
Competitive Freshness Algorithms for Wait-free
Data Objects

Peter Damaschke∗ Phuong Hoai Ha∗ Philippas Tsigas∗

Abstract

Wait-free concurrent data objects are widely used in multiprocessor systems
and real-time systems. Their popularity results from the fact that they avoid lock-
ing and that concurrent operations on such data objects are guaranteed to finish
in a bounded number of steps regardless of the other operations interference. The
data objects allow high access parallelism and guarantee correctness of the concur-
rent access with respect to its semantics. In such a highly-concurrent environment,
where many wait-free write-operations updating the object state can overlap a sin-
gle read-operation, the age/freshness of the state returned by this read-operation is
a significant measure of the object quality, especially for real-time systems.

In this paper, we first propose a freshness measure for wait-free concurrent data
objects. Subsequently, we model the freshness problem as an online problem and
present two algorithms for it. The first one is a deterministic algorithm with asymp-
totically optimal competitive ratio

√
α, where α is a function of the execution-time

upper-bound of wait-free operations. The second one is a competitive randomized
algorithm with competitive ratio ln α

1+ln 2− 2√
α

.

1 Introduction

Concurrent data objects play a significant role in multiprocessor systems, but also cre-
ate challenges on consistency. In concurrent environments like multiprocessor systems,
consistency of a shared data object is guaranteed mostly by mutual exclusion, a form
of locking. However, mutual exclusion degrades the system’s overall performance due
to lock convoying, i.e. other concurrent operations cannot make any progress while
the access to the shared object is blocked. Mutual exclusion also contains risks of
deadlock and priority inversion. To address these problems, researchers have proposed
non-blocking algorithms for shared data objects. Non-blocking methods do not involve
mutual exclusion, and therefore do not suffer the problems that blocking can cause.
Non-blocking algorithms are either lock-free or wait-free. Lock-free [11] algorithms
guarantee that regardless of both the contention caused by concurrent operations and
the interleaving of their sub-operations, always at least one operation will progress.
However, there is a risk for starvation as progress of other operations could cause one
specific operation to never finish. Wait-free [10] algorithms are lock-free and moreover

∗Department of Computer Science and Engineering, Chalmers University of Technology, S-412 96
Gothenburg, Sweden. Email:{ptr, phuong, tsigas}@cs.chalmers.se

they avoid starvation. In a wait-free algorithm every operation is guaranteed to finish
in a limited number of steps, regardless of actions of other concurrent operations. Non-
blocking algorithms have been shown to be of big practical importance [7, 8, 18], and
recently NOBLE, which is a non-blocking inter-process communication library, has
been introduced [23]. As a result, many aspects of concurrent data objects have been
researched deeply such as consistency conditions [1, 9, 20], concurrency hierarchy [6]
and fault-tolerance [17].

In this paper, we look at another aspect of concurrent data objects: the freshness
of the object states returned by read-operations. Freshness is a significant property
for shared data in general and has achieved great concerns in databases [3, 12, 19] as
well as in caching systems [13, 15, 16]. Briefly, freshness is a yardstick to evaluate
how fresh/new a value of a concurrent object returned by a read-operation is, when
the object is updated and read concurrently. For concurrent data objects, although
read-operations are allowed to return any value written by other concurrent operations,
they are preferred to return the freshest/latest one of these valid values, especially in
reactive/detective systems. For instance, monitoring sensors continuously concurrently
input data via a concurrent object and the processing unit periodically reads the data to
make the system react accordingly. In such systems, the freshness of data influences
how fast the system reacts to environment changes.

However, there are few results on the freshness problem in the literature. Simp-
son [21, 22] suggested a freshness specification for a single-writer-to-single-reader
asynchronous communication mechanism, which is different from atomic register sug-
gested by Lamport [14]. Simpson’s communication model with a single writer and a
single reader is not suitable for fully concurrent shared objects that many readers and
many writers can concurrently access.

These issues motivate us to define and attack the freshness problem for wait-free
shared objects. We model the problem as an online problem and then present two al-
gorithms for it. The first one is a deterministic algorithm, which is a natural adaptation
from an online search algorithm called reservation price policy [5]. The algorithm
achieves a competitive ratio

√
α, where α is a function of execution-time upper-bound

of wait-free operations. Subsequently, we prove that the algorithm is optimal by prov-
ing that

√
α is the best competitive ratio for deterministic algorithms. The second is

a new competitive randomized algorithm with competitive ratio ln α
1+ln 2− 2√

α

. The ran-

domized algorithm is nearly optimal since our results [4] from an elaboration on the
EXPO search algorithm [5] showed that O(ln α) is an asymptotically optimal compet-
itive ratio for randomized freshness algorithms.

The paper is organized as follows. Section 2 describes the freshness problem and
models it as an online problem. Section 3 presents the optimal deterministic algorithm.
Section 4 presents the randomized algorithm. The competitive ratio in this case is the
expected value against an oblivious adversary. (We presume that the reader is familiar
with competitive analysis of online algorithms, cf. [2].)

2

2 Problem and Model

Linearizability [9] is the correctness condition for concurrent objects. It requires that
operations on the objects appear to take effect atomically at a point of time in their
execution interval. This allows a read operation to return any of values written by
concurrent write operations, which is illustrated by Figure 1.

W(0) A W(1) B

R(0 or 1) C

Freshness problemConcurrent reading & writing

W3

p2
W2 W4

W1

e3

e2

e1
p3

p4
s0

R0

e0 e0 + De0 + d

p1

Figure 1: Illustrations for concurrent reading/writing and freshness problem

We use “W(x) A” (“R(x) A”) to stand for a write (read) operation of value x to
(from) a shared register by process A. It is correct for C to return either 0 or 1 with
respect to linearizability. However, from freshness point of view we prefer C to return
1, the newer/fresher value of the register. The freshness problem is to find a solution
for read operations to obtain the freshest value from a shared object. Intuitively, if
a read operation lengthens its execution interval by putting some delay between the
invocation and the response, it can obtain a fresher value but it will respond more
slowly from application point of view. Therefore, the freshness problem is to design
read-operations that both respond fast and return fresh values.

The freshness problem is especially interesting in reactive systems, where mon-
itoring sensors continuously and concurrently input data for a processing unit via a
concurrent data object. The unit periodically reads the data from the object and subse-
quently makes the system react to environment changes accordingly. In order to react
fast, the read-operation used by the unit must both respond fast and return a value as
fresh as possible. If the read-operation responds immediately at time e0 and an envi-
ronment change occurs at time e0 + ε, the system must wait for a period T until the
next read in order to observe the change. In this scenario, the system will react faster
if the read-operation delays a bit to return the fresh value at e0 + ε. The system will
subsequently react according to the change at time e0 + ε instead of waiting until time
e0 + T to be able to observe the change, where ε << T (Assume that processing time
is negligible.).

The freshness problem is illustrated by Figure 1. In the illustration, a read operation
R0 runs concurrently to three write operations W1, W2 and W3 on a concurrent shared
object. In this paper, read/write operations imply operations on the same object. The
actual execution interval of a operation i is defined from the time si the operation starts

3

to the time ei it takes effect (i.e. linearization point [9]). A time axis runs from left to
right. The value returned by R0 becomes fresher if there are more end-points ei appear
in the interval [s0, e0]. In the illustration, if R0 delays the time-point e0 to e′0 = e0 +d,
the execution interval [s0, e

′
0] will include two more end-points e1 and e2 and thus the

value returned is newer. However, the delay will also make the read-operation respond
more slowly. This implies that R0 needs to find the time delay d so as to maximize
the freshness value fd = k(|wed|)

h(d) , where |wed| is the number of new write-endpoints
earned by delaying R0’s read-endpoint an interval d and k, h are increasing functions
that depend on real applications. The k and h functions should be increasing in order
to model progressive systems. Each application may specify its own functions k and h
according to the relation between the latency and freshness in the application.

Assume that the shared object supports a function for read operations to check
how many write operations (with their timestamp) are ongoing at a time∗. A write-
timestamp wt shows the start-point of the corresponding write operation whereas a
read-timestamp rt shows the end-point of the corresponding read operation. The times-
tamp objective is to help R0 ignore W4 due to rt0 < wt4. Note that R0 only needs to
consider write-endpoints of write operations that occur concurrently to R0 in its orig-
inal execution interval [s0, e0], e.g. R0 will ignore W4. Therefore, in the freshness
problem, the number of concurrent write operations that have not finished at the orig-
inal read-endpoint e0 is known and is called M . This number is also the total number
of considered write-endpoints, i.e. |wed| ≤ M .

The most challenging issue in the freshness problem is that the end-points of con-
current write operations appear unpredictably. In order to analyze the problem, we
consider it as an online game between a player and an oblivious adversary where the
malicious adversary decides when to place the write-endpoints ei on-the-fly and the
player (the read operation) decides when she should stop and place her read-endpoint
e′0. The online game starts at the original read-endpoint e0 and the player knows the
total number of write-endpoints M that the adversary will use throughout the game. At
a time t, the player knows how many of M end-points have been used by the adversary
so far, i.e. |wet|, (by comparing M with the number of ongoing write operations that
ran concurrently with the original read operation) and computes the current freshness
value ft = k(|wet|)

h(t) . For each ft observed, without knowledge of how the value will
vary in the future, the player must decide whether she accepts this value and stops or
waits for a better one. In this online game, the player’s goal is to minimize the compet-
itive ratio c = fmax

fchosen
, where fchosen is the freshness value chosen by the player and

fmax is the best value in this game, which is chosen by the adversary. The duration of
this game D is the upper bound of execution time of the wait-free read/write operations
and is known to the player. This implies that all the M write-endpoints must appear at
a time-point in the interval, i.e. |weD| = M .

In summary, we define the freshness problem as follows. Let M be the number
of ongoing wait-free write operations at the original read-endpoint e0 of a wait-free
read operation and D be the execution-time upper-bound of these wait-free read/write
operations. The read operation needs to find a delay d ≤ D for its new end-point e′0

∗The assumption is practical since this can be done by adding a list of timestamps of ongoing write
operations to the shared object.

4

so as to achieve an optimal freshness value fd = k(|wed|)
h(d) , where |wed| is the number

of write-endpoints earned by the delay d and k, h are increasing functions that reflect
the relation between latency and freshness in real applications. The read-operation is
only allowed to read the object data and check the number of ongoing write-operations.
The write-operation is only allowed to write data to the object. We assume the time
is discrete, where a time unit is the period with which the read operation regularly
checks the number of ongoing write operations on the shared object. The extended
read operation is still wait-free with an execution-time upper-bound 2D.

The rest of this paper presents two competitive online algorithms for the freshness
problem. The first one is an optimal deterministic algorithm with competitive ratio√

α, where α = h(D)
h(1) . The second one is a nearly-optimal randomized algorithm with

competitive ratio ln α
1+ln 2− 2√

α

. Note that the competitive ratios do not depend on k and

M , which are related to the number of end-points.

3 Optimal Deterministic Algorithm

Modeling the freshness problem as an online game, we observe that the freshness prob-
lem is a variant of online search [5]: In that problem, a player searches for the maxi-
mum (minimum) price in a sequence of prices that unfolds daily. For each day i, the
player observes a price pi and must decide whether to accept this price or to wait for a
better one. The game ends when the player accepts a price, which is also the result.

Inspired by an online search algorithm called reservation price policy [5], we sug-
gest a competitive deterministic algorithm for the freshness problem. In addition to
the fact that the player is searching for the best in a sequence of freshness values that
unfolds sequentially in a foreknown range, there are more restrictions on the adversary.
Freshness values ft at time t must fulfill:

ft−1 ∗ h(t − 1)
h(t)

=
k(|wet−1|)

h(t)
≤ ft =

k(|wet|)
h(t)

≤ k(M)
h(t)

(1)

The restrictions come from the fact that the adversary cannot remove the end-points
she has placed, i.e. |wet−1| ≤ |wet| ≤ M , where |wet| is the number of end-points that
have appeared until a time t, and the freshness value at the time t is ft = k(|wet|)

h(t) , where
k, h are increasing functions. The restrictions make the adversary in the freshness
problem weaker than the adversary in the online search problem, and intuitively the
player in the freshness problem should benefit from this. However, we will prove that
this is not the case for deterministic algorithms (cf. Theorem 3.2).

Before presenting the deterministic freshness algorithm, we need to find upper/lower
bounds on freshness values ft. Since 1 ≤ t ≤ D, from Equation (1) it follows
ft ≤ k(M)

h(1) . On the other hand, since M ongoing write-operations must end at time-

points in the interval D, the player is ensured a freshness value fmin = k(M)
h(D) by just

waiting until t = D. Therefore, the player considers to stop at a freshness value ft

only if ft ≥ k(M)
h(D) . We have k(M)

h(D) ≤ ft ≤ k(M)
h(1) .

5

Deterministic Algorithm: The read operation accepts the first freshness value that
is not smaller than f∗ = k(M)√

h(1)h(D)
.

Indeed, let f∗ be the threshold for accepting a freshness value and fmax be the
highest value chosen by the adversary. The player (the read operation) waits for a
value ft ≥ f∗. If such a value appears in the interval D, the player accepts it and
returns it as the result. Otherwise, when waiting until the time D, the player must
accept the value fmin = k(M)

h(D) .

Case 1: If the player chooses a big value as f∗, the adversary will choose fmax < f∗,
causing the player to wait until the time D and accept the value fmin = k(M)

h(D) .

The competitive ratio in this case is c1 = fmax
k(M)
h(D)

< f∗
k(M)
h(D)

.

Case 2: If the player chooses a small value as f∗, the adversary will place f∗ at a time
t, causing the player to accept the value and stop. Right after that, the adversary
places all M end-points, achieving a value fmax = k(M)

h(t) ≤ k(M)
h(1) (equality

occurs when the adversary chooses t = 1). The competitive ratio in this case is

c2 =
k(M)
h(1)

f∗ .

The player chooses f∗ so as to make c1 = c2, which results in f∗ = k(M)√
h(1)h(D)

and

the competitive ratio c = c1 = c2 =
√

h(D)
h(1) . This leads to the following theorem.

Theorem 3.1. The suggested deterministic algorithm is competitive with competitive
ratio c =

√
α, where α = h(D)

h(1) .

We now prove that no deterministic algorithm can do better.
We use a logarithmic vertical axis for freshness. Let LF denote the logarithm of

freshness. More specifically, we normalize the LF axis so that freshness k(M)
h(D) corre-

sponds to point 0 and freshness k(M)
h(1) corresponds to point ln h(D)

h(1) = ln α. One unit
on the LF axis multiplies the freshness by factor e (Euler’s number).

We also introduce some parameters that characterize the status of a game. Let t be
the time, initially t = 1. At any moment, let f be the maximum LF the adversary has
already reached during the history of the game, and g the maximum LF the adversary
can still achieve at a given time. LF value g(t) at time t corresponds to freshness
k(M)/h(t), unless f is already larger, in which case we have g = f . However in the
latter case the game is over, without loss of generality: The adversary cannot gain more
and would therefore decrease the freshness as quickly as possible, in order to make the
player’s position as bad as possible, hence an optimal player would stop now.

The horizontal axis is for the logarithm of h(t). We normalize it so that h(1)
corresponds to point 0 and h(D) corresponds to point ln h(D)

h(1) = ln α). Note that, in
these logarithmic coordinates, g simply decreases at unit speed, starting at point ln α.
Finally, let c denote the current LF. We remark that c can decrease at most at unit speed
but can jump upwards arbitrarily as long as c ≤ g.

Theorem 3.2. The optimal deterministic competitive ratio is asymptotically (subject
to lower-order terms)

√
α, where α = h(D)

h(1) .

6

Proof. We only need to show an adversary strategy that enforces the claimed compet-
itive ratio. Our logarithmic coordinates make the argument rather simple: The adver-

sary starts with c = ln α
2 =

ln
h(D)
h(1)

2 . Then she decreases c at unit speed until the player
stops. Immediately after this moment, c jumps to g if c > 0 at the stop time (Case 1),
otherwise c keeps on decreasing at unit speed (Case 2). Clearly, we have constantly
g − c = ln α

2 until the stop time. Let p be the player’s value of LF. In Case (1) we
finally get f = g, hence f − p = g − c = ln α

2 . In Case (2), f has still its initial
value ln α

2 whereas p ≤ 0, hence f − p ≥ ln α
2 . Thus the competitive ratio is at least

e
ln α
2 =

√
α.

We have shown that a deterministic player cannot benefit from the constraints on the
behaviour of freshness in time (compared to the unrestricted online search problem).

4 Competitive Randomized Algorithm

Next we present a randomized algorithm for the freshness problem, against the oblivi-
ous adversary [2]. It achieves a competitive ratio c = ln α

1+ln 2− 2√
α

, where α = h(D)
h(1) .

As discussed in the previous section, our problem is a restricted case of online
search. We model the problem by a game between an (online) player and an adversary.
The adversary’s profit is the highest freshness ever reached. The player’s profit is the
freshness value at the moment when she stops. Note that for a player running a random-
ized strategy, the profit is the expected freshness value, with respect to the distribution
of stops resulting from the strategy and input. We shall make use of a known simple
transformation of (randomized) online search to (deterministic) one-way trading [5]:
The player has some budget of money she wants to exchange while the exchange rates
may vary over time. Her goal is to maximize her gain. The transformation is given
as follows: The budget corresponds to probability 1, and exchanging some fraction of
money means to stop the game with exactly that probability. Note that a deterministic
algorithm for online search has to exchange all money at one point in time. For the
freshness problem, it is possible to apply a well-known competitive randomized algo-
rithm EXPO [5]. Applying the EXPO algorithm on the freshness problem achieves a
competitive ratio � 2�−1+1/ ln 2

2�−1+1/ ln 2− 1
ln 2

, where � = log2 α. That means for the freshness

problem our randomized algorithm is better than the EXPO algorithm by a constant
factor 1+ln 2

ln 2 when α becomes large.

Theorem 4.1. There is a randomized algorithm for the freshness problem with ex-
pected competitive ratio ln α

1+ln 2− 2√
α

against an oblivious adversary, where α = h(D)
h(1) .

Proof. We start with some conventions. We imagine that the money, both exchanged
and non-exchanged, is “distributed” on the LF axis. Formally, the allocation of money
on the LF axis at any time is described by two non-negative real density functions
S and T , where S(x) is the density of not yet exchanged money in point x of the
LF axis, T (x) is similarly defined for the money that has been already exchanged.
What functions S and T specifically are, and how they are modified by the opponents’

7

actions, will be described below. Let the total amount of money be lnα by convention.
(Recall that scaling factors do not influence the competitive ratio.)

The value of every piece of exchanged money is the freshness value of its position
on the LF axis. Note that the total value of exchanged money defined in this way,
i.e. the integral over the value-by-density product, is the player’s profit in the game.
Moreover, the player can temporarily have some of the money in her pocket.

The idea of the strategy is to guarantee some concentration of exchanged money
immediately below the final f , either some constant minimum density of T or, even
better, a constant amount at one point not too far from f . We want to keep T simple
in order to make the calculations simple. (The well-known δx symbol used below
denotes the distribution with infinite density at a single point x but with integral 1
on any interval that contains x. We also use the same notations f, g, c as earlier.)
Locating much money instantaneously is risky because c may jump upwards, and then
this money has little value compared to the adversary’s. On the other hand, since c
decreases at most with unit speed, the player may completely abstain from exchanging
money as long as c is increasing, and wait until c goes down again. These preliminary
thoughts lead to the following strategy.

In the beginning, let the not-yet-exchanged money be located on the LF axis on
interval [0, ln α] with density 1, that is, we have S = 1 on this interval. Remember that
g decreases at unit speed. The player puts the money above g in her pocket. Whenever
f increases, she also puts the money below the new f in her pocket. Hence we always
have S = 1 on [f, g], and S = 0 outside. The player continuously locates exchanged
money on the LF axis, observing the following rule: If you have money in your pocket
and c is positive and decreasing, and T (c) < 2 at the current c, then set T (c) := 2. If
the game is over (because of f = g) and not all money is exchanged yet, put the rest r
on the current c. Note that the adversary must set the final c nonnegative.

Filling-up density T to 2 is always possible: The player uses the one unit of money
from S that she gets per time unit from the region above the falling g, and the money
from S that she got directly from the current points c when f went upwards.

Obviously, the player produces a density function T that is constantly 2 on certain
intervals and 0 outside, plus some component rδc. We make some crucial observations
regarding the final situation: (1) T has density 2 on interval (c, f], or we have c = f .
(2) The gaps with T = 0 between the “T = 2 intervals” have total length at most r.

These claims follow easily from the strategy: (1) Either c begins decreasing, start-
ing from the last f , and T is filled up to 2 all the time when c > 0, as we saw above, or
the final c equals the final f . (2) Whenever f went upwards, the player has taken from
S the money corresponding to the increase of f , and later she has transferred it to T
and located it at the same points again. Hence, only on intervals not “visited” again by
c we have T = 0, and the money taken from S on these intervals is still in the player’s
pocket and thus contributes to r.

Using (1),(2) we now analyze the profit the player can guarantee herself. Remem-
ber that the value of exchanged money located on the LF axis decreases exponentially.
Let x = f − c (final values). Both r and x depend on the input, i.e., the behavior of
c in time. The total amount of money is fixed, it equals ln α. For any fixed r, x, the
worst case is now that the gaps in T sum up to the maximum length r and are as high
as possible on the LF axis, that is, immediately below point c, because in this case all

8

exchanged money outside [c, f] has the least possible value. That is, T has only one
gap, namely interval [c − r, c].

Hence, a lower bound on the player’s profit, divided by the value at f , is given by

min
r,x

(
2
∫ x

0

e−tdt + re−x + 2
∫ (r+ln α)/2

x+r

e−tdt

)
,

where we started integration (with t = 0) at point f and go down the LF axis. Verify
that, in fact,

∫
Tdt = lnα. The above expression evaluates to

2 + (r − 2 + 2e−r)e−x − 2e−(r+ln α)/2 > 2 + (r − 2 + 2e−r)e−x − 2/
√

α.

For any fixed x, this is minimized if 2e−r = 1, that is, r = ln 2. Since now r − 2 +
2e−r = ln 2 − 2 + 1 < 0, the worst case is x = 0, which gives 1 + ln 2 − 2/

√
α. The

adversary earns ln α times the value at f .

References

[1] Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans.
Comput. Syst. 12(2) (1994) 91–122

[2] Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press (1998)

[3] Cho, J., Garcia-Molina, H.: Synchronizing a database to improve freshness. In:
Proc. of the ACM SIGMOD Intl. Conf. on Management of Data. (2000) 117–128

[4] Damaschke, P., Ha, P.H., Tsigas, P.: One-way trading with time-varying exchange
rate bounds. Technical report CS:2005-17, Chalmers University of Technology
(2005)

[5] El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way
trading online algorithms. Algorithmica 30(1) (2001) 101–139

[6] Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy, and algo-
rithms for unbounded concurrency. In: Proc. of Symp. on Principles of Dis-
tributed Computing (PODC). (2001) 161–169

[7] Harris, T.: A pragmatic implementation of non-blocking linked lists. In: Proc. of
the Intl. Symp. on Distributed Computing (DISC). (2001) 300–314

[8] Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm.
In: Proc. of the ACM Symp. on Parallel Algorithms and Architectures (SPAA).
(2004) 206–215

[9] Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. on Programming Languages and Systems 12(3) (1990) 463–
492

9

[10] Herlihy, M.: Wait-free synchronization. ACM Trans. on Programming and Sys-
tems 11(1) (1991) 124–149

[11] Herlihy, M.: A methodology for implementing highly concurrent data objects.
ACM Trans. on Programming Languages and Systems 15(5) (1993) 745–770

[12] Kang, K.D., Son, S.H., Stankovic, J.A.: Managing deadline miss ratio and sen-
sor data freshness in real-time databases. IEEE Trans. on Knowledge and Data
Engineering 16(10) (2004) 1200–1216

[13] Labrinidis, A., Roussopoulos, N.: Exploring the tradeoff between performance
and data freshness in database-driven web servers. The VLDB Journal 13(3)
(2004) 240–255

[14] Lamport, L.: On interprocess communication. part ii: Algorithms. Distributed
Computing 1(2) (1986) 86–101

[15] Li, W.S., Po, O., Hsiung, W.P., Candan, K.S., Agrawal, D.: Engineering and
hosting adaptive freshness-sensitive web applications on data centers. In: Proc.
of the Intl. Conf. on World Wide Web. (2003) 587–598

[16] Ling, Y., Chen, W.: Measuring cache freshness by additive age. SIGOPS Oper.
Syst. Rev. 38(3) (2004) 12–17

[17] Malkhi, D., Merritt, M., Reiter, M.K., Taubenfeld, G.: Objects shared by byzan-
tine processes. Distrib. Comput. 16(1) (2003) 37–48

[18] Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Proc. of Symp. on Principles of Distributed
Computing (PODC). (1996) 267–275

[19] Pacitti, E., Simon, E.: Update propagation strategies to improve freshness in lazy
master replicated databases. The VLDB Journal 8(3-4) (2000) 305–318

[20] Shao, C., Pierce, E., Welch, J.L.: Multi-writer consistency conditions for shared
memory objects. In: Proc. of the Intl. Symp. on Distributed Computing (DISC).
(2003) 106–120

[21] Simpson, H.R.: Correctness analysis for class of asynchronous communication
mechanisms. Computers and Digital Techniques, IEE Proc.- 139(1) (1992) 35–
49

[22] Simpson, H.R.: Freshness specification for a class of asynchronous communica-
tion mechanisms. Computers and Digital Techniques, IEE Proc.- 151(2) (2004)
110–118

[23] Sundell, H., Tsigas, P.: NOBLE: A non-blocking inter-process communication li-
brary. In: Proc. of the Workshop on Languages, Compilers and Run-time Systems
for Scalable Computers. LNCS, Springer Verlag (2002)

10

