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Abstract—The inherently large and varying volumes of
data generated to facilitate autonomous functionality in large
scale cyber-physical systems demand near real-time processing
of data streams, often as close to the sensing devices as
possible. In this context, data streaming is imperative for data-
intensive processing infrastructures. Stream joins, the stream-
ing counterpart of database joins, compare tuples coming from
different streams and constitute one of the most important and
expensive data streaming operators. Dictated by the needs of
big data streaming analytics, algorithmic implementations of
stream joins have to be capable of efficiently processing bursty
and rate-varying data streams in a deterministic and skew-
resilient fashion. To leverage the design of modern multicore
architectures, scalability and parallelism need to be addressed
also in the algorithmic design.

In this paper we present ScaleJoin, an algorithmic construc-
tion for deterministic and parallel stream joins that guarantees
all the above properties, thus filling in a gap in the existing
state-of-the art. Key to the novelty of ScaleJoin is a new
data structure, Scalegate, and its lock-free implementation.
ScaleGate facilitates concurrent data exchange and balances
independent actions among processing threads; it also enables
fine-grain parallelism while providing the necessary synchro-
nization for deterministic processing. As a result, it allows
ScaleJoin to run on an arbitrary number of processing threads
that can evenly share the overall comparisons run in parallel
and achieve high processing throughput and low processing
latency. As we show, ScaleJoin not only guarantees determin-
istic, disjoint and skew-resilient parallelism, but also achieves
higher throughput than state-of-the-art parallel stream joins.

I. INTRODUCTION

The world-wide adoption of large cyber-physical systems

(e.g., smart grids, smart vehicular networks or enhanced

medical systems) demands for near real-time processing

of continuous streams of data [10]. In this context, the

distributed and parallel analysis enabled by data streaming

overcomes the limitations of store-than-process approaches.

In this computing paradigm, graphs of stream operators are

employed to process data in an online fashion.

Stream joins are among the most important and expensive

stream operators [18], [16], [1]. In contrast to their database

counterparts, they compare tuples coming from data streams

rather than relations. Due to the unbounded nature of data

streams, such comparisons are performed on portions of the

most recent tuples, referred to as windows. The design and

implementation of high throughput and low latency parallel

stream joins is challenging because of their high computa-

tional cost [1]. In the literature, both shared-nothing [9], [1]

and shared-memory [6], [18], [16] parallelization techniques

have been proposed. The former allows for parallel stream

joins to scale out in multi-node deployments while the latter

has been shown to successfully scale up performance within

individual nodes.

As emphasized by Gibbons [7], scaling both out and

up is crucial to effectively improve performance by orders

of magnitude. Nevertheless, state-of-the-art shared-memory

parallel stream joins suffer from two main shortcomings that

limit their adoption in multi-node parallel streaming appli-

cations. Specifically, they (i) assume tuples to be delivered

by exactly two input streams (while practice demands to

deal with arbitrary numbers of streams of tuples generated,

for instance, by other parallel stream operators) or (ii) do

not guarantee deterministic processing (crucial in sensitive

applications as clickstream analysis, for which reporting

wrong revenue to investors would cause money loss [1]).

ScaleJoin: A new parallelization perspective

Motivated by the aforementioned limitations, we aim at

the design and implementation of a new shared-memory

parallel stream join that: (1) is able to process tuples deliv-

ered by arbitrary numbers of input streams, (2) guarantees

deterministic processing, and (3) is scalable and provides

high-throughput and low-latency through disjoint and skew-

resilient parallelism (cf. definition in Section IV-C).

Uniquely compared to previous work, we show how

crucial it is, in order to meet these challenges, to focus on the

underlying data structures of parallel stream joins. Through

non-blocking and consistent synchronization it is possible

not only to boost parallelism, but also to bridge the gap

between existing shared-nothing and shared-memory parallel

data streaming applications. Quoting from Michael [15],

“the choice of data structures is one of the most important

decisions in designing a non-blocking environment.”

We introduce a new abstract data type, ScaleGate, that

distills a minimal interface for satisfying the aforementioned

determinism and parallelism requirements. We also provide

a concurrent algorithm that implements this interface and al-

lows data exchange and synchronization while guaranteeing

determinism. For simplicity in the rest of this paper, unless

otherwise mentioned, we refer to both the abstract data type

and the data structure implementation as ScaleGate. Build-

ing on ScaleGate, we introduce ScaleJoin, which allows for

the parallel execution of an arbitrary number n of processing



threads (each running its share of the overall comparisons

in parallel). A summary of our results is listed below:

1) After introducing a concise definition of deterministic

processing for parallel stream joins, we prove deter-

ministic processing for ScaleJoin.

2) By properly designing and implementing the underly-

ing data structures in ScaleJoin, we balance and limit

unnecessary synchronization overheads, thus ensuring

more time for threads to run comparisons.

3) We provide the algorithmic implementation of Scale-

Gate through lock-free synchronization, along with

its safety- and progress-guarantees proofs. ScaleGate

allows for fine-grain interleaving of thread executions

(i.e., enhanced parallelism) and ensures system-wide

progress, enabling high scalability across varying mul-

tiprocessor architectures and for arbitrary number of

input streams.

4) We address the disjoint parallelism and skew-

resilience challenges by relying on ScaleGate, the

parallel and concurrent coordinator whose instances

feed the n processing threads and collect their output

tuples. We provide an extensive experimental study,

covering a broad range of setups.

ScaleJoin achieves high-throughput and low-latency pro-

cessing and (i) is not bounded to language- or hardware-

specific optimizations (e.g., SIMD instructions [6], [18],

[16]); (ii) is architecture-independent (e.g., differently from

CellJoin [6]); and (iii) allows for optimization techniques

(e.g., equi-joins or band-joins) to be easily leveraged.

By focusing on the concurrent access to the data structures

of parallel stream operators, we show a new way for benefits

and paths to explore in the research for parallel streaming

applications. To provide further evidence of such benefits,

we include in our evaluation a discussion relating, in terms of

throughput and latency, ScaleJoin and Handshake join [18],

[16], the fastest stream join proposed in the literature.

The rest of the paper is organized as follows. Section II

overviews the join semantics. Section III focuses on deter-

ministic execution for both sequential and parallel imple-

mentations. Section IV introduces the ScaleGate abstract

data type and ScaleJoin’s architecture. Detailed descriptions

of the algorithmic implementations (including proofs of

correctness and deterministic processing) are presented in

Section V. We evaluate ScaleJoin in Section VI, discuss

related work in Section VII and conclude in Section VIII

II. PRELIMINARIES

We follow the description and semantics of stream joins

in related literature (e.g., [6], [18], [9]), presented here for

self-containment. A stream is an unbounded sequence of

tuples t0,t1, . . . sharing the schema 〈ts,A1, . . . ,An〉. Given

tuple t, attribute t.ts represents its creation timestamp while

attributes A1, . . . ,An are application-related. Tuples in a

stream are considered to be in timestamp order.

S
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t1 (2) t3 (6)

Add t1 to WR

Compare t2 and t1 

Add t2 to WS

Compare t3 and t2 

Add t3 to WR

Compare t4 and t1 

Compare t4 and t3 

Add t4 to WS

t2 (3) t4 (7) t5 (8)

Compare t5 and t3 

Add t5 to WS

Remove t2 from WS

Figure 1: Procedure steps for a sample sequence of tuples

(WS=4 time units). For each tuple, the figure shows its

timestamp (in parenthesis) and the resulting procedure steps.

Stream joins compare tuples received from two logical

streams, R and S, using predicate P . While defining two

logical input streams, R and S tuples might be delivered

by arbitrary numbers of physical streams, each delivering

tuples in timestamp order [9] (e.g., by the physical streams

produced by other parallel stream operators, as discussed in

Section I). In the remainder, we often use the term stream

without specifying whether it is logical or physical, since it

can be deduced by the context.

Since streams are unbounded, tuples from each stream

are compared only with a portion (window) of the opposite

stream. We focus on time-based windows of WS time units,

that contain all tuples {t|t′.ts− t.ts ≤ WS}, where t′ is the

latest received tuple in the respective stream1. Nevertheless,

our parallelization technique can be easily extended to tuple-

based windows, maintaining a fixed amount of the last WS

received tuples. Whenever P (tR,tS) holds for tuples tR ∈ R

and tS ∈ S, an output tuple tO is produced combining tR
and tS and setting tO.ts = max(tR.ts,tS .ts).

The semantics of the stream join are commonly imple-

mented as the three-step procedure proposed by Kang et

al. [13]. WR and WS being the windows maintaining R

and S tuples, respectively, the procedure applied for each

incoming tuple tR ∈ R (symmetric for tuples tS ∈ S) is:

1) Compare tR with all tS ∈ WS .

2) Add tR to WR.

3) Remove all ti ∈ WR : ti.ts < tR.ts− WS.

Figure 1 presents the procedure’s steps for a sample se-

quence of tuples. In the example, WS is set to 4 time units.

Computational cost of stream joins The high computa-

tional cost of stream joins motivates the intensive research

efforts for its parallelization. If we assume that both R and

S receive T tuples per time unit, both WR and WS maintain

T × WS tuples on average. Since each tuple from R is

matched with the ones in WS (and vice versa), the average

number of comparisons per time unit is 2×WS×T 2. That is,

if WS = 10 minutes and T = 500 tuples/second, a stream

join must run 300 million comparisons/second on average.

1The notion of time in this context refers to tuples’ timestamps, not to
the physical clock of the system processing them.



III. DETERMINISTIC PROCESSING

The three-step procedure specifies how incoming tuples

are compared and how windows evolve, but does not specify

the order in which incoming tuples should be processed.

Nonetheless, as we show in the following, the comparisons

run by a stream join actually depend on the order in which

R and S tuples are processed. As a result, stream joins that

arbitrarily interleave R and S tuples do not guarantee deter-

ministic processing and require additional synchronization

when used by applications in which non-determinism could

cause money loss or violation of service-level agreements.

Definition 1: [4] A stream join implementation is deter-

ministic if, given the same sequences of input tuples, the

same sequence of output tuples will be produced, indepen-

dently of the tuples’ inter-arrival time and processing order.

Example violating determinism Consider tuple t3 to

be delivered and processed after tuple t5 (e.g., due to a

network delay) in the execution presented in Figure 1. In

this case, the premature purging of tuple t2 from WS would

result in a missed comparison (i.e., in a possible output). As

shown in [9], this shortcoming is exacerbated when tuples

are delivered by multiple R and S physical streams.

In existing work [9], [2], deterministic processing of the

three-step procedure is achieved by merging the timestamp-

sorted tuples coming from different streams and feeding the

join with a timestamp-sorted stream of ready [4] tuples.

Definition 2: Let t
j
i be the i-th tuple from timestamp-

sorted stream j. t
j
i is ready to be processed if t

j
i .ts <

mergets, where mergets = minj{maxi(t
j
i .ts)} is the

minimum among the latest timestamps from each timestamp-

sorted stream j.

Determinism and processing latency In the literature,

such merging is not integrated in the operator itself but rather

executed by dedicated operators such as Input Mergers [9]

or SUnions [2]. These dedicated operators are sequential and

single-threaded implementations of the merging procedure

and, as a result, represent a potential bottleneck and go

against one of our motivations, namely disjoint-parallelism.

Moreover, this two-phase procedure (first merge, then pro-

cess) introduces overheads in the overall processing latency

(e.g., due to scheduling of multiple stream operators). As we

will show, deterministic processing can be indeed guaranteed

without reducing the parallelism degree during these two

phases, by focusing on the underlying data structures used

in the parallel stream join algorithmic implementation.

Requirements for deterministic stream joins If a tuple

is ready, no other tuple with a lower timestamp will be deliv-

ered by any other stream. Hence, consuming ready tuples in

timestamp order ensures (i) that no tuple t is removed from

window WR or WS before all the comparisons involving t

are run and (ii) that output tuples are outputted in timestamp

order (as presented in Section II, an output tuple’s timestamp

is set as the highest of the two matching tuples). That is:

Proposition 1: The processing of a sequential stream join

by means of the three-step procedure is deterministic if ready

tuples from R and S are processed in timestamp order.

It should be noted that the three-step procedure does not

compare tuples tR and tS only if |tR.ts − tS .ts| ≤ WS (in

Figure 1, tuples t1 and t4 are compared even if their time

distance if 5 while WS is 4). As we prove in Section V-E,

this does not affect deterministic processing. The condition

|tR.ts − tS .ts| ≤ WS can be enforced by a modified three-

step procedure that, upon reception of t, removes tuples from

t’s opposite window, runs the comparisons and finally adds t

to its respective window. We do not focus on such modified

procedure. However, it is trivial to extend our findings to it.

Similarly as in [9], we see that a parallel stream join

implementation remains deterministic if its processing is

equivalent to that of a sequential one (as in Proposition 1).

Proposition 2: Given a deterministic sequential stream

join JS and a parallel stream join JP sharing P and WS,

JP ’s processing is equivalent (and thus deterministic) to that

of JS if, by processing the same R and S tuples, JP (1) runs

the same set of comparisons run by JS and (2) produces the

same timestamp-sorted stream of output tuples.

It should be noted that Proposition 2 does not require JS
and JP to share the same number of physical input streams.

Hence, implementations that, as ScaleJoin, fulfill the propo-

sition’s requirements result in deterministic processing also

when the tuples fed to JS by exactly one R and S physical

streams are fed to JP by multiple R and S physical streams.

IV. SCALEJOIN

This section overviews ScaleJoin’s architecture, presents

a sample execution and shows how it addresses the chal-

lenges described in the previous sections. We first introduce

ScaleGate, the abstract data type which allows for the

parallelization and balancing of the work.

A. The ScaleGate abstract data type

ScaleGate allows for an arbitrary number of timestamp-

sorted streams (i.e., the physical R and S streams), each

delivered by one source entity (i.e. typically a thread)2, to

be merged into a timestamp-sorted stream of ready tuples

(cf. Definition 2). At the same time, it allows for an arbitrary

number of reader entities to consume all the ready tuples

of the latter stream. ScaleGate encapsulates the necessary

communication between the source and reader entities in

order to decide whether a tuple is ready or not. The interface

of ScaleGate provides the methods:

• addTuple(tuple,sourceID): which allows a

tuple from the source entity sourceID to be

merged by ScaleGate in the resulting timestamp-sorted

stream of ready tuples.

2This can be extended to allow a physical stream to be delivered by more
than one source entity by splitting it in two or more physical streams
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Figure 2: Overview of ScaleJoin’s architecture and paral-

lelization approach.

• getNextReadyTuple(readerID): which pro-

vides to the calling reader entity readerID the next

earliest ready tuple that has not been yet consumed by

the former.

B. ScaleJoin architecture overview

ScaleJoin allows for the parallel execution of an arbitrary

number n of Processing Threads (PT s), each consuming

and matching the input tuples delivered by R and S streams.

Its processing consists of three stages: (1) delivery of input

tuples to PT s, (2) matching of tuples at PT s and (3)

collection of PT s’ output tuples, as shown in Figure 2.

Delivery of input tuples to PTs We employ a first

ScaleGate (SGin) to merge the R and S tuples delivered

by an arbitrary number of physical R and S input streams

(each acting as one source entity) into a single timestamp-

sorted stream of ready R and S tuples. The different source

entities invoke the addTuple operation of the SGin.

Matching of input tuples at PTs The timestamp-sorted

stream of ready R and S tuples is consumed by the n PT s.

Each PT acts as a reader entity for SGin. To guarentee

deterministic processing, we want each comparison to be run

by exactly one PT . At the same time, we want each PT to

run a fair share of the overall comparisons (approximately
1

n
) to keep the work balanced. To achieve these goals,

we slightly modify the original three-step procedure (as

presented in Figure 2) so that R and S tuples are stored in

PT ’s windows in a round robin fashion. Each PTi maintains

a counter of the ready tuples being processed and stores a

new input ready tuple only if counter%n equals i.

Collection of PTs’ output tuples By processing R

and S ready tuples in timestamp order, each PT delivers

output tuples in timestamp order. We rely on a second

ScaleGate (SGout) to merge the output tuples produced by

each PT into a single timestamp-sorted stream of ready

output tuples. In this case, each PT will act as a source

entity of the SGout. The getNextReadyTuple method

will be invoked on the SGout by the execution unit (e.g.

thread) in charge of forwarding the stream join’s results.
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Legend
Tuple processed and stored  by PTiTuple processed by PTi

Figure 3: Sample execution of a ScaleJoin instance running

with three PT s for the input tuples presented in Figure 1.

Sample execution of ScaleJoin Figure 3 shows how the

input tuples presented in Figure 1 would be processed by a

ScaleJoin instance running 3 PT s. A white circle represents

a tuple processed (but not stored) by a PT , while a black

circle represents a tuple processed and stored by a PT . Each

tuple is processed by all PT s but only stored by exactly

one of them in a round-robin fashion. The overall number

of comparisons run by ScaleJoin is the same as the one run

by its centralized counterpart (i.e., they result in the same

output tuples, which will be merged by the SGout), while

the comparisons are evenly distributed among the PT s.

C. Properties of the proposed methods

We outline below why ScaleJoin meets its motivating

challenges in an intuitive fashion. Formal statements, proofs

and evaluation are given in Sections V and VI.

Deterministic-processing Given Proposition 2, ScaleJoin

enforces deterministic processing since each comparison run

by a sequential stream join is run by exactly one of the PT s

(the one that stored the earliest tuple being compared) and

output tuples are delivered in timestamp-sorted order.

Disjoint-parallelism ScaleJoin does not define any cen-

tralized sequential component. Each of the n PT s runs 1

n

of the overall comparison in a disjoint-parallel fashion while

invoking the methods provided by ScaleGate to get ready

input tuples and add output ones concurrently.

Skew-Resilience Thanks to SGin, each new ready tuple

can be processed by each PT independently of (1) the

number of physical streams delivering R and S tuples, (2)

variations in the rate with which R and S tuples are delivered

and (3) the distribution of R’s and S’s tuples’ values.



Algorithm 1: PT s implementation

1 ScaleGate SGin, SGout; // Input & output ScaleGates,

2 // shared among all PTs

3 List WR, WS; // R and S windows

4 int id, n, counter, WS; // PT’s id, # of PTs, tuple

5 // counter and window size

6 P pred; // Predicate

7

8 run()

9 readyTuple = SGin.getNextReadyTuple(id)

10 if(readyTuple 6=null)

11 counter++;

12 if (isFromR(readyTuple))

13 thisWin = WR; otherWin = WS;

14 else

15 thisWin = WS; otherWin = WR;

16 for (Tuple t ∈ otherWin)

17 if (pred.holds(readyTuple,t))

18 SGout.addTuple(combine(readyTuple,t),id);

19 if (counter%n==id)

20 thisWin.add(readyTuple);

21 for (Tuple t ∈ thisWin)

22 if (t<readyTuple.ts-WS)

23 thisWin.remove(t);

Extensibility By relying on the presented three-step pro-

cedure, ScaleJoin eases the integration of optimization tech-

niques (e.g., equi-joins or band-joins) that, using appropriate

data structures at the PT s, minimize the comparisons run

by ScaleJoin (e.g., hash tables for equi-joins).

V. ALGORITHMIC IMPLEMENTATIONS

We first present the PT s algorithm and discuss how

they access SGin and SGout. Subsequently, we present the

design and algorithmic implementation of ScaleGate Finally,

we show that the ScaleGate algorithmic implementation is

correct and that ScaleJoin enforces determinism.

A. Processing Thread

As explained in Section IV, each PT executes a modified

version of the sequential three-step procedure. Algorithm 1

presents the steps performed by each PT in detail.

Each PT maintains a reference to the SGin and SGout

data structures, WR and WS windows, its unique id, the

total number of PT s n, a tuple counter, the window size

WS and the predicate P (L1-6). Each PT starts its execution

by retrieving the next available ready tuple from SGin (L9).

If no ready tuple is available (i.e., if the value returned by

SGin is null) the PT keeps trying until one is available

(L10). Subsequently, the PT proceeds setting the references

for thisWin and otherWin (L12) using the auxiliary

method isFromR (not shown in the algorithm). The ready

tuple is then compared with each tuple in the opposite

window (otherWin). If P holds, an output tuple is added

to SGout (L16) using the auxiliary method combine (not

shown in the algorithm) which creates the output tuple as de-

scribed in Section II. Subsequently, the ready tuple is added

to its corresponding window (thisWin) (L19). Notice that

the condition counter%n==id holds for exactly one PT

(that is, each tuple is stored in its respective window by

exactly one PT ). Finally, stale tuples are removed from the

ready tuple’s respective window (thisWin) (L21-23).

B. Motivation of ScaleGate’s implementation

As discussed in Section IV, ScaleGate’s goal is to merge,

in a parallel and concurrent fashion, arbitrary numbers of

physical streams (e.g., the physical input streams for SGin

and the PT s output streams for SGout).

Out of many synchronization choices for the implementa-

tion of ScaleGate, lock-free (a.k.a. non-blocking) implemen-

tations ensure system-wide progress, by guaranteeing at least

one of the threads operating on the data structure to make

progress independently of the behavior of other threads.

Such implementations demonstrate higher scalability and

better fairness when compared with other coarse- or fine-

grain locking mechanisms [3] and hold across different

hardware architectures. Motivated by the above we target

for a lock-free concurrent implementation of ScaleGate.

A basic requirement for an implementation of ScaleGate

is to maintain items in a sorted manner. Tree-like imple-

mentations are not efficient in concurrent environments due

to the strong dependencies in balancing operations [11]. On

the contrary, shared concurrent skip lists [17], [11] are used

extensively. In a nutshell, skip lists maintain a sorted linked

list of elements (e.g., tuples), while allowing for concurrent

insertions and deletions with overhead that is probabilisti-

cally logarithmic. This is made possible by multiple levels

(pointers) for each element, acting as shortcuts for quickly

locating the position of an element. The number of additional

levels for each element is chosen randomly.

Inspired by skip lists, which themselves do not provide

support for determining ready tuples or other similar syn-

chronization, we design a multi-level pointer mechanism

adapted to the ScaleGate requirements. Such adaption en-

ables fine-grained synchronization that boosts parallelism

and is carried out (1) by making ScaleGate inherently aware

of the concept of ready tuples and (2) by exploiting the

specific access patterns of ready tuples (e.g., consumed in

timestamp order from SGin, L9) and thus allowing for a

more lightweight implementation than the general purpose

delete operations of skip lists.

C. ScaleGate algorithmic implementation

Algorithm 2 presents the ScaleGate implementation, in

Java-like pseudocode. The ScaleGate consists of nodes,

each containing a Tuple, its source id and an array of

references, next, for the multi-level connections. The tail

is statically allocated and indicates the end of the list.

The addTuple operation inserts a tuple in the appro-

priate position in the list according to its timestamp. The

update array (i.e. thread local) keeps references to the

nodes closer in each level to the latest inserted node. As the

tuples from each source arrive in increasing timestamp order,



Algorithm 2: ScaleGate implementation

25 Node head, update[maxlevels] // Thread local variables

26 // maxlevels is a

27 // constant parameter

28 Tuple[#sourceIDs] written // Shared array of the

29 // last written tuples

30 Node tail // Shared variable, pointing to a dummy

31 // statically allocated node

32

33 def Node

34 Node next[maxlevels]

35 Tuple tuple

36 int sourceID

37

38 getNextReadyTuple(readerID)

39 nextNode = head.next0

40 if(nextNode 6=tail

41 ∧writtennextNode.sourceID 6=nextNode.tuple)

42 head = nextNode

43 return nextNode.tuple

44 return null

45

46 addTuple(tuple,sourceID)

47 levels = getLevelHeight() // get random height

48 // up to maxlevels

49 newnode = new Node(tuple, sourceID)

50 curnode = updatemaxlevels−1

51 for(i=maxlevels-1 downto 0)

52 next = curnode.nexti

53 while(next 6= tail ∧ next.ts<tuple.ts)

54 curnode = next

55 next = curnode.nexti

56 updatei = curnode

57 for(i=0 to levels)

58 levelinsert(updatei, newnode, tuple.ts, i)

59 writtensourceID = newnode.tuple

60

61 levelinsert(fromnode, newnode, ts, level)

62 while(true)

63 next = fromnode.nextlevel

64 if(next==tail ∨ next.ts>ts)

65 newnode.nextlevel = next

66 if(CAS(fromnode.nextlevel, next, newnode)) break

67 else fromNode = next

the search for the correct position is optimized by starting

from the highest level node closer to the latest inserted

tuple from the same source (L50), instead of starting from

the beginning of the list. The rest of the update array is

used to temporarily store references to the levels that need

to be connected with the new node. In detail, during an

addTuple operation, the number of levels that the new

node will hold is decided with the getLevelHeight

method (L47), according to the standard skip list [17].

Afterwards, the shortcuts are traversed in order for the

appropriate position of the new node to be found (L51-56).

The node is then inserted on each level it should be part

of, with the use of the levelinsert method (L58). This

helper method checks if the node stored in the update array

is still the prior node. If not, it traverses the list until it

finds the right node. The next field of the prior node is then

changed to point to the new one, using the atomic compare

and swap (CAS) operation. If it fails, it means another node

was inserted at the same time by another source. In this case

we need to search for the prior node again and repeat. Once
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Figure 4: Insertion of a new tuple in the SGin ScaleGate

and differentiation between ready and non ready tuples.

the node has been inserted, a reference to it is kept in the

written array (L59), indexed by the sourceID, so that

the tuple is not read (during the getNextReadyTuple

operation) until a newer one is received from the same

sourceID. Note that while the written array is shared

among source entities (threads), each of its elements is

exclusively updated by a specific sourceID thread.

The getNextReadyTuple method ensures that the

calling readerID gets all the ready tuples in timestamp

order. For each calling reader a local view of the head

is kept, and the lowest level of the list is traversed. If the

current node is referenced by the respective cell of the

written array3 (i.e. the tuple is not ready yet) null will

be returned. Reading a written array cell by the reader,

assumes an implementation language with a well defined

memory model (e.g., C++11 or Java), or appropriate barriers.

Nodes are freed when they are no longer accessible from

the nodes that are referred to by the local views of the head

and updatemaxlevels−1. Thus, the prefix of nodes in the

list, up to the first node that is referenced by a local head

or an entry of the update array, can be easily garbage

collected at any point. In unmanaged environments, lock-

free reference counting techniques can be used for managing

the nodes [8]. In both cases, resilience to the classical ABA

problem is guaranteed [14]. Finally, note that if the CAS

instruction is not available in the underlying architecture, the

LL/SC primitive is a common equivalent alternative [11].

Example Figure 4 shows how R and S tuples (in the ex-

ample, each delivered by 1 physical stream) are maintained

and inserted in SGin (superscript and subscript of each tuple

refer to its stream and timestamp, respectively).

D. ScaleGate correctness

In this section we argue about the liveness and safety

properties, namely lock-freedom [11] and linearizabil-

3This check is valid as writtensourceID is never null, and is updated
with nodes that have monotonically increasing timestamps. If an old value
of writtensourceID is observed, it will result to an unsuccessful call of
the getNextReadyTuple, forcing the caller to retry (L10).



ity [12], of the ScaleGate implementation. The former en-

sures that at least one of the threads performing operations

on the data structure will make progress in a bounded

number of its own steps. According to the definition of

linearizability [12], [11], every method call should appear

to take effect at some point (linearization point) between its

invocation and response. Thus, given a history of concurrent

operations and by using the linearization points, we are able

to define a total order in the execution, which is consistent

with the real-time ordering of the operations and with the

sequential semantics of the data structure.

Theorem 1: The ScaleGate implementation presented in

algorithm 2 is lock-free and linearizable.

Proof: Method getNextReadyTuple returns in a

bounded number of its own steps. The addTuple method

call will fail to return only if the CAS instruction on

L66 fails (i.e., if another concurrent call of addTuple

from another thread makes progress). Thus the ScaleGate

implementation is lock-free.

Concurrent calls of addTuple appear to each-other to

take effect only after a successful execution of the CAS in-

struction on L66, which is the linearization point among such

calls. The linearization point of getNextReadyTuple is

the read of the written array entry for the respective

sourceID during the check on L41, where the condition

for a ready tuple is checked. That is, in the case of concur-

rent calls of getNextReadyTuple and addTuple, the

linearization point of the latter is the update of the written

array on L59. Thus there is a linearization point for all the

method calls of the ScaleGate implementation.

E. Proof of deterministic processing

According to Proposition 2, we show that ScaleJoin

enforces deterministic processing, based on the following.

Lemma 1: A tuple tR ∈ R (respectively tS ∈ S) is

only stored by one PT in the corresponding window WR

(respectively WS).

Lemma 2: A ready tuple tR ∈ R (respectively tS ∈ S) is

consumed from SGin by all PT s.

Theorem 2: ScaleJoin implementation enforces determin-

istic processing, equivalent to that of a deterministic sequen-

tial stream join.

Proof: Without loss of generality, let tR ∈ R, tS ∈
S|tR.ts > tS .ts be a pair of tuples compared by a sequential

stream join. The same comparison is run by one and only

one PT in ScaleJoin, the one that will have previously stored

tS in its corresponding window WS (Lemma 1), which will

further have consumed the ready tuple tR (Lemma 2).

Since all PT s process a timestamp-sorted stream of ready

tuples, they will produce timestamp-sorted streams of output

tuples that are merged by SGout, thus resulting in the

same sequence of output tuples produced by the sequential

counterpart.

VI. EVALUATION

This section presents ScaleJoin’s performance results. We

first introduce the benchmark used in the evaluation. Subse-

quently, we study (i) ScaleJoin’s scalability in terms of both

comparisons/second (c/s) and tuples/second (t/s) and (ii) the

rate at which tuples can be added to and retrieved from a

ScaleGate instance. We continue by measuring ScaleJoin’s

end-to-end processing latency (or simply latency in the re-

mainder). Finally, we study how well ScaleJoin addresses the

skew-resilience challenge by measuring how its processing

load is distributed among the processing threads PT s for

different numbers of physical input streams and different

rate behaviors. We conclude summarizing the results.

We also set side-by-side (in terms of throughput and

latency) our Java-based ScaleJoin with the C-based Hand-

shake join [18], [16]. We do this to position ScaleJoin’s

performance with respect to the shared-memory parallel

stream join mentioned as the fastest in the literature. We do

not evaluate Handshake’s skew-resilience as it does not allow

to process more than one physical R or S input streams.

Evaluation setup We follow the common benchmark

used to evaluate CellJoin [6] and Handshake joins [18], [16].

R tuples are composed by attributes 〈ts,x,y,z〉, where x,y,z

are of types int, float and char[20], respectively. S

tuples are composed by attributes 〈ts,a,b,c,d〉, where a,b,c,d

are of types int, float, double and bool, respectively.

An output tuple 〈ts,x,y,z,a,b,c,d〉 is created for each pair of

tuples tR,tS such that:

tR.x ≥ tS .a− 10 AND tR.x ≤ tS .a+ 10 AND

tR.y ≥ tS .b− 10 AND tR.y ≤ tS .b+ 10

Values for attributes x,y,a,b are drawn from a uniform

distribution in the interval [1−10,000]. 1 out of each 250,000

comparisons results in an output tuple, on average [16].

ScaleJoin is evaluated using two different systems: (i)

System S1, equipped with a 2.6 GHz AMD Opteron 6230 (48

cores over 4 sockets), implementing a non-uniform memory

access (NUMA) architecture, and 64 GB of memory; and

(ii) System S2, equipped with a 2.0 GHz Intel Xeon E5-

2650 (16 cores over 2 sockets) and 64 GB of memory. This

setup allows us to study ScaleJoin’s scalability across dif-

ferent architectures and when using hyper-threading (system

S2). S1 and S2, with different numbers of sockets, further

enhance NUMA effects when accessing shared memory.

Experiments start with a warm-up phase; measurements

are taken during the steady-state phase, averaging each value

over 5 repetitions. Dedicated threads inject input tuples and

collect output tuples.

Scalability evaluation of ScaleJoin

Similarly to CellJoin and Handshake joins, we first assess

the scalability of ScaleJoin for one physical R and S

streams with equal input rates, different window sizes and
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Figure 5: Scalability evaluation (c/s and t/s) for S1 and S2,

different window sizes and increasing number of PT s.

an increasing number of PT s. For window sizes of 5, 10

and 15 minutes, we measure the maximum number of c/s

and t/s sustained by ScaleJoin. Moreover, to highlight the

balanced work, we also measure the average number of c/s

(Avg c/s) run by each PT and the corresponding standard

deviation (Std c/s) in percentage.

Bounds of expected results The number of c/s for a given

window size of WS seconds and input rate of T t/s (same

for R and S streams) is 2 ×WS × T 2 (Section II). Being

Cmax the maximum number of c/s executed by one PT , the

expected maximum number Tmax of t/s processed by such

PT is Tmax =
√

Cmax

2×WS
(that is, Tmax depends on WS). A

perfectly linear scalability when moving from 1 to n PT s

would result in n × Cmax c/s and
√
n × Tmax t/s. I.e., in

the ideal case, ScaleJoin is expected to scale linearly on the

number of PT s in terms of c/s and to scale proportionally

to the square root of the number of PT s in terms of t/s.

System S1 scalability Results for system S1 are shown

in Figures 5a, 5b and 5c (solid lines represent the maximum

achievable scalability Cmax and Tmax). As expected, the

maximum number of c/s grows linearly, while the maximum

number of t/s grows as the square root of the increasing

number of PT s. ScaleJoin can achieve approximately 4
billion c/s, resulting in rates of approximately 5,100 t/s,

3,500 t/s and 3,000 t/s for window sizes of 5, 10 and

15 minutes, respectively. While the Avg c/s changes from

approximately 100 to 80 millions per PT , when changing

from 1 to 48 PT s, the overall workload is evenly distributed,

as shown by the Std c/s that does not exceed 4%.

System S2 scalability Results for system S2 are shown
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Figure 6: Throughput in ScaleJoin and Handshake joins.

in Figures 5d, 5e and 5f. When using less than 16 PT s

(the number of available physical cores), ScaleJoin achieves

an almost perfectly linear scalability while having very

balanced work among all the PT s (the standard deviation

up to 16 PT s does not exceed 2%). ScaleJoin can achieve

a rate of approximately 1.4 billion c/s, resulting in rates of

approximately 3,000 t/s, 2,100 t/s and 1,750 t/s for window

sizes of 5, 10 and 15 minutes, respectively. When using

hyper-threading, despite a general throughput degradation,

ScaleJoin is still able to achieve a linear scalability (with a

milder slope) and an extra 500 millions c/s while having a

balanced work (whose Std c/s does not exceed 10%).

Relation with Handshake join Results for ScaleJoin

and Handshake join are presented in Figures 6a,6b,6c. For

system S1, the difference between the maximum number of

c/s sustained by ScaleJoin and the Handshake join increases

linearly with the number of processing threads. For 48 cores,

ScaleJoin performs approximately 2.5 billion c/s more than

Handshake join. For system S2, a significant step up is

observed when the number of processing threads exceeds

the available cores (hyper-threading). In this case, ScaleJoin

achieves almost 1 billion c/s more than Handshake join.

Performance of ScaleGate In order to show that the

highest achieved throughput is not limited by ScaleGate,

we report in Figure 7a the rate at which tuples can be

added to and retrieved from a ScaleGate instance for in-

creasing numbers of source and reader entities (for System

S2). The rate increases with the number of source entities

and does not degrade for an increasing number of reader

entities (even when using hyper-threading with more than

16 source entities). Moreover, the rate grows to 150,000 t/s,

approximately, 50 times higher than the highest processing

throughput observed (3,000 t/s).

Latency evaluation of ScaleJoin

As discussed in [1], low latency is essential for stream

joins used in time-sensitive applications such as option

pricing (tolerating latencies of few seconds, at maximum).

We measure latency at the highest throughput achieved

for each number of PT s (that is, for the experiments in

Figure 5).

As presented in Figures 7b and 7c, ScaleJoin achieves a
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Figure 7: ScaleGate throughput for increasing numbers of

source and reader entities (7a) and latency evaluation of

ScaleJoin for different window sizes (at the max throughput)

and for an increasing number of PT s (7b,7c)

very low latency, which does not exceed 70 ms. Such latency

increases linearly with the increasing number of PT s. This

is because the increasing number of PT s results in a lower

per-PT output rate. Given the definition of ready tuple (cf.

Definition 2), this results in a longer time (i.e., a higher

latency) for each output tuple to become ready at SGout. A

“jump” of approximately 10 ms is observed when using 16

(the number of available cores) or more PT s in system S2.

Relation with Handshake join As shown in [16], the

original Handshake join latency is, by design, half of the

window size (i.e., a window size of 15 minutes can result

in latencies up to 7.5 minutes). The improved low-latency

Handshake join, similarly to ScaleJoin, achieves processing

latencies in the realm of milliseconds. Nevertheless, in order

to ensure deterministic sorting of output tuples, it relies

on punctuation tuples and external buffers maintaining the

output tuples to be sorted. The authors do not specify the

latency introduced by the sorting itself, but specify that

such buffers can grow in size up to 30 thousands tuples,

approximately. Based on the highest throughput we observe

(i.e., 4 billion c/s) and on the fact that 1 out of 250,000

comparisons results in an output tuple, on average, more

than 2 seconds are needed to fill such a buffer. Hence, the

sorting of output tuples would result in latencies in the realm

of seconds. In this sense, ScaleJoin is able to provide orders

of magnitude lower latency while guaranteeing deterministic

processing.

Skew-resilience evaluation

We evaluate here ScaleJoin’s capability of maintaining

PT s’ work balanced when tuples are delivered by multiple

rate-varying, bursty physical streams. We introduce 3 dif-

ferent case-studies in which tuples are delivered by distinct

numbers of physical streams. Results refer to system S2.

Constant distinct rates This case-study shows how

ScaleJoin is able to achieve a perfectly balanced work among

the PT s when R and S tuples are delivered by multiple

physical streams at different (but yet constant) rates. In the
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Figure 8: Skew-resilience evaluation (system S2). Average

number of c/s run by each PT and standard deviation (in

percentage) for distinct numbers of physical streams.

experiment, 1 R and 4 S physical streams deliver 1,200 and

900 t/s, respectively. Comparisons are executed by 10 PT s.

Figure 8a presents the experiment results (for a period of

5 minutes). The upper part of the figure presents the input

rates at which R and S tuples are delivered. The middle

part of the figure presents the Avg c/s run by each of the

10 PT s. Finally, the lower part presents the resulting Std

c/s (in percentage). As it can be observed, approximately 65
million c/s are run by each of the PT s, perfectly balanced

as evidenced by the Std c/s stable around 0.05%.

Fluctuating distinct rates In this case-study, 3 R and

2 S physical streams deliver tuples with rates that oscillate

following a sinusoidal function with different amplitude and

period. Comparisons are executed by 12 PT s. As shown

in Figure 8b, the number of c/s performed by each PT

fluctuates accordingly to the input rates, from a minimum of

18.5 to a maximum of 55 million c/s, remaining perfectly

balanced, as evidenced by the Std c/s stable around 0.1%.

Constant distinct rates with peaks In this third case-

study, we evaluate how balanced is the work among the

PT s when sudden peaks appear in the input streams. R and

S tuples are delivered by 4 and 2 physical streams while the

overall comparisons are run by 14 PT s. Also in this case, as

shown in Figure 8c the overall work is perfectly balanced,

with a Std c/s stable around 0.1%.

Highlights of the experimental evaluation study

ScaleJoin is able to meet the bounds of the expected

throughput across different NUMA architectures and to be

skew-resilient (keeping a perfectly balanced work among

PT s independently of the number of physical input streams

and their rate fluctuations). Similar performance behaviour

is observed in the two systems S1 and S2; finer-grain dif-

ferences are due to the different hardware architectures (e.g.

HyperThreading in S2), frequencies and access latencies to

the different distributed memory banks (NUMA regions).

VII. RELATED WORK

Both shared-nothing and shared-memory parallelization

techniques exist in the literature for stream joins.



Shared-nothing techniques such as [9], [1] allow for paral-

lel analysis to span multiple distinct nodes. Their scope dif-

fers from ScaleJoin’s. StreamCloud [9] focuses on the par-

allelization of generic stream operators. As a consequence,

it results in lower processing throughput than join-specific

parallelization techniques (e.g., because of tuple duplication

for the parallelization of stream joins). Photon [1] focuses on

geographically distributed systems. Elseidy et al [5] present

an adaptive operator for shared-nothing parallel joins, but in

a data flow setting that does not consider sliding windows.

Shared-memory techniques can be further differenti-

ated between architecture-specific [6] and more hardware-

independent and generic ones [18], [16]. These approaches

address only partially the motivating challenges behind

ScaleJoin. A common assumption is for tuples of a logical

stream to be delivered by a single physical stream [6],

[18], [16]. Hence, differently from ScaleJoin, they cannot

be leveraged when multiple physical streams are fed to a

parallel stream join. Moreover, they do not discuss or prove

to enforce deterministic processing [6], [18], [16] (the closest

discussion focuses on the deterministically sorted output

streams provided by the low-latency Handshake join [16]).

Finally, they rely on central coordinated partitioning and

replicating techniques and thus do not provide disjoint-

parallelism [6] or do not evaluate their performance in the

presence of fluctuating, bursty streams.

VIII. DISCUSSION AND FUTURE WORK

In this work we propose ScaleJoin, a scalable disjoint-

parallel, shared-memory stream join that provides deter-

ministic high-throughput and low-latency joining of tuples

delivered by arbitrary numbers of streams. These proper-

ties are crucial to leverage shared-memory parallel stream

joins in demanding streaming applications. We introduce

ScaleGate, the data object that provides ready tuples and

allows for arbitrary numbers of processing threads to run

comparisons in a disjoint-parallel fashion. We built ScaleJoin

relying on ScaleGate, enabling high processing throughput

and low processing latency while maintaining a balanced

work (among the processing threads) when input tuples are

delivered by rate-varying and bursty streams.

From a broader perspective, we show that processing

does not necessarily imply bottlenecks in the processing of

tuples. Suitable shared data objects and lock-free algorithmic

implementations allow for efficient, concurrenct and consis-

tent processing and open up the way for new benefits and

research paths in parallel streaming applications. Interesting

future steps are to extend ScaleJoin to include the processing

of out-of-order tuples from a given data source, include

optimized implementations of equi-joins and band-joins and

to study hybrid implementations that leverage both multi-

core CPUs and GPUs.
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