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Abstract. Recent developments in occlusion management for 3D envi-
ronments often involve the use of dynamic transparency, or virtual “X-
ray vision”, to promote target discovery and access in complex 3D worlds.
However, there are many different approaches to achieving this effect and
their actual utility for the user has yet to be evaluated. Furthermore, the
introduction of semi-transparent surfaces adds additional visual com-
plexity that may actually have a negative impact on task performance.
In this paper, we report on an empirical user study comparing dynamic
transparency to standard viewpoint controls. Our implementation of the
technique is an image-space algorithm built using modern programmable
shaders to achieve real-time performance and visually pleasing results.
Results from the user study indicate that dynamic transparency is supe-
rior for perceptual tasks in terms of both efficiency and correctness.

1 Introduction

The ability to utilize the full 3D space as a canvas for information-rich [I] vi-
sualization applications is a mixed blessing—while 3D space on the one hand
supports an order of magnitude of more layout opportunities for visual elements
than 2D space, visualization designers are on the other hand faced with a num-
ber of new challenges arising from the nature of 3D space which do not occur in
2D. More specifically, designers must consider the visibility of objects when users
wish to discover relevant objects, as well as their legibility when the user wants to
access information encoded in a particular object. For instance, whereas objects
that do not intersect can never occlude each other in 2D space, this can very
well happen in 3D space depending on the viewpoint and the spatial interaction
between the objects.

A number of recent solutions to this problem involve the use of dynamic
transparency, also known as virtual X-Ray [2], to make targets visible by turning
intervening surfaces semi-transparency on-demand as the user moves through
the 3D world (see Figure [l for an example). However, this approach may instead
introduce additional visual complexity and reduce the user’s depth perception.
Furthermore, the actual utility of these techniques remains unknown.
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Fig. 1. Dynamic transparency uncovering an engine inside a jeep

In this paper, we evaluate the usefulness of dynamic transparency for solv-
ing visual tasks in both abstract and realistic environments. Note that dynamic
transparency cannot be realized using the standard model for transparency, and
no real-time performance algorithm exists in the literature that fulfills our re-
quirements. Therefore, we also present an image-space algorithm for dynamic
transparency that makes use of fragment shaders for the new generation of pro-
grammable graphics hardware to perform occlusion detection in the image space
and with real-time rendering performance. The effect is somewhat akin to the
“X-ray vision” of a superhero.

The contributions of this paper are the following: (i) a model for dynamic
transparency that captures a natural way of achieving high efficiency for per-
ceptual tasks; (ii) an efficient image-space algorithm for dynamic transparency
using the new generation of programmable graphics hardware; and (iii) results
from a formal user evaluation showing that dynamic transparency significantly
improves both time performance and correctness for visual tasks involving dis-
covery, access, and spatial relation of objects in 3D environments.

This paper is organized as follows: We first discuss the related work in the
field and then present a model for dynamic transparency. In Section [l we give
our algorithm that realizes the requirements put down in the previous section.
Section [ and [@ present the user study and our results. We end the paper with
some discussion of the results and conclusions.

2 Related Work

The general dynamic transparency approach makes heavy use of semi-
transparent surfaces to reduce the impact of occlusion as well as to avoid the
loss of 3D depth cues completely. In order to achieve correct results, transpar-
ent surfaces must be rendered in depth order. Everitt [3] discusses the depth
peeling image-space algorithm for achieving this on modern graphics hardware
based on the virtual pixel map concepts introduced by Mammen [4] and the dual
depth buffers by Diefenbach [B]. The blueprints [6] technique uses depth peel-
ing to outline perceptually important geometrical features of complex models
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using transparency and edge detection. However, depth peeling is a computa-
tionally demanding method and interactive frame rates can only be achieved for
relatively low depth complexity.

Dynamic transparency is also commonly used in 3D games and virtual envi-
ronments to allow users to see through occluding surfaces; Chittaro and
Scagnetto [7] investigate this practice and conclude that see-through surfaces are
more efficient than normal 3D navigation, although not as efficient as bird’s-eye
views.

Diepstraten et al. introduce view-dependent transparency [8] for use in in-
teractive technical illustrations. While closely related to our work in regards to
the general method, Diepstraten employs a fixed two-pass depth peeling step to
uncover the two foremost layers of transparent surfaces, whereas our method is
based on iterative back-to-front rendering and blending, and is thus not limited
to a specific depth.

In another paper, Diepstraten et al. also present their work on computer-based
break-away views [9], where interior objects are made visible through the surface
of containing objects through image-space holes. While again similar to our work,
Diepstraten’s technique is simplified by semantic knowledge of inside and exterior
objects, and the fact that the break-away view is realized by a single hole. To
this end, their method is to compute the convex hull of interior objects in a pre-
processing step and use it as a clipping volume. More importantly, their approach
does not handle the case when several targets line up and occlude each other,
a necessary requirement for dynamic visualizations with a high target density.
Our method requires no off-line preprocessing and derives spatial information
through sorting and rendering the scene back-to-front, smoothly blending the
gradient outline of targets to the scene buffer in an iterative fashion.

Looser et al. [T0] describe a 3D magic lens implementation for Augmented Re-
ality that supports information filtering of a 3D model using the stencil buffer,
allowing the user to utilize a looking glass to see through the exterior of a
house and into its interior, for instance. This approach relies on the 3D model
having semantically differentiated parts, whereas our method requires no such
extra information. Coffin and Hollerer [I1] present a similar technique with ac-
tive interaction where the user is controlling a CSG volume that is dynamically
subtracted from the surrounding world geometry, again using the stencil buffer.
This work does not rely on any semantic target information at all and facilitates
exploratory interaction like active dynamic transparency. However, the depth of
the volume cutout is limited and user-controlled, and no depth cues from the
world geometry are retained other than the cutout border area. With dynamic
transparency, as described in this paper, we are guaranteed to always discover
occluded objects regardless of depth, and some depth cues are retained using
semi-transparency.

Finally, importance-driven rendering assigns importance values to individual
objects in a 3D scene and renders a final image that is a composite of not only the
geometrical properties of the objects, but also their relative importance. Viola
et al. employ it for volume rendering [12] (IDVR) to actively reduce inter-object
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occlusion in the same way that we do in this work. While clearly using a more
powerful interest model than our work, Viola’s implementation (besides being
aimed at volume rendering applications) does not provide interactive framerates,
whereas our implementation makes use of modern graphics hardware to deliver
real-time performance.

Dynamic transparency can also be used in 2D windowing systems (see for ex-
ample [I3T4UTH]) instead of 3D worlds, but this is beyond the scope of this paper.
Other examples of occlusion management also exist beyond the image-space
approach taken in this paper, including view-space [16] and object-space [I7]
techniques.

3 Model for Dynamic Transparency

In this section, we present a model for the dynamic transparency approach.
See [2] for a more in-depth treatment of general occlusion management.

3.1 Model

We represent the 3D world U by a Cartesian space (z,y, z) € R%. Objects in the
set O are volumes within U (i.e. subsets of U) represented by boundary surfaces
(typically triangles). The user’s viewpoint v = (M, P) is represented by the view
and projection matrices M and P.

An object can be flagged either as a target, an information-carrying entity, or
a distractor, an object with no intrinsic information value. Importance flags can
be dynamically changed. Occluded distractors pose no threat to any analysis
tasks performed in the environment, whereas partially or fully occluded targets
do, resulting in potentially decreased performance and correctness.

The surfaces defining an object volume have a transparency (alpha) function
a(x) € [0,1]. A line segment r passing through a surface at point p is not blocked
if a(p) < 1 and the cumulative transparency value «,. of the line segment is less
than one. Passing through a surface increases the cumulative transparency of
the line segment accordingly (multiplicatively or additively, depending on the
transparency model).

3.2 Dynamic Transparency

The general idea behind dynamic transparency is simple: we can reduce the
impact of occlusion by dynamically changing the transparency (alpha) value of
individual object surfaces occluding (either partially or fully) a target object.
This results in fewer fully occluded objects in the environment and thus directly
affects the object discovery visual task.

The fact that the dynamic transparency mechanism operates on the trans-
parency level of individual points of surfaces and not whole objects or even
whole surfaces is vital; if whole surfaces or objects had been affected, important
depth cues would have been lost. With the current approach, unoccluding parts
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of a surface will retain full opacity, providing important context to the transpar-
ent parts of the object. To give additional context, even occluding surface parts
are not made fully transparent, but are set to a threshold alpha value ap in or-
der to shine through slightly in the final image. There is a tradeoff here: the use
of semi-transparent occluders will make object access difficult since intervening
surfaces will distort targets behind them. However, it is a necessity in order to
maintain the user’s context of the environment.

We define the model for dynamic transparency through a number of discrete
rules governing the appearance of objects in the world:

(R1). All targets in the world U should be visible from any given viewpoint v.

The first rule is the most basic description of dynamic transparency, and stipu-
lates that no targets should be fully occluded from any viewpoint in the world.
Note that a target may still be hidden from the user if it falls outside the current
view.

(R2). An occluded object is made visible by changing the transparency level
of points p € P of each occluding surface s from opaque (as(p) = 1) to
transparent (as(p) = ar).

The second rule describes the actual mechanics of how to make targets visible
through occluding objects. The selection of the set P is not fixed; depending on
the application, this could be a convex hull, circle, or ellipse that encloses the
occluded object, or the occluded object’s actual outline.

(R3). Surfaces can be made impenetrable and will never be made transparent.

The third rule provides a useful exception to the initial rule; in some cases, we
may want to limit the extent of the dynamic transparency mechanism using
impenetrable surfaces (and objects).

(R4). Objects are allowed to self-occlude.

The fourth and final rule provides another refinement of the previous rules;
dynamic transparency is performed on object-level, even if transparency man-
agement is performed on individual surface points. This means that even if a
part of a target is occluded by other parts of itself, none of its surfaces will be
made transparent to show this.

4 Image-Space Dynamic Transparency

Since none of the previously presented methods fulfills our requirements, we here
present a new algorithm for 3D dynamic transparency: image-space dynamic
transparency.

An important observation that follows from our model of occlusion from the
previous section is that occlusion can be detected in the image space by simply



Employing Dynamic Transparency for 3D Occlusion Management 537

shooting a ray through the scene for every pixel that is rendered and checking
the order it intersects objects in the scene. In modern graphics hardware, this
essentially amounts to detecting whenever we are overwriting pixels in the color
buffer or discarding pixels due to depth testing. In other words, programmable
fragment shaders are perfectly suited for realizing dynamic transparency.

However, correct blending of transparency is order-dependent, and thus our
algorithm, as well as most algorithms for transparent objects, requires the ob-
jects to be rendered in back-to-front order. This is a classical problem, since
current graphics hardware cannot do the sorting for us, although suggestions for
solutions exist [I8]. Usually, depth sorting is performed on triangle-level. In our
algorithm, for non-intersecting objects, it is sufficient to sort on object-level for
normal objects that are opaque by default. For intersecting objects, sorting must
be performed on a per-triangle-level. Intersecting objects are however rare and
usually non-physical. As explained below, objects fully contained within other
objects, like objects in a suitcase or nested Russian dolls, can be correctly treated
by specifying a fixed sort order between a group of objects.

We divide the scene into groups. By default, a group contains one object. All
groups are sorted with respect to their center point, which is precomputed once.
The sorting metric is the signed distance to the group from the eye along the view
vector. This is better than sorting by only the distance from the eye, because the
former corresponds to how the z-buffer works. We use bubble sort, since frame
coherency brings the resorting down to an average cost corresponding to O(n).

In certain cases, like for Russian dolls, the sort order between the dolls should
be from the innermost to the outermost. A fixed rendering order between the
dolls is then user-defined by putting them into the same group with a predefined
rendering order, for instance by the order of appearance in the group. In other
words, the innermost doll should be rendered first and the outermost doll last.
This results in correct transparency, since only the frontmost triangles of the
dolls are visible (unlike for classic transparency). This mechanism gives the user
a tool to specify which objects that should be regarded as solids and not.

Here is an overview of our algorithm:

1) The groups are rendered back-to-front.

2) All objects are blended into the frame buffer using the value in the alpha-
channel of the frame buffer, which defaults to 1 (opaque), as blending factor.

3) Target objects also post-modify the values in the alpha-channel to a value
< 1.

The algorithm needs to fulfill these criteria:

— Render all parts of objects (target or distractor) in front of a target object
as transparent.

— Render each object as a solid, i.e. only the front-most surfaces should be
visible. Thus, the objects cannot be rendered as transparent in an ordinary
sense. Back-facing triangles, or more distant front-facing triangles, should
not be visible through transparent frontmost triangles.
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Algorithm 1. Main

Input: set of groups G.
Output: correctly rendered dynamic transparency scene.
1 BubbleSort(G), taking advantage of frame coherence.
2 for all groups g € G do
3 for all objects 0 € g do
if o0 is a target then
renderTargetObject ()

else
renderDistractorObject ()

B >N BN

— Draw a gradual transition from no transparency to a predefined transparency
in an n-pixel outline region around each target object.

Algorithm [ shows an outline of the main algorithm.

Initial requirements for rendering both targets and distractors are that (i) the
alpha buffer is initiated to 1 for each pixel at the start of each frame, (ii) rendering
is done back-to-front on object level, and (iii) the alpha buffer contains the
desired blending factor (transparency) at each pixel. Given these preconditions,
we render distractor objects in the following way:

1) Render object to the z-buffer only to mask out frontmost surfaces.
2) Blend object to the color buffer.

The first step selects the frontmost surfaces of the object. The second blends
these surfaces to the frame buffer, with blending using the alpha values stored
in the frame buffer. These alpha values are 1 by default and less in front of, and
in an n-pixel region region around, target objects.

In contrast, target objects are rendered in the following way:

1) Render step 1 and 2 as for distractor objects.
2) Render alpha mask, i.e. multiplicatively blend an alpha mask to the alpha
channel of the frame buffer.

The final step ensures that the rendered target is visible by creating a mask
that essentially protects the target from being fully overdrawn by subsequently
rendered objects.

Multiplying a constant alpha value to the pixels covered by the target object
is easily done by simply rendering the object to the alpha-channel only and using
a color with the alpha value set appropriately. Creating the alpha mask is a little
trickier.

The alpha mask can be any type of shape exposing the underlying target,
such as an ellipse or circle. We choose the expanded outline of the object with
a transparency gradient as the alpha mask shape. To achieve this, we render to
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Algorithm 2. RenderAlphaMask

Input: target object o, mask width n, two buffers B; and Bs.
Output: 128 x 128 alpha mask blended to the frame buffer.

1 Enable buffer B;.

Render the target object o to the alpha channel only, setting the alpha values to

ar, the threshold transparency for objects in front of target objects.

Set buffer B; as texture.

Enable rendering to buffer Bs.

for each layer {1...n} of mask do
Render buffer-sized quad with the fragment shader specified in Algorithm
Set, the rendered buffer as texture and enable rendering to the other buffer.
Each iteration adds one pixel-wide layer of the transition.

8 Increase the border alpha value ap in the shader incrementally starting from
ap to 1.0.
9 Disable buffer and activate standard color buffer.

10 Multiplicatively blend the screen-size buffer texture to the color buffer (alpha
values). Note that resolutions may differ, but linear filtering quite efficiently hides
zooming artifacts.

11 Render the target region again to avoid jagginess at the border of the target
object due to differences in resolution between the color and mask buffers.

(M)

N0 Gk W

Algorithm 3. FragmentShader
Input: border alpha ap, frame buffer F', screen position P.
Output: alpha value ap for pixel at position P.
bool IsBorderPixel < false;
for each neighbor N of position P do
IsBorderPixel < F(IN).Alpha != 1.0 or IsBorderPixel;

IsBorderPixel <« (F(P).Alpha == 1.0) and IsBorderPixel;
output IsBorderPixel ? ap : 1.0;

S U VN

two external off-screen buffers alternately to create a border around the target
object with a smooth transition to full opacity. The resolution can be allowed to
be quite low; we use a size of 128 x 128. See Algorithm 2] for pseudo code for the
alpha mask algorithm and refer to Algorithm Bl for the fragment shader code.

4.1 Performance

Table [ shows the performance of three example applications with and without
dynamic transparency active (an abstract environment, an architectural walk-
through, and the game-like example in Figure [Il). The test was performed on
an Intel Pentium 4 desktop computer with 1 GB of memory running Microsoft
Windows XP and equipped with an NVidia Geforce 7800 GTX graphics adapter.
As can be seen from the measurements, only the GAME application is fillrate-
limited (the bottleneck seems to be buffer switching). For the WALKTHROUGH
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Table 1. Performance for three example applications

Application Triangles Resolution Inactive (FPS) Active (FPS)

ABSTRACT 13,000 800 x 600 87 33
1280 x 1024 87 33
WALKTHROUGH 464,220 800 x 600 40 11
1280 x 1024 40 11
GAME 114,629 800 x 600 300 140
1280 x 1024 188 90

application, we are performing dynamic transparency on 50 complex objects, so
11 FPS is acceptable, if not quite interactive.

5 User Study

We hypothesize that users employing dynamic transparency for visual perception
tasks in 3D environments would be more efficient as well as more correct in
performing their tasks than when not having access to the technique. In order
to test these hypotheses, we designed a formal user study comparing the new
technique to standard 3D camera navigation techniques.

5.1 Subjects

We recruited 16 paid subjects for this study, three of which were female. The
subjects were drawn primarily from our university and were screened to have
at least basic computer knowledge. Subject ages ranged from 20 to 35 years of
age. All subjects had normal or corrected-to-normal vision, and no participants
reported color-blindness.

5.2 Equipment

The experiment was conducted on an Intel Centrino Duo laptop computer
equipped with 2048 MB of memory running the Microsoft Windows XP op-
erating system. The display was a 17-inch widescreen LCD display running at
1920 x 1200 resolution and powered by an NVidia Geforce 7800 GO graphics
card.

5.3 Tasks and Scenarios

We designed the study to include two widely different scenarios, including an
abstract 3D world and a virtual walkthrough in a 3D building, and four different
tasks (two per environment). In this way, we aim to be able to measure not only
basic target discovery, but also the more complex visual tasks of access and
spatial relation.
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Fig. 2. The ABSTRACT and WALKTHROUGH applications with active dynamic trans-
parency

5.4 Scenario: Abstract 3D World

The first scenario (ABSTRACT) is intended to portray an abstract 3D visualiza-
tion application and consists of a cubic 3D volume of size 100 x 100 x 100 filled
with n = 200 objects of randomized position and orientation (see Figure [2 for
a screenshot). The objects are simple unit 3D primitives: spheres, cones, boxes,
and torii. Objects are allowed to intersect but not full enclose each other. 10%
to 20% of the objects are flagged as targets and the remainder as distractors.
Distractor objects are randomly assigned green and blue color component values,
while targets were set to a pure red color and made visible using our dynamic
transparency technique (for Task 2, distractors could be red as well). The user
view is fixed at a specific distance from the center of the environment cube so
that no object can fall outside of the view frustum, and can be freely orbited
around the focus point to afford view from all directions.

Task 1: count the number of targets (red objects) in the environment. (Pur-
pose: discovery)

Task 2: identify the pattern formed by the targets (red cones) in the environ-
ment. (Purpose: relation)

The pattern is one of the five capital letters C, K, R, X, and Y, rasterized in
a b x 7 horizontal grid of the same scale as the environment and rotated in an
arbitrary fashion around the vertical axis. The subject is informed of the range
of possible letters prior to performing the task, but not the exact rasterizations.

5.5 Scenario: Virtual Walkthrough

The second scenario (WALKTHROUGH) is a little more complex in nature and
designed to mimic a real 3D walkthrough visualization application more closely.
Here, a one-level floor plan is randomly generated from a simple 16 x 16 grid,
creating walls, floors and ceiling as well as ensuring that all rooms were connected
with all of its adjacent neighbors through doorways. A number of n = 50 objects
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are generated and placed in the environment, and all objects are made visible
through the walls using dynamic transparency. The 3D objects chosen for this
scenario were more complex 3D models, including pets, vehicles, and furniture,
yet were easily distinguishable from each other. The user starts each instance in
the center of the environment and navigates through it looking for the target
using 3D game-like controls involving the mouse and keyboard (mouse to pan
the camera around the vertical axis, arrow keys to move, no strafing allowed).
The view is constrained to floor level and there is no collision detection with
walls or objects.

Task 3: find the unique target in the environment. (Purpose: discovery)
Task 4: count the number of targets in the environment. (Purpose: discovery,
relation)

For the first task, one of the objects in the environment is unique and the user
is asked to find this target. The current target is shown in the upper left corner
of the screen. After finding the target, the user moves on to mark its estimated
location on a 2D floorplan of the environment on a separate screen.

For the counting task, a random number of the objects in the environment
are of the same type and the user is asked to count the occurrences. The current
object type is again shown in the upper left corner of the screen. After having
estimated that all occurrences are found, the subject enters the amount into the
application.

5.6 Design

The study was designed as a repeated measures experiment for each of the
four tasks, with the independent variable DYNTRANS (two levels, “true” or
“false”, within-subjects). The dependent variables included completion times
for all tasks, and the error for the counting tasks, error distance for the search
task, and correctness for the pattern task. Subjects received both the tasks and
dynamic transparency in counterbalanced order to manage systematic effects of
practice.

Each task set consisted of three trials per condition. Completion times and
user responses to the tasks were collected and silently recorded by the applica-
tion. Every task set was preceded by a training session lasting up to five minutes
where the subject was instructed in the current task and was allowed to explore
the scenario as well as ask questions. During the execution of the actual task
set, only general questions were allowed. A full session lasted approximately 45
to 60 minutes.

6 Results

Analysis of the collected measurements indicates that both our hypotheses are
correct; subjects are more efficient (i.e. use less time) and more correct when
performing visual search tasks using dynamic transparency than without.
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Table 2. Average completion times for all four tasks (standard deviation)

Task No. Standard DynTrans Significance

1 56.26 (38.72) 40.44 (20.99) F(1,15) = 7.54,p = .015
2 22.30 (16.20) 15.80 (10.21) F(1,15) = 5.28, p = .036
3 62.78 (35.63) 23.21 (12.01) F(1,15) = 22.98,p < .01
4 140.0 (61.75) 40.80 (24.16) F(1,15) = 48.61,p < .01

6.1 Time

Overall, the average completion time with inactive dynamic transparency was
65.17 (s.d. 27.75) seconds, compared to 28.69 (s.d. 11.02) with active dynamic
transparency. This was also a significant difference (F(1,15) = 49.54,p < .001).
Each of the individual tasks also showed significantly shorter average comple-
tion times for active dynamic transparency compared to inactive dynamic trans-
parency down to p < .05. See Table 2] for a summary.

6.2 Correctness

For the counting tasks (task 1 and 4), we define correctness in terms of average
relative error, i.e. the ratio between the absolute error and the total number of
targets for all trials. The absolute error is the absolute difference between the
sum of the targets and the sum of the subject answers for the trials. Overall,
for task 1 and 4 combined, the average relative error was .100 (s.d. .141) when
dynamic transparency was inactive compared to .027 (s.d. .045) when it was
active. This is also a significant difference (F(1,15) = 6.28,p = .024).

Task 1 in particular showed average relative error of .042 (s.d. .046) for
inactive dynamic transparency and .017 (s.d. .018) for active. This too was
significant (F'(1,15) = 4.74,p = .046). Task 4 showed .123 (s.d. .184) and
.034 (s.d. .074) average relative error, respectively, not a significant difference
(F(1,15) = 4.12,p = .061).

For task 2, we define correctness as whether or not the subject identified the pat-
tern as the correct one. This figure was .963 (s.d. .109) for no dynamic transparency
and .963 (s.d. .150) for active. This is obviously not a significant difference.

Finally, for task 3, we define correctness as the average Euclidean distance (in
world units) from the real position of the target and the point marked on the map by
thesubject for each trial. With dynamic transparency inactive, this average distance
was 16.99 (s.d. 14.44), asopposed to 16.21 (s.d. 8.88). Thisdifferenceisnot significant
(F(1,15) = .068,p = .797), and indicates that the spatial understanding of the
subjects was not negatively affected by the use of dynamic transparency.

7 Discussion

It is important to remember that occlusion is a vital depth cue that humans use
to determine the spatial relation of objects in our environment. The introduction
of dynamic transparency may then adversely affect this mechanism, and can
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actually result in “reverse occlusion”, i.e. the phenomenon that distant objects
all of a sudden occlude nearby objects instead.

In our approach, we address this problem by ensuring that intervening objects
made transparent always retain at least some percentage of opacity in order to
shine through on uncovered objects. This means that the user receives a visual
indication of the existence of the transparent surfaces. Self-reported ratings from
the subjects themselves seem to indicate that depth perception is still acceptable
with dynamic transparency active.

Fortunately, human perception relies on many more factors besides occlu-
sion to disambiguate depth; examples include stereopsis, motion parallax, at-
mospheric perspective, texture gradient, etc. Even if we weaken the occlusion
cue, other depth cues will help the viewer to perceive the 3D scene correctly.

Some subjects in our study had the interesting behavior of “respecting” the
world more when dynamic transparency was inactive, using the doors in the virtual
walkthrough rather than going through walls, whereas they would not hesitate to
pass through walls when it was active. While this is an informal observation, this
behavior might indicate that the impact that dynamic transparency has on visual
realism causes the world to become more ethereal and less believable to the users,
thus making them ignore the implicit rules of the environment.

8 Conclusions

We have presented an evaluation of the use of dynamic transparency for manag-
ing occlusion of important target objects in 3D visualization applications. In the
absence of real-time algorithms for dynamic transparency that are suitable for in-
teractive visualization, we have further devised an image-space algorithm and im-
plementation realizing the model. The algorithm uses the standard framebuffer as
a cumulative alpha buffer, rendering the scene back-to-front and blending in alpha
masks of target objects to allow for see-through surfaces. Our evaluation consisted
of a comparative user study evaluating efficiency and correctness gains from using
the technique as opposed to standard 3D navigation controls. Our results clearly
show that dynamic transparency results in significantly more efficient object dis-
covery. Users are also more correct with the technique than without.
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