

Peer-to-Peer

Technology

Lindgren, Per
Olsson, Christian

Chalmers University of Technology
Göteborg, 2006-04-30

 - - 1

Table of Contents

INTRODUCTION... 2

HISTORY .. 2

PEER-TO-PEER CHARACTERISTICS ... 3

THE ASPECT OF DECENTRALIZATION... 3
A SELF RE-ORGANIZING NETWORK .. 4
SCALABILITY .. 4
PERFORMANCE AT LOW COST... 4
THE FREEDOM OF ANONYMITY ... 5
A NEW TYPE OF FAILURES.. 5
RELIABILITY BY REPUTATION... 5

PEER-TO-PEER COMPONENTS AND ALGORITHMS... 6

COMPONENTS.. 6
Connection... 6
Group Management... 6
Robustness ... 6
Class-Specific .. 7
Application-Specific .. 7

ALGORITHMS .. 7
Centralized Directory Model... 7
Flooded Request Model ... 8
Document Routing Model.. 8

PEER-TO-PEER SYSTEMS ... 9

DISTRIBUTED COMPUTING.. 9
FILE SHARING ... 9

Application Examples.. 10
COLLABORATIVE SYSTEMS... 10

REFERENCES.. 11

 - - 2

Introduction

Peer-to-peer technology has increasingly become an important technique in a wide variety of
areas, such as distributed and collaborative computing with special regards to the Internet.
Both industry and academic interest have been put into development of new areas for peer-to-
peer technology.

The definition of peer-to-peer technology is rather loose and there are many different views of
how to best describe it. In general; peer-to-peer is about sharing: giving to and obtaining from
the peer community. A peer shares some resources, and in return, it gets other resources.
Peer-to-peer could also be about only giving resources, like sharing computational power to
help solve a computational-heavy task.

Peer-to-peer is also a way of thinking when trying to decentralize systems or algorithms. The
world gets more and more connected and distributed. Based on the number of users around
the world, centralized systems have a difficult time serving the amount of data needed;
thinking in peer-to-peer terms solves future load-balancing issues and scales very good in
rapidly growing user-based systems.

Traditionally, a “peer” is defined as “like each other”, hence; a peer-to-peer system must then
imply a system where independent peers depend on other independent peers. We say that a
peer is independent, since it is not fully controlled by one user or system. Because of this fact,
a peer cannot fully trust another peer, or rely on the behavior of other peers. It is rather a
“brick” in a bigger “whole”.

Peer-to-peer is a technology along the lines of centralized and server/client-models; where in
those systems there is typically one server and many clients involved. Peer-to-peer got in its
definition no need to involve a server in the process; instead all participants are individual
peers. The differences between these systems are far more complex than this; but
conceptually this is the fundamental difference.

Peer-to-peer technology is most widely known for file-sharing applications, where the most
famous example is the Napster application. There are many predecessors to Napster which is
some of the most downloaded software applications on the Internet up to date.

This report will try to explain the main advantages of peer-to-peer technology, characteristics
and in depth explanations on the techniques used in different peer-to-peer applications.

History

Peer-to-peer technology arose from the research and development of decentralizing systems.
As Internet and users to systems began to grow, there was a need to improve current systems
to let them scale better and broader over the user-group. This thinking was however held back
by the fact that centralized systems had a clear advantage concerning the management of the
systems and security-measures.

 - - 3

Peer-to-peer however began a new trend all across the world with famous applications; such
as Napster, Gnutella and others alike. These programs had such an impact that the words
“peer-to-peer technology” today is associated almost solely with file-sharing applications.
However, these were not the first programs to take advantage of the peer-to-peer paradigm.

Two early decentralized networks called USENET and FidoNet were using peer-to-peer
thinking early before Napster and such programs were invented.

USENET provides newsgroup-service in a distributed manner. USENET was started as early
as 1979. The first version of it was the work of two graduate students Tom Truscott and Jim
Ellis. At this time information wasn’t based “on-demand” as it is literally forced to be today.
At this time, information was transferred in a slow and time-consuming manner; which
usually resulted in downloads during the night when the distance-rates over the phone-line
were the lowest. To accommodate this, a highly decentralized structure of USENET was
developed.

FidoNet is also a decentralized system for exchanging messages. It was created in 1984 by
Tom Jennings.

Both of these systems overcome the obvious problem of scalability among its users; it also
introduced security-measures within the new decentralized manner, and both of these systems
are still functioning and are still being used.

Advancing a few year and we reach the stepping-stone to peer-to-peer applications, namely
Napster. Napster was created in 1999 by an 18-year old student, Shawn Fanning. Shawn was
frustrated about how hard it was to swap and share digital music online. He however believed
that there were many people connected that had the music-files stored on their hard-drives,
just waiting to be copied. Shawn then focused on creating a program which would allow
people to swap and share files with each other. Napster was born. Napster was an immediate
success, and over a very short span of time, users were sharing millions of files with each
other world wide. The key to the success was the fact that Napster brought free peer-to-peer
technology to every user around the world. With this new availability to share and copy
audio, video and other media-formats, the media-industry was not as happy about Napster as
its user base. On April 13th 2000, Napster was sued by the rock band Metallica and a lengthy
process began. In September 2001, an agreement was made that forced Napster to pay music
and songwriters 26 million dollars.

The enormous media-coverage of this new phenomenon however had a tremendous impact of
the new technology at hand. Many predecessors followed Napster and spawned several new
applications that took advantage of the ideas from Napster.

Peer-to-Peer characteristics

The aspect of decentralization
One of the most important characteristic of the peer-to-peer model is the decentralization
aspect. Centralized systems usually carry a server/client paradigm which relies heavily on the
centralized system to help carry the load of computation needed for all the connected clients.

 - - 4

While this type of system works great for many applications and has a very robust way of
handling with security-issues, it introduces inefficiency with several bottlenecks and wasted
resources. Large-scale centralized systems are often very costly, and there is a limit on the
load a centralized system can handle.

The most powerful decentralized peer-to-peer systems require all participants to be equal and
handle the distributed load. This is however very hard to accomplish since it is hard to
distribute the information equally when there is no centralized authority that has a global view
of the different peers. Most peer-to-peer implementations therefore rely on a hybrid of
centralization and decentralization, where there is at least one peer that has a more global
view of the connected peers; while the direct transfer of information is handled peer-to-peer.

A Self Re-organizing Network
The entire network of peers in a peer-to-peer environment is constantly self-organizing and
changes the form of the network based on number of peers and amount of information. A
peer-to-peer network must always handle the rapid change in peers; as peers regularly “come-
and-go”. Information must be reachable from every other peer, nodes and so called super-
nodes (in hybrid peer-to-peer systems) must constantly be re-organized to handle the changes.
As opposed to centralized systems where managers need to re-organize systems to handle
changes, in peer-to-peer technology, this task is fully left to the peers involved.

Scalability
Scalability is a major aspect of peer-to-peer technology; this is where the concept of peer-to-
peer technology really shines. Napster could at its peak handle up to 6 million users world-
wide, and there were no stopping there. The main advantage of peer-to-peer is that every peer
only needs to know about a small number of nodes in the system which limits the amount of
state that needs to be maintained and therefore increase scalability. A calculation of lookup-
cost-restrictions among the peers for information reveals that peer-to-peer systems can scale
to billions of simultaneous users.

Performance at Low Cost
The cost involved in maintaining and “owning” a peer-to-peer system is interesting;
especially in regards to traditional distributed systems. Large-scale computational peer-to-
peer software can handle more computational power than the fastest super-computer up to
date; but at only a fraction of the cost. Hence, the cost related to the power of a peer-to-peer
system is very cheap. Maintenance-cost is also a fraction of the cost in comparison to
centralized systems, since information is stored among the different peers.

The cost of maintaining a peer-to-peer system is in regards to one of the most beneficial parts
of peer-to-peer systems, namely the performance. Performance is usually affected by three
different resources; processing, storage and networking. In regular centralized systems,
bottlenecks in network capacity and network-delays can have a significant impact of the
performance of a system. The decentralized nature of a peer-to-peer system better utilizes
bandwidth and distributes resources among the peers. In order to try to reduce the impact of
network congestion in peer-to-peer systems, the use of centralized information is limited and
information is kept redundant to try achieving improved performance of the system. Other

 - - 5

important techniques used to achieve optimized performance includes replication, caching and
intelligent routing.

Replication puts copies of the content on nodes closer to the recipient, which reduces the
connection distance between the sender and receiver. Problem with this is handling changes in
the content and propagating of the newer and changed versions.

Caching can dramatically reduce the path-lengths to retrieve the information/object, and also
the number of messages that is needed to communicate between the connected peers. A big
problem in peer-to-peer technology involves latency-issues between the different peers; and
how that can serve as a severe bottleneck in the system. Locally stored cache in the peers
between the sender and receiver can help reduce latency-issues when retrieving objects or
information.

Smart techniques to build connections between peers are a major research-area within peer-to-
peer technology. Intelligent routing can “make or break” the performance of a peer-to-peer
system. This could be putting peers with similar interests closer to each other or let “reliable”
peers serve as organizing nodes and interconnect less reliant nodes. This can severely reduce
the number of messages that is needed to be sent within a system to reach a desired result,
hence increasing the performance of the system.

The Freedom of Anonymity
A well-debated characteristic of peer-to-peer systems is anonymity. Many peer-to-peer
systems benefit from the fact that the user is using the system without knowing from where
the information is gathered. In many cases the information could come from many different
peers and only re-assembled at the user’s computer. While some industries fight hard to
prohibit this aspect, others propose this to be a form of “freedom of speech”. Information can
freely flow and be spread without explicitly revealing its source. This has many legal aspects,
since information can be published and available without the author’s consent or approval.

A New Type of Failures
One other strong aspect of peer-to-peer thinking is to avoid central point of failures. Since
peer-to-peer technology tries to limit the use of centralized information; there is instead a
strong need to avoid failures caused by failing nodes or peers, disconnections or
unreachability. In order to avoid failures because of an unreachable host, replication of
content, spanning over several nodes is a technique used to not interrupt the process; should a
peer disconnect.

Reliability by Reputation
Peer-to-peer systems share many security-concepts with traditional distributed programming
schemes, such as trust chains between peers, session key exchange, encryption and signatures.
However, instead of “trust” between the peers, peer-to-peer technology often uses
“reputation” among the peers to determine the trust. The more reliable a node is, the more it
can be incorporated in the system. Some systems let peers with a reliable “up-time” benefit
from this co-operation by granting it more bandwidth and other benefits within the system,
hence; a peer must build a sense of “reputation” to gain benefits from the system.

 - - 6

Peer-to-Peer Components and Algorithms

Components
The components of a peer-to-peer system usually consist of five layers which consist of one
or more blocks. The layers that will be discussed in this section are:

• Connection
• Group Management
• Robustness
• Class-Specific
• Application-Specific

Connection
As a base we have the communication layer which handles the communication between the
peers. Handling the communication is one of the biggest challenges in peer-to-peer
communication since it has to consider all types of Internet connections, such as dial-up
connections, wireless connections and fast optical connections.

Group Management
Just above the communication block we have the group management layer. The group
management layer handles discovery of other peers in the community and location and
routing between them. The discovery algorithms can use several different approaches, such as
using a centralized directory or using the communication range for mobile or wireless
devices. The location and routing algorithms basically try to optimize the path of a message
traveling from one peer to another.

Robustness
Above the management layer is the robustness layer. The robustness layer handles areas
including security, resource aggregation and reliability. Security is a big issue in peer-to-peer
communication and a big challenge since the peers will act as both a client and a server.
Running a server with the same security parameters as for the client can have huge impact on
the security of the system.

The basic idea of the peer-to-peer model is for the interacting peers to aggregate resources
available on their systems. To classify the architecture of the peer-to-peer resource
aggregation is not trivial since the resource can be of many different types.

To handle the reliability problem in peer-to-peer networks one can use many different
solutions depending on what the task at hand is. For instance, if the task is to perform a heavy
computation and if a peer goes down the task can be restarted on a different peer or it can be
initially started on several peers simultaneously. In a file sharing network, data can be
replicated across many peers.

 - - 7

Class-Specific
In the class-specific layer there are four blocks, scheduling, meta-data, messaging and
management. The previous layers can be applied to almost every application using peer-to-
peer technology but here it is far more application specific. The scheduling block is used for
computational-intensive applications. Computational-intensive tasks are broken down to
pieces and are solved in parts on different peers. Meta-data is used for content and file
management applications where data is stored across the peers. Messaging is widely used
wherever messages need to be sent between the peers. Management is used to control the
underlying structure.

Application-Specific
This layer has three blocks; tools, applications and services. All these implement application
specific functionality and use the underlying class-specific layer where it is needed.

Algorithms
In this section we will discuss three common peer-to-peer algorithms for finding specific
information in a peer-to-peer network. The algorithms we will look closer at is

• Centralized directory model
• Flooded request model
• Document routing model

Centralized Directory Model
The peers of the peer-to-peer community connect
to a central directory where they can publish
information about the content they will offer to
others. When the central directory gets a search
request from a peer it will match the request with
the peer in the directory and return the result. The
best peer could be the closest (though this could
be hard to determine), the fastest, cheapest or the
most available. When a peer has been selected
the transaction will follow directly between the
two peers.

This algorithm requires a central server which is
a drawback in peer-to-peer systems. It is a single
point of failure and it can produce scalability problems. However, history shows that this
model is quite strong and efficient even in larger systems.

Centralized
directory

Download

Search

Peer

Peer

Peer

Peer

Peer

Peer

Figure 1

 - - 8

Flooded Request Model
Unlike the centralized directory model this model
is a pure peer-to-peer model without any central
parts and without any advertisement of available
resources. Instead, the flooded requests model
floods each search request on the network, much
like a broadcast, where each peer forwards the
request to its directly connected neighbors until
the request is answered or a preset maximum
number of flooding steps has been reached.

The obvious drawback of this model is that it
requires a lot of bandwidth and that it therefore
scales badly. However, in small networks it has
been proved to be very efficient. To improve
scalability, development has been made to the
model. Some improvements involve super-peers
that concentrate lots of the search requests to the
super-peers. One may also consider caching the requests to improve performance.

Document Routing Model
The document routing model uses a different
approach that has been used more recently. When
a peer connects to the community it is assigned a
random ID and each peer also knows a number of
other peers. When data is stored or shared on a
system using this model, an ID is assigned to the
data based on a hash of the data in question. Each
peer will then forward the data to the peer with
the same ID (or the one closest to it) that it
knows of. This is repeated until it reaches the
peer with the same ID or the closest peer ID is
the current peer’s ID. During this process each

peer that is involved in the routing also keeps a
copy of the data. When a peer requests the data
from the system, the request will be forwarded to the peer with the ID that is closest to the ID
of the requested data. This is repeated until a copy of the data is found and the data will be
transferred back to the requester the same way. In this transfer process, each peer that is
involved will store a copy of the data as it is transferred.

This approach has several advantages and drawbacks. The biggest advantage is that this
model scales very well. It is very efficient in larger, even global, communities. However,
there are some drawbacks. The biggest one is that it is more complex to perform a search than
with the flooded request model since the requesting peer must know the hash of the requested
data.

Several algorithms have been implemented that make use of the document routing model.
They all differ but the goals of each are quite similar. All of them try to reduce the number of

Peer

Peer

Peer

Peer

Peer

Peer

Search

Download

4 3

2

1

6

5

Id: 010

Id: 820

Id: 432

Id: 204

Id: 410

Id: 120

Node 1 request data with
hash = 016 which is stored at
node 4.

Figure 2

Figure 3

 - - 9

hops that must be taken to locate the data and to reduce the amount of routing information
that must be stored at each peer.

Peer-to-Peer Systems

In this section we will discuss three categories of usage of peer-to-peer systems. The
categories to be presented are

• Distributed computing
• File sharing
• Collaborative systems

Distributed Computing
To use peer-to-peer systems in distributed computing has been a success and has been in use
for quite some time. Successful projects have shown that it is possible to get high
performance by using solely standard machines. The main focus right now is to use the idle
time of internet connected standard computers, to let them perform some calculations while
not being used. This requires a large number of Internet connected standard computers that
run specific client software and a centralized controller. The central controller is responsible
for splitting the problem into smaller parts and to process the results. To make the
performance optimal the task to be solved need to be very large or very hard. To solve it, the
client software on the standard computers fetches a small part of the task, solve it and report
the result to a results database.

Unfortunately, the tasks have to be of the kind that it is possible to split them into smaller
individual parts that do not require communication between the peers. This rules out super-
computing like processing such as linear algebra problems or matrix computations.
Distributed computing is nowadays instead used for problems that need to be processed with a
high number of different input parameters, such as simulations, validations and biotechnical
research.

File Sharing
File sharing is probably the area where peer-to-peer systems have had the most success. File
sharing applications like Napster where among the first widely used applications that use
peer-to-peer technology. The benefits of using peer-to-peer instead of traditional models are
mainly the lower network bandwidth consumption, security and search capabilities that peer-
to-peer offer. File sharing applications use one of the models described in the previous section
(centralized directory, flooded request, document routing), but there also exist variations to
these models. It is also important to realize that these models were based on the assumption
that the files that are transferred are small, like a document or a picture, but now the trend is
leaning towards larger file transfers such as music, movies and software. To deal with this
situation, several modifications and additions have been made to the models. Software makes
more intelligent decisions regarding where to download from and which way should it be
transferred.

 - - 10

Application Examples
Napster was the first peer-to-peer file sharing application and was the application that started
the whole peer-to-peer file sharing revolution. Napster used a centralized directory model to
store information about shared music files on the peers. When a user connects, that users
shared files will be added to the directory and when the user disconnects, the entries will be
removed. Search requests are given to the centralized directory which will answer with the
peers that are in possession of the requested file. However, the actual file transfers will not go
through the centralized server. Instead the files will be transferred directly between the peers.

Morpheus is a file sharing application that is similar to Napster but the developers has made
some improvements where the Napster model was weak. Instead of only searching for music,
Morpheus can search for all media files. The results of the search are also easier to overlook.
The actual file transfer mechanism has also been improved in several aspects. Morpheus is
able to handle broken connections as well as increasing the download speed by using multiple
sources.

File sharing application Kazaa was among the first to introduce supernodes. The protocol
behind Kazaa is called FastTrack. Supernodes are fast nodes on fast connections and these
nodes are assigned automatically. The supernodes are responsible for keeping track of local
nodes contents and handle searches. Kazaa uses an intelligent download system that
automatically chooses the best connection and uses multiple sources. To make sure that the
downloaded file segments all match, Kazaa uses MD5 hashes. Unfortunately, the company
behind Kazaa decided that Kazaa should be financed by advertisements and is therefore
bundled with adware/spyware. Kazaa was blacklisted in March 2006 by the organization
www.stopbadware.org.

Collaborative Systems
The idea of collaborative peer-to-peer systems is to allow collaboration between users on the
application level. The span of the type application is large, ranging from applications of
enjoyment such as instant messaging, chat programs and online games to more business
oriented applications. Most collaborative systems are based on events. That is, each time an
event occur at a peer, that will send an update message to all the other peers in the group and
then update the application’s view (can be done either before or after an acknowledgement
has been received).

Unfortunately, there are some difficulties involved in implementing collaborative systems.
The biggest challenges are location, fault tolerance and real time constrains.

The location problem involves solving the location of other peers. The easiest way to solve
this is to keep a centralized directory that each peer can consult. This is the most common
solution but variants exist for smaller groups.

The fault tolerant problem is another challenge. In many applications it is essential that all
messages sent is received properly by all peers. In some systems, the order of the received
messages is also important. Most systems have solved this problem by queuing up the
messages that could not be sent. These messages will then be delivered when the peer comes
back online.

 - - 11

The real time constraints are harder to resolve since we cannot know how long it will take a
message to be delivered (or if it has been lost on the way and will not be delivered at all).
How to deal with this is up to each application. In early implementations, applications like
network games didn’t update the screen until all other peers had acknowledged the messages.
In small groups that were located on the same local network this solution was sufficient but
with longer distances and larger groups it fails. Newer applications have more of a client-
server solution for communication.

References
KaZaa, http://www.kazaa.com/.

MILOJICIC, D. KALOGAREAKI, V. LUKOSE, R. NAGARAJA, K. PRUYNE, J.
RICHARD, B. ROLLINS, S. XU, Z. 2002. Peer-to-Peer Computing, HP Laboratories Palo
Alto.

MORPHEUS, The Morpheus P2P homepage, http://morpheus.com/.

NAPSTER, The Napster Homepage, http://www.napster.com/.

STOPBADWARE, StopBadWare.org, http://www.stopbadware.org/.

SUNDSTED, T. 2001. The Practice of Peer-to-peer computing: Introduction and History,
PointFire Inc, http://www-128.ibm.com/developerworks/java/library/j-p2p/.

