

Distributed Systems Middleware

David Andersson, 810817-7539, (D)
Rickard Sandell, 810131-1952, (D)

EDA 390 - Computer Communication and Distributed Systems

Chalmers University of Technology
2005-04-30

Table of Contents 2(15)

INTRODUCTION.. 3

WHAT IS MIDDLEWARE?... 4

CLASSIFICATION OF MIDDLEWARE ... 5

APPLICATION MIDDLEWARE .. 6

REMOTE PROCEDURE CALL.. 6
DISTRIBUTED COMPUTING ENVIRONMENT... 6
MESSAGE-ORIENTED MIDDLEWARE .. 7
DISTRIBUTED OBJECT MIDDLEWARE ... 7

OVERVIEW OF CORBA, DCOM AND JAVA RMI... 9

CORBA ... 9
DCOM ... 10
JAVA RMI .. 11

COMPARISON OF CORBA, DCOM AND JAVA RMI ... 13

PROGRAMMING LANGUAGES.. 13
DEFINITION OF INTERFACE ... 13
OBJECT ORIENTED SUPPORT .. 13
INTERFACE IDENTIFICATION... 14
SUPPORTED PLATFORMS .. 14

Chapter 1 3(15)

Introduction

The word “middleware” is now days very popular for use in technical texts.

Only a few years ago this term could hardly be found in any computer science

dictionary, except for the most recent publications, and a search on the Internet

would only find a couple of thousand web pages that mention it. But, today a

search for “middleware” using one of the most popular search engines like

Google.com generates millions of hits. This indicates an explosive increase of

interest for this technology.

Unfortunately, “middleware” is also frequently used as a catchword and

sometimes even in the wrong context. Therefore, it can be confusing and

difficult to figure out the meaning of this acronym. This report will focus on

explaining the concept of middleware (in the area of distributed application

development) and give examples of different types of middleware. Finally, a

comparison between some popular software implementations of middleware

will be made.

Chapter 2 4(15)

What is middleware?

Middleware is often informally referred to as “plumbing” because it connects

different parts of a distributed application with data pipes and then passes data

between them. This explanation is not incorrect but it doesn’t describes the key

idea with middleware either.

Basic network communication functionality is offered by the operating

system that runs on a computer and it can usually be programmed as it is, for

example by using the client/server concept of the TCP/IP protocol stack.

However, that type of programming is not trivial and can be very error-prone.

In addition, it is specific to the platform and architecture that is used and it

doesn’t support the full complexity of object oriented programming that builds

many of today’s applications.

Middleware is a class of software technologies that is designed to solve

exactly these problems by hiding the complexity and heterogeneity in

distributed systems. It is defined as a layer of software above the operating

system but below the application program, thereby providing a higher-level

programming framework than Application Programming Interfaces (APIs) such

as sockets. This reduces the burden on programmers and gives more flexibility

(depending on the middleware being used).

Hardware and network heterogeneity is always masked by a middleware but

most frameworks also mask heterogeneity of operating systems or

programming language, or both. A few, like CORBA, even hide heterogeneity

among vendor implementations of the same middleware standard.

Middleware

OS

Distributed Application

Comm. Processing

MiddleMiddlewalre API

Network

Middleware

OS

Distributed Application

Comm. Processing

MiddleMiddlewalre API

Operating System API Operating System API

Storage Storage

HOST 1 HOST 2

Chapter 3 5(15)

General definition of middleware:

A software layer between the operating system and application that enables the interaction

of potentially distributed application components, reaching a certain degree of transparency

and independence from surrounding runtime environments.

Classification of middleware

Middleware is a wide concept and the definition is general enough to classify a

big variety of software solutions as middleware. Thus, many ways of

categorizing them is possible. One of them is the Gartner Model, which divides

middleware into three categories:

1. Presentation Middleware only cares for displaying data remotely. A Web

browser and server communication via the HTTP protocol (hypertext

transfer protocol) can for example be classified into this category.

2. Application Middleware is used to distribute application logic and functions

to create a general purpose programming platform for distributed

applications. Its goal is to enable programmers to build interacting

components without having to hardcode system specific details. For

instance, this type of middleware can give the illusion of working with local

objects when requests to remote resources are made.

3. Database Middleware is deployed to access database management systems

remotely. SQL requests sent to a DBMS and transferring results back to the

client is a typical task for database middleware.

This text will primarily concentrate on Application Middleware but most of the

principles can probably also be applied to presentation and database

middleware. Further, Application Middleware systems historically rely on the

two basic approaches Remote Procedure Call (RPC) and Distributed

Computing Environment (DCE) that will be explained in the next chapter.

Chapter 4 6(15)

Application Middleware

RPC (Remote Procedure Call) was the first widely accepted middleware

solutions for programming of distributed applications. The earliest

implementation of RPC is from 1984 but the most popular one was shipped by

Sun in 1985. Sun RPC was delivered as a part of their Open Network

Computing (ONC) package. One of the main applications of RPC is Sun’s

Network File System (NFS).

DCE, which is based on RPC, introduced a new concept of hierarchically

structured services. Although DCE had some major limitations, the idea of

services was important and serves as a foundation for the modern middleware

described later in this report.

Remote Procedure Call

The purpose of RPC is to make remote procedure calls look syntactically

identical to local calls. The main advantage with this approach is easy

parameter handling that allows for static type checking at compile time, a

feature that is not given with pure socket communication.

Unfortunately, a syntax similar to local procedure calls doesn’t imply

identical semantics in a distributed system. In other words, the main drawback

with RPC is that it doesn’t take into account that semantics can differ between

hosts due to runtime environments, address spaces and process scheduling. The

result of this is that it is not possible to pass pointers using RPC and therefore

this method is not suitable for fully object oriented solutions.

Implementations of RPC are based on descriptions of the interface using a

predefined RPC language, from which stubs and skeletons for the client- and

server-side are generated with an RPC compiler. These stubs and skeletons take

over the task of packing and transporting the parameters on booth sides, and is

of course using underlying protocols like TCP or UDP.

Finally, RPC is also accepted as a standard (RFC 1831) by the Internet

Engineering Task Force (IETF).

Distributed Computing Environment

DCE is a development of the Open Group. Its purpose is to provide a

distribution platform for client/server applications. This is done by defining a

Chapter 4 7(15)

set of layered services, so that higher level services can always use lower level

services. The defined services, starting with the highest level, are:

• RPC Service - client-server communication.

• Security Service - authentication, authorization, account management.

• Directory Service - single naming model throughout the environment.

• Time Service - synchronization of system clocks in the network.

• Threads Service - enables execution of multiple distributed threads.

• Distributed File Service - provides access to files across a network.

The Threads Service is based on the POSIX standard 1003.1c for lightweight

processes which makes it possible to build advanced distributed systems that

makes use of creating/deleting, manipulating and synchronizing threads.

Together with the other service layers this makes DCE suitable for many

different kinds of general purpose tasks.

However, the major limitation with DCE is that it relies on RPC as its only

communication mechanism, and its non-object-oriented design (it now also

exist object-oriented extensions to DCE). Nevertheless, an important

contribution of DCE is the concept of splitting middleware functionality into a

set of services and its decentralised features. These ideas can be found in many

modern middleware platforms.

Message-Oriented Middleware

Message-Oriented middleware, MOM, takes charge of relying data between two

applications by putting it in a message queue that can be accessed over the

network. This solution is really nothing more than a generalization of the well-

known procedure of sending and retrieving an e-mail (using SMTP and POP3).

This asynchronous middleware communication is mostly used for simple one-

way exchanges of data where timing is not an issue.

Distributed Object Middleware

Distributed Object Middleware provides the abstraction of an object that is

remote but whose methods can be invoked just like those of a local object.

Distributed objects support all benefits of object-oriented programming

techniques like encapsulation, inheritance and polymorphism. Thus, using this

kind of middleware in development of new distributed applications is the most

general approach.

On the other hand, object-oriented middleware are complex software. Even if

the programmer doesn’t need to learn a new programming language, but can

define interfaces which can be programmed in any language supported by the

Chapter 4 8(15)

middleware, it still takes a great deal of time to master this kind of software.

Therefore, in some cases it might be more appropriate to choose a simpler (but

more limiting) implementation using RPC or MOM instead.

Middleware, and especially object-oriented middleware, is often used to

integrate legacy components. That is, the middleware interface can be

programmed to translate requests between systems that originally were not able

to communicate because of legacy problems.

The Common Object Request Broker Architecture (CORBA) is a standard for

distributed object computing, and is by many considered to be the broadest in

terms of scope. Other important implementations of object-oriented middleware

are Microsoft’s DCOM and Java RMI. These will be described and briefly

compared in the following chapters.

Chapter 5 9(15)

Overview of CORBA, DCOM
and Java RMI

CORBA

CORBA, Common Object Request Broker Architecture is a standard for

working with objects over a distributed environment. It can be seen as an object

oriented variant of RPC. The standard is registered by the members of Object

Management Group (OMG).

The central part of CORBA is the Object Request Broker (ORB). The ORB

works as a central Object Bus where each CORBA object can interact with

other CORBA objects. The interaction is transparent and the objects can be

located either locally or remotely on another host. The ORB supports search for

methods, converting formats, rearranging parameters and synchronization. The

communication between ORBs is done via the Internet Inter-ORB Protocol

(IIOP).

Each CORBA server object has an interface and exposes a set of methods. To

request a service, a CORBA client acquires an object reference to a CORBA

server object. The client can now make method calls on the object reference as

if the CORBA server object resided in the client's address space. The ORB is

responsible for finding a CORBA object's implementation, preparing it to

receive requests, communicate requests to it and carry the reply back to the

client.

A CORBA object interacts with the ORB either through the ORB interface or

through an Object Adapter - either a Basic Object Adapter (BOA) or a Portable

Object Adapter (POA).

Chapter 5 10(15)

According to the CORBA specification, an object adapter is responsible for the

following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• Registration of implementations

To define object interface the Interface Definition Language (IDL) is used. This

makes it possible for objects written in different languages to communicate

with each other. For each object that is specified with IDL a Stub is generated.

The Stub is linked to the client at compilation and works as the client’s picture

of the server. The equivalence on the server side is called a skeleton. Both the

client and the server use an interface called the ORB interface when they want

to use the methods that the ORB supplies. A static connection between server

and client in CORBA is fast but it has the drawback that every time the server

interface changes the clients has to be recompiled. Therefore CORBA can also

be used in a dynamic connection. In a dynamic connection the Dynamic

Invocation Interface (DII) and the Dynamic Skeleton Interface (DSI) is used.

The DII and DSI are used to create interfaces dynamically during runtime

instead of creating them at compilation. Since CORBA is just a specification, it

can be used on diverse operating system platforms from mainframes to UNIX

boxes to Windows machines to handheld devices as long as there is an ORB

implementation for that platform.

DCOM

DCOM, Distributed Component Object Model is an extension of Microsoft’s

Component Object Model (COM). COM defines how components and their

clients interact. This interaction is defined such that the client and the

component can connect without the need of any intermediary system

component. DCOM extends the protocol so that the component and the client

don’t have to reside on the same computer.

Chapter 5 11(15)

DCOM runs the protocol Object Remote Procedure Call (ORPC) to support the

communication between two machines. The ORPC is built on top of DCE RPC

and interacts with COM’s run-time services. A DCOM server is a code segment

that that can serve objects of a particular type at runtime. Each DCOM server

objects can support multiple interfaces each interface represents a different

behavior of the object. A DCOM client calls into the exposed methods of a

DCOM server by acquiring a pointer to one of the server object's interfaces.

The client object is now able to call the server object's exposed methods

through the acquired interface pointer as if the server object resided in the

client's address space.

To define interfaces for the DCOM and RPC objects the Microsoft Interface

Definition Language (MIDL) is used. MIDL supports two different forms of

interface descriptions, the basic COM interface IUnknown and the OLE

automation interface IDispatch. Every DCOM object must implement the

IUnknown interface. The IDispatch interface is an extension of IUnknown and

can be seen as a gateway to many more interfaces. Type information of the

objects is stored in type libraries (.tlb) created by the MIDL compiler. The type

libraries are used to dynamically invoke objects implementing the IDispatch

interface. A Unique Universally Identifier (UUID) is used to uniquely identify

every class and interface in COM.

Since the COM specification is at binary level it allows DCOM server

components to be written in different programming languages. The hardware

platform must support COM services in order to provide DCOM.

Java RMI

Java RMI, Java Remote Method Invocation is a standard developed by

JavaSoft. RMI uses a protocol called the Java Remote Method Protocol

(JRMP). It is dependent on Java Object Serialization to transmit objects as a

stream. This means that both RMI server object and client object must be

written in Java. Every RMI server object defines interfaces to be used for

accessing the object outside the current Java Virtual Machine (JVM) from

Chapter 5 12(15)

another JVM that can be located on another machine. The server machine has

an RMIRegistry where it holds information about the available server objects

and provides a naming service for RMI. A RMI client acquires an object

reference to a RMI server object by doing a lookup for a Server Object

reference and invokes methods on the server object as if the RMI server object

resided in the client's address space. The server objects are named using URLs

and when the client wants to acquire an object it specifies it by using the URL

address.

When a Java/RMI client requests a service from the Java/RMI server, it does

the following:

• Initiates a connection with the remote JVM containing the remote object,

• Marshals the parameters to the remote JVM,

• Waits for the result of the method invocation,

• Unmarshals the return value or exception returned, and

• Returns the value to the caller.

The use of serialization means that both data and code can be passed between a

server and a client. This also means that different instances of an object can run

on both server and client machines.

Because Java RMI relies on Java it can be used on many different operating

system platforms as long as there is an existing implementation of JVM for that

platform.

Chapter 6 13(15)

Comparison of CORBA, DCOM
and Java RMI

Programming Languages

Since CORBA is a specification it is not dependent on only one language. Any

language can be used as long as there is an ORB implementation for that

language. DCOM is a binary standard and supports multiple programming

languages. Java RMI on the other hand can only be used as middleware

between clients and servers that is implemented in Java. This is of course a

major drawback with Java RMI compared to CORBA and DCOM.

Definition of Interface

CORBA and DCOM are very much alike in this area. They both offer an

interface definition language (IDL) for describing interfaces for their respective

objects. The IDL is in both cases a neutral language used to define mappings

between different programming languages, although there are some differences

in semantics and interface notations. Java RMI is different though it doesn’t

have an IDL. Instead it has defined interface declarations as a separate concept

in the language and the interfaces are stored as .java files. A Java object is

accessible by remote Java clients if it implements the java.rmi.Remote

interface.

Object Oriented Support

DCOM and Java RMI both have support for multiple interfaces for an object.

Each interface represents a different view or behavior of the object. Earlier

versions of CORBA did not have this feature but it is now implemented in the

later versions.

DCOM server objects can create several object instances of multiple DCOM

object classes depending on the number of interfaces being used. An object in

CORBA or Java RMI on the other hand is served by one server object instance

which can represent many other object instances.

Chapter 6 14(15)

Interface Identification

In DCOM interfaces are uniquely defined by the UUID which is registered in

the Windows system registry. UUIDs make it possible for a server to extend the

functionality by implementing a new interface with a new UUID. CORBA uses

the interface name to identify an interface and the implementations by

mappings in the Implementation Repository. Java RMI identifies classes by

name and implementations by mappings to an URL in the RMI registry.

Supported Platforms

This is a weakness in DCOM because it is mainly supported on the Windows

platform. Attempts to run DCOM on other platforms has not been very

successful. CORBA and Java RMI does not have this weakness, they are

supported on nearly all platforms.

References 15(15)

Günter Rackl,

Monitoring and Managing Heterogeneous Middleware, January 2001.

Derek Slater, Middleware Demystified,

http://www.cio.com/archive/051500_middle.html, May 15 2000.

Distributed Computing Environment (DCE) overview,

http://www.opengroup.org/dce/info/papers/tog-dce-pd-1296.htm, April 2005.

David E. Bakken, Middleware, Washington State University, 2003

Andrew T. Campbell, Geoff Coulson, Michael E. Kounavis,

Managing Complexity: Middleware Explained, IT Pro magazine October 1999.

Gopalan Suresh Raj

A Detailed Comparision of CORBA, DCOM and Java/RMI

Carl-Fredrik Sörensen

A Comparision of Distributed Object Technologies

Sven-Arne Andréasson, Christer Carlsson

Distribuerade Databehandlingssystem

