, the two end points of the queue become hot spots. The cost of deal-
ing with high contention, such as cache conflicts, becomes higher, making such
simplicity less important to the throughput results. As a result, the difference
in throughput between the TAS and TTAS based queues, and the remaining
queues, except for the PMutex one, is relatively small when the number of
threads is above 4 up to the hardware limit.

The trend of the PMutex based queue’s throughput when increasing the
number of threads differs from the other implementations. It is lower than the
other queues for thread counts between 4 and 12, but keeps almost the same
throughput value in the case of 24 and 48 threads. The internal design of PMu-
tex based is different from the other locking methods. In contended cases, a
thread goes to sleep if it fails to acquire the lock. We can observe that this
mechanism, which is a form of backoff, penalizes the throughput in the cases
of lower number of threads, i.e. below the hardware limit. However it helps the
PMutex based queue deal with extreme contention cases, i.e. 24 and 48 threads,
better than other implementations. The results show that both throughput and
fairness benefit by this.

The thread pinning in specific processors also affects fairness. We observe
that the fairness values at 8 threads are lower than those at 6 or 12 for most

64 CHAPTER 2.

implementations. The reason is that in the case of 6 or 12 threads, all cores are
scheduled to run either one or two threads, respectively. While in the case of
8 threads, some cores run one and some run two threads, which causes more
fairness differences among the threads.

In Java, the throughput of the Reentrant lock and its difference from the rest
is the most noticeable. This happens due to the Reentrant lock’s inherent back-
off mechanism — described in Section 2.2 — similar of which are not inherent in
the other locks (e.g. exponential backoff). However, the overhead of the Reen-
trant lock’s mechanism does not pay off in lower contention conditions as both
versions of the lock are the lowest, with the fair one being by far the worst.

The C# implementations were tested in both Mono and the .NET Frame-
work. The throughput results were consistently in favour of the latter. Further-
more, the low throughput of the Mutex based constructions is justified by its
design, which is heavyweight due to the requirement that it should also provide
interprocess synchronization. However this low throughput for Mutex, as well
as for the 1ock construct, come in benefit of fairness.

2.6.3 Hash table: General Discussion

The throughput of all hash table implementations in different programming lan-
guages is presented in Figure 2.4. A summary of the main observations for

throughput, fairness and their relation can be found in Table 2.3.

2.6. ANALYSIS

C++

65

Java

. /
. /[~

2 —h

/

Sucessful operations per ms (thousands)
I
&

~N

\ o

0 0 — X
2 4 6 8 12 24 48 2 4 6 8 12 24 48
Threads Threads

—-TAS ~B-TTAS —#—Lock-free —-TAS ~B-TTAS ~#—Lock-free
== Array Lock == PMutex ~®-Lock-free, MM == Array Lock =>-=Reentrant ~@-Reentrant Fair
. C# (.NET) . C# (Mono)

16

5

14 ,%
12 4]

10

e

R/ AN

R4

2 4 6 8 12 24 a8
Threads
——TAS ~m-TTAS ~#—Lock-free
—>=Array Lock ~#=Lock keyword ~~@-Mutex

2 4 6 8

Threads
——TAS ~m-TTAS ~#—Lock-free

=>=Array Lock ~=Lock keyword ~~@-Mutex

\)N
12 2 48

Figure 2.4: Throughput of all hash tables on the Intel system under high con-

tention

66 CHAPTER 2.

Ct++ Java
1 1
0.8 0.8
@® 06 0.6 /r'_‘\
8 \ Y
<
=
o4 \(04 4
0.2 0.2
0 0
2 4 6 8 12 24 a8 2 4 6 8 12 24 8
Threads Threads
——TAS —B-TTAS a—Lock-free ——TAS ~B-TTAS ~#—Lock-free
=>Array lock ==Synchronized ~@-Reentrant
= Array lock —#=PMutex ~®-Lock-free, MM i ReentrantFair
c# (.NET) C# (Mono)
1 1
08 + 08 ;\;:\
0.6 06 \
04 \ 0.4
0.2 x 02
0 0

2 4 6 8 12 24 48 2 4 6 8 12 24 48
Threads Threads
—-TAS ~W-TTAS —#—Lock-free ——-TAS ~W-TTAS ~#—Lock-free
=>Array lock —#=Lock keyword ~=@®-Mutex =>&=Array lock —#=Lock keyword ~=@-Mutex

Figure 2.5: Fairness of all hash tables on the Intel system (600 ms time interval)

2.6. ANALYSIS 67

C++ Java
1 1
0.8 08
9 06 06
o
£
& o4 04
02 02
— x/x_)(\x/)\/x—x-—-x
0 0
400 600 800 1000 2000 3000 4000 5000 10000 400 600 800 1000 2000 3000 4000 5000 10000
Measurement interval (ms) Measurement interval (ms)
—o—Intel - TAS ~@-AMD - TAS —o—Intel - TAS ~8-AMD - TAS
~#—Intel - TTAS —4AMD - TTAS ~—Intel - TTAS =¢AMD - TTAS
~>=Intel - Lock-free ~®-AMD - Lock-free ~#=Intel - Synchronized ~®-AMD - Synchronized
«=Intel - Lock-free, MM «AMD - Lock-free, MM «=Intel - Lock-free <« AMD - Lock-free
) c# (.NET)) C# (Mono)
— . I
b ¥
08 08
06 06
0.4 04
02 02
0 0
400 600 800 1000 2000 3000 4000 5000 10000 400 600 800 1000 2000 3000 4000 5000 10000
Measurement interval (ms) Measurement interval (ms)
—e—intel - TAS ~ —B-AMD-TAS —&Intel - TTAS —¢—intel - TAS =H=AMD - TAS
~—Intel - TTAS —AMD - TTAS

>=AMD - TTAS *-Intel - Mutex ~@—AMD - Mut¢ =Intel - Lock-free ~®—-AMD - Lock-free

Figure 2.6: Hash tables which have major differences in fairness across plat-
forms at 24 threads

CHAPTER 2.

68

a3ed jxou uo penunuod

*ased anonb oy ur
uey) ssouarey Jo jndySnoiyy ur [90x9

SPOYJOW UOTJBZIUOIYOUAS JUAIIHI(T -

"s19[0Nq JO Joquunu Jy3 0 [enba 1o uey)
10)e0I3 ST SPEaIY} JO JOqUINU oY) UM 9[q
-ISIA QIOW JWI0J9q SAJURIAPIP oYL ySiy

aunb A[[erous3 are seorpur ssoulrej Ay, -

‘[[oM se AI[Iqe[edS MOYS pue ‘d3eIoAe U0
‘suonjejuowa[dwr paseq OO[9y} JO ISOw UBy)

Ioneq wiioyrad suonejuowerdwr 9015-y00] oY, -

sasvnsuvy 11y

ssouIIe J snsaaA jndysnoayy,

ssauIrey

ndygnoay,

Apnis ased 2jqv1 ysvy 9y} Jurpie3al SUONBAIISQO UTRW) JO ATewWNS Y :€'7 9[qe],

o))
O

2.6. ANALYSIS

a5ed 1xou uo panunuod

‘ssouirej pue Jndysnoiy)

[Joq JO SWIId) UT SPEAIY) JO SIoquunu
10y3S1y je ooueurojrad Apeors sdoay
1 ‘ssofoyioadN ‘doj oy Suowre jou
ST JUQ0ap YSNOY) ‘SSAUITRJ S)T U SO
-MO[Q) A[[ensn SI 9[qe) Ysey paseq
XoIAd oy Jo ndySnomp oyp, -
‘sanfeA ndy3noIy) 1omof

pue ssouirej ySiy yym puan aisoddo
Y} MOUS SI[qe) Ysey paseq 0] Aex
-Te JUQ)Xd WS 0) pue SVLI ‘SVL -
‘SsouITej

MO 10 9eropowt ng ndy3nory y3y
aremyoe suonjeuowA[dwWwT 991 YO0]
Ay} ‘s13[onq JO ToquuNU I} Uy} Io3Te]

SI SpeaIy) JO JIoqunu 9y} UM -

“QIMIOIYOIE 9Y) JO 9FUBYD) Aq PIOUD
-nyur K[1aeay dre $}00] SVLI PUt SVL -
any

*S[BAIQ)UI SUIT} QY [[€

Jnoy3noxy) AJU9ISISUOD sanfea Y31y sure)
-UTBW UONONJSUOD XANNJ Y, "S[eAId]
-ur aw 1o3uo] 10 san[eA YSIY ALY pue
19A0991 A3} IOAIMOH “9SBD SPBAIY] 817 Ul
ur arejun A19A d1e Yo0[SVIL Pue SVI -
*GL"(0 INOQE [[1S Y3noy) ‘19Mmo[

doip suonejuoweiduir 991j-00] JO sonfea
AU} JWI| AIeMpPIEY Y} JAO0QE Pue Iy -
*9SBD SpeaIy)

g 9y} Joj 1dooXa IreJ 9ABYAq SISED) [[B
(speaiyy) 1w Srempiey ay) mojdg -
121y

“9sBD
uonuuod Y31y 9y} ur uey) A[Iqeeds 19119q pue
sonfea 10y31y moys suonejuowerdwr ay) [V -
UONUIIUOD) MOT

"SasEd 91} JO Jsow ur duo o[dwirs ay} uey) I9330q
s1owiof1od 1o3eurw AJOWAW 991J-)O0] Y YIIM
QUO AU, "SpeaIy) 210w I0 § Ul sanfea ndySnoy
1soy31y oy} Juradryoe ‘speary) g4 01 dn Kem
Ay [e 9ress suonejuowd[dwr 921j-00[YL, -
*210J2q JOU Jnq ‘SpeaIy)

71 puokaq dnoi3 snoraaid ay) ueyy ndy3noayy
Ioy31y SOAQIYOR J[qe) Ysey paseq xANJAJ YL -
‘Apueoyugis doip sanfea

I19Y) QIoyM SPEaIY)] puoAkaq a[eds jou op Koy
IOAOMOH ‘Ioneq Ay31ys Sururogiad Ajfensn auo
3sIg o) yim sonjeA INdySnoIyy Ie[TWIS oAey
S9[qe) Ysey paseq jo0 Aelre pue SVI, ‘SVLL -
uoyuaju0)) Y31

++D

ssouare,] snsaaa yndygnoay,

ssauareq

ndygnoay,

a5ed snoraard woiy panunuod — ¢z 9[qeL,

CHAPTER 2.

70

a3ed jxou uo ponunuod

‘ssouarej pue JndySnony) usom)

-9q Jjoapen; poos e op1aoid 9[qe) ysey
paseq }OOT 9y} pue 931J-300] Y, -
‘indy3noxy ur syoe[

g ‘Irej A19A ST YJO[XA\ Y[, -
‘ssouarej 1ood 1nq ‘nd

-ySnoIys Y31y smoys Y20[SV.LL YL -

“ITeJ 1SOW Y} ST

YOO[XAINA oY} ‘SPeaIy) 7 UBY) 9IOW IO -
‘speaIy)

§ I10)Je ssouarej ut doip sY00[SVILL oYL -
any

‘8 03 C1 woly

SurSuer sjunod peary) I0j QUO ITeJ jSOw
oy) sAempe s1 wiLo3[e 9[3uls ON - Ja3u]
JUOWUOIIAUD

pue 2InoIYdIe JO sso[predar ‘aej A[ySry

are spoyjeuwl [[e ‘spearyy 9 o3 dn Iog -

"pIeoq ay) ssoxoe JndySnoxy) ur asearout

ue sasned §)axyonqg Jo Iequunu Yy SurseaIouy -
UONUIIUOD) MOT

"Wo)SAS awnunl ur d3ueyd

) Aq paSueyoun A[aSre[surewal ‘yndysnoiy)
J)njosqe 0) 10odsaIr Yim ‘IOPIO QATIR[I AU, -
“[[e & 9[BOS JOU S0P YOIYM OUOJA] UO JJ0]
XA Y} st uondadoxa Y], SuIsearddp siels
ndy3noiy) oy spealyy ¢ I9ije pue ‘syxonq jo
Ioquinu ay) ‘spea1y) § 0) dn o[eos spoyjow oy, -
‘Indy3noiy) 1somog

) SOAIS S310NNSU0D SUD[O0] Paseq XAINJA YL, -
"SMOT[OF 1Y) dUO Y} ST

uonjejuawdT 921j-)[00] AU, "SpoyIow SUT[O0]
Ioy)o uey) Iopeq uuojrad SO0 SVIL YL -
"Xnur| uo suonejuowadwr ouo

Ay uey) (XG'g - Xg) Iondq Apueoyrudis wioy

-10d smopurpy uo suonejuowedwr TN Y], -

#O

ssouIIe J snsaaA jndysnoayy,

ssauIrey

ndygnoay,

a5ed snoiaaid woty panunuod — ¢z qe],

71

2.6. ANALYSIS

“JOUUBW JUSIOYJD AIOA © UT

Jjooper) ay) doueeq 0} deURW JO0[q
PozZIUOIYOUAS 9y} pue oo] Aelre
‘SV.L uo paseq suoneyuoworduwr oy J, -
‘Indy3noiy) Juad

-op SurSeurwW JNOYIIM SIN[BA SSQUIIR]
yS1y opraoid s)o0] Juenuaoy oYL, -
‘;ndy3noay) 10y31y 10§ ssoulre]

SQOYIIORS POYJOUWI dOIJ-YOO[oYL, -

QU0 921J-300] a3 A3YSI[s pue uon
-ONIJSUOD YO0[q PIZIUOIYOUAS Y} ‘O[eds
Io[[eWIS B UI ‘SIopUry os[e oSueyo oyJ,
‘paouanpur A[IABAY 2Ie SI[qe) Ysey paseq
SVLL PUe SV JO S99Ipul ssoulIey oy, -

any

“ITeJ JSe[Ay} ST 9[qe) Ysey 9IJ-00] YT, -
"S[EAIQIUT QW) JOFUO[Ul

sanpea 1oy} y3noy) uraordw SYI.I pue
SVL YNm ‘Irej 1se9[ay) are Aoy) speary)
Q¥ U] "SISBD) JO Jsow Ul I1ej AjoAne[ar
a1e Yo0[Aelre 9y) pue SVILI Pue SVI -
*$00[q PIZIUOIYOUAS

A1) UO J[INQ AUO Y} SMO[[0J A[oSO[D "SI[q
-8} ysey paseq SO0[Juenuady Y} yjoq £q
POASTYOE oIk SoN[eA SSOUITe] JSaySTY YT, -

121u]

-9oueuioyrad 3soysy

AU} SIASIYOE T SOSBAIOUT SPEAIY) JO JoquuInu I}
uoym eyl adso ToMO[90¢-07 Swrojrad
UOTyM SI[qe) Ysey a1J-300] 2y} 0§ 1daoxa ased
UOTIUIUOD MO[A} O} JR[IWIS ST JOIARYQ] J], -
uonuaIU0) YSI

"SaN[eA MO

moys A[JuoISISuOd SYO0[JUBNUIAY Y} ylog -
'sdoIp A[910A3s Y0oO[Aelre

Ay} 9[iym oueuriojrad syt ursearour sdoay uon
-ONISU0D 91J-00] oY} A[[eoyroads spearyp Qf
UT JOAIMOH SQUO 31J-3[00] Y} pue sy00[Aeire
‘$[00[q PIZIUOIYOUAS UO Paseq So[qe) ysey oy}
Kq paaamyoe Arensn st indy3noayy 3say3ry ayJ, -

UONUIIUOD) MOT

papf

ssouare,] snsaaa yndygnoay,

ssauareq

ndygnoay,

a5ed snoraard woiy panunuod — ¢z 9[qeL,

72 CHAPTER 2.

The hash table is a data structure with many points where operations can be
performed independently — the different buckets. Thus it allows more threads
to be served concurrently and, since the keys that were used were uniformly
distributed, it also allows for fairer executions. In fact we observe interesting
variations of the fairness values between the different synchronization mecha-
nisms in the cases where the number of competing threads is bigger than the
number of the available buckets. Still though, concerningly low fairness values
occur when the number of threads exceeds the hardware limit.

Due to the different nature of the hash table’s methods, we first checked
the values of the fairness index per operation, i.e. Insert, Remove, Search and
also for the total number of operations regardless their kind. Since the patterns
are similar, unless explicitly mentioned, the observations stand for any kind of
operation.

As it can be seen in Table 2.3, different synchronization mechanisms than
in the queue case have to pay the tradeoff between throughput and fairness.

In fact the pattern that can be observed is that all the synchronization meth-
ods that achieved high throughput in the low contention cases of the queue are
the ones that manage the best throughput performance in the hash table. This is
because the hash table consists of multiple linked lists where the hashed values
are stored, i.e. the same basic component as the queue. And since the con-
tention and the requested operations of the competing threads is now uniformly
distributed along the different linked lists, the contention is lowered in each of
them. Therefore the best performing solutions locally form the final result for
the hash table. Similarly we can see the local fairness behaviour of the queues

magnified in the total fairness index of the hash table.

2.6.4 Hash table: Environment Specific Discussion

Again in the case of C++ we can see the advantages and disadvantages of spe-
cific thread pinning to cores. While generally when the number of competing
threads is less than the hardware limit, i.e. 24 threads, all the hash tables be-

have very fair, this observation can not be applied for the case of 8§ threads. The

2.6. ANALYSIS 73

reason is that scheduling 8 threads into 6 cores with hyperthreading causes un-
fairness when some cores run only one thread and the other running two. In the
case of 6 or 12 threads, they are scheduled evenly to cores.

We also observe that, as the TAS- and TTAS based hash tables achieve very
low throughput, even a small unfairness in the scheduling of threads can cause
a negative effect on their fairness measures, especially at short time intervals. It
is interesting though that the values can recover in longer time intervals.

The tradeoff between throughput and fairness appears when the number of
threads is over a threshold, at which point we start to get contention at the shar-
ing points in the data structure, i.e. the behaviour associated with the queue.
These thresholds are usually at 8 and 24 threads in high and low contention
scenarios, respectively. This result agrees with the fact that the hash tables have
8 or 32 buckets in each respective scenario. When the number of threads goes
beyond the threshold, we see that some implementations, which achieve high
throughput, might have to sacrifice the fairness. TAS- and TTAS based (and ar-
ray lock based, to some extent) hash table represent this trend with high fairness,
but low throughput. Lock-free hash tables also show a clear trend, but with high
throughput and lower fairness results. Between the lock-free implementations
with and without lock-free memory management, the former achieves higher
throughput, but also gets lower fairness result than the latter, and vice versa.
PMutex, the language specific construct in C++ that we tested, surprisingly
does not perform well in this case study in the cases of less than 24 threads.

The different runtime systems for C# do not cause any change in the rela-
tive order of the methods as of throughput performance, but still the values in
.NET are consistently higher than the ones in Mono.

Regarding fairness, no single algorithm is always the most fair for the higher
numbers of threads on the Intel machine. On the contrary, considerable differ-
ences occur when changing to the AMD architecture, leaving the Mutex con-
struct as the most fair one.

Solutions with high overhead like the Reentrant locks do not pay off for the
hash table in Java either. The throughput is the lowest, however their inherent

queue structure benefits fairness. More lightweight solutions manage to balance

74 CHAPTER 2.

this tradeoff.

2.7 Conclusions

In this paper we evaluated different types of lock-based (from fine-grained to
coarse-grained), as well as lock-free, synchronization methods with regard to
their potential for high throughput and fairness.

Selecting the best synchronization constructs to achieve the desired behav-
ior is a non-trivial task, which requires thorough consideration of different as-
pects. Besides languages and their features, the selection is also governed by
several other parameters and factors, and the interplay among them, e.g. the
system architecture of the implementation platforms; possible run-time envi-
ronments, virtual machine options and memory management support; and the
characteristics of the applications.

Our results show that the implicit synchronization constructs provided at the
language level, for the managed languages used in our experiments, provide de-
cent throughput and fairness for many scenarios. Much can however be gained
by using more complex designs and implementations in C++, that does not rely
on automatic garbage collection. This is especially true for data structures with
a fine-grained design, where operations are not just simply serialized, but can
actually take place concurrently. In general, it is clear that the more fine-grained
the designs is, the higher the potential to achieve a higher degree of throughput,
because of their high potential for parallelism. A fine-grained design also leads
to increased fairness between the actors involved, as multiple operations can be
performed in parallel without conflicts.

We observed that most synchronization methods show reasonable fairness
and throughput when used by a low number of threads, or for scenarios with
very little contention. However, when the contention increases, and the number
of threads that are executed concurrently passes the number that can be sched-
uled on a single socket, the behaviour starts to deviate. This can be mitigated
by having a data structure design that supports more parallelism, allowing for

a wider choice of concurrency mechanisms. Some lock constructs, that per-

BIBLIOGRAPHY 75

formed poorly in queues under high contention, worked fine when used in hash
tables under high contention. The cause of this is the inherent distribution of
data accesses in a hash table. Methods that use backoff were shown to work
very well during high contention scenarios, but the extra overhead lowered the
throughput during lower contention. Some constructs such as array locks are
very fair, but drops quickly in throughput when faced with increased contention.
In most cases, a trade-off between throughput and fairness has to be made, no
matter the language or architecture. A reasonable such trade-off for many sce-
narios could be made using lock-free algorithms, which in most cases manages
to pair good fairness with high throughput.

More knowledge about the specific execution environment could lead to
more fine-tuned decisions on which synchronization mechanism to select. Our
experimental observations shed some light in this direction.

The results in this paper allows us to take a step towards improving method-
ologies for choosing the programming environment and synchronization meth-

ods in connection to the application and the system characteristics.

Bibliography

[1] T. Anderson. The performance of spin lock alternatives for shared-money multi-
processors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16, jan
1990.

[2] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian, and A. Davis. Han-
dling the problems and opportunities posed by multiple on-chip memory con-
trollers. In Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques (PACT), pages 319-330, New York, NY, USA,
2010. ACM.

[3] S.Benkner, S. Pllana, J. Tréff, P. Tsigas, U. Dolinsky, C. Augonnet, B. Bachmayer,
C. Kessler, D. Moloney, and V. Osipov. PEPPHER: Efficient and Productive Usage
of Hybrid Computing Systems. IEEE Micro, 31(5):28-41, sept.-oct. 2011.

[4] B. N. Bershad. Practical Considerations for Non-Blocking Concurrent Objects.
In Proceedings of the 13th International Conference on Distributed Computing
Systems, pages 264-274, 1993.

76

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

CHAPTER 2.

M. Butler, L. Barnes, D. Sarma, and B. Gelinas. Bulldozer: An Approach to

Multithreaded Compute Performance. IEEE Micro, 31(2):6—15, march-april 2011.
J. Chen and W. W. III. Multi-Threading Performance on Commodity Multi-core

Processors. In Proceedings of 9th International Conference on High Performance
Computing in Asia Pacific Region (HPC Asia), 2007.
T. Craig. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap.

Technical report, University of Washington, Technical Report 93-02-02, 1993.
K. M. Franke Hu., Russell R. Futexes and furwocks: Fast userlevel locking in

Linux. In Proceedings of the 2002 Ottawa Linux Summit, 2002.
K. Fraser and T. L. Harris. Concurrent programming without locks. ACM Trans-

actions on Computer Systems (TOCS), 25(2), 2007.
P. H. Ha, M. Papatriantafilou, and P. Tsigas. Efficient self-tuning spin-locks using

competitive analysis. Journal of Systems and Software, 80(7):1077-1090, July

2007.
D. Hackenberg, D. Molka, and W. E. Nagel. Comparing cache architectures and

coherency protocols on x86-64 multicore SMP systems. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

42, pages 413-422, New York, NY, USA, 2009. ACM.
M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-

mann, 2008.
C. A. R. Hoare. Towards a theory of parallel programming. In P. B. Hansen,

editor, The origin of concurrent programming, pages 231-244. Springer-Verlag

New York, Inc., New York, NY, USA, 2002.
H. Inoue and T. Nakatani. Performance of multi-process and multi-thread process-

ing on multi-core SMT processors. In 2010 IEEE International Symposium on

Workload Characterization (IISWC), pages 1-10, dec. 2010.
R. Jain, D.-M. Chiu, and W. Hawe. A quantitative measure of fairness and discrim-

ination for resource allocation in shared computer systems. CoRR, ¢s.N1/9809099,

1998.
A. Lamarca. A performance evaluation of lock-free synchronization protocols. In

Proceedings of the 13th ACM Symposium on Principles of Distributed Computing,

PODC ’94, pages 130-140. ACM Press, 1994.
P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent mul-

tiprocessors. In Proceedings of the Eighth International Parallel Processing Sym-

posium, pages 165-171, apr 1994.
J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization

on Shared-Memory Multiprocessors. ACM Transactions on Computer Systems,
9:21-65, 1991.

BIBLIOGRAPHY 77

[19]

(20]

(21]

[22]

(23]
[24]

[25]

[26]

(27]

(28]

M. M. Michael. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the fourteenth annual ACM symposium on Parallel algo-

rithms and architectures, pages 73-82. ACM, 2002.
M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In Proceedings of the fifteenth annual ACM

symposium on Principles of distributed computing, pages 267-275. ACM, 1996.
M. M. Michael and M. L. Scott. Relative Performance of Preemption-Safe Locking

and Non-Blocking Synchronization on Multiprogrammed Shared Memory Multi-
processors. In Proceedings of the 11th International Parallel Processing Sympo-

sium (IPPS), 1997.
V. Nazaruk and P. Rusakov. Blocking and non-blocking process synchronization:

Analysis of implementation. Scientific Journal of Riga Technical University, Com-

puter Science. Applied Computer Systems, 44:145-150, 2011.
Oracle. Java Standard Edition Documentation. 2012.
H. Sundell and P. Tsigas. NOBLE: A Non-Blocking Inter-Process Communica-

tion Library. In Proceedings of the 6th Workshop on Languages, Compilers and
Run-time Systems for Scalable Computers, Lecture Notes in Computer Science.

Springer Verlag, 2002.
M. E. Thomadakis. The Architecture of the Nehalem Processor and Nehalem-EP

SMP Platforms. Technical report, A research report of Texas A&M University,

2011.
P. Tsigas and Y. Zhang. Evaluating the Performance of Non-Blocking Synchro-

nization on Shared-Memory Multiprocessors. ACM SIGMETRICS Performance

Evaluation Review, 29(1):320-321, 2001.
P. Tsigas and Y. Zhang. Integrating Non-Blocking Synchronisation in Parallel Ap-

plications: Performance Advantages and Methodologies. In Proceedings of the 3rd
international workshop on Software and performance, pages 55-67, New York,

NY, USA, 2002. ACM.
D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maxi-

mizing on-chip parallelism. In ISCA, pages 392—403, 1995.

78

CHAPTER 2.

PAPER II

Nhan Nguyen, Philippas Tsigas

Progress Guarantees when Composing
Lock-free Objects
A shortened version of this paper appeared in the proceedings of
the 17" International European Conference on Parallel and Distributed
Computing (Euro-Par)
Bordeaux, France. August 29 - September 2, 2011
LNCS Vol.: 6853, pp. 148 - 159, Springer-Verlag 2011.

PAPER II - Progress Guarantees
when Composing Lock-free Objects

Abstract

Highly concurrent and reliable data objects are vital for parallel programming.
Lock-free shared data objects are highly concurrent and guarantee that at least
one operation, from a set of concurrently executed operations, finishes after a
finite number of steps regardless of the state of the other operations. Lock-
free data objects provide progress guarantees on the object level. In this paper,
we first examine the progress guarantees provided by lock-free shared data ob-
jects that have been constructed by composing other lock-free data objects. We
observe that although lock-free data objects are composable when it comes to
linearizability, when it comes to progress guarantees they are not. More specif-

81

82 CHAPTER 3.

ically we show that when a lock-free data object is used as a component (is
shared) by two or more lock-free data objects concurrently, these objects can
no longer guarantee lock-free progress. This makes it impossible for program-
mers to directly compose lock-free data objects and guarantee lock-freedom.
To help programmability in concurrent settings, this paper presents a new syn-
chronization mechanism for composing lock-free data objects. The proposed
synchronization mechanism provides an interface to be used when calling a
lock-free object from other lock-free objects, and guarantees lock-free progress
for every object constructed. An experimental evaluation of the performance
cost that the new mechanism introduces, as expected, for providing progress

guarantees is also presented.

3.1 Introduction

A concurrent data object is lock-free if it guarantees that at least one, among
all concurrent operations, finishes after a finite number of steps. Lock-free data
objects are immune to deadlocks and livelocks, and typically provide high scal-
ability and performance [11] [10] [20] [22], especially in shared memory multi-
processor architectures. Several lock-free implementations of fundamental data
structures have been introduced in the literature, such as queues [15] [21] [8],
priority queues [18], linked-lists [23] [19] [18] [9], and hashtables [6] [17] [3].
Moreover, the problem of composing lock-free data objects has been considered
recently in an effort to support the use of lock-free objects in the context of com-
plex software development. Composite data structures, which are built by nest-
ing multiple basic data structures, were first studied by Cohen and Campell [4].
Recently, Gidenstam et al. [7] and Cederman and Tsigas [2] studied the prob-
lem of composing two operations from two different lock-free objects into one
compound atomic operation. These results made it possible to perform complex
atomic operations such as moves that could move an item from one lock-free
data object to another lock-free data object in a lock-free way.

Petrank and Steensgaard [16] also studied the problem of composing lock-

free programs and services. They provided new formal definitions of lock-

3.1. INTRODUCTION 83

freedom, the bounded and unbounded lock-freedom and they extended them to
programs and services. These new definitions allowed the authors to formally
state and prove the composition theorem. The theorem guarantees lock-free
progress for a lock-free program when composing with a service supporting
lock-freedom, using the new definitions. This contribution is a step towards
formally studying lock-freedom. However, the paper did not consider the case
when multiple programs share a service and compete with each other to use it.
This way of composing programs and services can affect their progress guaran-

tees.

In this work, we address the lock-free composition problem but from the
perspective of object-oriented programming and we do not consider changing
the definition of lock-freedom in order to guarantee composition. In object-
oriented programs, one lock-free object can be concurrently shared by other
lock-free objects. In this setting, composition of several lock-free objects in
one object is possible. When examining progress guarantees provided by these
objects, we found that they can not provide the lock-free progress guarantee
offered by the shared objects that compose them. To help solve this problem,
a synchronization mechanism is proposed for a lock-freedom progress guaran-
tee. By applying this mechanism when composing lock-free objects, we can
compose as many objects as possible without fear of losing lock-freedom of the

individual participants.

The rest of this paper is organized as follows. Section 3.2 examines the
progress guarantees for lock-free objects in a composition. Then, the new syn-
chronization mechanism for composing lock-free objects is proposed in section
3.3. Section 3.4 presents a set of experiments to evaluate our synchronization
mechanism in practice. A conclusion of our work and discussions about future

improvements come last in the section 3.5.

84 CHAPTER 3.

3.2 Progress Guarantees when Composing Lock-
free Data Objects

This section examines progress guarantees by lock-free objects used in an object-
oriented program. The program can also contain blocking objects. However,
since we are considering composing lock-free objects, blocking objects can be
taken away without degradation of generality. In the remainder of this paper, all

objects mentioned are lock-free.

1 class LF

2 word *ptr

3 public op(args)

4 while (true)

5 oldval < *ptr

6 newVal < calculate (args)

7 if (CAS(ptr, oldval, newVal))
8

return

Algorithm 3.1: A template of a lock-free object

3.2.1 Lock-free Implementations of Data Objects

Lock-free objects are objects that provide lock-free progress guarantee for their
operation executions. The guarantee ensures that some among its concurrent
operations succeed after a finite number of steps of their own execution. To pro-
vide such a guarantee, lock-free objects usually use non-blocking synchroniza-
tion primitives to synchronize concurrent accesses to shared memory among the
concurrent operations. Two synchronization primitives that are commonly used
are Compare-And-Swap (CAS), Load-Link/Store-Conditional (LL/SC). CAS [11]
takes three arguments: an address, an expected value, and an update value. If
the value at the address is equal to the expected value, it is replaced by the
update value; otherwise the value is left unchanged. LL/SC is a pair of instruc-
tions. The LL instruction reads from an address. A later SC instruction attempts

to store a new value at the address. The instruction succeeds if content of the ad-

3.2. PROGRESS GUARANTEES WHEN COMPOSING 85

dress are unchanged since that thread issued the earlier LL instruction to it. The
instruction fails if the content has changed in the interval. These instructions
are equally powerful since they both have an infinitive consensus number [11].

By observing several lock-free implementation of fundamental data struc-
tures such as queues [15] [21], linked-lists [23], and memory allocators [14],
we found a common template that most of these implementations followed pre-
sented in Algorithm 3.1. The template object LF offers one operation op, which
takes generalized arguments args. This operation computes a newVal (line 6)
and updates it to ptr variable. In a multi-threaded environment, several threads
can try to update ptr concurrently. Therefore, the CAS primitive is used to keep
each update atomic. Examples of an LF object and an operation op that it sup-
ports are a lock-free Queue [15] and its enqueue operation, respectively. The
enqueue operation creates a new node containing the new value and inserts it to
the head of the queue (by a CAS) to become the new head node.

3.2.2 Examining Lock-free Progress Guarantees
in Object-Oriented Programs

An object-oriented program comprised by three lock-free objects is examined
as an example. Among the objects, one, Os1, is concurrently shared by the
other objects: O11 and O12. All are assumed to be implemented by using the
above template.

During the executions of O1; and O15’s operations, they invoke operations
in O2; and wait for the returned results. Object O2; is lock-free and therefore,
always has some executed operations, invoked by O11 or O12, finish and return
after a finite number of executed steps. But, O2; provides no mechanism to
ensure fairness among the executions invoked by different objects. As a result,
that only executed operations called by one object (e.g O11) succeed while those
called by the other object fail to succeed is possible. Consequently, the former
object progresses while the latter does not and fails to provide lock-freedom. So,
composition causes a lock-free conflict point at Os; for O1; and O15. When it
is the case, lock-freedom of objects that conflict can be violated.

86 CHAPTER 3.

This lock-free conflict concept can be generalized. There can be several ob-
jects sharing another object. An object sharing another object can also be shared
by other objects and become itself a conflict point. This sharing scenario creates
a hierarchy of sharing lock-free objects together with the respective hierarchy
of lock-free conflicts..

Our objective is to introduce a new synchronization mechanism enhancing

the shared object so that it supports the lock-free property of the sharing objects.

3.3 A Synchronization Mechanism for Composing
Lock-free Objects

3.3.1 Overview of Our Proposed Approach

A new synchronization mechanism for sharing lock-free objects is proposed.
Application of this mechanism enhances objects with the capability to maintain
fairness among all the objects that invoke its operations. This fairness ensures
that any invoking object has at least one operation returned after a finite number
of steps. In other words, no object starves because of performing operations at

the shared object.

In detail, the proposed synchronization mechanism keeps track of all invo-
cations by sharing objects to the shared object’s operations. When those by an
object are unsuccessful to execute the instruction(s) at the linearization point
many times, the mechanism will announce one of the operations. When such
an announcement is made, later invocations help finish the announced opera-
tion before performing their expected operations. Completion of the announced

operation allows the sharing object to progress.

The description of the proposed synchronization mechanism are introduced
in the two next subsections. A correctness proof for the mechanism is also
presented.

3.3. A SYNCHRONIZATION MECHANISM FOR COMPOSING 87

3.3.2 The Operation Descriptor

The new synchronization mechanism is introduced so that an unfinished oper-
ation can be helped to finish. The operation can be executed by more than one
thread but the mechanism guarantees that only at most one execution can suc-
cessfully complete. To make this helping scheme possible, a description of the
operation and its execution status is needed. Any thread can read the description
and execute the operation it describes.

The data structure OpDesc illustrated in Algorithm 3.2 is such an operation
descriptor. OpDesc contains a function pointer *oper to the operation, along
with arguments for the operation; a boolean variable done records the status of
the operation (finished or unfinished); src is a unique identity of the object that
invokes this operation.

An OpDesc object encapsulates an operation (e.g enqueue operation) pro-
vided by shared lock-free object. The mechanism introduces a special kind of
operation which can help executing other operations. In other words, opera-
tions that can read OpDesc and execute the operation it described. We call
them “super-operations”. The term “operation”, from this point, refer to an
operation representing functionality that other objects want to perform at the

shared object, which is described as an OpDesc object.

3.3.3 The Synchronization Mechanism

The implementation of our synchronization mechanism for the lock-free object
LF is presented in Algorithm 3.2. The new object CLF provides the same inter-
face as that LF does to other objects. However each method in the interface is
associated with a super-operation instead of an operation.

Any operation op in LF' is re-written into a pair of one public method op
(a super-operation) and one private one op_m (an operation). The operation
CLF.op_m executes steps to make changes to the CLF object similar to that
LF.op does to the LF object. The difference between CLF.op_m and LF.op is ad-
ditional steps required by the synchronization mechanism that will be discussed

later. CLF.0p, is to provide the same interface as that LF but the content is to-

88

9
10
11
12
13

15
16
17

19
20
21
22
23
24
25
26

28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45

CHAPTER 3.

struct OpDesc
void xoper (void xargs)
void xargs
bool done

Object src

class CLF
word *ptr
OpDesc hlps[M], EMPTY; //EMPTY .done=true

public op(src, args)
OpDesc me (src, &op_m, (voidx)args), hlp
for(int i « 0; i < M; i++) {
hlp < hlps[i];
hp_x < hlp; //protect hlp with hazard pointer
if (hlp != hlps[i]) continue;
if (!hlp.done) xhlp.oper (me, hlp)

if (—-me.done) op_m(me, me)

private op_m(OpDesc me, OpDesc hlp)
while (—hlp.done)
for (tries=0; tries<Twymax A—hlp.done; tries++)
oldVal <« *ptr
newVal < calculate (hlp.args)
tmp < hlps[hlp.src]
if (DCAS(ptr, oldval, newVal, &hlp.done, false, true))
counter[hlp.src] < O;
CAS (hlps[hlp.src], tmp, EMPTY);
break;
if (—hlp.done)
if (++counter[me.src] >Opax)

announce (me)

void announce (OpDesc me)
curr < hlps[me.src]
if (curr.done)

CAS (hlps[me.src], curr, me)

Algorithm 3.2: Implementation of our synchronization mechanism

3.3. A SYNCHRONIZATION MECHANISM FOR COMPOSING 89

tally new. When CLF.op is invoked, it is expected to perform modifications on
CLF similar to functionality of operation LF.op. The functionality is now im-
plemented in CLF.op_m. In addition, CLF.0p can help finish other CLF.op_m
operations that other objects want to perform.

When CLF.op is invoked (assuming by object O;) to perform the opera-
tion C LF.op_m, it does not perform the operation immediately. Instead, it first
creates an OpDesc describing the operation (line 20) which it can perform by
itself (line 26) or any thread can help finishing the operation. Then it checks
if there are operations of any object needing help to finish (line 21). If there
are such operations, the super-operation will execute these operations (line 25).
The checking for any object that needs help is performed through a newly in-
troduced array hlps{]. When one among the objects needs help, one of the
concurrent operations the object performs will be placed in hlps[] at a dedi-
cated position for the object. Other concurrent super-operation executions then
can help to finish that one. We assume that there are M objects sharing CLF
object. Therefore, hips[] can have M elements that one is assigned to an object.

The operation CLF.op_m introduces two main changes compared to LF.op.
The first change is that a Double-Compare-And-Swap (DCAS) is used instead
of a CAS in LF.op (line 7). DCAS atomically compares and exchanges values
at two separate memory locations. Lock-free implementations of DCAS have
been introduced in [5] and [2]. In C'LF.op_m, the DCAS performs modification
of *ptr and a status variable atomically. The former is similar to CAS in LF.op.
The latter is to set the execution status variable of OpDesc. This status variable,
which is allowed to be changed only once, makes sure that an OpDesc only

succeeds once even when multiple threads are executing it.

The second change in CLF.op_m is the introduction of a counter array counter||
to record the numbers of times invocations by sharing objects try (but fail) to
commit the changes to the shared object CLF. The counter at position ¢ is in-
creased after a failed DCAS execution (line 34) in an operation invoked by ob-
ject O;. When this number reaches a threshold, an executed operation invoked
by O; will be announced in hlps{] to be helped.

Due to this change, the loop inside this operation is also modified. Our algo-

90 CHAPTER 3.

rithm could have followed the idea of increasing the counter after every failed
DCAS. In this case, the counter at any position would be shared among several
threads and need synchronization for every update which decreases the perfor-
mance. To avoid this high overhead, in our design, this counter was split into
two counters. One local counter tries for each operation execution and a shared
one (counter|]) to record number of tries the executions invoked by the object
have made. When tries reach a threshold T’y 4 x, an update to counter[me.src]
is made. And if this counter reaches its threshold O 4 x, one of the operation
executions whose src is the same as me.src is announced.

In addition to those changes, a CAS is added to remove the reference from
the announcement array hlps|] to a successful operation hlp. This avoids any
unsafe reference to hlp in the future when its hazard-pointer protection (line
23) is removed. The memory used by hlp can safely be reclaimed later by a
memory reclamation scheme.

In short, the synchronization mechanism guarantees that new invocations
of CLF’s operations helps finish on-going executed operations that need help.
Then they executes the operation they are supposed to perform. With this mech-
anism, objects invoking operations of CLF always has one of the invocations

finish after a finite number of steps. Therefore, these objects make progress.

3.3.4 Addressing the ABA Problem

Similar to other lock-free implementation based on CAS, our mechanism also
encounters the ABA problem. The ABA problem happens when the content
at an address changes from A to B, and then changes back to A. CAS cannot
distinguish this case and the case where the content is unchanged. A number of
methods have been introduced to tackle the ABA problem such as tagging [12],
hazard pointers [13]. In addition, memory words used by lock-free objects
must be protected from deletion by concurrent threads when they are in use and
reclaimed when they are no longer used. We use Safe Memory Reclamation
powered by hazard pointers introduced in [13] to safely manage memory and
ABA prevention.

3.3. A SYNCHRONIZATION MECHANISM FOR COMPOSING 91

3.3.5 Linearizability

We are presenting the proof for the linearizability and lock-freedom property of
CLF.

Lemma 3.1. Regardless of the number of threads executing an operation op_m

with the same value of hlp argument, only one can succeed.

Proof. The DCAS has been proved for its linearizability in [2]: when there
are multiple threads that have the possibility to modify the same ptr, only one
thread succeeds to change its value from oldVal to newVal, and hip.done
from false to true. When an OpDesc me is executed by the thread which
created it or other threads which are helping it, only one thread can successfully
finish the DCAS to change the corresponding ptr. Threads that fails executing
the DC'AS exit the loops in op-m when they realize the operation has been

completed (hlp.done = true). O
Lemma 3.2. CLF is linearizable with the linearization point at line 34.

Proof. When op is executed by a thread ¢, it first creates an OpDesc object
me = X to describe operation op_m that it wants to perform (line 23). If ¢
executes X at line 26 and successfully performs DC'AS at line 34, it is the
linearization point of op. If another helping thread manage to successfully help
X (line line 25), the linearization point of the operation is also at line 34 which
is executed by the helping thread. When the helping thread is doing that, ¢ is
either (i) busy helping another operation (line 25, or (ii) ¢ is also execute X but
fails in competing to finish the DC AS with the helping thread. In either case,
t knows that its operation me is completed by checking the condition at line 31
and returns. O

Lemma 3.3. The presented object CLF is lock-free.

Proof. When op is invoked, it creates a descriptor me, then it (i) invokes op_-m
to help any hip which needs help (line 25), (ii) invokes op_m to execute me (line
26). Which means there are multiple threads executing op_m. If we assume that

the maximum number of threads in the system is [V, at a certain point there are

92 CHAPTER 3.

N; < N threads executing op_m as helping threads and Ny < N threads
executing op_m to finish their own operation; and Ny + Ny < N. For all
threads reaching line 34 and compete to finish the DCAS, at least one thread ¢,
succeeds and finish op_m operation this thread is executing returns.

If t is among the No, it finishes its execution in op and returns. However, ¢
is among the N; helping threads, ¢ continues the execution in op to execute its
operation at line 26. Now, ¢ join the set of Ny threads. After at most N7 + 1
competing rounds at DCAS, there must be at least one among N threads that
succeeds in performing DCAS. This leads to the completion of an operation op.
In short, there is always one op operation in object CLF that finishes after at

most N DCAS competing rounds. O

3.3.6 Progress Guarantees

When a lock-free object is concurrently used by other lock-free objects O
...Oyy, it can become a lock-free conflict and block the progress of those ob-
jects. This section will prove that when there is such a conflict point at CLF, our
mechanism can resolve the conflict. Therefore, CLF does not block lock-free
progress of the objects using it.

A scenario of using CLF is a program containing M lock-free objects O;... Oy
and one CLF object. An object O; can have at most n concurrent invocations
(executed by n threads) to CLF.op to perform an intended CLF.op_m (referred
to as me). Each invocation creates an execution of operation CLF.op. We seek
a bound of the maximum number of steps (a step is one execution of DCAS)
performed by these executions between any two successful operations. If this
bound is finite, it guarantees that any object that uses CLF progresses. The

lemmas and theorem below figure out this bound.

Lemma 3.4. An object O; can make at most n concurrent invocations to super-
operation C LF.op. Starting from when the last invocation returns (or when the
program starts, if there is no such invocation), if any of these invocations has

executed:

U.BOUND = Tyax.Onax 3.1)

3.3. A SYNCHRONIZATION MECHANISM FOR COMPOSING 93

steps, one of the following condition must hold:

e at least one invocation finished. Or

e one of these concurrent CLF.op_m operations has been announced.
where a step is a modification at the shared variable ptr by the DCAS.

Proof. Considering a thread executing op which is invoked by an object O;,
the thread eventually executes op_m to complete its own operation or to help
another operation. For every T 4 x steps, the thread exit the for loop in op_m
because the condition tries < Thsax is satisfied. If the operation hip that
the thread is trying to complete is not done, either by itself or by any other
helping thread, the thread increases the counter|O;], but to a value no more
than Oy 4x. Which means, after the thread has executed at Thsax.Opnrax
steps and hlp still has not completed yet, it announces itself me at line 40. [

Lemma 3.5. When an operation me is announced in hlps, either me or an-
other operation that has the same src as me.src finishes after it has executed

at most
HELP_BOUND =n(M —-1)+1
steps since when the announcement is made.

Proof. This lemma is proved by contradiction. After me is announced and
has executed n(M — 1), if no operation whose src = me.src succeeds, all
operations invoked by objects other than me.src have completed. At this point,
the executing operation are either those which are invoked by the object me.src
or those which are helping me. One of them succeeds after me has executed
n(M —1)+1. O

Theorem 3.1. When CLF is shared by several objects by invoking to CLF’s
super-operation op, there is always one, among all invocations by one object,

finishing after executing a finite number of steps.

94 CHAPTER 3.

Proof. From lemma 3.4, there must be one among the invocations from O
which finishes before any of them has executed U_BOU N D steps. Otherwise,
one of the invocations has its operation me announced.

If me is announced, lemma 3.5 stated that one of the operations whose src
is the same as me.src (including me) finishes after it has executed at most
HELP_BOUND steps since the announcement is made. Therefore, one of

the invocations from one object returns after executing at most:
U.BOUND + HELP_ BOUND =n(M — 1)+ Tyax.Omax + 1

steps; where:

e Thrax is the number of steps executed by an operation before it checks
if it should announce itself.

e Oprax is the number of times Ty 4x was reached by all invocations

from one object.

e 7 is the maximum number of concurrent operations of CLF that can be

executed.

e MM is the number of objects that are sharing CLF.

3.4 Experimental Evaluation

For our experimental evaluation we considered the composition scenario where
a program containing a number of pseudo objects sharing one queue. The queue
is an implementation of the Michael-Scott Queue [15] enhanced with the pro-
posed synchronization mechanism. A set of experiments to evaluate the ef-
fectiveness and performance cost of our synchronization mechanism was per-
formed and the results are presented.

In our experiments, the program was executed to perform queue’s opera-
tions at three contention levels. In high contention, each thread performed one

3.4. EXPERIMENTAL EVALUATION 95

w/o SM, w/o backoff —+— w/o SM, w/o backoff —+— w/o SM, w/o backoff —+—
w/o w/ backoff - w/o SM, w/ backoff =X w/o SM, w/ backoff ——X--
60 { w/ SM, w/o backoff ¥ w/ SM, w/o backoff ¥ w/ SM, w/o backoff ~%
w/ SM, w/ backoff =] 4 | w/ sM, w/ backoff o 4 {w/ sM, w/ backoff B

50

Attempts
Attempts
Time (s

30

20

Threads Threads Threads

(a) attempts(max)/op (b) attempts(avg)/op (c) Execution time

Figure 3.1: Measurement results in high contention level

operation right after another. In medium contention, “other work” with a ra-
tio following the normal distribution between 0 and 1 was performed between
two consecutive operations. The “other work” was a fixed-times spin loop of
a simple calculation. In low contention, “other work” was always performed
between two consecutive operations. An exponential back-off was also used
after any failed DCAS. The program can be run by one to 8 threads and each
thread performs 1 000 000 queue operations. Each experiment is the program
configured to one contention level and with or without back-off, and set up with
a specific number of threads. Each experiment ran five times on a platform with
two Intel Core i7 quad-core processors and the average result of the runs was
reported. When running the experiments, no other users were using the system.

Three measurements were recorded. The first two were the maximum and
average number of attempts between two consecutive successful operations in-
voked by one object. The maximum number of attempts is an indicator to know
whether the proposed synchronization mechanism helped the sharing objects
before they starved. The lower this number, the more likely an object is to be
helped. On the other hand, the average number of attempts, helps answer a
question: does the synchronization mechanism cause the total number of at-
tempts to perform the set of operations increasing? The third measurement was
the time it took to finish a run.

96 CHAPTER 3.

0 w/o SM, w/o backoff —+— > w/o SM, w/o backoff —— ° w/o SM, w/o backoff ——
w/o SM, w/ backoff X w/o SM, w/ backoff X w/o SM, w/ backoff -
60 1w/ SM, w/o backoff * w/ SM, w/o backoff * w/ SM, w/o backoff *
w/ SM, w/ backoff o 4 {w/ SM, w/ backoff o 4 {w/ sM, w/ backoff =)

50

(s)

40

Ja}
R
X

Attempts
Attempts
Time

30

20

10

Threads Threads Threads

(a) attempts(max)/op (b) attempts(avg)/op (c) Execution time

Figure 3.2: Measurement results in medium contention level

Figure 3.1 presents the experimental results for the case of high contention.
Figure 3.1a shows that our synchronization mechanism (w/ SM) significantly
reduced the maximum number of attempts to finish one operation when there
was no back-off. In the case where no synchronization mechanism was used
(w/o SM), the maximum number of attempts when back-off is used (w/ back-
off) is much lower than when it is not (w/o backoff). The reason is that back-off
reduces the contention among threads and, therefore, lowers the number of at-
tempts. Even though, in this case, there is no lock-free progress guarantee for
the sharing objects. The average number of attempts in fig. 3.1b shows that
when our synchronization mechanism is used, one queue operation needs, on
average, about only two thirds of the number of attempts compared to when it is
not used. Similar improvements when the synchronization mechanism was used
are also observed in medium and low contention levels as shown in figs. 3.2a
and 3.2b and figs. 3.3a and 3.3b.

Figure 3.1c shows the time to finish all operations at high contention level.
Either with or without back-off, the execution time of the runs where our syn-
chronization mechanism was used took about 1.7 of those where the original
queue is used. This degradation in performance is because of the overhead cost
when applying our synchronization mechanism to achieve the lock-freedom

property. In medium and low contention levels, our synchronization performed

3.4. EXPERIMENTAL EVALUATION 97

w/o SM, w/o backoff —+— w/o SM, w/o backoff —+— w/o SM, w/o backoff —+—
w/o w/ backoff - w/o SM, w/ backoff =X w/o SM, w/ backoff ——X--
60 { w/ SM, w/o backoff ¥ w/ SM, w/o backoff ¥ w/ SM, w/o backoff ~%
w/ SM, w/ backoff =} 4 | w/ sM, w/ backoff o 4 {w/ sM, w/ backoff B

50

Attempts
Attempts
Time (

30

L M ’
20 , e ®)
10
0 0 0
1 2 4 6 8 1 2 4 6 8 2 4 6 8
Threads Threads Threads
(a) attempts(max)/op (b) attempts(avg)/op (c) Execution time

Figure 3.3: Measurement results in low contention level

better which reduced the ratios to 1.5 (fig. 3.2c) and 1.2 (fig. 3.3c) respectively.
Especially, in low contention level with back-off, the performance of the queue
where our synchronization was used is closer to that when it was not used. Our
synchronization mechanism performed better in these contention levels than in
high contention levels. This is consistent with the previous result that fewer at-
tempts were performed to finish one queue operation in lower contention level.
In addition, when the number of attempts were fewer, the number of cases that
the synchronization mechanism was activated to help “unlucky object” were
fewer too.

We performed additional experiments to analyze the overhead cost by mea-
suring the performance of DCAS comparing to that of CAS. The experimental
setup was similar to the one described in previous experiments. The only dif-
ference was that the queue operations were replaced by an operation containing
a simple mathematical calculation and a DCAS (or CAS). The performance re-
sult in fig. 3.4 shows that DCAS is much more expensive than CAS especially
in high and medium contention levels. In low contention level, execution time
of a DCAS operations is quite comparable to that of a CAS. These results sup-
port a claim that DCAS contributes a big portion to the overhead cost of our
synchronization mechanism.

In brief, the experimental results demonstrate that our synchronization mech-

98 CHAPTER 3.

CAS, w/o backoff —+— CAS, w/o backoff —+— CAS, w/o backoff ——

CAS, w/ backoff —X-- CAS, w/ backoff ——X-- CAS, w/ backoff -—X--

DCAS, w/o backoff —% DCAS, w/o backoff % DCAS, w/o backoff %
4 | DCAS, w/ backoff B3 4 | DCAS, w/ backoff & 4 | DCAS, w/ backoff &

*
)

(s)
(s)

(s)
Time

Time
Time

Threads Threads Threads

(a) High contention (b) Medium contention (c) Low contention

Figure 3.4: Performance of DCAS and CAS

anism reduces the maximum number of attempts in all the contention level
cases. The presented experimental results support the theoretical proofs. The
results also show, as expected, that there is a performance overhead cost in order
to achieve lock-freedom when composing. The software-implemented DCAS
mainly contributes to this cost. We expect that with the use of a hardware-
supported DCAS such as the Advanced Synchronization Facility by Advanced

Micro Devices [1], this cost will be reduced significantly.

3.5 Conclusions

This paper presents our observation on progress guarantees provided by lock-
free objects that concurrently share other lock-free objects. We found that these
sharing objects can not provide lock-free progress guarantee as expected. A
new synchronization mechanism for composing lock-free objects is proposed
in order to provide lock-free progress guarantees for each individual. The ex-
perimental results show the effectiveness of the new mechanism. A preliminary
study for the performance cost introduced by the new mechanism is also pre-

sented.

The assumption of the fixed number M of sharing objects should be studied

BIBLIOGRAPHY 99

further and if possible removed. Additional experiments can be performed to

investigate the influence of choosing T3 4x and Ojs 4 x on the performance of

the mechanism. In addition, an implementation of the mechanism that uses a

hardware-supported DCAS such as Advanced Synchronization Facility by Ad-

vanced Micro Devices is expected to reduce the performance cost.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

AMD. Advanced Synchronization Facility - Proposed Architectural Specification.

Number 45432/rev 2.1. AMD, 2009.
D. Cederman and P. Tsigas. Supporting lock-free composition of concurrent data

objects. In Proceedings of the 7th Conference on Computing Frontiers, pages 53—

62. ACM, 2010.
C. Click. A lock-free wait-free hash table. http://www.stanford.edu/

class/ee380/Abstracts/070221_LockFreeHash.pdf, 2007. Lec-

ture notes in Course EE380 (2006-2007), Stanford University.
D. Cohen and N. Campbell. Automatic composition of data structures to represent

relations. In Proceedings of KBSE 1992, pages 182-191, sep. 1992.
K. Fraser and T. Harris. Concurrent programming without locks. ACM Trans.

Comput. Syst., 25(2), 2007.
H. Gao, J. Groote, and W. Hesselink. Almost wait-free resizable hashtables. In

Proceedings. 18th International Parallel and Distributed Processing Symposium,

2004, page 50a, 2004.
A. Gidenstam, M. Papatriantafilou, and P. Tsigas. Allocating memory in a lock-free

manner. Algorithmica, 58:304-338, 2005.
A. Gidenstam, H. Sundell, and P. Tsigas. Cache-aware lock-free queues for mul-

tiple producers/consumers and weak memory consistency. In OPODIS, volume
6490 of Lecture Notes in Computer Science, pages 302-317. Springer, 2010.

T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Lecture
Notes in Computer Science, pages 300-314. Springer-Verlag, 2001.

M. Herlihy. A methodology for implementing highly concurrent objects. ACM
Trans. Program. Lang. Syst., 15(5):745-770, 1993.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

IBM. IBM System/370 Extended Architecture, Principles of Operations. Number
SA22-7085. IBM Publication, 1983.

100

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

CHAPTER 3.

M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.

1EEE Trans. Parallel Distrib. Syst., 15(6):491-504, 2004.
M. M. Michael. Scalable lock-free dynamic memory allocation. SIGPLAN Not.,

39(6):35-46, 2004.
M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In Proceedings of the 15th ACM Symposium

on Principles of Distributed Computing, PODC °96, pages 267-275, 1996.
E. Petrank, M. Musuvathi, and B. Steesngaard. Progress guarantee for parallel

programs via bounded lock-freedom. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI *09,

pages 144-154, 2009.
C. Purcell and T. Harris. Non-blocking hashtables with open addressing. In Pro-

ceedings of the 19th International Conference on Distributed Computing, DISC

’05, pages 108—-121, 2005.
H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-

thread systems. J. Parallel Distrib. Comput., 65(5):609-627, 2005.
H. k. Sundell and P. Tsigas. Lock-free and practical doubly linked list-based de-

ques using single-word compare-and-swap. Principles of Distributed Systems,

3544:240-255, 2005.
P. Tsigas and Y. Zhang. Evaluating the performance of non-blocking synchro-

nization on shared-memory multiprocessors. SIGMETRICS Perform. Eval. Rev.,

29:320-321, June 2001.
P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent fifo

queue for shared memory multiprocessor systems. In Proceedings of the 13th An-
nual ACM Symposium on Parallel Algorithms and Architectures, SPAA °01, pages

134-143, 2001.
P. Tsigas and Y. Zhang. Integrating non-blocking synchronisation in parallel ap-

plications: performance advantages and methodologies. In Proceedings of the 3rd
International Workshop on Software and Performance, WOSP 02, pages 55-67,

2002.
J. D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of the

14th ACM Symposium on Principles of Distributed Computing, PODC ’95, pages
214-222. ACM, 1995.

PAPER III

Nhan Nguyen and Philippas Tsigas

Lock-free Cuckoo Hashing
To appear in the proceedings of
the 34th International Conference on Distributed Computing Systems (ICDCS)
Madrid, Spain. June 30 - July 3, 2014.

PAPER III - Lock-free Cuckoo
Hashing

Abstract

This paper presents a lock-free cuckoo hashing algorithm; to the best of our
knowledge this is the first lock-free cuckoo hashing in the literature. The algo-
rithm allows mutating operations to operate concurrently with query ones and
requires only single word compare-and-swap primitives. Query of items can
operate concurrently with others mutating operations, thanks to the two-round
query protocol enhanced with a logical clock technique. When an insertion
triggers a sequence of key displacements, instead of locking the whole cuckoo
path, our algorithm breaks down the chain of relocations into several single re-

locations which can be executed independently and concurrently with other op-

103

104 CHAPTER 4.

erations. A fine tuned synchronization and a helping mechanism for relocation
are designed. The mechanisms allow high concurrency and provide progress
guarantees for the data structure’s operations. Our experimental results show
that our lock-free cuckoo hashing performs consistently better than two effi-
cient lock-based hashing algorithms, the chained and the hopscotch hash-map,

in different access pattern scenarios.

4.1 Overview

A hash table is a fundamental data structure which offers rapid storage and
retrieval operations. Hash tables are widely used in many computer systems
and applications. Papers in the literature have studied several hashing schemes
which differ mainly in their methods to resolve hash conflicts. As multi-core
computers become ubiquitous, many works have also targeted the paralleliza-
tion of hash tables to achieve high performance and scalable concurrent ones.

Cuckoo hashing [12] is an open address hashing scheme which has a simple
conflict resolution. It uses two hash tables that correspond to two hash func-
tions. A key is stored in one of the tables but not in both. The addition of a new
key is made to the first hash table using the first hash function. If a collision
occurs, the key currently occupying the position is “kicked out”, leaving the
space for the new key. The “nestless” key is then hashed by the second function
and is inserted to the second table. The insertion process continues until no key
is “nestless”. Searching for a key involves examining two possible slots in two
tables. Deletion is performed in the table where the key is stored. Search and
delete operations in cuckoo hashing have constant worst case cost. Meanwhile,
insertion operations with the cuckoo approach have been also proven to work
well in practice. Cuckoo hashing has been shown to be very efficient for small
hash tables on modern processors [16].

In cuckoo hashing, the sequence of the evicted keys is usually referred to
as “cuckoo path”. It might happen that the process of key evictions is a loop,
causing the insertion to fail. If this happens, the table needs to be expanded or

rehashed with two new hash functions. The probability of such insertion fail-

4.1. OVERVIEW 105

ure is low when the load factor! is lower than 0.49 but increases significantly
beyond that [12]. Recent improvements address this issue by either using more
hash functions [4] or storing more than one key in a bucket - known as bucke-
tized cuckoo hashing [13] [7].

A great effort has been made to build high performance concurrent hash ta-
bles running on multi-core systems. Lea’s hash table from Java Concurrency
Package [10] is an efficient one. It is a closed address hash table based on
chain hashing and uses a small number of locks to synchronize concurrent ac-
cesses. Hopscotch hashing [6] is an open address algorithm which combines
linear probing with the cuckoo hashing technique. It offers a constant worst
case look-up but insertion might requires a sequence of relocation similar to the
cuckoo hashing. The concurrent hopscotch hashing synchronizes concurrent
accesses using locks, one per bucket. A concurrent version of cuckoo hash-
ing found in [5] is a bucketized cuckoo hash table using a stripe of locks for
synchronization. As lock-free programming has been proved to achieve high
performance and scalability [15] [2], a number of lock-free hash tables have
also been introduced in the literature. Micheal, M. [11] presented an efficient
lock-free hash table with separated chaining using linked lists. Shalev O. and
Shavit N. [14] designed another high performance lock-free closed address re-
sizable hash table. In [3], a lock-free/wait-free hash table is introduced, which
does not physically delete an item. Instead, all the live items are moved to a
new table when the table is full.

To the the best of our knowledge, there has not been any lock-free cuckoo
hashing introduced in the literature. There are several reasons which can ex-
plain this fact. Because a key can be stored in two possible independent slots
in two tables, synchronization of different operations becomes a hurdle to over-
come when using lock-freedom. As an example, two insertion operations of
a key with different data can simultaneously and independently succeed; this
can cause both of them to co-exist, which is not aligned with the common se-
mantics of hash tables in the literature. In addition, a relocation of a key from

"Load factor: the ratio between the total number of elements currently in the table over its
capacity.

106 CHAPTER 4.

one table to another is a combination of one remove and one insert operations,
which need to be combined in a lock-free way. While taking care of that, the
relocation of a key when it is being looked up can cause the look-up operation
to miss the key, though it is just relocated between tables.

In this work, we address these challenges and present a lock-free cuckoo
hashing algorithm. We do not consider bucketized cuckoo hashing. To the
best of our knowledge, this is the first lock-free cuckoo hashing algorithm in
the literature. Our algorithm tolerates any number of process failures. The
algorithm offers very high query throughput by optimizing the synchronization
between look-up and modification operations. Concurrency among insertions
is also high thanks to a carefully designed relocation operation. The sequence
of relocations during insertion is broken down into several single relocations to
allow higher concurrency among operations. In addition, a fine tuned helping
mechanism for relocation operations is designed to guarantee progress. Our
evaluation results show that the new cuckoo hashing outperforms the state-of-
the-art hopscotch and lock-based chained hash tables [8].

The rest of this paper is organized as follows. Section 4.2 introduces our
algorithm in a nutshell. The full design together with a pseudo-code description
is presented in Section 4.3. Section 4.4 provides the proof of correctness of
the algorithm. Experiments and evaluation results are presented in 3.4. Finally,

Section 4.6 concludes our paper.

4.2 Lock-free cuckoo hashing algorithm

Our concurrent cuckoo hashing contains two hash tables, hereafter called sub-
tables, which correspond to two independent hash functions. Each key can be
stored at one of its two possible positions, one in each sub-table. To distin-
guish the two sub-tables, we refer to one as the primary and to the other as the
secondary. The look-up operation always starts searching in the primary sub-
table and then in the secondary one. Because there are different use cases of
looking-up operations, we divide them into two types. One, search, is a query-

only one which asks for the existence of a key without modifying the hash table.

4.2. LOCK-FREE CUCKOO HASHING ALGORITHM 107

Remove(K;)

L N

| Delete the{
| marked |
| item |

| copyKito |
| the other |
L slot |

find(K,) & mark |
for relocatiop |
AL

Remove(K;)

‘ Insert(Ky,Vs) ‘ K1, V1

*Ki,Vi

*Ky, V1

‘ Remove(Ky) ‘ ‘ : ‘ ‘ ‘ K1,V1

=

nsert(K;,Vy) . | relocate(Ky,Vs)
Insert(Ky, Vo) KoV | Insert <K,,V,>, including a relocation of <K;,Vy>
,

find(K;) & mark
K1,Vo | for relocation

Figure 4.1: State transition of two possible positions of a key in primary (upper)

and secondary sub-tables

The other one is a query as a part of another operation such as a deletion or an

insertion. We refer to it as find to distinguish it from the “real” search.

A search operation starts by examining the possible slots in the primary
sub-table first, and then in the secondary one, and reports if the searched key is
found in one of them. Such a simple search, however, can miss an existing key
and report the key as not found. The reason is that the reading from two slots is
not performed in one atomic step and a relocation operation might interleave in
between. The searched key can be relocated from the secondary to the primary
sub-table but is missed by the above reading operations. We called such key a
“moving key”. To deal with this issue, we design a two round query protocol
enhanced with a logical clock based counter technique. Each hash table slot
has a counter attached to it to count the number of relocations at the slot. The
first round of the two round query reads from the two possible slots and check
for the existence of the searched key like the mentioned simple search does. In
addition, it records the slot’s counter values. If the key is not found, the second
round does similar readings and examination. The second round can discover
the key if it was relocated from the secondary to the primary sub-table, and was

missed by the first round query. However, it might also miss the key if it has

108 CHAPTER 4.

been relocated back and forth between sub-tables several times and interleaved
with the readings. Therefore, the second round also records the counter values
and compares them with the values of the first round. If the new values are at
least two units higher than the previous ones, there is a possibility that even the
two round query misses the key because two or more interleaving relocations

have happened. In this case, the search is reexecuted.

The insert operation of a key starts by invoking find to examine if the key
exists. If it does not, the insertion is made to the primary sub-table first and, only
if a collision occurs, to the secondary sub-table. If both positions are occupied,
a relocation process is triggered to displace the existing key to make space for
the new key. The original cuckoo approach [12] inserts the new key to the
primary sub-table by evicting a collided key and re-inserting it to the other sub-
table, as described in Section 4.1. This approach, however, causes the evicted
key to be “nestless”, i.e. absent from both sub-tables, until the re-insertion is
completed. This might be an issue in concurrent environments: the “nestless”
key is unreachable by other concurrent operations which want to operate on it.
One way to deal with this issue is to make the whole relocation process atomic,
which is not efficient and scalable since it is going to result in coarse grained
synchronization. We approach the relocation process differently. If an insertion
requires relocation, an empty slot is created before the new key is actually added
to the table. Our approach contains two steps. First, we search for the cuckoo
path, to find a vacant slot. Thereafter, the vacant slot is “moved” backwards to
the beginning of the cuckoo path by “swapping” with the last key in the cuckoo
path, then the second last key and so forth. The new key is then inserted to the
empty slot using an atomic primitive. Each “swap” step involves modifications
of two slots in two sub-tables. We can design a fine tuned synchronization for
the “swap” using single word Compare-And-Swap (CAS)? primitives by using
the pointer’s Least-Significant-Bit (LSB) marking technique. This technique,

which takes advantages of aligned memory addresses and is widely used in the

2CAS is a synchronization primitive available in most modern processors. It compares the
content of a memory word to a given value and, only if they are the same, modifies the content of
that word to a given new value.

4.2. LOCK-FREE CUCKOO HASHING ALGORITHM 109

literature, set the unused LSB for certain purposes. In our case, it indicates
one thread’s intention to relocate a table’s entry. A helping mechanism is also
designed so that other concurrent operations can help finishing an on-going

relocation.

Another issue with insertion operations is that a key can be inserted to two
sub-tables simultaneously. Since concurrent insertions can operate indepen-
dently on two sub-tables, they can both succeed. This results in two existing
instances of one key, possibly mapped to different values. To prevent such a
case to happen, one can use a lock during insertion to lock both slots so that
only one instance of a key is successfully added to the table at a time. As we
aim for high concurrency and strong progress guarantees, we solve this prob-
lem differently. Our table allows, in some special cases, two instances of a
key to co-exist in two sub-tables. The special cases are when the two instances
have been inserted to two sub-tables simultaneously. (It is noticed that, con-
current insertions to the same sub-table operate and linearize normally, which
guarantees that only one instance of a key exists in one sub-table). We design
a mechanism to delete one of the instances internally and as soon as possible
so that our table still provides the conventional semantic in which one key is
mapped to one value. The question is: which instance between the two is to
be deleted? Since the two successful insertions which lead to the co-existence
must be concurrent, it is always possible to order them so that the insertion to
the secondary sub-table is linearized before the insertion to the primary one. In
this way, the latter insertion “overwrites” the data inserted by the former one.
As aresult, if the same key is found in both sub-tables at a certain time, the key
in the primary table is the only valid one. Our mechanism to realize such dupli-
cation and remove the overwritten key, i.e the one in the secondary sub-table,
will be described after discussing below the consequence of such co-existence

to the hash table’s operations.

We now analyze the consequence of the co-existence of two instances of a
key to the operations of the hash table, beginning with the look-up operations.
The query-only search first examines the primary hash table, and can report if

the searched key is stored there immediately. In the cases that two instances of a

110 CHAPTER 4.

key co-exist in two sub-tables, search always returns the one in the primary sub-
table, which agrees with the semantics described in the previous paragraph. The
find operation, on the other hand, is used at the beginning of any insert or remove
operation. The result of the invoked find, i.e the key exists in one or both sub-
tables, affects the way the invoker behaves. Therefore, if find discovers that two
instances of a key exist, it deletes the one in the secondary sub-table, as being
described in detail in the next section. When an insert or a remove proceeds after
find returns, there is going to be one instance of the key in the table.

The remove operation of a key starts by invoking find to locate the table’s
slot where the key is being stored. Then the key is removed by means of a CAS
primitive.

Figure 4.1 shows the states of two possible positions on two sub-tables
where a key K can be hashed to. The states change according to the operations
performed. The operations are, for example, an insert(K1, V1), a remove(K1, V1),
two concurrent insert(K1, Vo) and insert(K1, V1), and an insert(K», V») (in the dashed
rectangle) which requires a relocation of < K7,V;1 >. When find() is invoked, it

can also delete the duplicated key, i.e < K1,V > stored in the second sub-table.

4.3 Detailed Algorithmic Description

We are now presenting the detailed description and pseudo-code for the func-
tions of our cuckoo hash table. The pseudo-code follows the C/C++ language

conventions.

4.3.1 Search operation

Searching for a key in our lock-free cuckoo hash table includes querying for the
existence of the key in two sub-tables, as in Algorithm 4.2. A key is available if
it is found in one of them. A search operation starts with the first query round
by reading from the possible slots in the primary sub-table table[0] (lines 69-71),
and then in the secondary sub-table table[1] (lines 72-74). If the key is found in
one of them, the value mapped to key is returned.

4.3. DETAILED ALGORITHMIC DESCRIPTION 111

46 HashEntry:
47 word key,

48 word value;

50 CountPtr:

51 <HashEntry«,int> <entry,counter>

53 int hashl (key)

54 int hash2 (key)

55 bool checkCounter (int tsl, int ts2, int tslx, int ts2x)

56 /*check the counter values to see if 2 relocations may have

taken placex/

58 class CuckooHashTable
59 EntryType *table[2][] //2 sub-tables
60 word find(word key, CountPtr &<el,tsl>, CountPtr &<e2,ts2>)

61 word search (word key)
62 insert (word key, word value)
63 remove (word key)

64 relocate (int which, int index)
65 help_relocate (int which, int index, bool initiator)
66 del_dup (idx1l, <el,tsl>, idx2 , <e2,ts2>)

Algorithm 4.1: Data structure and support functions

As mentioned in section 4.2, the above query can miss the searched key
which happens to be a “moving key”. The key present in table[1] is relocated
to table[0], meanwhile search reads from table[0] and then table[1]. To avoid such
missing, search performs the second round query (lines 77-79).

This two-round query, however, still can miss an existing key if the key is re-
located back and forth between table[1] and table[0] repetitively and alternatively
when search reads from each sub-table. The possibility of such continuously
relocation of a key is very rare but can not be ruled out. To deal with that, we
employ a technique based on Lamport’s logical clocks [9]. The idea of this
technique is to attach a counter to each slot of the hash table to record the num-
ber of relocations happening at that slot. Similar to a logical clock whose value

112 CHAPTER 4.

67 //hl=hashl (key) and h2=hash2 (key)

68 while (true)

69 <el,tsl> <« table[0][hl] //read the element \& counter
70 if (el#NULL A el—key = key)

71 return el—value

72 <e2,ts2> <« table[l] [h2]
73 if (e2#NULL A e2—key = key)

74 return e2—value

76 //second round query

77 <elx,tslx> < table[0] [hl]
78 A

79 <e2x,ts2x> < table[l] [h2]
80

82 if (checkCounter (tsl, ts2, tslx, ts2x))

83 continue
84 else
85 return NIL

Algorithm 4.2: word search (word key)

changes when a local event happens or when a message is received, the value
of the counter is changed on the event of relocations. The counter is initial-
ized to 0. When an element stored in a slot is relocated, the slot’s counter is
incremented. When a slot serves as the destination of a relocation, its counter is
updated with the maximum of its current counter value and the source’s counter
value, plus 1. The counter value of a slot remains even when the element stored
in that slot is deleted or relocated to the other sub-table. For example, consider
a key associated with counter value ¢ is stored at table[1][n2]. When key is relo-
cated to table[0][n1] which has counter ¢, the new counter value of table[0][h1] is
max(t,t1) + 1 and that of table[1][h2] is incremented to ¢ + 1.

By examining the above counters after the second round query, a search
can detect if it might have missed an existing key. Such missing happens if:
(i) Before the execution of line 69, the key is stored in the secondary table at
table[1][h2], then (ii) the key is relocated from table[1] to table[0] before the second

4.3. DETAILED ALGORITHMIC DESCRIPTION 113

read at line 72, then (iii) relocated back to table[1] before the next read at line
77, and finally (iv) relocated again back to table[0] before line 79 . If it is so,
the counter value read at line 77 should be at least two units higher than the
one read at line 69. Similar condition is applied for the counter values read at
line 79 and line 72. In addition, the counter value read at line 79 is at least
3 units higher than the one read at line 69 because the counter increases its
value like a logical clock when a relocation happens. If these conditions are
satisfied, i.e checkCounter returns true, the two-round query probably misses an

item because of alternative relocations, so the search restarts.

In practice, as each slot in the hash table is a pointer to a table element, we
can use the unused bits of pointer values on x86_64 to store the counter value.
Currently pointers on x86_64 use only 48 lower bits of the available 64 bits. We
can use the 16 highest bits of the 64-bit pointer to store the counter value, an
approach which has been used in literature [1]. This approach is efficient as the
pointer to an element and its counter can be loaded in one read operation. The
disadvantage of this technique is that the counter which has been increased by
216 1 k can be misinterpreted to be increased by just k, where k is any counter
value. However, such increment of 2'6 % can only be made by many thousands
of relocation operations happening at the same slot. Moreover, it must have
happened in a very short period of time of a search operation to cause such
misinterpretation. With a good choice of hash functions, the possibility that
such misinterpretation happens is practically impossible. Therefore, 16 bits are

sufficient to store the counter value.

4.3.2 Find operation

Algorithm 4.3 shows the pseudo code of the find operation, which functions sim-
ilar to the search. The find takes an argument key and answers if, and in which
sub-table, the key exists. In addition, it also reports the current values (and their
associated counter values) stored at the two possible positions of key. The logic
flow of the find is similar to that of the search, in the sense that it also uses a

two round query. However, it has 3 main differences compared to the search.

114 CHAPTER 4.

86 //hl=hashl (key) and h2=hash2 (key)
87 word result; int counter

88

89 while (true)

90 <el,tsl> <« table[0] [hl]

91 if (el # NULL)

92 if (el is marked)

93 help_relocate (0, hl, false)
94 continue

95 if (el—key = key)

96 result < FIRST

97

98 <e2,ts2> « table[l] [h2]
99 if (e2 # NULL)

100 if (e2 is marked)

101 help_relocate(l, h2, false)
102 continue;

103 if (e2—key = key)

104 if (result = FIRST)

105 del_dup (hl,<el, tsl>, h2,<e2, ts2>)
106 else

107 result < SECOND

108

109 if (result=FIRST V result=SECOND)
110 return result

111 /xsecond round queryx/

112 <el,tslx> < table[0] [hl]

113 A

114 <e2,ts2x> < table[l] [h2]

115

116

117 if (checkCounter (tsl, ts2, tslx, ts2x))
118 continue

119 else return NIL

Algorithm 4.3: word find(word key, CountPtr& <el,ts1>, CountPtr&
<e2,ts2>)

4.3. DETAILED ALGORITHMIC DESCRIPTION 115

120
121
122
123
124
125
126
127

129
130
131
132
133
134
135
136

138
139
140
141

First,

//hl=hashl (key); h2=hash2 (key)
HashEntry xnewNode (key,value)
CountPtr *<entl,tsl>, *<ent2,ts2>
start_insert:
int result <« find(key, <entl,tsl>, <ent2,ts2>)
if (result=FIRST V result=SECOND)
Update the current entry with new wvalue

return

if (entl1l=NULL)
if (—-CAS(&table[0][hl],<entl,tsl>,<newNode,tsl>))
goto start_insert
return
if (ent2=NULL)

if (—-CAS(&table[l][h2],<ent2,ts2>,<newNode,ts2>))
goto start_insert
return
result < relocate(0, hl)
if (result=true) goto start_insert
else
//rehash ()

Algorithm 4.4: insert(word key, word value)

if it reads an entry who LSB is marked, indicating an on-going relocation

operation, it helps the operation (lines 92-93, and 100-101). Secondly, it exam-

ines both sub-tables instead of returning immediately when key is found. This

is to discover if two instances of the key exist in two sub-tables. When the same

key is found on both sub-tables, the one in the secondary sub-table table[1] is

deleted (line 105), as described in Section 4.2. Finally, find returns also current

items which are stored at two possible slots where key should be hashed to. This

information is used by the invokers, i.e insert or delete operations, as described

in next subsections.

116 CHAPTER 4.

4.3.3 Insert operation

The insertion of a key, Algorithm 4.4, works as follows. First, it invokes the
find at line 124 to examine the state of the key: if it exists in the sub-tables and
what are the current entries stored at the slots where the key can be hashed to.
If the key already exists, the current value associated with it is updated with
the new value and the insert returns (line 127). Otherwise, the insert operation
proceeds to store the new key. If one of the two slots is empty (lines 129 and
133), the new entry is inserted with a CAS. If both slots are occupied by other
keys, relocation process is triggered at line 138 to create an empty slot for the
new key. The relocation operation is described in detail in Section 4.3.5. If
the relocation succeeds to create an empty slot for the new key, the insertion
retries. Otherwise, which means the length of the relocation chain exceeds the
THRESHOLD, the insertion fails. In this case, typical approaches in the literature
of cuckoo hashing such as a rehash with two new hash functions or an extension

of the size of the table can be used.

4.3.4 Remove operation

142 void remove (word key)

143 //hl=hashl (key); h2=hash2 (key)

144 CountPtr *<entl,tsl>, =*<ent2,ts2>
145 while (true)

146 ret < find(key, <entl,tsl>, <ent2,ts2>)

147 if (ret = NULL) return

148 if (ret = FIRST)

149 if (CAS(&table[0][hl], <entl,tsl>, <NULL,tsl>))
150 return

151 else if (ret = SECOND)

152 if (table[0][hl] # <entl,tsl>)

153 continue

154 if (CAS(&table[1][h2], <ent2,ts2>, <NULL,ts2>))
155 return

Algorithm 4.5: Remove operation

4.3. DETAILED ALGORITHMIC DESCRIPTION 117

The remove operation also starts by invoking find at line 146. If the key is
found, it is removed by a CAS, either at line 149 or 154.

4.3.5 Relocation operation

When both slots which can accommodate a newly inserted key are occupied by
existing keys, one of them is relocated to make space for the new key. This can
trigger a sequence of relocations as the other slot might be occupied too. The
relocate method presented inAlgorithm 4.6 performs such a relocation process.
As mentioned earlier, we use a relocation strategy which can retain the presence
of a relocated key in the table without the need for expensive atomicity of the
whole relocation process. First, the cuckoo path is discovered, lines 158-177.
Then, the empty slot is moved backwards to the beginning of the path, where
the new key is to be inserted, lines 179-195.

The path discovery starts from a slot index of one of the sub-tables identified
by which and runs at most THRESHOLD steps along the path. If table[which][index]
is an empty slot, the discovery finishes (line 176). Otherwise, i.e the slot is
occupied by a key (line 169), the key should be relocated to its other slot in
the other sub-table. The discovery then continues with the other slot of key. If
this slot is empty, the discovery finishes. Otherwise, the discovery continues
similarly as before. Each element along the path is identified by a sub-table and
an index on that sub-table. Along the path, the sub-tables that elements belong
to alternatively change between the primary and secondary ones. Therefore, the
data of the path which need to be stored are the indexes of the elements along
the path and the sub-table of the last element.

Once the cuckoo path is found, the empty slot is moved backwards along
the path by a sequence of “swaps” with the respective preceding slot in the path.
Each swap is actually a relocation of the key in the latter slot, a.k.a the source,
to the empty slot, a.k.a the destination. Because of the concurrency, the entry
stored in the source might have changed. Thus, the relocation operation needs to
update the destination and check for its emptiness (lines 189-190), and retry the
path discovery if the destination is no longer empty (line 194). If the destination

118 CHAPTER 4.

D

156 int route[THRESHOLD] //storing cuc)

o path
157 int start_level=0, tbl=which, idx=index
158 path_discovery:

159 bool found < false

160 int depth ¢« start_level

161 do {

162 <el,tsl> <« table[tbl] [idx];

163 while (el is marked)

164 help_relocate (tbl, idx, false)

165 <el,_> <4 table[tbl] [idx]

166 if (<pre,tsp>=<el,tsl> V pre—key=el—key)

167 if (tbl = 0) del_dup(idx,<el,tsl>,pre_idx, <pre,tsp>)
168 else del_dup (pre_idx, <pre, tsp>, idx,<el,tsl>)
169 if (el # NULL)

170 route[depth] = idx

171 key < el—key;

172 <pre,tsp> ¢« <el,tsl>

173 pre_idx < idx

174 tbl <~ 1 - tbl

175 idx 4 tbl = 0 ? hashl (key) : hash2 (key)

176 else found < true

177 } while (!found A ++depth<THRESHOLD)

179 if (found)
180 tbl < 1 - tbl;
181 for (i < depth-1; i>=0; --i, tbl < 1-tbl)

182 idx < route[i].index

183 <el,tsl> <« table[tbl] [idx]

184 if (el is marked)

185 help_relocate (tbl, idx, false)
186 <el,tsl> <« table[tbl] [idx]

187 if (el = NULL) continue

188 dest_idx < tbl=07?hash2 (el—key) :hashl (el—key)
189 <e2,ts2> < table[l-tbl] [dest_idx]
190 if (e2 # NULL)

191 start_level < i+1

192 idx 4+ dest_idx

193 tbl < 1 - tbl

194 goto path_discovery

195 help_relocate (tbl, idx, false)

196 return found

Algorithm 4.6: int relocate(int which, int index)

4.3. DETAILED ALGORITHMIC DESCRIPTION 119

197 void help_relocate (int which, int index, bool initiator)

198
199
200
201
202
203
204
205

206
207
208
209
210
211
212
213
214
215
216
217
218
219

221
222
223
224
225
226
227

while (true)

<src,tsl> < table[which] [index]
while (initiator && src is not marked)
if (src = NULL) return
CAS (&table[which] [index)], <src,tsl>,<src|l,tsl>
<src,tsl> < table[which] [index]
if (src is not marked) return
/*hd=hash (src.key) where hash is hash function used for
table (l-which)/
<dst,ts2> < table[l-which] [hd])
if (dst = NULL)
nCnt <« tsl>ts2 ? tsl + 1 : ts2 + 1
if (<src,tsl> # table[which] [index])
continue
if (CAS(&table[l-which] [hd],<dst,ts2>,<src,nCnt>))
CAS (&table[which] [index], <src,tsl>,<NULL, tsl+1>)
return
//dst is not null
if (src = dst)
CAS (&table[which] [index)],<src,tsl>,<NULL,tsl+1>)
return
CAS (&table[which] [index], <src,tsl>,<src& 1,tsl+1>)

return false;

void del_dup(idxl, <el,tsl>, idx2 , <e2,ts2>)
if (<el,tsl>#table[0] [idx1l] A

<e2,ts2>#table[1] [idx2])

return

if (el—key # e2—key)

return

CAS (&table[1l] [idx2],<e2,ts2>,<NULL, ts2>)

Algorithm 4.7: Help relocation and delete duplication operations

120 CHAPTER 4.

is empty, the relocation is performed in three steps in the help_relocate operation
presented in Algorithm 4.7. First, the source entry’s LSB is marked to indicate
the relocation intention (line 202). Then, the entry is copied to the destination
slot (line 211), which has been made empty. Finally, the source is deleted (line
212). Marking the LSB allows other concurrent threads to help the on-going
relocation, for example at lines 164 and 185.

After a slot is marked in help_relocation, the destination of the relocation
might have been changed and is no longer empty. This can be because ei-
ther other threads successfully help relocating the marked entry, or a concurrent
insertion has inserted a new key to that destination slot. If it is the former
case (line 215), the source of the relocation is deleted either by that helping
thread (line 212) or by the current thread (line 216). If it is the latter case, the
help_relocation fails, unmarks the source (line 218) and returns. The relocation
process then continues but might need to retry the path discovery in the next

loop.

4.4 Proof of correctness

In this section, we is going to prove that our cuckoo hash table is linearizable
and lock-free. At first, we prove the linearizability under the assumption that
a key exists in only one sub-table. Later on, we prove that if there are two
instances of a key in two sub-tables, the linearizability are not violated. Then
we continue to prove the lock-freedom. Due to space constraints, we defer part
of the proof to the appendix. In the following, we assume a key can be stored in
two possible positions: table[0][h1] and table[1][h2].

Lemma 4.1. When help_relocation is invoked with arguments which and index,
either it succeeds relocating the element pointed to by table[which]findex] to the
other table, i.e table (1-which) and unmarks the source slot; or if it fails doing

that, the source slot, i.e table[which]findex] is unmarked.

Proof. 1If help_relocation succeeds to mark table[which][index], it continues to check
the destination slot, line 207. At this point, other threads can see the marked

4.4. PROOF OF CORRECTNESS 121

element and help the relocation. If the destination is not empty, and no other
thread has successfully helped the relocation, the current thread unmarks ta-
ble[which][index] (line 218). If the current thread or any other helping threads suc-
cessfully changes the destination to the same pointer value that table[which][index]
holds (line 211 or 215), the relocation succeeds. The source is then unmarked
at line 212 or 216. Between the time the content is copied to the destination
till when the source is unmarked, other threads can perform update operations
to the same slot. As both slots are occupied by the same key, any operations
touching one of the slots can detect the marked pointer and perform the helping

before continuing with their own operations. O

Corollary 4.1. If help_relocation succeeds relocating entry in table[whichjfindex] to
the other sub-table, the counter values of both source and destination increases

by at least 1.

Proof. The destination is written by means of a CAS at line 211 with a new
counter value nCnt, which is one unit more than the maximum of the counter
value of the source and destination. The source’s counter value is increased by
one at line 212 or 216. O

Following Corollary 4.1, it is easy to see that if there are two relocations
which has happens at one slot, the slot’s counter has been increased by at least

2 units.
Lemma 4.2. The search is linearizable.

Proof. The search operation returns a value only when one of the keys in ef, e2,
elx, e2x (lines 69, 72, 77 or 79) matches the searched key. In this case, search is
linearized at the respective line. We now consider the loop of the search to see
when it returns NIL.

As we discussed in Section 4.3.1, during a search for key, the two round
query protocol misses the searched key only when there are a sequence of re-
locations of key from table[1] to table[0], back to table[1] and again to table[0], as
described in subsection 4.3.1. Condition at line 85 can detect if such a scenario

122 CHAPTER 4.

may happen by examining the counter values of table[0][h1] and table[1][n2], as de-
scribed also in subsection 4.3.1. If the condition is satisfied, the search restarts.
We note that the condition is also satisfied if there are two independent reloca-
tions of other keys which are stored in the same slots; or if there are only one
relocation at each slot but the relocation increases the counter by two or more
units. In these cases, the search might restart unnecessarily but its correctness
is not violated.

Therefore, the search returns NIL when the key is not found in any of the
read entries: e1, e2, e1x, e2x and there is no possibility that the key is relocated
which forces the search to reexecute the loop. Even though, there are cases that
key appears in one of the sub-tables at the time search performs a reading from
the other sub-table. In such cases, search might still return NIL, but we can argue
that it is totally correct. We consider, as an example, a key exist in one sub-
table as search perform reading for the second round query at lines 77 and 79,
and show the correct linearization points. Other readings, e.g lines 69 and 72,
can be argued in a similar manner. If the key exists in the table when search

executes lines 77 and 79, and the search returns NIL:

e key must be inserted to table[0] after the reading from that sub-table at line
77. The search can be linearized at line 77 where key has not been inserted
to the table.

e Or key exists in table[1] before the search starts and is deleted before the
search reads from it (line 79). The search can then be linearized to line
79, when key has been deleted.

e Or key exists in table[1] when the search reads from table[0] (line 77), is
deleted and then re-inserted to table[0] before the search reads from table[1]
(line 79). In such scenario, neither line 77 or line 79 can be the correct
linearization point of the search. Because key exists in the table at those
points of time, in particular, in the other sub-table than the one search
reads from. Even though, we notice that there is an interval between
when key is deleted from table[1] and when it is inserted to table[0] (if these

operations overlap, the re-insertion would have failed), this period of time

4.4. PROOF OF CORRECTNESS 123

T —] Jikivy) J———] k3v3) | — Juksvs) —— 1 wvn) [—

n s(|<3,v4)|J s(><5,v5]J s(|<7,v7)|J
ram— TSRV T m— TTERVTIN Jiiks,ve) 1K7,v8)f——

Figure 4.2: Concurrent inserts can create the existence of two instances of a key
in the table

is inside the duration that search executes line 77 to line 79. In this inter-
val, key does not exist anywhere in the table. Therefore, we can always
linearized search to a point of time in that interval. This satisfies the re-
quirement that linearization point must be between the time when search

is invoked and when it responds.

Henceforth, search is linearizable. O

Lemma 4.3. The find operation is linearizable.

Proof. The arguments are similar to those of the search operation. The lin-
earization points is either in lines 90, 98, 112 or 114 if it returns true. Otherwise,

it is linearized similar to the cases that the search returns NIL. O

Lemma 4.4. The remove operation is linearizable.

Proof. 1f the remove operation returns from line 147, the linearization point is
the same as the linearization point of the find operation it has invoked at line
146. Otherwise, the linearization point is the CAS at either line 149 or 154,
depending on where (in table[0] or table[1]) the find operation found the key. [

Lemma 4.5. The insert operation is linearizable.

Proof. The arguments are similar to the remove operation. If the insert operation
returns from line 127, the linearization point of the insert operation is the same
as that of the find operation invoked at line 124. Otherwise, the linearization
points are at CAS at line 130 or 134. O

124 CHAPTER 4.

Now we consider the scenario where two instances of a key co-exist in the
table. When two concurrent insertions try to insert the same key to two sub-
tables, they might both succeed and store it in two possible positions of that key.
As described in Section 4.2, our hash table allows such physical co-existence
and then removes the instance in the second sub-table before any mutating op-
erations can operate on these two positions. The subsequence operations can

only see one valid instance, i.e the one in the primary table.

Lemma 4.6. The correctness of the search operation is immune of the concur-

rent physical existence of key in both sub-tables.

Proof. As we noted before that a key existing in both sub-tables only happens
when two or more insertions of that key are concurrent. We now consider the
interleaving between these concurrent insertions and a search operation. If a
search starts after the insertion to the primary sub-table has finished, the search
always returns the value associated with the key stored in this primary sub-table
as it reads from the primary table first, as we described earlier. The case where
the search is concurrent with the insertion to the primary sub-table is divided
into three small sub-cases illustrated in Figure 4.2 with correct linearization

points:

e the other insertion, i.e to the secondary sub-table, is also concurrent with
search: I(K1,V2) or I(K3,V4) are concurrent with other insertion and search

of the same key.

e the other insertion starts after the search returns: I(K7,V8) is concurrent
with I(K7,v7), but after the search for K7. As I(K7,V8) invokes find(K7), it
finds out that < K7,V7 > exists in the table. In this case, /(K7,V8) over-
writes the previous value associated with K7, i.e V7, with the new value
V8. At this point, only one instance of K7 exists in the table.

o the other insertion finishes before the search starts, e.g operations on key
KS5. The search start examine the primary sub-table and return the stored
value < K5,V5 >.

4.4. PROOF OF CORRECTNESS 125

In all these cases, we can always find a correct history of the operations satisfy-

ing the linearizability with respect to the semantic of the hash table. O

The below propositions can be derived from the pseudo code of find and

relocate.

Proposition 4.1. If two instances of key co-exist in the table when a find on key

is invoked, it removes the instance of the key in the second sub-table.

Proposition 4.2. If two instances of key co-exist in the table when a relocate of

key happens, it removes the instance of the key in the second sub-table.

These two propositions can be easily proved as below. Any subsequence
find or relocate, after two instances of the same key have been inserted to the
table, always performs reads from two possible positions of key and easily see
if those positions store the same key (line 104 or 166). In that case, the one in
the secondary table is removed at either line 105, 167 or 168.

Now, we examine the effect of the existence of a duplicated key to the cor-

rectness of insert/remove operations.

Lemma 4.7. The correctness of a remove and insert operation of a key in Lemma

4.4 and 4.5 holds even when two instances of a key exist concurrently.

Proof for Lemma 4.7. Without loosing generalization, we assume that there are
two instances of a key K stored in the table.

We consider first the insert and remove operations of K. If an insert or a remove
operation of K starts, find operation invoked at the beginning of that operation
will delete the duplicated instance stored in the second sub-table (Proposition
4.1). The operation then proceeds with only one instance of K. Therefore the
correctness of the operations stated in Lemmas 4.4 and 4.5 still holds.

We now consider the insert/remove operations of a key K where K#K. A re-
move operation of an existing key K’ does not modify the slots which are already
occupied by the two instances of K. Therefore, the correctness proof in Lemma
4.4 still holds for the remove operations. Regarding the insert operations, the
insertion of K’ is affected by the existence of duplicates of K only if the inser-

tion requires a relocation of K. However, the relocate operation remove one of

126 CHAPTER 4.

the duplications as stated in Proposition 4.2. Therefore, the insertion of K’ is
not affected by a duplication of K, and the correctness proof in Lemma 4.5 still
holds. -

Theorem 4.1. The hash table algorithm is linearizable.

Proof. Each operation of the hash table is linearizable follows Lemmas 4.2, 4.4,
4.5, and Lemmas 4.6, 4.7. O

Now, we are ready to prove that the algorithm is lock-free.

Lemma 4.8. Either the help_relocation operation finishes after a finite number of

steps or another operation must have finished in a finite number of steps.

Proof. The help_relocation has two loops. The inner loop, which only runs by
the initiating thread, repeats when table[which][index] changes its value to an un-
marked, non-NULL pointer. Such a case happens only when the item in that
slot is deleted or relocated, and then a new item is inserted to the same place.
Either case means progress of those operations. The outer loop in help_relocation
repeats at line 209 when the value stored in table[which][index] has been changed
to a different value than the one that the current thread has read, i.e < src, ts1 >.
Since table[which][index] stores a marked pointer, other threads modifying it must
have helped the on-going relocation before they can change it to a new value.
Therefore, when current thread detects that the value has changed value and re-
peats the outer loop because, the helping has already finished. Table[which][index]
either is empty or carries another element. If it is empty, help_relocation finishes
and returns at line 201. If it stores another element, help_relocation loops again to
relocate the new one. Even though, the operation which stores the new element

has already made progress. O

Lemma 4.9. If a help_relocation operation finishes but fails to relocate table[which]findex],
there must be another operation making progress during that execution of the

help_relocation.

Proof. The help_relocation can be invoked by an initiating thread which intends

to relocate table[which][index] item to the other, i.e (1-which), table. It can also

4.4. PROOF OF CORRECTNESS 127

be invoked by a helping thread if this thread see a table[which][index] which has
been marked. If one of the threads succeeds to relocate item stored in ta-
ble[which][index] to the other table, the relocation is successful. Otherwise, it
fails. According to arguments in Lemma 4.1, the help_relocation fails because the
destination of the relocation has been changed to non-empty, either by another
insertion or relocation of another key. Either case means progress of another

operations. 0

We observe that help_relocation can encounter an ABA problem? [5], even
when we have a proper memory management to handle the hash table’s ele-
ment. This scenario can take place when there are threads executing line 207
to relocate the same table[which][index]. Meanwhile, a new key can be inserted to
dst, and then deleted from dst. Some of the threads doing relocation can observe
that dst pointing to the inserted element, which leads to the CAS at line 211 to
fail and the source of the relocation is unmarked at line 218. Meanwhile, other
threads doing relocation might perform the CAS at line 211 after the deletion,
and therefore succeed to copy table[which][index] to dst. As a result, the key exists
in two sub-tables. However, such co-existence caused by the ABA does not
hurt the correctness of our algorithm. This is because our algorithm is capable
of tolerating such co-existence and can soon remove the one in the second sub-
table. Such removal is done by the calling thread performing this help_relocation,
or any other thread doing find or relocate which involves the slots storing the
duplicated key (at line 105, 167 or 168, as discussed in Section 4.2).

Lemma 4.10. The search operation finishes after a finite number of steps, or

another operation must have finished after a finite number of steps.

Proof. The search operation only have one while loop. According to the proof
for Lemma 4.2, the while loop repeats only when there are relocations of keys
stored in table[0][n1] and table[1][n2], which means progress of operations per-
forming the corresponding relocations. This observation also holds even when

the relocations move key(s) back and forth between two sub-tables. In this case,

3 ABA problem happens when an operation succeeds because the memory location it read has
not changed; but in fact, it has changed its value from A to B and then back to A.

128 CHAPTER 4.

the search might not make progress but the relocation progresses towards the
THRESHOLD number of relocation steps. When it reaches the threshold and
returns false, the insertion calling such a relocation fails and proceeds with re-
hashing or resizing the hash table. O

Lemma 4.11. A find operation finishes after a finite number of steps, or another

operation must have finished after a finite number of steps.

Proof. The find operation repeats its loop when it finds a marked pointer indi-
cating an on-going relocation and must help it, e.g. line 93 or 101. The helped
help_relocate operation succeeds which means progress for the operation initi-
ates such relocation. The helped relocation can fail, but as in Lemma 4.9, it also
means progress of another operation. The find operation also repeats the loop
when the i f condition at line 117 fails. This case is similar to that of the search
operation, which is proved in Lemma 4.10. O

Lemma 4.12. A insert operation finishes after a finite number of steps or an-

other operation must have finished after a finite number of steps.

Proof. The insertion is restarted if it fails to execute the CAS at line 130. This
CAS is executed only if the find at line 146 has found that the key does not exist
in the table and table[0][h1] holds the value NULL. Therefore, the reason that this
CAS fails is only because table[0][h1] has been changed to a new value, which is
caused by an insertion of a new key or a relocation of another key to that slot.
This means progress of other operations. Similar argument holds for CAS at
line 134.

The last case causing an insertion to restart is when it needs to trigger (and
succeeds performing) a sequence of relocations at line 138. After relocation(0,h1)
returns true, table[0][h1] is an empty slot and holds NULL. The insertion restarts
and is going to succeed as table[0][h1] is now empty to accommodate the inserted
key. O

Lemma 4.13. A remove operation finishes after a finite number of steps or an-

other operation must have finished after a finite number of steps.

4.5. EXPERIMENTAL EVALUATION 129

Proof. The remove operation contains one loop and is restarted when the if
condition checked at line 152 fails. This check is executed in the case when
he previous find found the key in the secondary sub-table but not in the primary
sub-table. The check is required because there might be the case that the key was
inserted to the primary sub-table after the find read from that sub-table, and then
is relocated to the secondary sub-table where the find found it. If the relocation
has not finished yet, i.e the key has not been deleted from the primary sub-table,
and remove operation proceeds to delete the key from the secondary sub-table,
the hash table becomes inconsistent. Therefore, checking if table[0][h1] has been
changed since the previous find reads from it (line 152) helps discovering such
cases. If it is so, the remove operation restarts. In this case, the mentioned

insertion and relocation both make progress. O

Theorem 4.2. The hash table algorithm is lock-free.

Proof. According to Lemma 4.10, 4.12, 4.13, our cuckoo hash table always

makes progress after a finite number of steps. O

4.5 Experimental Evaluation

This section evaluates the performance of our lock-free cuckoo hash table and
compares it with current efficient hash tables. We use micro-benchmarks with
several concurrent threads performing hash table’s operations, a standard eval-

uation approach taken in the literature.

4.5.1 The Experimental Setup

We compare our lock-free cuckoo hashing with:

e A lock-based chained one: that uses a linked-list to store keys hashed
to the same bucket. A number of locks, equal to the number of table

segments, are used [8].

130 CHAPTER 4.

e Hopscotch hashing: a concurrent version of hopscotch hashing, with each
lock for a segment [6]. Thanks to the kindness of the authors, we could

obtain the original source code of hopscotch hashing.
e LF Cuckoo: our new lock-free cuckoo hashing.

All the algorithms were implemented in C++ and compiled with the same
flags. No customized memory management was used. In all the algorithms,
each bucket contains either two pointers to a key and a value, or an entry to a
hash element, which contains a key and a value.

The experiments were performed on a platform of two 8-core Xeon ES5-
2650 at 2GHz with HyperThreading, 64GB DDR3 RAM. In our evaluation, we
sampled each test point 5 times and plotted the average. To make sure the tables
did not fit into the cache, we used a table-size of 223 slots. Each test used the

same set of keys for all the hash tables.

4.5.2 Results

Figure 4.3 presents the throughput result of the hash tables in different distri-
butions of actions. The commonly found distribution is 90s/5¢/57, i.e 90%
search, 5% insert and 5% remove. Other less common distributions were also
evaluated. One with more query-only operations: 94s/3i/3r. Two others with
more mutating operations: 80s/10¢/10r and 60s/20i/20r. As it is commonly
known that original cuckoo hashing works with load factors lower than 49%, we
used the load-factor of 40%. The concurrency increased up to 32 threads, the
maximum number of concurrent hardware threads supported by the machines.

Our lock-free cuckoo hashing performs consistently better than both the
lock-based chained and the hopscotch hashing in all the access distribution pat-
terns. This is because positive searches need to examine either one or two ta-
ble’s slots, and negative searches need 3 read operations in most cases. Cases
that search might need to perform more read operations do happen but not often.
This is because the possibility that a relocation of a key happens concurrently

as the key is being queried is not high. In addition, our algorithm is designed so

4.5. EXPERIMENTAL EVALUATION 131

94% search, 3% insert, 3% remove 90% search, 5% insert, 5% remove
120000 120000

100000 100000

80000 80000

60000

ops/msec
ops/msec
g
8
|

40000

20000 20000 |

0 0
3 8 12 16 20 2 28 32 4 8 12 16 20 2 28 32
Threads Threads

80% search, 10% insert, 10% remove 60% search, 20% insert, 20% remove
100000 100000

80000 80000

60000 60000

ops/msecs

40000 40000

ops/msecs

20000 20000 :‘./.‘/h
0 0 .
4 8 12 16 20 2 8 3 4 8 12 16 0 2 32
Threads Threads

—+—LF Cuckoo —=—Hopscotch Chained

Figure 4.3: Throughput as a function of concurrency at load factor 40%

that the search operations still make progress concurrently with any other mu-
tating operations. In contrast, the lock-based chained and the hopscotch hashing
lock the bucket during insertion or removal.

Our lock-free cuckoo hashing maintains very high throughput in scenarios
with more mutating operations, i.e 10i/10r or 20i/20r, respectively. The in-
sert operation in cuckoo hashing might require relocations of existing keys to
make space for the new key. The algorithm, however, has been fine designed
to allow high concurrency between relocation operations and other operations.
Meanwhile, the lock-based chained and the hopscotch hashing degrade quickly
when the percentage of mutating operations increases, mainly because of their
blocking designs.

Figure 4.4 presents throughput results as a function of load factor. In cuckoo
hashing, higher load factor means more relocations of existing keys during in-
sertion. Therefore, we can observe that the throughput of our lock-free cuckoo
hashing decreases when the load factor increases. Nevertheless, our cuckoo
hashing algorithm always achieve throughput 1.5 — 2 times as much as other

132 CHAPTER 4.

16 threads; 90% search, 5% insert, 5% remove 32 threads; 90% search, 5% insert, 5% remove
120000 140000

100000 120000
100000

80000
80000

60000 —_— 1

40000

60000

ops/msec
ops/msec

40000

20000 20000

0 . . 0
10 20 30 40 10 20 30 40
Load factor Load factor
—+—Cuckoo —#—Hopscotch Chained —+—Cuckoo —=—Hopscotch Chained

Figure 4.4: Throughput as a function load factor at 16 and 32 threads

40% load factor; 90% insert, 5% insert, 5% remove

3

—_— .

M

cach misses/op

a 8 12 16 20 2 28 2
Threads
~+—Cuckoo —=—Hopscotch Chained

Figure 4.5: The number of cache-misses per operation.

algorithms, in both cases of 16 and 32 concurrent threads.

We now analyze the cache behavior of our lock-free cuckoo hashing. A
positive search operation usually requires reading 1 or 2 references and a neg-
ative one often requires reading 3 references in the two-round query protocol,
if no concurrent relocation happens at the read slots. Otherwise, search oper-
ations might need to perform more read operations, which might cause more
cache misses. A removal of a key often needs one additional CAS compared to
a search operation to delete the found element from the tables. Insertion oper-
ations are more complicated. If an insertion does not trigger any relocation, its
behavior is similar to the deletion operation. Otherwise, it can cause more cache
misses. We have recorded that the number of relocations is approximately 2%
of the total performed operations, in the distribution of 90s/5i/5r. Therefore,
we expect a higher number of cache misses in our cuckoo hashing compared to
other hash tables. A measurement of number of cache misses of our lock-free

4.6. CONCLUSIONS 133

cuckoo hashing is presented in Figure 4.5. Our lock-free cuckoo table triggers
about 3 cache misses per operation, a bit higher than hopscotch hashing and
lock-based chained hashing. Regardless of a slightly higher number of cache
misses, our lock-free cuckoo hashing has maintained a good performance over
the other algorithms, thanks to the fine designed mechanism to handle concur-

rency.

4.6 Conclusions

We have presented a lock-free cuckoo hashing algorithm which, to the best of
our knowledge, is the first lock-free cuckoo hashing in the literature. Our al-
gorithm uses atomic primitives which are widely available in modern computer
systems. We have performed experiments that compares our algorithm with the
efficient parallel hashing algorithms from the literature, in particular hopscotch
hashing and optimized lock-based chained hashing. The experiments show that
our implementation is highly scalable and outperform the other algorithms in

all the access pattern scenarios.

Bibliography

[1] M. Brunink, M. Susskraut, and C. Fetzer. Boundless memory allocations for mem-
ory safety and high availability. In Dependable Systems Networks (DSN), 2011
IEEE/IFIP 41st International Conference on, pages 13-24, 2011.

[2] D. Cederman, A. Gidenstam, P. H. Ha, H. Sundell, M. Papatriantafilou, and P. Tsi-
gas. Lock-free concurrent data structures. In S. Pllana and F. Xhafa, editors,
Programming Multi-Core and Many-Core Computing Systems. Wiley-Blackwell,
2014.

[3] C. Click. A lock-free wait-free hash table. http://www.stanford.edu/
class/ee380/Abstracts/070221_LockFreeHash.pdf. Accessed:
2013-11-14.

[4] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with

worst case constant access time. In The Proceedings of the 20th Annual Sympo-

134

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

CHAPTER 4.

sium on Theoretical Aspects of Computer Science (STACS), volume 2607 of LNCS,

pages 271-282. Springer Berlin Heidelberg, 2003.
M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2008.
M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In The Proceedings

of the 22nd International Symposium on Distributed Computing (DISC), volume
5218 of Lecture Notes in Computer Science, pages 350-364. Springer Heidelberg,

2008.
A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hash-

ing with a stash. SIAM J. Comput., 39(4):1543-1561, Dec. 2009.
D. E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental

Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,

USA, 1997.
L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558-565, July 1978.
D. Lea. Hash table util.concurrent.concurrenthashmap. http://gee.cs.

oswego.edu/cgi-bin/viewcvs.cgi/jsrl66/src/main/java/

util/concurrent/, 2003.
M. M. Michael. High performance dynamic lock-free hash tables and list-based

sets. In Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms

and Architectures, SPAA’02, pages 73-82. ACM, 2002.
R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122 — 144,

2004.
K. Ross. Efficient hash probes on modern processors. In Data Engineering, 2007.

ICDE 2007. IEEE 23rd International Conference on, pages 1297-1301, 2007.
O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash tables.

Journal of the ACM, 53(3):379-405, May 2006.
P. Tsigas and Y. Zhang. Evaluating the performance of non-blocking synchro-

nization on shared-memory multiprocessors. SIGMETRICS Perform. Eval. Rev.,

29(1):320-321, June 2001.
M. Zukowski, S. Héman, and P. Boncz. Architecture-conscious hashing. In Pro-

ceedings of the 2nd International Workshop on Data Management on New Hard-
ware. ACM, 2006.

PAPER IV

Nhan Nguyen, Philippas Tsigas and Hékan Sundell

ParMarkSplit: A Parallel Mark-Split
Garbage Collector Based on a Lock-Free Skip-List
A shortened version of this paper appeared
in the proceedings of
the 27" The International Symposium on DIStributed Computing (DISC)
Jerusalem, Israel. October 14-18, 2013
LNCS Vol.: 8205, pp. 557 - 558, Springer-Verlag 2013.

PAPER IV - ParMarkSplit: A Parallel
Mark-Split Garbage Collector Based
on a Lock-Free Skip-List

Abstract

Garbage collection is an important component of many modern programming
languages and runtime systems. Mark-split is a garbage collection algorithm
that combines advantages of both the mark-sweep and the copying collection
algorithms. With the switch to multi-core and many-core microprocessors, par-
allelism has become a core issue in the design of any algorithm or software
system. In this paper, we present a parallel mark-split garbage collector. Our
parallel design introduces and makes use of an efficient concurrency control

137

138 CHAPTER 5.

mechanism for handling the list of free memory intervals. This mechanism is
based on a lock-free skip-list design which supports an extended set of opera-
tions. Beside basic operations, it can perform a composite one that can search
and remove and also insert two intervals atomically. We have implemented
the parallel mark-split garbage collector in OpenJDK HotSpot as a parallel and
concurrent garbage collector for the old generation. We present an experimental
evaluation of our parallel collector and compare it with the default concurrent
mark-sweep garbage collector present in OpenJDK HotSpot, using the DaCapo
benchmarks. The experiments were done on two contemporary multiprocessor
systems, one has 12 Intel Nehalem cores with HyperThreading and the other
has 48 AMD Bulldozer cores. The evaluation shows that our parallel mark-split
keeps the characteristics of the sequential mark-split, that it performs better
than the concurrent mark-sweep garbage collector in applications that have low
live/garbage ratio, and have live objects that often reside adjacent to each other.
The experimental results also show that our parallel mark-split performs sig-
nificantly better than a trivial parallelization based on locks in terms of both

collection time and scalability.

5.1 Introduction

Garbage collection mechanisms have evolved dramatically since the first garbage
collection algorithm was introduced by McCarthy [10] and now become an
important features offered by many modern programming languages. Mark-
sweep [10] and copying [4], and their derivations are among the algorithms
widely used in garbage collection.

Mark-sweep and copying collectors have been extensively studied in the lit-
erature and their pros and cons have been identified in a range of scenarios. The
time complexity of the mark phase is proportional to the amount of live data,
while that of the sweep phase is proportional to the size of the heap. Lazy
sweeping [8] improves mark-sweep by doing sweeping concurrently with the
execution of the mutator. Recent mark-region algorithm [3] tries to reduce the
fragmentation of the collected heap by dividing it to several regions and com-

5.1. INTRODUCTION 139

pacting objects to one end of the regions. Differing from mark-sweep, copying
collectors only need time proportional to the amount of live data. However,
copying collectors waste half of the heap space reserved for the need of the col-
lector and it moves objects between semispaces. Copying collectors perform
better than mark-sweep ones when the amount of live data is small compared
to the size of the heap. This is the case where mark-sweep is penalized by the

complexity of its sweep phase.

Sagonas and Wilhelmsson [14] introduced a garbage collection technique
called mark-split that can combine advantages of mark-sweep and copying col-
lection. Mark-split does not move objects, uses little extra space and has time
complexity proportional to the size of the live data set. Mark-split evolves from
mark-sweep but removes the sweep phase. Instead, it builds the list of free
spaces during marking. At the beginning, mark-split assumes that the heap is
free. The free list contains one big free interval of the whole heap. During the
mark phase, the list is continuously repaired by using a special operation called
split to remove spaces occupied by live objects. When the mark phase ends,
the list contains only memory spaces that are not used by any live object and

therefore, can be used for memory allocation.

Mark-split brings a new way of looking into the mark-sweep algorithm. It
reduces the time complexity to the size of the live data set from the size of the
heap. As mark-split removes the sweep phase by introducing to the mark phase
additional split work, its performance depends on the data structure used to
store the free intervals. The data structure should provide search operation for a
free interval with sub-linear cost. Moreover, the list of free intervals should be
translated to the allocator’s free list with a low cost after the collection finishes.
The original mark-split uses a sequential balanced search tree for this purpose.
Data structures with similar properties such as splay trees, or skip lists can also
be used [14].

While mark-split is comparable to mark-sweep and even outperforms mark-
sweep in some situations, to the best of our knowledge, this is the first effort to
design a mark-split collector for multicore systems. Our effort is to empower
mark-split with a highly concurrent data structure to handle the free intervals

140 CHAPTER 5.

and reuse the concurrent mark-sweep’s marking to achieve a parallel mark-split
collector. We consider using lock-free data structures as they provide scalability
and high performance in shared memory multiprocessor architectures [7] [17].
Lock-free data structures guarantee progress and therefore, immune to dead-
locks and livelocks. Several lock-free implementations of fundamental data
structures have been introduced in the literature [7]. Even though, they couldn’t
be used directly to parallelize mark-split. This is because all concurrent data
structures that support basic modification operations are not strong enough to
build a list of free intervals in mark-split. The split operation in mark-split is
a combined operation in the sense that it contains multiple basic operations:
finding a correct free memory interval and performing the actual splitting on the
interval, which is also a combination of two operations: i) removing one in-
terval and possibly ii) adding two intervals. Concurrent environments require
that split operations must be performed on the found interval in an atomic way
to prevent other threads from modifying the interval. Building such a compli-
cated concurrency control for a lock-free data structure is a challenge. We opt
for skip-lists as they provide expected logarithmic time search without the need
for a complex rebalance operation like balanced trees. The lock-free skip-list
algorithm introduced by Sundell and Tsigas [16] which has high performance
and good scalability offers a good mechanism for designing the concurrency

controls needed for parallelizing mark-split.

The rest of this paper is organized as follows. Section 5.2 revisits the mark-
split algorithm and gives a short introduction to The HotSpot Java Virtual Ma-
chine garbage collectors along with the challenge of parallelizing mark-split.
We present our extended skip-list algorithm to meet the requirement of design-
ing parallel mark-split in Section 5.3. The implementation of parallel mark-split
algorithm with the design of a lazy splitting mechanism are presented in Section
5.4. Section 5.5 shows our evaluation of the garbage collector in the HotSpot
along with discussions about the the result. The conclusion is given is Section
5.6.

5.2. RELATED WORK 141

5.2 Related Work

This section presents the mark-split algorithm. Then it introduces garbage col-
lectors of the HotSpot.

5.2.1 The Mark-Split Algorithm

Mark-split [14], as its name suggests, has the same mark phase as mark-sweep,
but does not perform the sweep phase. Instead, it builds a list of free memory
intervals during the mark phase using one additional step called split. The mark-
split algorithm is described briefly next and the reader is referred to the original
article for more details.

Mark-split starts by creating the list of free intervals containing only a big
free interval spanning the whole heap. Then it proceeds to the mark phase. For
each unmarked live object, it marks the object and calls spiit to update the free
intervals. The split operation splits a free interval containing an object into two
smaller free intervals. One interval to the left of the object, which starts from
the starting point of the free interval and ends at the beginning of the object. The
other interval to the right of the object, which starts after the end of the object
and ends at the end of the free interval. At this point, the algorithm decides to
keep an interval if its size is bigger than a parameterized global threshold:

e Case 1: keep both the intervals, the original interval is replaced by two

intervals: the left and the right one.

e Case 2/3: keep only the left/right interval, the original interval is replaced
by the left/right interval.

e Case 4: keep none of the two intervals, the original interval is removed

from the list of free intervals.

The most frequent operations that mark-split performs in the data structure
storing free intervals are search for an interval and spliit. It is important that the
search operation has sub-linear performance and the free intervals can be easily

translated to a free list at the end of the collection. Data structures that satisfy

142 CHAPTER 5.

these properties can be balanced search trees, splay-trees or skip-lists. In the
original mark-split algorithm, a general balanced search tree [1] is used.

The removal of the sweep phase makes the complexity of mark-split pro-
portional to the size of the live data set. This improvement though, comes with
an overhead cost of maintaining a set of free intervals during the marking phase.
The computational cost of this overhead has complexity of O(N xlogN') where
N is the number of free spaces in the heap. Usually NV is much smaller than the
number of live objects because some live objects (or some dead objects) reside
adjacent to each other. Therefore, paying this overhead cost to avoid the sweep
phase, in certain situations, is beneficial. The overhead cost depends on the dis-
tribution of live objects but also depends highly on the data structure selected
to store the free intervals. In a multi-core processor, a highly concurrent data

structure to handle the free intervals can boost the performance of mark-split.

5.2.2 Garbage Collection in Java Virtual Machine

In HotSpot Java Virtual Machine, heap is mainly divided into two, young and
old, generations. Newly allocated objects are placed in the young generation.
Garbage in the young generation is collected by a young generation garbage
collector. Objects in young generation that survive some collection cycles will
be promoted to the old generation.

HotSpot offers various garbage collectors tailored to different environments
and applications. Our parallel mark-split shares many features and properties
with a parallel mark-sweep, similar to the the sequential implementations. But
HotSpot does not contain any pure parallel mark-sweep collector. Therefore,
our parallel implementation of mark-split is based on the Concurrent Mark-
Sweep (a.k.a CMS) in HotSpot which can perform marking task in parallel. It
is also noticed that a recent work by Gidra et al. [6] improves the scalability
of the HotSpot’s ParallelScavenge, a throughput oriented, copying collector, in
NUMA architecture. Meanwhile, our work targets to improve the CMS - a
low-pause collector.

The concurrent mark-sweep collector in HotSpot uses an algorithm intro-

5.2. RELATED WORK 143

duced by Printezis and Detlefs [13]. The algorithm performs mark and sweep

in four phases:

Initial Mark: All mutators are suspended. Mark and record all objects directly
reachable from the roots.

Concurrent Mark: Resume mutator operation. At the same time, initiate a
Concurrent Mark phase, which marks a transitive closure of reachable
objects. By the end of this phase, most live objects but those referred to

by references which are modified during this phase, are marked.

Final Mark (or Remark:) The mutators are suspended. Mark from the roots
and consider modified reference fields in marked objects as additional
roots. All the transitive closures contain all live objects by the end of this

phase.

Concurrent Sweep: Resume the mutators once again, and sweep over the heap,

deallocate unmarked objects.

5.2.3 Parallelizing Mark-Split

In mark-split, the most frequent operation is searching for and then splitting a
free interval that contains a live object. The task involves in removing one free
interval from and inserting up to two intervals to the data structure as described
in section 5.2.1. The good concurrency and low latency that lock-free data
structures exhibit over their blocking counter-parts make them a good candidate
for the design of a parallel mark-split algorithm.

In the original mark-split [14], the use of a search data structure for mark-
split is quite straight-forward, thanks to the simplicity of the sequential envi-
ronment. Such simplicity is not present in a parallel environment. A lock-free
skip-list such as the one introduced by Sundell et al. [16] can satisfy the perfor-
mance but not the capability requirements of mark-split. We need to extend its
functionality so that it can handle the list of free intervals in a parallel environ-
ment.

144 CHAPTER 5.

In a parallel design, the list of free intervals must allow performing a com-
bination of one search, one remove and two insert operations in one atomic
step. Our advantage is that, split on an interval, these removal and insertion are
performed almost at the same location on the skip-list. Nevertheless, it is a chal-
lenge to design a concurrency control mechanism to meet these requirements.
In the next section, we present our extended skip-list algorithm with such con-
currency control. The following section presents our parallel mark-split using
the extended skip-list.

5.3 Concurrent Skip-List with Extended Function-
ality

We are presenting a skip-list with extended functionality offering significant ex-
tensions over the original lock-free skip-list in [16]. A skip-list is a search data
structure which stores elements in different layers of ordered linked lists with
different densities to achieve tree-like behaviour. The original skip-list [16] can
insert a new element, search for or remove an exiting element, but not a com-
bination of those in one atomic operation as required by mark-split. The use of
recursion in that skiplist also made its memory management complicated and
not efficient. Our extensions of the new skip-list are significant both when it
comes to operations that it supports and in the algorithmic design. The new
replace2 operation gives the ability to atomically replace a node with one or two
new nodes; making the skip-list usable in the context of mark-split. Regard-
ing the performance, we redesigned the data structure to make use of hazard
pointers [11] for memory reclamation purposes and local-thread-storage. The
modifications were not trivial as the original algorithm used recursion, some-
thing that does not work with a fixed number of hazard pointers.

The split procedure described in mark-split algorithm operates on an abstract
free-list representing a set of free intervals. A free interval can be represented
by a node in a skip-list, where key represents the start address .S of the interval

and the corresponding value represents its end address F. As used in [16], the

5.3. CONCURRENT SKIP-LIST WITH EXTENDED FUNCTIONALITY145

Do N Mol — —
,,,,,,,,,,,, R e R o S, E S E
el i
L R— o o] | . ., —
,,,,,,,,,,,, » ol . i e S, Ef S ESy Es
@-fslel -EEsE) -mE |
1y . Nl . .
,,,,,,,,,,,, o . A Doty

SB[R

)
1
]

m
m
7]
52
m

SB[slE] | {EE 7]

v

L g T R s p
,,,,,,,,,,,, . puiled
[Hh-fs]e] |ofss]e] [fs]E
Ve S iy pulit — M
B N B = — 1
e BB sTEl 7 i
wh NI [l
777777777777 =
F-ElEL fsEl 7]

Figure 5.1: Multiple-step process for marking and deleting blocks simultane-
ously with inserting new nodes, thus fulfilling the corresponding (to the right)

abstract operations on the free-list.

146 CHAPTER 5.

skip-list is basically made out of a singly-linked list with the nodes ordered
by their keys. To allow probabilistic logarithmic expected time complexity for
searching a particular node, nodes are inserted with a varying height such that
several auxiliary lists are created with several layers of decreasing density with
increasing height. For modifications to the abstract state of the free-list, only
changes on the lowest layer’s linked list are representative, i.e., changes are
first performed atomically on the lowest layer and then modifications of the
other layers can be performed concurrently with other operations. All necessary
additional steps of the operation are eventually completed by making use of a
suitably designed helping scheme. The helping scheme is designed to allow
concurrent operation help another on-going operation when the former want
to access the data that the latter is processing. A node in the skip-list can be
defined to be present as soon as it is inserted on the lowest layer (i.e., there
is another present node with a next pointer on the lowest level pointing to it)
and deleted whenever the next pointer on the lowest layer for the corresponding
node is marked (e.g. bit O set to 1). Atomic changes to the state of each node
being present or deleted can be made using the CAS primitive.

The split procedure can result in four distinct changes on the abstract free-
list. Each of these four changes must be possible to perform atomically with
respect to each other. The possible changes are to either change S or E of an
interval, replace the interval with two new intervals, or remove the interval alto-
gether. To facilitate the representation of these abstract changes in the skip-list,
an important observation is that it is possible to extend the skip-list to actually
allow atomic deletion and insertion. The CAS primitive has the capability to
both mark the next pointer and change it in the same operation. Thus, it is pos-
sible to atomically replace a node in the skip-list with one or more new nodes.
The way that this modified skip-list is made to represent the abstract changes

on the free-list, is shown in Figure 5.1.

Step I, illustrates how a free-list containing the intervals (S, E4) and (S,)

can be represented with two corresponding nodes in the skip-list.

In Step Ila, the interval (S5, F5) is split into two intervals (S3, F3) and (Sy, E4),

5.3. CONCURRENT SKIP-LIST WITH EXTENDED FUNCTIONALITY147

where S3 = S; and £y = F,. By means of a CAS, the pointer on the
lowest level of node [S, E»] is atomically marked and made to point to
the new node [S5, E'3] which is already pointing to the new node [Sy4, Ey].
The deleted node is then finally removed (also part of the helping scheme)
in step IIb, with the CAS operating on the previous node’s corresponding

next pointer. The remaining layers are then handled in a similar manner.

In Step IIla, the interval (S5, F3) is modified to become (S5, E5) where either
Ss = Ss or E5 = F5. By means of a CAS, the pointer on the lowest
level of node [S3, F’3] is atomically marked and made to point to the new
node [Ss, E5]. The deleted node is then finally removed (also part of
the helping scheme) in step IIIb, with the CAS operating on the previous
node’s corresponding next pointer. The remaining layers are then handled

in a similar manner.

In Step IVa, the interval (S5, E5) is removed altogether from the free-list. By
means of a CAS, the pointer on the lowest level of node [S5, E5] is atomi-
cally marked. The deleted node is then finally removed (part of the help-
ing scheme) in step IVb, with the CAS operating on the previous node’s
corresponding next pointer. The remaining layers are then handled in a

similar manner.

The lock-free property is fulfilled by properly designing the helping scheme
so that whenever an attempt made to perform a CAS for the a-part of the steps
fails, the helping scheme makes sure that the b-part is being performed before

attempting the a-part again.

5.3.1 Implementation

The implementation of the extended skip-list is described in Algorithms 5.1,
5.2,5.3,5.4 and 5.5. The operation find.and_split removes a given interval (i.e.,
the start and end memory addresses of the live object) from the list of free
intervals represented by the skip-list. The node that contains the given interval is

searched for, with the search starting from the head node at the highest level. As

148 CHAPTER 5.

1 void find_and_split (void xstart, wvoid xend)
2 do

3 Node =*node;

4 Node *prev = head;

5 for (i=MAX_HEIGHT; i>=0;i--)
6 for (;;)

7 node = prev—next[i];

8 if (node & 1)

9 Go backwards in path using savedNodes[i + 1] or higher

and perform helping prev if necessary

10 if (node matches interval) break;

11 prev = node;

12 savedNodes [1]=prev;

13 bool keepleft=(start-node—start) > T;

14 bool keepRight=(node—end-end) > T;

15 int height = log2random(1l,MAX_HEIGHT) ;

16 if (keepleft && keepRight)

17 ok=replace2 (node, new Node (node—start,start,height), new

Node (end, node—end, height));

18 else if (keepLeft)

19 ok=replacel (node, new Node (node—start,start,height));
20 else if (keepRight)

21 ok=replacel (node, new Node (end,node—end, height));

22 else

23 ok=remove (node) ;

24 while (!ok);

Algorithm 5.1: Finding and splitting intervals in the skip-list

5.3. CONCURRENT SKIP-LIST WITH EXTENDED FUNCTIONALITY149

25 bool replace2 (Node *node, Node xnodel, Node xnode2)

26 Connect all next[] of nodel to node2

27 do

28 Node *next = node—next[0];

29 if (next & 1) return false;

30 node2—next = next;

31 ok=CAS (&node—next [0], next, (nodel | 1));
32 while (!ok);

33 do_remove (node) ;

34 for (i=1;i<nodel—height; i++)

35 do

36 Node *prev = savedNodes[i];

37 Node *next = prev—next[i];

38 If prev is deleted or not the previous node according to

nodel, update savedNodes[i] while applying helping if

necessary, and repeat

39 node2—next [i]=next;

40 ok=CAS (&prev—next [i],next, nodel);

41 while (!ok);

42 if nodel or node2 has been marked for deletion, perform

helping if necessary and exit for-loop

43 return true;

Algorithm 5.2: Replacing a node with two new nodes in the skip-list

150 CHAPTER 5.

44 bool replacel (Node *node, Node xnodel)

45 do

46 Node *next = node—next[0];

47 if (next & 1) return false;

48 nodel.next = next;

49 ok=CAS (&node—next [0], next, (nodel | 1));
50 while (!ok);

51 do_remove (node) ;

52 for (i=1;i<nodel—height; i++)

53 do

54 Node *prev = savedNodes[i];

55 Node *next = prev—next[i];

56 If prev is deleted or not the previous node according to
nodel, then update savedNodes[i] while applying helping if
necessary, and repeat

57 nodel—next [i]=next;

58 ok=CAS (¢prev—next [i],next, nodel) ;

59 while (!0k);

60 if nodel has been marked for deletion, perform helping if

necessary and exit for-1loop

61 return true;

Algorithm 5.3: Replacing a node with a new node in the skip-list

62 bool remove (Node xnode)

63 do

64 Node *next = node—next[0];

65 if (next & 1) return false;

66 ok=CAS (¢node—next [0], next, (next | 1));

67 while (!ok);
68 do_remove (node) ;

69 return true;

Algorithm 5.4: Removing a node in the skip-list

5.3. CONCURRENT SKIP-LIST WITH EXTENDED FUNCTIONALITY151

70
71
72
73

75
76
71

79
80
81
82
83
84
85
86

struct Node
void » start, end;
int height;
Node* next [height];

static Node xhead=new Node (—o0, —o0o, MAX_HEIGHT) ;
static Node *tail=new Node (0o, 00, MAX_HEIGHT) ;
thread static savedNodes [MAX_HEIGHT];

void do_remove (Node =xnode)
Mark mode.next[r] on all levels z using CAS
for (i=node—height-1;i>=0;i--)
Node #prev = savedNodes[i];
Node #*next = node—next[i]l&(71);
bool ok = CAS(&prev—next[i],node,next);
if (!ok)
Update savedNodes[i] such that it is the previous node of
node and perform helping if necessary of deleted nodes
in the path, and repeat. If previous node cannot be

found, perform next lap in the for-loop

Algorithm 5.5: Data structures and auxiliary procedures for the skip-list.

152 CHAPTER 5.

the search is done in the skip-list level by level downwards, the previous node
on each level is stored in the thread-local-storage savedNodes array. These
remembered previous nodes are later used when deciding to either replace or
remove the found node, according to the rules described in Section 5.2.1. If the
found node, represented by node, is concurrently modified, the corresponding
replace or remove attempts will fail, and the whole find_and_split procedure is

repeated.

Operation replace2 describes how node can be atomically replaced by two
new nodes nodel and node2. First the next pointer of node on the lowest level
is atomically modified using CAS, to both contain the deletion mark (represented
by the pointer value of 1) and instead point to nodel. Thereafter, node is fully
removed from the skip-list, and then nodel and node2 are inserted together,
starting from level 1 and going upwards. During this insertion, nodel or node2
can have been concurrently deleted, in which case the insertion is aborted and
helping is applied to make sure the deleted node is fully removed. Replace?
operation follows the same way as replace2 but only one new node, nodel,
atomically replaces node. Remove operation deletes a node as follow. First,
the next pointer of node on lowest level is atomically modified using CAS, to
contain the deletion mark. Thereafter, node is fully removed from the skip-
list by do_remove. Before actually starting modifying next pointers of previous
nodes, the deletion mark is propagated upwards on all levels of the next pointer
of node using CAS operations. This step is also required to be done by all
concurrent operations that apply helping. The next step is then to modify the
next pointer of all previous nodes of node such that they should instead point
to the next node of node, starting with the highest level of the next pointers of
node and going downwards. This is done by using CAS to atomically update
the next pointer of the previous node, possibly given by savedNodes|i|, from
originally pointing to node to instead point to the next node. As concurrent
helping can have been applied, it is important to notify this state when trying to

update a possibly outdated pointer in saved N odes][i].

For internal memory management, hazard pointers [11] is preferably used.

The thread-local-storage savedN odes can then be replaced by a corresponding

5.3. CONCURRENT SKIP-LIST WITH EXTENDED FUNCTIONALITY153

number of hazard pointers. To also allow the search part of find_and_split to pass
through next pointers that are marked, without applying helping, the same hand-
over trick used in [15] can be applied to maintain the safety of hazard pointers
while de-referencing the marked next pointer.

5.3.2 Correctness

We now sketch the proof of correctness for the linearizability and lock-free

criteria.

Lemma 5.1. The implementation of the find-and_split operation, described in
Algorithm 5.1, is linearizable with respect to other concurrent find_and_split op-

erations.

Proof. Linearizability is demonstrated by giving the respective linearizability
points for the corresponding executions of the find_and_split operations, described

as four cases in Section 5.2.1.

e A find_and_split operation that results in Case 1 (split into two intervals),
takes effect at the successful CAS in line 31. Before the CAS takes effect,
the nodes nodel and node2 cannot be reached by the search part of any
concurrent find_and_split invocation, and node is not marked for deletion.
After the CAS takes effect, the nodes nodel and node2 can clearly be
reached by the search part of a concurrent find_and_split, as node is now
referring to nodel as being the next node, and node has been logically
deleted.

e A find_and_split that results in Case 2 (keep the left interval), takes effect
at the successful CAS in line 49. Before the CAS takes effect, the node
nodel (containing the left interval) cannot be reached by the search part
of any concurrent find_and_split, and node is not marked for deletion. After
the CAS takes effect, the node nodel can clearly be reached by the search
part of a concurrent find_and_split as node is referring to nodel as being

the next node, and node has been logically deleted.

154 CHAPTER 5.

e A find_and_split that results in Case 3 (keep the right interval), takes effect

at the successful CAS in line 49. Same arguments holds as for Case 2.

e A find_and_split that results in Case 4 (remove the interval), takes effect at
the successful CAS in line 66. Before the CAS takes effect, node is not
marked for deletion. After the CAS takes effect, node has been logically
deleted, which will be noted by any concurrent find_and_split operations
that will fail to modify node, as the CAS in lines 66 and 83 requires the
mark to not be set of the next pointer.

O

Lemma 5.2. The implementation of the find_and_split operation, described in
Algorithm 5.1, is lock-free.

Proof. The lock-free property of the find.and_split operation is maintained if a
not finite execution of a loop for one invocation of the operation, is a result of
a progress of another concurrent invocation. Assuming that the searched inter-
val exists, the lines 7-11 are indefinitely repeated due to concurrent deletions.
These deletions are due to successful concurrent CAS in lines 31, 49, and 66,
all resulting in progress for the corresponding invocations. The lines 2-24 are
repeated due to failed replace2, replacet, or remove functions. These functions
fail in lines 29, 47, or 65, due to concurrent deletion of node. These deletions
are due to successful concurrent CAS in lines 31, 49, and 66, all resulting in
progress for the corresponding invocations. The lines 36-41 can indefinitely
repeat due to concurrent deletions or insertions, which is progress for the cor-
responding invocations. Same arguments can be applied for the loops in lines
35-41 and lines 53-59. O

5.4 Parallel Mark-Split

In this section, we present the design of a lazy splitting mechanism for our
parallel mark-split algorithm and then, the implementation of our parallel mark-
split, a.k.a ParMarkSplit.

5.4. PARALLEL MARK-SPLIT 155

5.4.1 Lazy Splitting

In this subsection, we continue the presentation of our parallel mark-split algo-
rithm by presenting the lazy splitting design. This is introduced to improve the
efficiency of the splitting part of the mark-split algorithm. Originally, when-
ever a live object is marked, an interval is split to exclude the space occupied
by the marked, i.e live, object from the space of the free intervals. We called
this design aggressive splitting. Splitting for every marked object is inefficient
in multi-threaded environment as it causes high contention at the shared data
structure storing free intervals. We observe that: it is usually during the multi-
threaded marking phases, marking threads consecutively mark some objects
that are located adjacent to each other in the memory. We called them adjacent
marked objects. The number of those objects are observed to range from 10%
to 61% of the total number of live objects in some applications such as xalan,
lusearch, tomcat, sunflow and avrora in the DaCapo benchmarks. Based on this
observation, we propose a lazy splitting mechanism for our parallel mark-split
algorithm to improve the efficiency of the splitting work.

The lazy splitting mechanism works as follows. Instead of doing split_interval
right after an object is marked, a marking thread waits for the next object to
be marked. If that object is not located adjacent to the previous object, the
thread performs split.interval for the former object and keeps the latter object
for splitting later. But if one or more consecutive marked objects are located
adjacent to the object, the whole space occupied by them is excluded from the
list of free intervals by only one call to splitinterval, instead of one for each
object. The work of booking objects for lazy splitting can be applied by each
marking thread independently.

The lazy splitting mechanism reduces the number of accesses by marking
threads to the list of free intervals, compared to the original approach, i.e ag-
gressive splitting. To achieve this reduction, the mechanism have to bookkeep
consecutively marked objects and check if they are adjacent in the memory.
This computation is performed locally at each marking thread, without the need
for synchronization. The lazy splitting mechanism benefits the parallel mark-

split algorithm when the performance gain by the reduction of the number of

156 CHAPTER 5.

calls to split-interval can cover the cost of bookkeeping all marked objects for lazy
splitting: (N — M).Cy > N.Cy, where N is the total number of of live objects;
M is the total number of split.interval operations that the algorithm with lazy
splitting performs; Cy and C, are the average costs of performing a split interval
operation and bookkeeping a marked object, respectively. It is reasonable to
assume that, for a specific application on a certain platform, these costs are con-
stants. Therefore, whether the lazy splitting mechanism benefits ParMarkSplit
collector mainly depends on the (N — M) /N ratio.

An auto switch mechanism for determining when ParMarkSplit should use
lazy splitting is easy to design by using a threshold 7" to decide when to use lazy
splitting. Based on the evaluation results in section 5.5, we recommend 1" =
10%. By default, lazy splitting is applied, as we record that in most applications,
lazy splitting benefits the parallel mark-split GC. But, lazy splitting is not going
to be applied when the GC finds, while collecting, that (N — M)/N < T.

Lazy splitting mechanism takes advantages of the fact that marking threads
often consecutively mark live objects which reside adjacent to each other. It can
improve the efficiency of mark-split in parallel environment. It can be included
in a parallel mark-split collector along with a switching mechanism to control
the use of lazy splitting.

5.4.2 Implementation

We can now use the extended skip-list to store the list of free intervals. For
the rest of this paper, we use the terms the skip-list and the list of free intervals
interchangeably. This list can be created outside the heap that is being collected.
However, since parallel mark-split is expected to support concurrency and allow
concurrent allocation, the list of free intervals can be stored in heap that is being
collected as well. A parallel version of mark-split based on the concurrent mark-
sweep can be achieved with following modification to the concurrent mark-

sweep algorithm:

1. When GC starts, reset the list of free intervals to contain one interval of

the whole space to be collected.

5.4. PARALLEL MARK-SPLIT 157

2. Whenever a thread successfully mark an object obj during the mark phases:
If aggressive splitting is used, the thread calls find_and_split(obj) to remove
space occupied by obj from the skip-list. When all the mark phases finish,
all the marked objects are also excluded from the list of free intervals.

If lazy splitting is used, the thread book-keeps the objects for the lazy

splitting mechanism.

3. At the end of the Remark phase (i.e the mutator is still suspended), con-
vert the list of free intervals to the format of the free list usable for allo-
cation.

4. Remove the Sweep phase from CMS.

The correctness of the algorithm in the presence of all these possible concur-
rent interleavings can be achieved thanks to the design of the extended skip-list
which allows find_and_split to be performed atomically and in a lock-free manner.
The lock-free property of the skip-list, in our context where the number of ob-
jects to be marked is finite, also guarantees the termination of all the find_and_split
operations, and therefore, the mark phases.

The parallel mark-split is then implemented as a garbage collector in the
HotSpot, the Java Virtual Machine of OpenJDK. OpenJDK is an open source
implementation of the Java Platform Standard Edition. It is contributed and
supported by Oracle. We use OpenJDK 7 64-bit in our implementation. We
named our implementation Parallel Mark-Split, or in short ParMarkSplit and
placed it as a collector for the old generation in HotSpot, like CMS.

One implementation issue of ParMarkSplit based on the CMS is that CMS
is dedicated to work for the old generation. This brings difficulty for a plain
comparison of the two algorithms in which ParMarkSplit and CMS are used
to collect a whole heap. We considered disabling the generational option in
HotSpot and having ParMarkSplit or CMS as the only garbage collector for the
whole heap. However, disabling the generational option would have required
thorough changes for the whole memory management system that would have
touched many parts of the HotSpot. We saw that it was extremely compli-
cated to perform such changes. Moreover, keeping the heap divided into two

158 CHAPTER 5.

generations allowed us to compare the two collectors in an industrial standard

environment and application.

5.5 Evaluation

We present an experimental evaluation of our parallel collector and compare it
with the default CMS collector present in OpenJDK HotSpot, using the DaCapo
benchmarks. Subsection 5.5.1 sketches the methodology of our evaluation, fol-
lowed by two subsections presenting our experimental evaluation results in two
scenarios. Then we discuss about the memory overhead and characterization of

applications that can benefit from ParMarkSplit in the last two subsections.

5.5.1 Evaluation Methodology

ParMarkSplit was implemented based on CMS. So it was natural to compare
ParMarkSplit with CMS. We also considered comparing ParMarkSplit with its
sequential implementation in [14]. However, we could not do so because we do
not have access to that sequential implementation due to licence restrictions.

We evaluated ParMarkSplit and CMS in two scenarios. In the first scenario,
we set up HotSpot with ParMarkSplit or CMS garbage collector working in
a stop-the-world mode, in which the mutator was stopped during collection.
This setting allowed us to exclude the synchronization cost of the old GC with
the mutator and the young generation collection. Such an execution provides
a better look at the performance of the design itself. In the second scenario,
the garbage collectors were evaluated in concurrent mode in which the muta-
tor running concurrently with garbage collection. The younger generation can
promote objects and applications can produce new garbage during the old gen-
eration collection. The garbage collection worked as described in subsection
5.2.2.

The DaCapo suite [2] was used for benchmarking. DaCapo contains a set
of open-source, general-purpose Java Virtual Machine benchmarks. DaCapo

is representative of real-world Java applications. We ran experiments on sev-

5.5. EVALUATION 159

eral benchmarks and present the results from five benchmarks which have more
memory accesses, as tested by Gidra L. et.al [5] and Kalibera T. et al. [9]:
avrora, lusearch. sunflow, tomcat and xalan. For other benchmarks, most of
their garbage are young and collected by the young generation collector. We
did not observe any significant performance change of those benchmarks when
applying our GC for the old generation. Most Java applications nowadays use
large heaps and, in a long run, generate a lot of garbage. When we ran some
preliminary experiments, we however found that the benchmarks use much less
memory than our available memory and do not produce a lot of garbage in the
old generation. Too big heap might never trigger any old generation collec-
tion, though the young generation collection could be triggered several times.
In order to focus on garbage collection of the old generation, we chose the
heap sizes that are close to the benchmark’s working set size. They were 50
megabytes (MB) for avrora, 100MB for lusearch, tomcat, sunflow and 400MB
for xalan. CMS collector and multi-threaded concurrent phases are enforced by

setting the corresponding flags. The other flags were left on default values.

The experiments were run on two contemporary multiprocessor platforms.
The first one has two Intel Nehalem 6-core processors running at 2.4GHz with
HyperThreading, which can support up to 24 concurrent hardware threads, has
48GB of RAM. The second one has four AMD Bulldozer 12-core processors
running at 2.6GHz, which can support up to 48 concurrent hardware threads,
has 64GB of RAM. Both machines ran Ubuntu Linux with kernel 3.0.0. We
compared 4 collectors: ParMarkSplit with and without lazy-splitting, ParMark-
Split based on coarse-grained locking balanced binary tree and the OpenJDK’s
CMS collector. In each experiment, we iterated a benchmark six times so
that the old generation’s collector can perform collecting for some cycles. We
replicated each experiment 5 times and plotted the average result. As we are
mostly discussing garbage collection in the old generation part, we use the term
garbage collection or old GC in the following text. Other use cases will be

clearly stated.

160 CHAPTER 5.

App Threads H avrora ‘ lusearch ‘ sunflow ‘ tomcat ‘ xalan
6 52.5% | 28.2% 45.6% | 24.8% | 6.1%
12 493% | 29.6% 54.7% | 24.3% | 4.4%
18 48.7% | 32.1% 60.9% | 24.2% | 5.2%

Table 5.1: The reduced amount of split_interval operations performed when
applying the lazy splitting mechanism to ParMarkSplit

5.5.2 Stop-the-world Scenario

In the stop-the-world scenario, we evaluate the lazy splitting mechanism and
collection time that our ParMarkSplit spends on collecting garbage in five ap-
plications in the DaCapo benchmarks. We varied the number of threads running
the application (App Threads) from 6 to 18. The number of threads that collect
garbage (GC Threads) was also varied but was always not more than the num-
ber of application threads. Two ParMarkSplit implementations were used, one
without lazy splitting (PMS) and the other with lazy splitting (PMS_O). Since
collection works when the mutator was stopped, all GC threads do marking and
splitting concurrently.

We first evaluate the lazy splitting mechanism by measuring the number of
splitinterval operations performed by ParMarkSplit in each collection cycles be-
fore and after adopting lazy splitting mechanism. In general, ParMarkSplit with
the lazy splitting mechanism performed fewer split.interval operations. In avrora
and sun flow, lazy splitting can reduce the number of split.interval operations by
around 50%. But in xalan applications, the reduction is only about 4 — 6% (see
Table 5.1). It was because live objects in xalan interleave with garbage. There-
fore lazy splitting can not reduce the number of calls to split-interval as much as
in other applications. We expect that the lazy splitting mechanism benefits Par-
MarkSplit, in term of collection time, the most in avrora and sunflow. Similar
benefits of lazy splitting is observed on both AMD and Intel systems.

The benefits of lazy splitting are reflected in the performance of ParMark-
Split collector. Figure 5.2 presents the collection time of different garbage col-
lectors in the HotSpot in both Intel and AMD systems. In four out of five bench-

5.5. EVALUATION

0.5

Intel

avrora

sunflow

AMD

0.8

161

lusearch

OPMS BPMS_O

B PMS_Lock mCMS

Figure 5.2: Garbage collection time in the stop-the-world scenario
(X-Axis, lower label: App Threads, upper label: GC Threads.)

162 CHAPTER 5.

marks on the Intel system, lazy splitting helps reducing the collection time of
ParMarkSplit, especially in avrora and sunflow. Only in xalan, the improvement
of lazy splitting are not clear as the benefit of lazy splitting is not enough to pay-
off for its overhead cost. We also compared the collection time of ParMarkSplit
with the trivial lock-based implementation of parallel mark-split (PMS_Lock)
and with the HotSpot’s CMS. In all the applications, the two ParMarkSplit im-
plementations, with or without lazy splitting, perform significantly better than
the lock-based one. ParMarkSplit performs better than CMS in avrora and sun-
flow, but not in the other applications. We notice that avrora and sunflow are
the two applications that have higher ratios of adjacent marked objects over the
total number of live objects compared to the other DaCapo applications. This
result in accessing the same intervals for a short time which ca benefit ParMark-
Split from the caching effect. All above observations are also hold for the AMD

system.

In addition, the scalability of garbage collectors can be observed from Fig-
ure 5.2. We track the collection time as we increase the number of GC threads.
At the same time we vary the number of application threads. The lock-based
parallel mark-split GC does not scale at all on both Intel and AMD systems.
Meanwhile, the ParMarkSplit collectors, with and without lazy splitting, are
scalable up to 12 GC threads in most applications. Both collectors have their
collection time decreasing when the number of GC threads increases from 6 to
9, 12 in avrora, lusearch, tomcat and xalan applications on both Intel and AMD
systems. We have not observed HotSpot’s CMS collection time to decrease
when the number of GC threads is increased.

Comparing the performance of ParMarkSplit between the two systems, we
found that ParMarkSplit performs better on the Intel one. One possible reason
can be that the AMD system has four NUMA nodes. GC threads which were
scheduled on different processors need more time to access the skip-list storing

free intervals on the system with more NUMA nodes.

5.5. EVALUATION 163

sunflow Longest GCpause M Longest concurrent pause M Average pause
Intel avo ||
0.4
03 ¥ ¥
- .
= s B -
02 - . 1 ™ B = -
- ul B ~ alnl =E0l &
- " | 1 = "
L - =0 5 - . L] Ll = al
. F I = = = -
o MENN NUNN WUNW BUDN NUNN NUEW NUOD NN NUNE BODD NONN NUNE NOOD BOOD WEEW BONR
66 126 129 1212 186 189 1812 1815 66 126 129 1212 186 189 1812 1815

xalan Longest GC pause M Longest concurrent pause B Average pause

12
Intel AMD

66 126 129 1212 186 189 1812 1815 66 126 129 1212 186 189 1812 1815

Figure 5.3: Pause time when the old generation’s garbage collectors work con-
currently with the mutator

- Longest concurrent pause when GC work concurrently with the mutator;
Longest GC pause includes pauses when the collector switches to stop-the-
world; Average pause: average of all the pauses by the old GC

- Labels on the x-axis are formatted as n/_n2 where nl and n2 are the numbers
of application and GC threads, respectively. At each label, four columns repre-
sent four collectors (from left to right): PMS, PMS_O, PMS Lock and CMS.

5.5.3 Concurrent Scenario

In the concurrent scenario, the garbage collector was configured to collect garbage
concurrently with the mutator. This is the scenario that CMS was built for. Par-
MarkSplit is built based on CMS, which is optimized to reduce pause time of the
garbage collector. We evaluate the pause times of our GC during the concurrent
collection, in addition to the execution times of the benchmarks.

CMS suspends applications during the initial mark and remark phase. Par-
MarkSplit, which derives from CMS and adds the splitting part to these phases,

is expected to have longer pauses than the corresponding CMS’s pauses. This

164 CHAPTER 5.

reflects in longest concurrent pause and average pause, which are pauses during
concurrent collection, in Figure 5.3. The longest GC pause of the old generation
garbage collector, including the pauses when the collector switches to working
in stop-the-world mode ! is also presented in the same figure. Due to the lack of
space, we include only the results of sunflow and xalan applications, represent-
ing for applications which may or may not benefit from ParMarkSplit. We can
observe that both average and longest concurrent pauses of ParMarkSplit are
longer than the respective ones from CMS, as expected from the design. In cur-
rent HotSpot, the initial mark phase was implemented to run sequentially. The
remark phase, though can run multi-threaded, has many parts which were still
running single-threaded. As these two phases were running mostly sequentially,
the pause time in ParMarkSplit, which uses lock-free synchronization based on
compare-and-swap operation, were penalized dramatically. We can expect that
when these two phases are fully parallelized in the HotSpot, pause time of Par-
MarkSplit will be improved significantly, at least proportionally to the speedup
of the lock-free skip-list. Regarding the garbage collection pause time, we also
notice that the longest GC pause time does not follow the trends of the longest
concurrent pause time across the applications. In sunflow, the ParMarkSplit
with or without lazy splitting usually achieves shorter longest GC pauses than
both the lock-based one and CMS. However, in xalan, the ParMarkSplit collec-
tors have shorter longest GC pauses than the lock-based one, but longer than
CMS. This observation can be drawn from both the AMD and Intel platforms.
There are also different in term of absolute values between the two architecture.

The AMD system usually have longer pauses than the Intel one.

Regarding the relation between the application’s response time and the GC’s
pause time, it is noticeable that GC pause time is not necessarily the same as
the application response time, which means how long it takes an application to
responds to a request by users or by other applications. Even though pause time

is an indicator for the maximum application response time in the worst case,

1GCs switch to stop-the-world mode in a collection cycle when it can not continue in concurrent
mode because, for example, the old generation is full. In such cases, our customized HotSpot uses
the same algorithm as in concurrent mode but running without mutator intervention

5.5. EVALUATION 165

zg Intel avrora AMD ; lusearch
70
60 5
50 4
20 3
30)
20
10 1
0 0
6 ‘12‘12‘12‘18‘18‘1&‘18‘ 6 ‘12‘12‘12‘18‘18‘1&‘1&‘ 6 ‘12‘12‘12‘18‘18‘18‘18‘ 6 ‘12‘12‘12‘18‘18‘18‘1&‘
2 sunflow 12 tomcat

5‘11‘12‘12‘13‘13‘13‘13‘ 6 ‘12‘12‘12‘13‘13‘13‘13‘ 6 ‘12‘12‘12‘1&‘1&‘1&‘1&‘ 6 ‘12‘12‘12‘13‘13‘13‘13‘

xalan

oPMS BPMS_O

B PMS_Lock mCMS

6 ‘12‘12‘12‘13‘15‘1&‘1&‘ 6 ‘12‘12‘12‘18‘18‘18‘18‘

Figure 5.4: Benchmark time for the HotSpot with different concurrent GCs
(X-Axis: upper label: App Threads, lower label: GC Threads.)

the contribution of the GC’s pause time to the mean application response time
is less and less important in systems with heavy loads, as studied by Persson M.
and Cummins H. from IBM [12].

ParMarkSplit brings the split part to the mark phase but it also removes the
sweep phase. Does this change reflect in the overall throughput of the appli-
cations? Figure 5.4 shows the average time to complete each benchmarks in
different configurations of application threads and GC threads. We see that on
the Intel system, the ParMarkSplit GC with lazy splitting performs better than
CMS in sunflow and lusearch in many cases, and performs comparably well as

166 CHAPTER 5.

avrora ‘ lusearch ‘ sunﬂow‘ tomcat ‘ xalan
Number of nodes (thousands) / Size (MB)

Intel |2.0/0.3|14.4/2.149/0.7 |49.1/7.1|55.0/7.9

AMD |2.2/0.3]16.6/2.3|4.3/0.7|46.4/6.7|57.6/8.3

Estimated size of bitmap (MB)

Bitmap | 0.78 | 156 | 156 | 156 | 6.25

Table 5.2: The maximum size of the skiplist and estimated size of bitmap (Print-

esiz’s technique)

CMS does in avrora and tomcat. Similar observations can also be drawn on the
AMD system.

In this concurrent scenario, ParMarkSplit has shown that it works well in
avrora and sunflow, both in terms of pause time and throughput. In addition
to that, it achieves comparable to CMS in lusearch and tomcat on the Intel
platform. ParMarkSplit also achieve higher benchmark results than the lock-
based parallel mark-split in most cases.

5.5.4 Memory Usage

ParMarkSplit uses the lock-free skip-list to store free intervals during garbage
collection, which introduces a memory overhead compared to CMS. In this
subsection, we provide an estimation of this overhead on different applications.
We can estimate the memory used by the skip-list based on the number of
free intervals stored in it. In the skip-list, each free interval is stored as a linked-
list’s node. A node needs 18 memory words: two words for the start and the
end of the free interval, one for the node’s level in the skip-list, and at most
mazx_level pointers pointing to the next nodes in the linked-list at each level
of the skip-list. max_level is decided when the skip-list is constructed so that
gmaz-level is approximately the average size of the skip-list. As our estimated
average number of free intervals is 32000, max_level is 15. The estimated
memory used by the skip-list in a 64bit system is presented in Table 5.2.

We observe that avrora and sunflow have the lowest number of free inter-

5.5. EVALUATION 167

vals among the benchmarks. This is because their live objects often reside ad-
jacent to each other as we discuss in the above evaluation. The memory over-
head in avrora and sunflow is less than 1% over the heap size (0.3/50MB and
0.7/100MB, respectively), which is negligible. This cost is higher in applica-
tions that the numbers of free intervals are high, approximately 2% in lusearch
and xalan, and 7% in tomcat, where the heap size are 100MB, 400MB and
100MB respectively. The size of the skip-list varies depending on the run-
ning applications. It is small in applications that their live objects often reside
adjacent to each others. In those applications, the memory overhead is negli-
gible. Comparing to the memory overhead of Printezis’s technique which uses
a bitmap to skip over contiguous unmarked objects while sweeping [13], Par-
MarkSplit uses less memory in avrora and sunflow, but more in other bench-
marks.

We also observe that the fragmentation behavior of ParMarkSplit is similar
that of CMS, as it is expected by design. It is possible to check the fragmenta-
tion level during or after a collection cycle by checking the size of the skip-list.
When the heap is considered too fragmented, a compaction algorithm can be ap-

plied in a similar way as it is applied in CMS garbage collector in the HotSpot.

5.5.5 Characterization of Applications that Benefit from Par-
MarkSplit

Comparing our Parallel Mark-Split garbage collector with CMS present in the
HotSpot, ParMarkSplit performs better in some applications in term of collec-
tion time. In this subsection, we try to characterize the applications in which
ParMarkSplit performs better so that the system can use this characterization to
select the best garbage collector based on the characteristics of the application.

We have observed, from the experimental results on the two hardware plat-
forms, that ParMarkSplit outperforms CMS in sunflow and the avrora applica-
tions. We have also observed that CMS performs better than ParMarkSplit in
tomcat, lusearch and xalan. ParMarkSplit performance is highly dependent on

its most frequent operation, i.e splitinterval. As a consequence, ParMarkSplit

168 CHAPTER 5.

usually performs better in applications where ratio of the number of live objects
to the total number of objects are low compared to those of garbages objects.
Analysis on the live/garbage ratio of those applications shows that, sunflow and
avrora have low live/garbage ratios which are 15% and 20% on average respec-
tively. Tomcat have higher live/garbage ratio of 40% on average. ParMarkSplit
maintains a property of sequential mark-split algorithm that the algorithm per-
forms better in applications that have low live/garbage ratio. However, this
property could not be applied to explain about ParMarkSplit’s performance in

other applications with the same characteristic.

Xalan and lusearch also have similar live/garbage ratios as sunflow and
avrora but ParMarkSplit does not perform well in those applications. We need
to distinguish the former from the latter and characterize better the application
that clearly benefit from ParMarkSplit. We observed that our lazy splitting de-
sign that splits space occupied by consecutive marked objects in one atomic
operation brings significant performance gains to ParMarkSplit garbage collec-
tor in applications that it already performs better than CMS, i.e. sunflow and
avrora. The benefit of the design in xalan and lusearch is not as much as it is
in sunflow and avrora. A characteristic that differentiates the two groups is the
ratio of the number of adjacent marked objects over the total number of marked
objects. This ratio is high in the case of sunflow and avrora; and lower in xalan
and lusearch. When this ratio is high, doing splitting interval operation in Par-
MarkSplit benefits in two ways. First one is cache benefit when a free interval
that is previously split can be cached and reused in the next splitting. Second
benefit is that adjacent objects can be collected together and one split interval is
needed for all of them. These advantages from ParMarkSplit are more in sun-
flow and avrora than in xalan and lusearch. As a consequence, ParMarkSplit
performs better than CMS in the two former applications but not in the two lat-
ter ones in our experimental evaluation. All above observations regarding the
characterization of applications that benefit from ParMarkSplit are consistent

across the two different hardware platforms.

To conclude, ParMarkSplit has been shown to perform better than CMS in

applications where the ratio of the number of live objects over that of garbage

5.6. CONCLUSION 169

objects is low and live objects often reside adjacent to each other. ParMarkSplit
can be used as a complement to other garbage collection mechanisms to target

applications with such characteristics.

5.6 Conclusion

We present a parallel design of the mark-split garbage collector. To the best of
our knowledge this is the first parallel mark-split design. This design is based
on a lock-free data structure that extends the functionality of a skip-list to meet
the requirements of the mark-split algorithm augmented with a lazy splitting
design. A complete implementation of the parallel mark-split collector was de-
veloped and integrated in the OpenJDK HotSpot. We evaluated experimentally
the behavior of our parallel mark-split collector and compared it with the de-
fault concurrent marks-sweep garbage collector present in the HotSpot, using
the DaCapo benchmarks. The experiments were performed on two multiproces-
sor systems of different architectures: Intel’s Nehalem and AMD’s Bulldozer.
The results are encouraging in applications where the ratio of the number of live
objects over that of garbage objects is low and live objects often reside adjacent
to each other. ParMarkSplit can be a complement to other garbage collection

mechanisms when used for applications with such characteristics.

Bibliography

[1] A. Andersson. Balanced search trees made simple. In Proceedings of the Third
Workshop on Algorithms and Data Structures, pages 6071, London, UK, 1993.
Springer-Verlag.

[2] S. M. Blackburn and et al. The dacapo benchmarks: java benchmarking develop-

ment and analysis. SIGPLAN Not., 41:169-190, October 2006.
[3] S. M. Blackburn and K. S. McKinley. Immix: a mark-region garbage collector

with space efficiency, fast collection, and mutator performance. SIGPLAN Not.,

43(6):22-32, June 2008.
[4] C.J.Cheney. A nonrecursive list compacting algorithm. Commun. ACM, 13:677-

678, November 1970.

170

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

CHAPTER 5.

L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the scalability of
garbage collectors on many cores. In Proceedings of the 6th Workshop on Program-
ming Languages and Operating Systems, PLOS 11, pages 7:1-7:5, New York, NY,
USA, 2011. ACM.

L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the scalability of
stop-the-world garbage collectors on multicores. In Proceedings of the 18th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 13, Houston, TX, USA - March 16 - 20, 2013, pages

229-240, 2013.
M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-

mann, 2008.

R. J. M. Hughes. A semi-incremental garbage collection algorithm. Software:
Practice and Experience, 12(11):1081-1082, 1982.

T. Kalibera, M. Mole, R. Jones, and J. Vitek. A black-box approach to understand-
ing concurrency in dacapo. Presented at the UK MM-NET workshop on Memory

Management for Many-/Multicore, April 2012.

J. McCarthy. Recursive functions of symbolic expressions and their computation
by machine, part i. Commun. ACM, 3:184-195, April 1960.

M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.

IEEE Transactions on Parallel and Distributed Systems, 15(8), Aug. 2004.
M. Persson and H. Cummins. Java technology, ibm style: Garbage collection

policies.
T. Printezis and D. Detlefs. A generational mostly-concurrent garbage collector.

SIGPLAN Not., 36:143—-154, October 2000.
K. Sagonas and J. Wilhelmsson. Mark and split. In Proceedings of the 5th In-

ternational Symposium on Memory Management, ISMM °06, pages 29-39. ACM,

2006.
H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A lock-free algo-

rithm for concurrent bags. In Proceedings of the 23rd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA *11, pages 335-344, New

York, NY, USA, 2011. ACM.
H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-

thread systems. J. Parallel Distrib. Comput., 65(5):609-627, 2005.
P. Tsigas and Y. Zhang. Evaluating the performance of non-blocking synchro-

nization on shared-memory multiprocessors. SIGMETRICS Perform. Eval. Rev.,
29:320-321, June 2001.

PAPER V

Nhan Nguyen, Lokesh Gidra, Géel Thomas, Julien Sopena, Marc Shapiro.

A NUMA-Aware Parallel Mark-Compact
Garbage Collector
Technical Report 2014:04, ISNN 1652-926X,
Department of Computer Science and Engineering Chalmers University of
Technology, 2014.

PAPER V - A NUMA-Aware Parallel
Mark-Compact Garbage Collector

Abstract

The lack of awareness of Non-Uniform Memory Access (NUMA) architectures
can prevent stop-the-world throughput-oriented garbage collectors from scaling
in large-scale multicore architectures. An introduction of NUMA-awareness to
Parallel Scavenge, a young generation garbage collector of HotSpot virtual ma-
chine, has resulted in a scalable performance of the collector up to 48 cores.
However, the old generation and its collectors remains NUMA-oblivious which
causes memory imbalance and bad locality of both the collector and the ap-
plication. In this work, we address performance issues of throughput-oriented
garbage collector for the old generation in OpenJDK 7, called Parallel Mark-

173

174 CHAPTER 6.

Compact, in NUMA multicores. We then augment the old generation with the
fragmented space policy and Parallel Mark-Compact with NUMA-awareness.
Together they help maintain memory balance in the old generation and ensure
good locality for both the collector and the application.

6.1 Introduction

Multicore processors with many cores have been developed by different mul-
tiprocessor manufacturers. The new architecture with high core counts and
large, possibly distributed, memory create several challenges to the garbage
collection. The challenges appear in different aspects such as in concurrency
control, e.g contention, synchronization bottlenecks; in memory management,
e.g memory placement, locality and balance; as well as the interplays among
them. To exploit the parallelism, throughput-oriented garbage collectors (GC)
opt for the parallel and stop-the-world design, in which the applications are sus-
pended to stop their memory accesses while parallel GC threads are collecting
the garbage. Meanwhile, concurrent collectors try to garbage collect concur-
rently with application execution, and therefore have to synchronize with the
application’s memory accesses. Such a design is more complicated as it re-
quires fine grained and continuous synchronization between the GCs and the
applications.

A recent study by Gidra et al. [7] discovered that the performance of the
garbage collectors (GC) in OpenJDK7, both stop-the-world and concurrent ones,
degrades beyond about 8 GC threads. The follow-up study [8] by the same au-
thors introduced a set of improvements which can be simply implemented yet
bring scalability of the stop-the-world GC in OpenJDK’s HotSpot virtual ma-
chines. In more detail, the study which is based on the Parallel Scavenge col-
lector concludes that the lack of NUMA-awareness and heavy synchronization
based on contended locks in the GC are the bottlenecks for the scalability of PS.
The lack of NUMA-awareness of the GC causes memory access imbalances
and bad locality for both the application and the GC. The authors proposed

three space policies, called interleaved, fragmented and segregated spaces to

6.1. INTRODUCTION 175

address those issues. A NUMA-aware Parallel Scavenge collector was intro-
duced based on those policies together with the replacement of contended locks
with lock-free solutions. The new collector is able to scale up to 48 GC threads
in a contemporary 48 cores NUMA machines and significantly decreases the

GC pause time.

While generational GC has been widely employed, especially in Java Vir-
tual Machine, the study addresses only the scalability bottlenecks in the young
generation. The old generation and the Parallel Mark-Compact (PMC) collec-
tor, which is used for the whole-heap, i.e. major, collection, remain NUMA-
oblivious. The old generation consists of a single contiguous memory space
which is initialized to a large virtual address range. Under the kernel’s memory
allocation policy, virtual memory ranges are mapped to physical memory pages
from different NUMA nodes when being accessed for the first time. Thereafter,
the association between a virtual address range and a physical memory page re-
mains unchanged. The PMC collector performs compaction by moving all live
objects to one end of the old generation space, without taking either the object’s
location or physical distribution of old space’s memory into consideration. As a
results, GC threads usually perform unnecessary remote copies, in which either
the source or the destination, or both are located on a remote node. In addition,
an object’s new location can be on an arbitrary memory node which might be
different from the node it is allocated or is mainly accessed from, resulting in
poor locality for the application.

The lack of NUMA-awareness of the old generation also has a negative
impact on the young generation collector. HotSpot uses a card table to record
references from the old to the young generation. The card table is treated as
a root set during the young generation collection. As PMC moves old objects
to one end of the space, the GC threads may have to process objects remotely

during young generation collection.

In short, the lack of NUMA-awareness of the PMC causes poor locality
for both the garbage collector and the application. In this work, we present a
NUMA-aware memory placement to the old generation and a NUMA-aware
PMC collector. The rest of the paper is organized as follows. Section 6.2 de-

176 CHAPTER 6.

Young generation Old Generation Perm. Generation
>

» <&
> <€ »

A\
A

From To
Eden space space space @ Parallel Compact

Figure 6.1: Heap Layout of the HotSpot for Parallel Collector

scribes the Parallel Throughput Collector (PC), the throughput-oriented collec-
tor of the OpenJDK’s HotSpot. In Section 6.3, we summarize the space policies
for the heap layout used for NUMA multicores introduced by Gidra et al. [8].
Our proposed NUMA-aware PMC collector is introduced in Section 6.4. Sec-
tion 6.5 presents some preliminary evaluation results before we conclude the

paper in Section 6.7.

6.2 Parallel Throughput Collector

This section describes the Parallel Throughput Collector (PC) in the HotSpot.
We start with some overview information regarding the heap arrangement and
memory allocation policy. Parallel Scavenge (PS) - the GC for the young gen-
eration and PMC - the GC for whole-heap, i.e major, collection are described

next.

6.2.1 Heap layout

The PC operates on a generational heap layout consisting of three generations
as presented in fig. 6.1. The young generation has one eden space and two

6.2. PARALLEL THROUGHPUT COLLECTOR 177

survivors spaces, called from-space and to-space. This arrangement suits the
young-generation copying collector, i.e. PS, which is usually triggered when
the young generation is full. When a mutator, i.e an application thread, allo-
cates a new object, it resides in the eden space. Objects in eden space which
survive the first young generation GC are copied to one of the survivor spaces.
Objects already in the survivor spaces which survive a GC are promoted to the
old generation.

The old and the permanent generations consist of one single space each.
The old space contains objects that were promoted from the young generations

and the permanent space is used for class definitions and associated meta-data.

6.2.2 Allocation

Each mutator thread allocates a large memory chunk for its exclusive use called
Thread Local Allocation Buffer (TLAB) from the eden space. From then on,
it allocates objects from its TLAB without having to synchronize with other
mutator threads. Surviving objects promoted to the survivor spaces or to the
old spaces are allocated in a similar manner, i.e from the Promotion-Local Al-
location Buffer (PLAB) which has been allocated from the to-space or the old

generation.

6.2.3 Young Generation Collection

The young generation collection which uses Parallel Scavenge is triggered when
a mutator fails to allocate a new TLAB. At this point, the eden space is mostly
full of recently allocated objects; the from-space contains objects that have sur-
vived the previous collection cycle and the to-space is empty. The young col-
lection copies live objects from the eden space to the to-space, and from the
from-space to the old generation. When the collection is completed, the eden
space and the from-space contains only dead objects and are considered empty.
The from-space and the to-space then flip their roles: the from-space before the
collection becomes the to-space after that and vice versa. Further details re-
garding Parallel Scavenge and the synchronization among GC threads, as well

178 CHAPTER 6.

as between GC and the mutator has been mentioned in literature, such as [8].

6.2.4 Old Generation Collection

When the old generation is full, a full collection is triggered to garbage col-
lect the whole heap. The HotSpot’s throughput-oriented GC uses the Parallel
Mark-Compact (PMC) collector, which implements a parallel mark-compact
algorithm.

PMC collects garbage by moving all live objects to one end of the old space.
First, GC threads trace the object graph and mark the live objects in parallel
starting from the root sets. Then, they move all the live objects of the old
generation to the beginning end (aka left end) of the old space to fill up the
holes created by dead objects. Live objects from the young generation are then
moved next to those old live objects in the old generation. The other memory
chunks not occupied by live objects are free and can be combined with the pre-
collection free memory in order to use for allocation.

In detail, the collector works in four phases:

e The marking phase: marks all the reachable, i.e. live, objects starting

from root sets.

e The summary phase: calculates the destination, i.e new location, of each

object at the end of the collection.

e The compaction phase: moves objects to their destination and updates

references to point to new locations.

e The clean-up phase: updates the remaining references which have not
been processed in previous phases to point to new locations.

Regarding the parallelization of the collector, the marking phase works
in parallel because the marking of objects and processing their references to
other objects can be done independently. The summary phase works in single-
threaded mode. It is reasonable as the amount of work is small and the calcu-

lation of the new locations of objects are dependent on each other. After the

6.2. PARALLEL THROUGHPUT COLLECTOR 179

R R, Rs

Figure 6.2: An example of regions of Type A (R;), Type B (R2, R3) and type

C (R4) before (upper) and after (lower) compaction

summary phase, all the objects’ new locations are determined. The compaction
then moves the objects to their new locations accordingly. Parallelization of this
phase is more complicated as new locations of objects can be currently occupied
by other objects which should be moved else where.

To allow compaction to work in parallel, PMC divides the space into sev-
eral fixed size regions (512 bytes each in PMC). Before compaction, the regions
contains both live objects and garbage objects. When the summary phase fin-

ishes, each region can be categorized into one of three types (see fig. 6.2):

e Type A: data from the region is compacted completely into itself, or the
region is empty. The region can be claimed and, probably, is filled with

objects.

e Type B: data from the region is compacted into 1 other region; some data

from the region may also be compacted into the region itself.

e Type C: data from the region is copied to 2 other regions.

The compaction then processes the regions. Type-A regions can be claimed
and processed, i.e filled, first. Objects which fills type-A regions are from re-

180 CHAPTER 6.

gions of type-B and type-C. As type-A regions are filled, more type-B and -C
regions become type-A ones. Eventually, all regions are processed.

As the number of collected regions are massive, parallelism is achieved by
assigning an equal amount of type-A regions to each GC thread at the beginning
of the compaction phase. Each thread maintains a region stack to store the
assigned regions. As a thread processes the assigned type-A regions, it actually
moves data away from type-B/-C (to the processed regions), which results in
the transformation of type-B/C regions to type-A regions. It pushes these new
type-A regions into its stack. When it finishes processing regions in its stack,
a GC thread randomly chooses another GC thread to steal unprocessed regions.
Compaction finishes when all regions are processed, either filled or claimed. At
this point, all live objects have already moved to their new locations. The free

regions claimed are coalesced with the pre-collection free memory.

6.3 The Old Generation NUMA Space

This section starts with a description of current issues of the old generation
space. It continues by describing the NUMA-aware space policy called frag-

mented spaces and how it is applied to achieve a NUMA-aware old generation.

6.3.1 Current Old Generation Space

PMC reserves a large virtual address space for the old generation. The actual
physical memory is lazily mapped to a virtual memory using, in the case of
Unix-like operating systems, mmap system calls. A virtual memory page is
mapped to a physical memory page when it is first accessed. The mapping
prefers the physical memory page on the node where the fault is triggered.
Thereafter, the virtual address range of the page remains associated to the same
physical node.

In most cases, objects in the old generation are allocated by the GC threads
to promote young objects to the old generation during young GC. To avoid
synchronization among GC threads at every allocation, a GC thread allocates a

6.3. THE OLD GENERATION NUMA SPACE 181

memory chunk in the old generation called Promotion-Local Allocation Buffer
(PLAB). Thereafter, it allocates objects from this buffer, without synchroniza-
tion, using a bump pointer. Only the allocation of PLAB requires synchroniza-
tion among all GC threads, therefore uses an atomic compare-and-swap.

6.3.2 Performance Issues

The combination of the mapping policy and the use of PLABs results in a mem-
ory locality issue during the collection of the young generation. In normal cir-
cumstances, GC threads are distributed among nodes and they roughly promote
the same amount of data; therefore, PLABs are allocated from different nodes,
roughly, in a round robin manner. This behavior, together with the above map-
ping policy, lead to a result that address ranges of the old space are mapped to
different memory nodes in an interleaving manner. Once mapped, the associa-
tion of a virtual address range to a physical memory page remains unchanged.
When a GC thread copies an object to a PLAB, the possibility that physical
memory of the PLAB locates at a remote node is high; because a GC thread
in large-scale multicore systems usually has more than one remote node. As a
result, most copies performed by GC threads when promoting young objects to
the old generation are remote.

In addition, the unawareness of object locality affects negatively the perfor-
mance of the young GC, i.e. Parallel Scavenge. HotSpot uses a card table to
store all references from old to young generation. During the PS collection, the
card table is divided evenly into several chunks and each GC thread processes
one of the chunks, without any consideration of object locality. As each range
contains physical memory located on different nodes, a GC thread often has
to scan remote objects, resulting in a saturation of the inter-connection among
nodes.

PMC also encounters a memory locality issue during compaction when old
generation contains only a single space. A GC thread performing compaction
fills a type-A region with objects from other, i.e. type-B/-C, regions. When
either the destination or both source and destination locate on a node other than

182 CHAPTER 6.

where the GC thread is executing, the thread performs remote copies. The
likelihood of this happening is high because, as mentioned, a GC thread has

one local node but usually more than one remote node.

6.3.3 Fragmented Space

Gidra et al. [8] addressed memory locality and access imbalance in the young
generation by introducing a NUMA space layout called fragmented spaces. The
following paragraph describes the policy.

Fragmented space policy divides a space into multiple fragments where each
fragment gets all it physical memory from a single node. Under this policy,
a thread always allocates objects from the fragment on the node where it is
executing. This policy helps to improve the locality for the mutator as a thread
accesses mostly the recently allocated objects. It also improves locality for the
GC as an object is copied to the memory node where the thread performing
copy is executing. Fragmented spaces improve memory access imbalance in
two ways. Firstly, when the allocation policy for each segments is fixed, a
space has its physical memory from multiple nodes instead of one single node.
Secondly, work-stealing during GC ensures that each GC thread copies roughly
the same number of bytes, therefore balances the distribution of objects among

nodes.

6.3.4 NUMA-aware Old Space

The issues discussed in subsection 6.3.1 are partly solved by introducing a
NUMA-aware old space based on fragmented spaces. The space consists of a
number of fragments where each fragment is a virtual address range that get its
physical pages only from a single node. A GC thread allocates PLAB from the
fragment associated with the node where it is executing. As a result, any GC
thread promoting objects from the young to the old generation always copies
them to the local memory node. Scanning the card table to discover references
from the old to the young generation can also be adapted to perform in a per-
node manner. GC threads running on a node process only the part of the table

6.4. NUMA-AWARE PARALLEL MARK-COMPACT 183

that associates with its local fragment.

The main objective of the introduction of the NUMA-aware old space layout
is to create a NUMA-aware GC for the old generation. In the next section, we
present our NUMA-aware Parallel Mark-Compact, which is built on top of the
current PMC in the HotSpot.

6.4 NUMA-aware Parallel Mark-Compact

In this section, we present our modification to the PMC collector to make it
NUMA-aware. As current PMC treats all spaces as a single contiguous frag-
ment, a GC thread usually performs a remote copy where either or both the
source and destination addresses are on some remote nodes, other than where
the thread is executing. In addition, PMC also has a negative impact on memory
locality of the mutator. An object, after the compaction of a collection cycle, re-
sides on a node different from where it was allocated or where it resided, before
the collection cycle. With the transformation of all spaces to NUMA-aware
fragmented spaces, the memory locality of the compaction can be improved.
The idea is that objects from a fragment associated to a node are copied, i.e
“compacted”, to the old fragment on the same node. Under this policy, copying
of objects during a PMC collection is always local. Memory locality of the mu-
tator are also improved because objects locates on the same nodes before and
after collection.

The NUMA-aware PMC works in the same phases as the original PMC,

which we are going to described next.

6.4.1 Marking Phase

GC threads perform breadth-first-traversal of the graph of live objects, starting
from the root set. When reaching an object, a GC thread marks the object as
alive by setting the associated bit in the bit map. While traversing, GC threads
follow the references to objects in any nodes. Restricting the traversal to be
local can help the marking phase achieves perfect locality. When a GC thread

184 CHAPTER 6.

discovers a remote object, it send a message to GC threads running on the re-
spective remote node so that they can process, i.e marking, scanning and/or
copying, the object locally. However, this approach, which was proposed in [8],
did not bring significant improvement to PS in practice. In the case of PMC,
marking threads only perform marking and scanning objects, without copying;
the possible benefit must, therefore, be even lower or none at all compared to

achieved benefit in PS. This motivates us to keep the marking phase unchanged.

6.4.2 Summary Phase

The summary phase collects information to prepare for compaction. The funda-
mental idea of the compaction is to divide the heap into several small fixed-size
regions so that the compaction can process several regions in parallel. In PMC,
the heap space is divided into 512 byte regions and the summary phase calcu-
lates summary data for every region. The most important summary data for a
region are the source_address (i.e., where the live data to fill in the region comes
from) and the destination_count (i.e., the number of regions that live data in this
region will be copied to). As each space is divided into fragments and an object
is only moved among fragments associated with the same node, the summariza-
tion can be done on each node separately. The NUMA-aware PMC compacts a
fragment similar to the way the original PMC treats a space. All live objects in
the old fragment associated with a node are compacted to the beginning of the
fragment. The objects on fragments associated to the same node on eden space
and from-space are then copied next.

For each node, summary data is calculated for, in order, old, to, and eden
fragments. Each fragment is divided into several fixed size regions and the
calculation of the new addresses works in the manner of per region, rather than
per object. A GC threads scans all regions from the beginning to the end of a
fragment. The live data in a scanned region is expected, during the compaction,
to be copied next to the live data of the previous region. As a result, it is simple
to update a region that is expected to contains live data after compaction with the

starting address of that live data, i.e., source_address. When the summary phase

6.4. NUMA-AWARE PARALLEL MARK-COMPACT 185

is completed, the source_address of any region that are supposed to contain live
data after compaction are identified. Each scanned region is also identified as
Type-A, -B or -C (see Section 6.2), according to its destination_count.

When the heap is almost full, an old fragment on a node sometimes can-
not accommodate all live objects on that node. The excess data should then be
placed in another, e.g., eden or to, fragment. In this situation, special care is
required to make sure an object is not separated into two fragments. The sum-
mary phase also identifies the dense prefix area, which is a part at the beginning
of an old fragment that consists of consecutive regions with very high density
of live data. Compacting these regions brings less benefit than the cost, and is
therefore skipped.

The summary phase can be parallelized easily by assigning one task on
each node to perform summarization for memory fragments associated with the
node. On each node, the summary data of each fragment, i.e old, eden and from,
can also be calculated in parallel. However, considering the amount of calcula-

tion work is small, we did not parallelize this phase in our implementation.

6.4.3 Compaction Phase

In this phase, a GC thread fetches a task from a global task queue which is syn-
chronized using a GC monitor. Similar to the original PMC, the NUMA-aware
PMC performs three kinds of tasks: fill-region tasks, update-dense-prefix-region
tasks and steal tasks. However, the data fed for each task are different. We want
that the regions processed by a task executed on a node locates on fragments
associated to the same node. In this way, all copying is local.

Each fill-region task or update-dense-prefix-region task associates with a
stack containing regions that the task should process. Before the parallel GC
threads are woken up to perform compaction tasks, regions that are ready to be
processed are pushed, in round robin manner, to stacks of the tasks. According
to the task execution model of the virtual machine, tasks are queued in a global
task queue and later, can be fetched by any active GC thread. Therefore, when

regions are pushed to a task’s region stack, the fact that which GC thread will

186 CHAPTER 6.

perform the task is unknown. Neither is the node that the task will be executed
on. Using the current task execution model, it is not possible to fix a node that
a task will be executed on. In order to ensure that a task running on a node will
process regions from the same NUMA-node, we need some modifications on
the task execution model.

The modified model uses a two-level task queue and each task is attached
with a preference executing node that indicates the node that the task should be
executed on. The two-level task queue contains a global task queue accessible
by any threads and multiple per-node task queues. Tasks in the global queue can
be performed by any GC threads while tasks in a per-node task queue can only
be performed by GC threads executed on the same node. The task manager will
assign a task with a preference executing node to the appropriate task queue.
The task is then executed by a GC thread running on that node. Our model
distributes tasks among all nodes so that each node has a roughly equal amount
of tasks. For convenience, we refers to a task with a preference executing node
X as X'’s task.

Fill-region tasks
Fill-region tasks perform copying objects to their destination by filling in type-

A regions and updating all references in the objects to new addresses.

Before the tasks start, we assign all type-A regions located on a node to fill-
region tasks of that node in a round robin manner. When a GC thread executes
a task, it pops the regions from the associated region stack and fills them with
data from other, type-B/-C regions locating on the same nodes. The copying
are totally local. When data of a type-B region is moved away, the region be-
comes type-A. The GC thread that performs the last data movement for such a
type-B region pushes that region to its region stack. Similarly, a type-C region
gradually becomes a type-B, and then a type-A region. When all these tasks are
finished, all regions which needed to be filled with live objects are filled and
empty regions are reclaimed.

When a GC thread copies data among regions, it processes references in the
copied objects. If the thread copy the whole object, it updates all references in

the object to new, i.e. post-compaction, addresses. It might also copy a partial

6.5. DISCUSSIONS 187

object that spans over two or more regions. In such a case, updates of references
of that object is deferred to the end of the compact phase, when all objects have
been moved to their new locations. To reduce the amount of stored information
for each object, PMC does not store the new address for any object. Instead, the
new address of an object is calculated based on the information of a region in a

dedicated routine.

Update-dense-prefix-region tasks
Similar to fill-region task, dense prefix regions on a node are assigned to tasks
that are executed on the same node. Each task is assigned with an equal set of
continuous regions. Each dense prefix task updates references in the assigned
regions to the referenced objects’ post-compaction addresses.

Steal task
The steal task performs stealing regions from other fill-region tasks, similar to
PMC, to balance the load among GC threads and/or nodes.

6.5 Discussions

We have introduced a NUMA-aware policy to the old generation space and have
also transformed the PMC collector to become NUMA-aware. The collector
achieves almost perfect locality as most tasks, except for the marking tasks, are
done locally. There is still room to improve the work. The summary phase can
be easily parallelized, though the benefit might be marginal.

The NUMA-aware young GC roughly promotes the same amount of data to
each fragment of the NUMA-aware old space and memory in the old space are
allocated in a balance manner. However, when the old GC works, it compacts all
fragments on a node locally. In case that the mutator does not allocate memory
in a balanced manner, slight imbalances of memory among nodes is expected.
Memory among node can be balanced by allowing compacting memory across
nodes. If the calculation during the summary phase indicates memory imbal-
ance, objects can be taken from heavy loaded nodes and moved to less loaded
nodes.

188 CHAPTER 6.

6.6 Related Works

A great effort has been made to design parallel GCs, especially improving the
load balancing mechanism. Halstead [9] developed a parallel version of Baker’s
semi-space copying GC for Multilisp on shared memory multiprocessors. Dur-
ing collection, the heap is logically partitioned into per-thread from-space and
to-space, and a thread traces objects from its set of roots and copies them to its
to-space. Since then, parallel copying GCs have been improved in many ways
especially on the work-stealing mechanism among GC threads to balance the
load, by Imai and Tick [10], Siegwart and Hirzel [12], Flood et al. [6], Attanas-
sio et al. [2], Cheng and Blelloch [4].

Endo et al. [5] developed a parallel mark-sweep collector for share memory
multiprocessors which balances the loads among GC threads in the mark phase
by per-object work-stealing, and in the sweep phase by fine-grained partitioning
of heap into several small blocks that are processed in parallel. Ben-Yitzhak et
al [3] augmented a parallel mark-sweep collector with periodically selecting
a certain area to clear, which reduces heap fragmentation. The mark-compact
algorithm which performs compaction in three heap passes was first parallelized
by Flood et al. [6], who divided the heap into several areas to be compacted in
parallel by GC threads. The number of heap passes in the compaction has been
improved to two passes by Aboaiadh et al. [1]. Kermany and Petrank [11]
reduced the number of heap passes in the compaction to one, which is similar
to the algorithm used in HotSpot’s PMC collector.

Zhou and Demsky [13] propose a NUMA-aware parallel mark-compact col-
lector targeting the TILE-Gx microprocessor family. The key design principle
is that each core independently manages its own memory partition to minimize
the coordination overheads and to improve the memory locality. While this
algorithm focuses on memory locality, our proposal works together with the
NUMA-aware young generation collector to balance the load while maintain-

ing good memory locality.

6.7. CONCLUSIONS 189

6.7 Conclusions

In this paper, we have presented a NUMA-aware Parallel Mark-Compact garbage
collector. The collector performs compaction in a per-node manner, allowing
most of the work to be done on local memory nodes. The collector maintains the
locality of memory after compaction the same as pre-compaction. In addition,
the application of the NUMA-aware space to the old generation helps to keep
memory allocation in old generation balance among nodes. The NUMA-aware
old space brings positive impact for the scanning of the old to young references
during young generation collection. There are other remaining bottlenecks for
the scalability of the GC to be addressed such as memory imbalance. We are
expecting a paper with all the improvements completed together with evaluation

results soon.

Bibliography

[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient parallel heap

compaction algorithm. SIGPLAN Not., 39(10):224-236, Oct. 2004.
[2] C.R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A comparative evaluation

of parallel garbage collector implementations. In Proceedings of the 14th interna-
tional conference on Languages and compilers for parallel computing, LCPC’01,

pages 177-192, Berlin, Heidelberg, 2003. Springer-Verlag.
[3] O. Ben-Yitzhak, I. Goft, E. K. Kolodner, K. Kuiper, and V. Leikehman. An algo-

rithm for parallel incremental compaction. SIGPLAN Not., 38(2 supplement):100—

105, June 2002.
[4] P. Cheng and G. E. Blelloch. A parallel, real-time garbage collector. SIGPLAN

Not., 36(5):125-136, May 2001.
[5] T. Endo, K. Taura, and A. Yonezawa. A scalable mark-sweep garbage collector

on large-scale shared-memory machines. In Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, Supercomputing *97, pages 1-14, New York, NY,

USA, 1997. ACM.
[6] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang. Parallel garbage collection for

shared memory multiprocessors. In Proceedings of the 2001 Symposium on Ja-
vaTM Virtual Machine Research and Technology Symposium - Volume 1, IVGM’01,
pages 21-21, Berkeley, CA, USA, 2001. USENIX Association.

190

(7]

(8]

(9]

[10]

(1]

[12]

[13]

CHAPTER 6.

L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the scalability of
garbage collectors on many cores. In Proceedings of the 6th Workshop on Program-
ming Languages and Operating Systems, PLOS 11, pages 7:1-7:5, New York, NY,
USA, 2011. ACM.

L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the scalability of
stop-the-world garbage collectors on multicores. In Proceedings of the 18th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 13, Houston, TX, USA - March 16 - 20, 2013, pages

229-240, 2013.
R. H. Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor. In

Proceedings of the 1984 ACM Symposium on LISP and Functional Programming,

LFP ’84, pages 9-17. ACM, 1984.
A. Imai and E. Tick. Evaluation of parallel copying garbage collection on a shared-

memory multiprocessor. IEEE Trans. Parallel Distrib. Syst., 4(9):1030-1040, Sept.

1993.
H. Kermany and E. Petrank. The compressor: Concurrent, incremental, and paral-

lel compaction. SIGPLAN Not., 41(6):354-363, June 2006.
D. Siegwart and M. Hirzel. Improving locality with parallel hierarchical copying

gc. In Proceedings of the 5th International Symposium on Memory Management,

ISMM 06, pages 52—63, New York, NY, USA, 2006. ACM.
J. Zhou and B. Demsky. Memory management for many-core processors with

software configurable locality policies. SIGPLAN Not., 47(11):3—-14, June 2012.

