
Normalization for Fitch-style Modal Calculi
(Draft)

Nachiappan Valliappan1, Fabian Ruch, and Carlos Tomé Cortiñas1

1 Chalmers University of Technology

23 November 2021

Abstract. Fitch-style modal lambda calculi enable programming with
necessity modalities in a typed lambda calculus by extending the typing
context with a delimiting operator that is denoted by a lock. The addition
of locks simplifies the formulation of typing rules for calculi that incorpo-
rate different modal axioms, but each variant demands different, tedious
and seemingly ad hoc syntactic lemmas to prove normalization. In this
work, we take a semantic approach to normalization, called normaliza-
tion by evaluation (NbE), by leveraging the possible-world semantics of
Fitch-style calculi to yield a more modular approach to normalization.
We show that NbE models can be constructed for calculi that incorpo-
rate the K, T and 4 axioms of modal logic, as suitable instantiations of
the possible-world semantics. In addition to existing results that handle
β-equivalence, our normalization result also considers η-equivalence for
these calculi. Our key results have been mechanized in the proof assistant
Agda. Finally, we showcase several consequences of normalization for
proving meta-theoretic properties of Fitch-style calculi as well as pro-
gramming-language applications based on different interpretations of the
necessity modality.

Keywords: Fitch-style lambda calculi · Possible-world semantics · Nor-
malization by Evaluation.

1 Introduction

In type systems, a modality can be broadly construed as a unary type constructor
with certain properties. Type systems with modalities have found a wide range
of applications in programming languages to capture and specify properties of a
program in its type. In this work, we study typed lambda calculi equipped with
a necessity modality (denoted by ◻) formulated in the so-called Fitch style.

The necessity modality originates from modal logic, where the most basic
intuitionistic modal logic IK (for “intuitionistic” and “Kripke”) extends intui-
tionistic propositional logic with a unary connective ◻, the necessitation rule (if
· ` A then Γ ` ◻A) and the K axiom (◻(A ⇒ B) ⇒ ◻A ⇒ ◻B). With the
addition of further modal axioms T (◻A ⇒ A) and 4 (◻A ⇒ ◻◻A) to IK,
we obtain richer logics IT (adding axiom T), IK4 (adding axiom 4), and IS4
(adding both T and 4). Type systems with necessity modalities based on IK and

2 N. Valliappan et al.

IS4 have found applications in partial evaluation and staged computation [11],
information-flow control [23], and recovering purity in an effectful language [8].
While type systems based on IT and IK4 do not seem to have any prior known
programming applications, they are nevertheless interesting as objects of study
that extend IK towards IS4.

Fitch-style modal lambda calculi [6, 9] feature necessity modalities in a
typed lambda calculus by extending the typing context with a delimiting “lock”
operator (denoted by µ). In this paper, we consider the family of Fitch-style modal
lambda calculi that correspond to the logics IK, IT, IK4, and IS4. These calculi
extend the simply-typed lambda calculus (STLC) with a type constructor ◻,
along with introduction and elimination rules for ◻ types formulated using the
µ operator. For instance, the calculus λIK, which corresponds to the logic IK,
extends STLC with Rules ◻-Intro and ◻-Elim/λIK, as summarized in Fig. 1.
The rules for λ-abstraction and function application are formulated in the usual
way—but note the modified variable rule Var!

Ty A ::= . . . | ◻A Ctx Γ ::= · | Γ, x : A | Γ,µ

Var

Γ, x : A,Γ ′ ` x : A
µ /∈ Γ ′

◻-Intro
Γ,µ ` t : A

Γ ` box t : ◻A

◻-Elim/λIK
Γ ` t : ◻A

Γ,µ, Γ ′ ` unboxλIK t : A
µ /∈ Γ ′

Fig. 1. Typing rules for λIK (omitting λ-abstraction and application)

The equivalence of terms in STLC is extended by Fitch-style calculi with the
following rules for ◻ types, where the former states the β- (or computational)
equivalence, and the latter states a type-directed η- (or extensional) equivalence.

◻-β
unbox (box t) ∼ t

◻-η
Γ ` t : ◻A

t ∼ box (unbox t)

We are interested in the problem of normalizing terms with respect to these
equivalences. Traditionally, terms in a calculus are normalized by rewriting them
using rewrite rules formulated from these equivalences, and a term is said to be in
normal form when it cannot be rewritten further. For example, we may formulate
a rewrite rule unbox (box t) 7→ t by orienting the ◻-β equivalence from left to right.
This naive approach to formulating a rewrite rule, however, is insufficient for the
◻-η rule since normalizing with a rewrite rule t 7→ box (unbox t) (for Γ ` t : ◻A)
does not terminate as it can be applied infinitely many times. It is presumably
for this reason that existing normalization results [9] for some of these calculi
only consider β-equivalence.

While it may be possible to carefully formulate a more complex set of rewrite
rules that take the context of application into consideration to guarantee termina-
tion (as done, for example, by Jay and Ghani [17] for function and product types),

Normalization for Fitch-style Modal Calculi (Draft) 3

the situation is further complicated for Fitch-style calculi by the fact that we
must repeat such syntactic rewriting arguments separately for each calculus under
consideration. The calculi λIT, λIK4, and λIS4 differ from λIK only in the ◻-elim-
ination rule, as summarized in Fig. 2. In spite of having identical syntax and

◻-Elim/λIT
Γ ` t : ◻A

Γ, Γ ′ ` unboxλIT t : A
#µ(Γ ′) ≤ 1

◻-Elim/λIK4

Γ ` t : ◻A
Γ,µ, Γ ′ ` unboxλIK4 t : A

◻-Elim/λIS4
Γ ` t : ◻A

Γ, Γ ′ ` unboxλIS4 t : A

Fig. 2. ◻-elimination rules for λIT, λIK4, and λIS4

term equivalences, each calculus demands different, tedious and seemingly ad hoc
syntactic renaming lemmas [9, Lemmas 4.1 and 5.1] to prove normalization.

In this paper, we take a semantic approach to normalization, called normal-
ization by evaluation (NbE) [5]. NbE bypasses rewriting entirely, and instead
normalizes terms by evaluating them in a suitable semantic model and then
reifying values in the model as normal forms. For Fitch-style calculi, NbE can be
developed by leveraging their possible-world semantics. To this end, we identify
the parameters of the possible-world semantics for the calculi under consideration,
and show that NbE models can be constructed by instantiating those parameters.
The NbE approach exploits the semantic overlap of the Fitch-style calculi in the
possible-world semantics and isolates their differences to a specific parameter
that determines the modal fragment, thus enabling the reuse of the evaluation
machinery and many lemmas proved in the process.

In Section 2, we begin by providing a brief overview of the main idea underlying
this paper. We discuss the uniform interpretation of types for four Fitch-style
calculi (λIK, λIT, λIK4 and λIS4) in possible-world models and outline how NbE
models can be constructed as instances. The reification mechanism that enables
NbE is performed alike for all four calculi. In Section 3, we construct an NbE
model for λIK that yields a correct normalization algorithm, and then show how
NbE models can also be constructed for λIS4, and for λIT and λIK4 by slightly
varying the instantiation. The calculus λIK and its normalization algorithm have
been implemented and verified correct in Agda [2], and we have also mechanized
most of our results for λIS4.

NbE models and proofs of normalization more general have several useful
consequences for term calculi. In Section 4, we show how NbE models and the
accompanying normalization algorithm can be used to prove meta-theoretic
properties of Fitch-style calculi including completeness, decidability, and some
standard results in modal logic in a constructive manner. In Section 5, we

4 N. Valliappan et al.

discuss applications of our development to specific interpretations of the necessity
modality in programming languages, and show how application-specific theorems
that typically require semantic intervention can be proved syntactically. More
specifically, we show that theorems in staging, information-flow control and
imperative calculi can be proved syntactically by inspection of normal forms.

2 Main Idea

The main idea underlying this paper is that normalization can be achieved in a
modular fashion for Fitch-style calculi by constructing NbE models as instances
of their possible-world semantics. In this section, we observe that Fitch-style
calculi can be interpreted in the possible-world semantics for intuitionistic modal
logic with a minor refinement that accommodates the µ operator, and give a
brief overview of how we construct NbE models as instances.

Possible-World Semantics Possible-world semantics for intuitionistic modal
logic [7] is parameterized by a frame F and a valuation Vι. A frame F is a
triple (W,Ri, Rm) that consists of a type W (for “worlds”), and two binary
relations Ri (for “intuitionistic accessibility”) and Rm (for “modal accessibility”)
on worlds that are required to satisfy certain conditions. An element w : W
can be thought of as a representation of the “knowledge state” about some
“possible world” at a certain point in time, w Ri w

′ as representing an increase in
knowledge from w to w′, and w Rm v as specifying accessibility of worlds from
one another. The valuation Vι, on the other hand, interprets the base type ι at a
given world w as a type Vι(w), a value of which can be thought of as the evidence
of a proposition ι at the world w.

Following the work by Božić and Došen [7], we interpret the types in all the
Fitch-style calculi alike as follows, for a given world w:

⟦ι⟧w = Vι(w)

⟦A⇒ B⟧w = ∀w′. w Ri w
′ → ⟦A⟧w′ → ⟦B⟧w′

⟦◻A⟧w = ∀v. w Rm v → ⟦A⟧v

The base type ι is interpreted using the valuation Vι, and the function
type A⇒ B is interpreted as a function ⟦A⟧w′ → ⟦B⟧w′ for all worlds w′ that
represent an increase in knowledge. Note that the generalization to the worlds w′

is required to give a sound interpretation of the function type in the model. As
for the interpretation of the type ◻A, if we think of Rm as specifying progression
in time, and thus a world v with w Rm v to represent a possible future of w, the
interpretation of ◻A at a world w can then be understood as a statement about
the future: for all possible future worlds v, we have ⟦A⟧v.

To extend the possible-world semantics of intuitionistic modal logic to Fitch-
style calculi, we must also provide an interpretation for contexts—in particular

Normalization for Fitch-style Modal Calculi (Draft) 5

for contexts extended with the µ operator, which is unique to Fitch-style calculi.

⟦·⟧w = >
⟦Γ, x : A⟧w = ⟦Γ⟧w × ⟦A⟧w

⟦Γ,µ⟧w =
∑

u
⟦Γ⟧u × u Rm w

The empty context · is interpreted as usual by the unit type >, and the
extension of a context with a variable Γ, x : A is interpreted by the product of
the interpretations ⟦Γ⟧w and ⟦A⟧w. While the interpretation of the type ◻A
can be understood as a statement about the future, the interpretation of the
context Γ,µ can be understood as a statement about a past: we have ⟦Γ⟧u in
some past world u—i.e. a world u such that u Rm w.

The interpretation of terms, also known as evaluation, in a possible-world
model must be given by a function ⟦−⟧ : Γ ` A→ (∀w. ⟦Γ⟧w → ⟦A⟧w). Clouston
[9] shows that Fitch-style calculi can be soundly interpreted in a Cartesian closed
category (CCC) equipped with an adjunction of endofunctors by interpreting ◻
by the right adjoint and µ by the left adjoint. The possible-world interpretation
of types in the simply-typed fragment of Fitch-calculi is an instance of the CCC
interpretation, which means that evaluation for this fragment in a possible-world
model is readily given by evaluation in a CCC. In specific, it can be shown that
the possible-world interpretation has a presheaf structure, which is an instance of
the CCC interpretation. The key idea here is that this observation also extends to
the modal fragment: the interpretation of ◻ in a possible-world model has a left
adjoint that is given by our interpretation of µ, and this gives us an adjunction
suitable for evaluation in the possible-world interpretation. This means that we
may reuse the generic interpreter given by Clouston [9] for evaluating Fitch-style
calculi in a possible-world model.

Constructing NbE Models as Instances To construct an NbE model for Fitch-
calculi, we must construct a possible-world model with a function quote :
(∀w. ⟦Γ⟧w → ⟦A⟧w)→ Γ `nf A that inverts the denotation of a term (∀w. ⟦Γ⟧w →
⟦A⟧w) to a derivation Γ `nf A in normal form. The normal forms for the modal
fragment of λIK are defined below, where Γ `ne A denotes a special case of
normal forms known as neutral elements.

◻-Intro-NF
Γ,µ `nf t : A

Γ `nf box t : ◻A

◻-Elim-NE/λIK

Γ `ne t : ◻A
Γ,µ, Γ ′ `ne unboxλIK t : A

µ /∈ Γ ′

The normal forms for λIT, λIK4, and λIS4 are defined similarly by varying the
elimination rule as in their term typing rules in Fig. 2.

Following the work on NbE for STLC with possible-world3 models [10],
we instantiate the parameters that define possible-world models for Fitch-style
calculi as follows: we pick contexts for W , order-preserving embeddings (sometimes

3 also called “Kripke” or “Kripke-style”

6 N. Valliappan et al.

called “weakenings”, defined in the next section) Γ ≤ Γ ′ for Γ Ri Γ
′, and neutral

derivations Γ `ne ι as the valuation Vι(Γ). It remains for us to instantiate the
parameter Rm and show that this model supports the quote function.

The instantiation of the modal parameter Rm in the possible-world semantics
varies for each calculus and captures the differences between them. Recollect that
the syntax of the four calculi only differ in their elimination rule for ◻ types.
When viewed through the lens of the possible-world semantics, this difference
can be generalized as follows:

◻-Elim
Γ ` t : ◻A

∆ ` unbox t : A
(Γ v ∆)

We generalize the relationship between the context in the premise and the context
in the conclusion using a generic modal accessibility relation v between contexts.
When viewed as a candidate for instantiating the Rm relation, this rule states
that if ◻A is derivable in some past world Γ , then we may derive A in the
current world ∆. The various ◻-elimination rules for Fitch-style calculi can be
viewed as instances of this generalized rule, where we define v in accordance
with ◻-elimination rule of the calculus under consideration. For example, for
λIK, we observe that the context of the premise in Rule ◻-Elim/λIK is Γ and
that of the conclusion is Γ,µ, Γ ′ such that µ 6∈ Γ ′, and thus define Γ vλIK ∆
as ∃Γ ′.µ 6∈ Γ ′ ∧∆ = Γ,µ, Γ ′. Similarly, we define Γ vλIS4 ∆ as ∃Γ ′. ∆ = Γ, Γ ′

for λIS4, and follow this recipe for λIT and λIK4. Accordingly, we instantiate the
Rm parameter in the NbE model with the corresponding definition of v in the
calculus under consideration.

A key component of implementing the quote function in NbE models is
reification, which is implemented by a family of functions reifyA : ∀Γ. ⟦A⟧Γ →
Γ `nf A indexed by a type A. While its implementation for the simply-typed
fragment follows the standard, for the modal fragment we are required to give an
implementation of reify◻A : ∀Γ. ⟦◻A⟧Γ → Γ `nf ◻A. To reify a value of ⟦◻A⟧Γ ,
we first observe that ⟦◻A⟧Γ = ∀∆.Γ v ∆→ ⟦A⟧∆ by definition of ⟦−⟧ and the
instantiation of Rm with v. By picking Γ,µ for ∆, we get ⟦A⟧Γ,µ since it can be
shown that the extension Γ v Γ,µ is valid for the calculi under consideration.
By reifying the value ⟦A⟧Γ,µ recursively, we get a normal form Γ,µ `nf n : A,
which can be used to construct the desired normal form Γ `nf boxn : ◻A using
the Rule Nf/◻-Intro.

3 Possible-World Semantics and NbE

In this section, we elaborate on the previous section by defining possible-world
models and showing that Fitch-style calculi can be interpreted soundly in these
models. Following this, we outline the details of constructing NbE models as
instances. We begin with the calculus λIK, and then show how the same results
can be achieved for the other calculi.

Before discussing a concrete calculus, we present some of their commonalities.

Normalization for Fitch-style Modal Calculi (Draft) 7

Types, Contexts and Order-Preserving Embeddings The grammar of types and
typing contexts for Fitch-style is the following.

Ty A ::= ι | A⇒ B | ◻A Ctx Γ ::= · | Γ,A | Γ,µ

Types are generated by a base type ι, function types A⇒ B, and modal types ◻A,
and typing contexts are “snoc” lists of types and locks.

We define the relation of order-preserving embeddings (OPE) on typing
contexts in Fig. 3. An OPE Γ ≤ Γ ′ embeds the context Γ into another context Γ ′

while preserving the order of types and the order and number of locks in Γ .

base : · ≤ ·
o : Γ ≤ Γ ′

drop o : Γ ≤ Γ ′, A
o : Γ ≤ Γ ′

keep o : Γ,A ≤ Γ ′, A
o : Γ ≤ Γ ′

keepµ o : Γ,µ ≤ Γ ′,µ

Fig. 3. Order-preserving embeddings

3.1 The Calculus λIK

Terms, Substitutions and Equational Theory To define the intrinsically-
typed syntax and equational theory of λIK, we first define a modal accessibility
relation on contexts Γ vλIK ∆, which expresses that context ∆ extends Γ,µ
to the right without adding locks. Note that Γ vλIK ∆ exactly when ∃Γ ′.µ 6∈
Γ ′ ∧∆ = Γ,µ, Γ ′.

nil : Γ vλIK Γ,µ
e : Γ vλIK ∆

var e : Γ vλIK ∆,A

Fig. 4. Modal accessibility relation on contexts (λIK)

Fig. 5 presents the intrinsically-typed syntax of λIK. Instead of named vari-
ables as in Fig. 1, variables are defined using De Bruijn indices in a separate
judgement Γ `var A . The introduction and elimination rules for function types
are like those in STLC, and the introduction rule for the type ◻A is similar
to that of Fig. 1. The elimination rule ◻-Elim/λIK is defined using the modal
accessibility relation ∆ vλIK Γ which relates the contexts in the premise and
the conclusion, respectively. This relation replaces the side condition (µ 6∈ Γ ′) in
Fig. 1 and other ◻-elimination rules in Sections 1 and 2. Note that formulating
the rule for the term unboxλIK with e : ∆ vλIK Γ as a second premise is in sharp
contrast to Clouston [9, Fig. 1] where the relation is not mentioned in the term
but formulated as the side condition Γ = ∆,µ, Γ ′ for some lock-free Γ ′.

8 N. Valliappan et al.

Var-Zero
Γ,A `var zero : A

Var-Succ
Γ `var x : A

Γ,B `var succx : A

Var
Γ `var x : A

Γ ` var x : A

⇒-Intro
Γ,A ` t : B

Γ ` λ t : A→ B

⇒-Elim
Γ ` t : A→ B Γ ` u : A

Γ ` app t u : B

◻-Intro
Γ,µ ` t : A

Γ ` box t : ◻A

◻-Elim/λIK
∆ ` t : ◻A e : ∆ vλIK Γ

Γ ` unboxλIK t e : A

Fig. 5. Intrinsically-typed terms of λIK

A term Γ ` t : A can be weakened, which is a special case of renaming, with
an OPE (Fig. 3) using a function wk : Γ ≤ Γ ′ → Γ ` A → Γ ′ ` A. Given an
OPE o : Γ ≤ Γ ′, renaming the term using wk yields a term Γ ′ ` wk o t : A in the
weaker context Γ ′. The unit element for wk is the identity OPE id≤ : Γ ≤ Γ , i.e.
wk id≤ t = t. Renaming arises naturally when evaluating terms and in specifying
the equational theory (e.g. in the η rule of function type).

· `s empty : ·
Γ `s s : ∆ Γ ` A
Γ `s ext s t : ∆,A

Γ ′ `s s : ∆ e : Γ ′ vλIK Γ

Γ `s extµ s e : ∆,µ

Fig. 6. Substitutions for λIK

Substitutions for λIK are inductively defined in Fig. 6. A judgment Γ `s s : ∆
denotes a substitution for a context ∆ in the context Γ . Applying a substitution
to a term ∆ ` t : A, i.e. subst s t : Γ ` A, yields a term in the context Γ . The
substitution ids : Γ `s Γ denotes the identity substitution, which exists for all
Γ . As usual, it can be shown that terms are closed under the application of a
substitution, and that it preserves the identity, i.e. subst ids t = t. Substitutions
are also closed under renaming and this operation preserves the identity as well.

The equational theory for λIK, omitting congruence rules, is specified in
Fig. 7. As discussed earlier, λIK extends the usual rules in STLC (Rules ⇒-β

and ⇒-η) with rules for the ◻ type (Rules ◻-β and ◻-η). The function factor :
Γ vλIK ∆→ Γ,µ ≤ ∆ , in Rule ◻-β, maps an element of the modal accessibility
relation e : Γ vλIK ∆ to an OPE Γ,µ ≤ ∆. This is possible because the context ∆
does not have any lock to the right of Γ,µ.

Possible-World Semantics A possible-world model is defined using the notion
of a possible-world frame as below. We work in a constructive type-theoretic
metalanguage, and denote the universe of types in this language by Type.

Normalization for Fitch-style Modal Calculi (Draft) 9

⇒-β

Γ,A ` t : B Γ ` u : A

Γ ` app (λ t)u ∼ subst (ext ids t) t

⇒-η

Γ ` t : A⇒ B

Γ ` t ∼ λ (app (wk (drop id≤) t) zero)

◻-β
Γ ′,µ ` t : A e : Γ ′ vλIK Γ

Γ ` unboxλIK (box t) e ∼ wk (factor e) t

◻-η
Γ ` t : ◻A

Γ ` t ∼ unboxλIK (box t) nil

Fig. 7. Equational theory for λIK

Definition 1 (Possible-world frame). A frame F is given by a triple (W,Ri
, Rm) consisting of a type W : Set and two relations Ri and Rm on W such that
the following conditions are satisfied:

– Ri is reflexive and transitive
– Ri ;Rm = Rm ;Ri

where R1 ; R2 denotes composition of relations, i.e. x (R1 ;R2) y =
∑
z x R1

z × z R2 y.

Definition 2 (Possible-world model). A possible-world model M is given
by a tuple (F, V) consisting of a frame F (see Definition 1) and a valuation Vι :
W → Type of the base type such that ∀w,w′. w Ri w

′ → Vι(w)→ Vι(w
′).

The types in λIK are interpreted in a possible-world model as in Section 2. To
evaluate terms, we must first prove following monotonicity lemma. This lemma
is well-known as a requirement to give a sound interpretation of the function
type in an arbitrary possible-world model, and can be thought of as the semantic
generalization of renaming in terms.

Lemma 1 (Monotonicity). In every possible-world model M, for every type A
and worlds w and w′, we have a function wkA : w Ri w

′ → ⟦A⟧w → ⟦A⟧w′ . And
similarly, for every context Γ , a function wkΓ : w Ri w

′ → ⟦Γ⟧w → ⟦Γ⟧w′ .

We evaluate terms in λIK in a possible-world model as follows.

⟦−⟧ : Γ ` A→ (∀w. ⟦Γ⟧w → ⟦A⟧w)
⟦var x⟧ γ = lookupx γ
⟦λ t⟧ γ = λi. λy. ⟦t⟧ (wk i γ, y)

⟦app t u⟧ γ = (⟦t⟧ γ) id≤ (⟦u⟧ γ)
⟦box t⟧ γ = λm. ⟦t⟧ (γ,m)

⟦unboxλIK t e⟧ γ = ⟦t⟧ γ′m
where (γ′,m) = trimλIK γ e

The evaluation of terms in the simply-typed fragment is standard, and re-
sembles the evaluator of STLC. Variables are interpreted by a lookup function
that projects values from an environment, and λ-abstraction and application

10 N. Valliappan et al.

are evaluated using their semantic counterparts. To evaluate λ-abstraction, we
must construct a semantic function ∀w′. w Ri w

′ → ⟦A⟧w′ → ⟦B⟧w′ using the
given term Γ,A ` t : B and environment γ : ⟦Γ⟧w. We achieve this by recursively
evaluating t in an environment that extends γ appropriately using the seman-
tic arguments i : w Ri w

′ and y : ⟦A⟧w′ . We use the monotonicity lemma to
“transport” ⟦Γ⟧w to ⟦Γ⟧w′ , and construct an environment of type ⟦Γ⟧w′ × ⟦A⟧w′

for recursively evaluating t, which produces the desired result of type ⟦B⟧w′ .
Application is evaluated by simply recursively evaluating the applied terms and
applying them in the semantics with a value id≤ : w Ri w, which is available
since Ri is reflexive.

In the modal fragment, to evaluate the term Γ ` box t : ◻A with γ : ⟦Γ⟧w,
we must construct a function of type ∀v. w Rm v → ⟦A⟧v. Using the semantic
argument m : w Rm v, we recursively evaluate the term Γ,µ ` t : A in the
extended environment (γ,m) : ⟦Γ,µ⟧v, since ⟦Γ,µ⟧v =

∑
w⟦Γ⟧w × w Rm v. On

the other hand, the term Γ ` unboxλIK t e : A with e : ∆ vλIK Γ and ∆ ` t : ◻A,
for some ∆, must be evaluated with an environment γ : ⟦Γ⟧w. To recursively
evaluate the term ∆ ` t : ◻A, we must first discard the part of the environment
γ that substitutes the types in the extension of ∆,µ. This is achieved using the
function trimλIK : ⟦Γ⟧w → ∆ vλIK Γ → ⟦∆,µ⟧w that projects γ to produce an
environment γ′ : ⟦Γ⟧v and a value m : v Rm w. We evaluate t with γ′ and the
apply the resulting function of type ∀w. v Rm w → ⟦A⟧w with m to return the
desired result.

We state the soundness of λIK with respect to the possible-world semantics
before we instantiate it with the NbE model that we will construct in the next
subsection.

Theorem 1. LetM be any possible-world model (see Definition 2). If two terms t
and u : Γ ` A of λIK are equivalent (see Fig. 7) then ⟦t⟧ and ⟦u⟧ : ∀w. ⟦Γ⟧w →
⟦A⟧w are equal in M.

Proof. Show that possible-world models, which are particular presheaf categories,
are Cartesian closed and come equipped with an adjunction, then apply Clouston
[9, Theorem 2.8 (with remark below)].

NbE Model The normal forms of terms in λIK are defined along with neutral
elements in a mutually recursive fashion by the judgements Γ `nf A and Γ `ne A,
respectively, in Fig. 8. Intuitively, a normal form may be thought of as a value,
and a neutral element may be thought of as a “stuck” computation. We extend
the standard definition of normal forms and neutral elements in STLC with
Rules Nf/◻-Intro and Ne/◻-Elim/λIK.

Recall that an NbE model for a given calculus C is a particular kind of
model M that comes equipped with a function quote :M(⟦Γ⟧, ⟦A⟧)→ Γ `nf A
satisfying t ∼ quote ⟦t⟧ for all terms t : Γ ` A where ⟦−⟧ denotes the generic
evaluation function for C.

Using the relations defined in Figs. 3 and 4, we construct an NbE model for
λIK by instantiating the parameters that define a possible-world model as follows.

Normalization for Fitch-style Modal Calculi (Draft) 11

Ne/Var

Γ `var x : A

Γ `ne var x : A

Nf/Up

Γ `ne n : ι

Γ `nf upn : ι

Nf/⇒-Intro

Γ,A `nf n : B

Γ `nf λn : A⇒ B

Ne/⇒-Elim

Γ `ne n : A→ B Γ `nf m : A

Γ `ne appnm : B

Nf/◻-Intro
Γ,µ `nf n : A

Γ `nf boxn : ◻A

Ne/◻-Elim/λIK
∆ `ne n : ◻A e : ∆ vλIK Γ

Γ `ne unboxλIK n e : A

Fig. 8. Normal forms and neutral elements in λIK

– Worlds as contexts: W = Ctx

– Relation Ri as order-preserving embeddings: Γ Ri Γ
′ = Γ ≤ Γ ′

– Relation Rm as extensions of a “locked” context: Γ Rm ∆ = Γ vλIK ∆

– Valuation Vι as neutral elements: Vι(Γ) = Γ `ne ι

The condition that the valuation must satisfy wkA : Γ ≤ Γ ′ → Γ `ne A →
Γ ′ `ne A, for all types A, can be shown by induction on the OPE Γ ≤ Γ ′. To
show that this model is indeed a possible-world model, it remains for us to show
that the frame conditions are satisfied.

The first frame condition states that OPEs must be reflexive and transitive,
which can be shown by structural induction on the context and definition of
OPEs, respectively. The second frame condition states that the types

∑
Γ ′ Γ ≤

Γ ′ × Γ ′ vλIK ∆ and
∑
∆′ Γ vλIK ∆′ ×∆′ ≤ ∆ are isomorphic for all Γ , ∆ : Ctx,

which can be shown by constructing mutually inverse functions by simultaneous
recursion on OPEs and the modal accessibility relation.

Observe that the instantiation of the monotonicity lemma in the NbE model
states that we have the functions wkA : Γ ≤ Γ ′ → ⟦A⟧Γ → ⟦A⟧Γ ′ and wkΓ :
Γ ≤ Γ ′ → ⟦Γ⟧Γ → ⟦Γ⟧Γ ′ , which allow denotations of types and contexts to be
renamed with respect to an OPE.

To implement the function quote, we first implement reification and reflection,
using two functions reifyA : ⟦A⟧Γ → Γ `nf A and reflectA : Γ `ne A → ⟦A⟧Γ ,
respectively. Reification converts a semantic value to a normal form, while
reflection converts a neutral element to a semantic value. They are implemented
as follows by induction on the index type A.

12 N. Valliappan et al.

reifyA,Γ : ⟦A⟧Γ → Γ `nf A
reifyι,Γ n = upn
reifyA⇒B,Γ f = λ (reifyB,(Γ,A)(f (drop id≤) freshA,(Γ,A)))

reify◻A,Γ g = box (reifyA,(Γ,µ)(g nil))

reflectA,Γ : Γ `ne A→ ⟦A⟧Γ
reflectι,Γ n = n
reflectA⇒B,Γ n = λo. λx. reflectB,Γ (app (wkA⇒B o n) (reifyB,Γ ′ x))
reflect◻A,Γ n = λ(e : Γ vλIK ∆). reflectA,∆(unboxλIK n e)

For the function type, we recursively reify the body of the λ-abstraction by
applying the given semantic function f with suitable arguments, which are an OPE
drop id≤ : Γ ≤ Γ,A and a value freshA,(Γ,A) = reflectA,(Γ,A) (var zero) : ⟦A⟧Γ,A—
which is the De Bruijn index equivalent of a fresh variable. Reflection, on the
other hand, recursively reflects the application of a neutral Γ `ne n : A ⇒ B
to the reification of the semantic argument x : ⟦A⟧Γ ′ for an OPE o : Γ ≤ Γ ′.
Similarly, for the ◻ type, we recursively reflect the body of box by applying the
given semantic function g : ∀∆.Γ vλIK ∆ → ⟦A⟧∆ with a suitable argument,
which is the empty context extension nil : Γ vλIK Γ,µ. Reflection also follows a
similar pursuit by reflecting the application of the neutral Γ `ne n : ◻A to the
eliminator unbox.

Equipped with reification, we implement quote (as seen below), by applying
the given denotation of a term, a function f : ∀∆. ⟦Γ⟧∆ → ⟦A⟧∆, to the
identity environment freshEnvΓ : ⟦Γ⟧Γ , and then reifying the resulting value.
The construction of the value freshEnvΓ is the De Bruijn index equivalent of
generating an environment with fresh variables.

quote : (∀∆. ⟦Γ⟧∆ → ⟦A⟧∆)→ Γ `nf A
quote f = reifyA,Γ (f freshEnvΓ)

freshEnvΓ : ⟦Γ⟧Γ
freshEnv· = ()
freshEnvΓ,A = (wk (drop id≤) freshEnvΓ , freshA,(Γ,A))
freshEnvΓ,µ = (freshEnvΓ , nil)

To prove that the function quote is indeed a retraction of evaluation, we follow
the usual logical relations approach. As seen in Fig. 9, we define a relation LA
indexed by a type A that relates a term Γ ` t : A to its denotation x : ⟦A⟧Γ
as LA t x. From a proof of LA t x, it can be shown that t ∼ reifyA x. This
relation is extended to contexts as L∆, for some context ∆, which relates a
substitution Γ ` s : ∆ to its denotation x : ⟦∆⟧Γ as LA s x.

For the logical relations, we then prove the so-called fundamental theorem.

Normalization for Fitch-style Modal Calculi (Draft) 13

LA,Γ : Γ ` A→ ⟦A⟧Γ → Type
Lι,Γ t x = t ∼ quotex
LA⇒B,Γ t f = ∀Γ ′, e : Γ ≤ Γ ′, u, x.LA,Γ ′ ux→ LB,Γ ′ (app (wk e t)u) (f e x)
L◻A,Γ t g =

∑
u LA,(Γ,µ) u (g nil)× t ∼ boxu

L∆,Γ : Γ `s ∆→ ⟦∆⟧Γ → Type
L·,Γ empty () = >
L(∆,A),Γ (ext s t) (x, y) = L∆,Γ s x× LA,Γ t y
L(∆,µ),Γ (extµ s (e : Γ ′ vλIK Γ)) (x, e) = L∆,Γ ′ s x

Fig. 9. Logical relations for λIK

Proposition 1 (Fundamental theorem). Given a term ∆ ` t : A, a substi-
tution Γ `s s : ∆ and a value x : ⟦∆⟧Γ , if L s x then L (subst s t) (⟦t⟧x).

We conclude this subsection by stating the normalization theorem for λIK.
Proposition 1 entails that L (subst ids t) (⟦t⟧ freshEnv∆) for any term t, if

we pick s as the identity substitution ids : ∆ `s ∆, and x as freshEnv∆ :
⟦∆⟧∆, since they can be shown to be related as L ids freshEnv. From this it
follows that subst ids t ∼ reifyA (⟦t⟧ freshEnv), and further that t ∼ quote ⟦t⟧
from the definition of quote and the fact that subst ids t = t. As a result, the
composite norm = quote ◦ ⟦−⟧ is adequate, i.e. norm t = norm t′ implies t ∼ t′.

The soundness of λIK with respect to possible-world models (see Theorem 1)
directly entails quote ⟦t⟧ = quote ⟦u⟧ : Γ `nf A for all terms t, u : Γ ` A such
that Γ ` t ∼ u : A, which means that norm = quote ◦ ⟦−⟧ is complete. Note that
this terminology might be slightly confusing because it is the soundness of ⟦−⟧
that implies the completeness of norm.

Theorem 2. Let M denote the possible-world model over the frame given by
the relations Γ ≤ Γ ′ and Γ vλIK ∆ and the valuation Vι,Γ = Γ `ne ι.

There is a function quote :M(⟦Γ⟧, ⟦A⟧) → Γ `nf A such that the compos-
ite norm = quote ◦ ⟦−⟧ : Γ ` A→ Γ `nf A from terms to normal forms of λIK
is complete and adequate.

3.2 Extending to the Calculus λIS4

Terms, Substitutions and Equational Theory To define the intrinsically-
typed syntax of λIS4, we first define the modal accessibility relation on contexts
in Fig. 10.

If Γ vλIS4
∆ then ∆ is an extension of Γ with as many locks as needed. Note

that, in contrast to λIK, the modal accessibility relation is both reflexive and
transitive. This corresponds to the conditions on the accessibility relation for the
logic IS4.

Fig. 11 presents the changes of λIK that yield λIS4. The terms are the same
as λIK with the exception of Rule ◻-Elim/λIK which now includes the modal

14 N. Valliappan et al.

nil : Γ vλIS4 Γ
e : Γ vλIS4 ∆

var e : Γ vλIS4 ∆,A
e : Γ vλIS4 ∆

lock e : Γ vλIS4 ∆,µ

Fig. 10. Modal accessibility relation on contexts (λIS4)

accessibility relation for λIS4. Similarly, the substitution rule for contexts with
locks now refers to vλIS4

.

◻-Elim/λIS4
∆ ` t : ◻A e : ∆ vλIS4 Γ

Γ ` unboxλIS4 t e : A

Γ ′ ` s : ∆ e : Γ ′ vλIS4 Γ
Γ `s extµ s e : ∆,µ

Fig. 11. Intrinsically-typed terms and substitutions of λIS4

Fig. 12 presents the equational theory of the modal fragment of λIS4. This is
a slightly modified version of λIK (cf. Fig. 7) that accommodates the changes to
the Rule ◻-Elim/λIS4. Unlike before, Rule ◻-β now performs a substitution to
modify the term Γ ′,µ ` t : A to a term of type Γ ` A. Note that the result of
such a substitution need not yield the same term since substitution may change
the context extension of some subterm.

◻-β
Γ ′,µ ` t : A e : Γ ′ vλIS4 Γ

Γ ` unboxλIS4 (box t) e ∼ subst (extµ ids e) t

◻-η
Γ ` t : ◻A

Γ ` t ∼ unboxλIS4 (box t) (lock nil)

Fig. 12. Equational theory for λIS4

Possible-World Semantics Giving possible-world semantics for λIS4 requires an
additional frame condition on the relation Rm: it must be reflexive and transitive.
Evaluation proceeds as before, where we use a function trimλIS4 : ∀w. ⟦Γ⟧w →
Γ ′ vλIS4

Γ → ⟦Γ ′,µ⟧w to manipulate the environment for evaluating unboxλIS4 t e,
as seen below.

⟦unboxλIS4 t e⟧ γ = ⟦t⟧ γ′m
where (γ′,m) = trimλIS4 γ e

The additional frame requirements ensures that the function trimλIS4 can be
implemented. For example, consider implementing the case of trimλIS4 for some

Normalization for Fitch-style Modal Calculi (Draft) 15

argument of type ⟦Γ⟧w and the extension nil : Γ vλIS4 Γ adds zero locks. The
desired result is of type ⟦Γ,µ⟧w, which is defined as

∑
v⟦Γ⟧v × v Rm w. We

construct such a result using the argument of ⟦Γ⟧w by picking v as w itself, and
using the reflexivity of Rm to construct a value of type w Rm w. Similarly, the
transitivity of Rm is required when the context extension adds more than one
lock.

Analogously to Theorem 1, we state the soundness of λIS4 with respect to
reflexive and transitive possible-world models before we instantiate it with the
NbE model that we will construct in the next subsection.

Proposition 2. Let C be a Cartesian closed category equipped with a comonad ◻
that has a left adjoint µ a ◻, then equivalent terms t and u : Γ ` A denote equal
morphisms in C.

Proof. A version of Clouston [9, Theorem 4.8] for λIS4 where the side condition
of Rule ◻-Elim/λIS4 appears as an argument to the term former unbox and hence
idempotency is not imposed on the comonad ◻.

Theorem 3. Let M be a possible-world model (see Definition 2) such that the
modal accessibility relation Rm is reflexive and transitive. If two terms t and u :
Γ ` A of λIS4 are equivalent (see Fig. 12) then ⟦t⟧ and ⟦u⟧ : ∀w. ⟦Γ⟧w → ⟦A⟧w
are equal in M.

Proof. Show that reflexive and transitive possible-world models, which are partic-
ular presheaf categories, are Cartesian closed and come equipped with a comonad
that has a left adjoint, then apply Proposition 2.

NbE Model The normal forms of λIS4 are defined as before, with the following
rule that replaces the neutral Rule Ne/◻-Elim/λIK.

Ne/◻-Elim/λIS4
∆ `ne n : ◻A e : ∆ vλIS4 Γ

Γ `ne unboxλIS4 t e : A

The NbE model construction also proceeds in the same way, where we now
pick the relation Rm as arbitrary extensions of a context: Γ Rm ∆ = Γ vλIS4 ∆.
The modal fragment for reify and reflect are now implemented as follows:

reify◻A,Γ g = box (reifyA,(Γ,µ) (g (lock nil)))
reflect◻A,Γ n = λ(e : Γ vλIS4 ∆). reflectA,∆ (unboxn e)

Conjecture 1. Let M denote the possible-world model over the reflexive and
transitive frame given by the relations Γ ≤ Γ ′ and Γ vλIS4 ∆ and the valua-
tion Vι,Γ = Γ `ne ι.

There is a function quote :M(⟦Γ⟧, ⟦A⟧)→ Γ `nf A such that the compos-
ite norm = quote ◦ ⟦−⟧ : Γ ` A→ Γ `nf A from terms to normal forms of λIS4
is complete and adequate.

16 N. Valliappan et al.

3.3 Extending to the Calculi λIT and λIK4

The NbE model construction for λIT and λIK4 follows a similar pursuit as λIS4.
We define suitable modal accessibility relations vλIT and vλIK4

as extensions that
allow the addition of at most one µ, and at least one lock µ, respectively. To
give possible-world semantics, we require an additional frame condition that the
relation Rm be reflexive for λIT and transitive for λIK4. For evaluation, we use a
function trimλIT : ⟦Γ⟧w → ∆ vλIT Γ → ⟦∆,µ⟧w for λIT, and similarly trimλIK4

for λIK4. The modification to the neutral Rule Ne/◻-Elim/λIK is achieved as
before in λIS4 using the corresponding modal accessibility relations. Unsurprisingly,
reification and reflection can also be implemented, thus yielding normalization
functions for both λIT and λIK4.

4 Completeness, Decidability and Logical Applications

In this section we record some immediate consequences of the model constructions
we presented in the previous section.

Completeness of the Equational Theory As a corollary of the adequacy of an
NbE model N , i.e. Γ ` t ∼ u : A whenever ⟦t⟧ = ⟦u⟧ : N (⟦Γ⟧, ⟦A⟧), we
obtain completeness of the equational theory with respect to the class of models
that the respective NbE model belongs to. Given the NbE models constructed
in subsections 3.1 and 3.2 this means that the equational theories of λIK and
λIS4 (cf. Fig. 7) are (sound and) complete with respect to the class of Cartesian
closed categories equipped with an adjunction and a right-adjoint comonad,
respectively.

Theorem 4. Let t, u : Γ ` A be two terms of λIK. If for all Cartesian closed cat-
egoriesM equipped with an adjunction it is the case that ⟦t⟧ = ⟦u⟧ :M(⟦Γ⟧, ⟦A⟧)
then Γ ` t ∼ u : A.

Proof. Let M0 be the model we constructed in subsection 3.1. Since M0 is a
Cartesian closed category equipped with an adjunction, by assumption we have
⟦t⟧M0

= ⟦u⟧M0
. And lastly, since M0 is an NbE model, we have Γ ` t ∼

quote(⟦t⟧M0
) = quote(⟦u⟧M0

) ∼ u : A.

Note that this statement corresponds to Clouston [9, Theorem 3.2] but there it
is obtained via a term model construction and for the term model to be equipped
with an adjunction the calculus needs to be first extended with an internalization
of the operation µ on contexts as an operation ⧫ on types.

Theorem 5. Let t, u : Γ ` A be two terms of λIS4. If for all Cartesian closed
categories M equipped with a right-adjoint comonad it is the case that ⟦t⟧ = ⟦u⟧ :
M(⟦Γ⟧, ⟦A⟧) then Γ ` t ∼ u : A.

Proof. As for Theorem 4.

This statement corresponds to Clouston [9, Section 4.4] but there it is proved
for an equational theory that identifies terms up to differences in the accessibility
proofs and with respect to the class of models where the comonad is idempotent.

Normalization for Fitch-style Modal Calculi (Draft) 17

Completeness of the Deductive Theory Using the quotation function of an NbE
model N , i.e. quote : N (⟦Γ⟧, ⟦A⟧) → Γ ` A, we obtain completeness of the
deductive theory with respect to the class of models that the respective NbE
model belongs to. Given the NbE models constructed in subsections 3.1 and 3.2
this means that the deductive theories of λIK and λIS4 (cf. Figs. 2 and 5) are
(sound and) complete with respect to the class of possible-world models with an
arbitrary frame and a reflexive–transitive frame, respectively.

Theorem 6. Let Γ : Ctx be a context and A : Ty a type. If for all possible-
world models M it is the case that M(⟦Γ⟧, ⟦A⟧) is inhabited then there is a
term t : Γ ` A of λIK.

Proof. Let M0 be the model we constructed in subsection 3.1. Since M0 is a
possible-world model, by assumption we have a morphism p :M0(⟦Γ⟧, ⟦A⟧). And
lastly, since M0 is an NbE model, we have the term quote(p) : Γ ` A.

Theorem 7. Let Γ : Ctx be a context and A : Ty a type. If for all possible-world
models M with a reflexive–transitive frame it is the case that M(⟦Γ⟧, ⟦A⟧) is
inhabited then there is a term t : Γ ` A of λIS4.

Proof. As for Theorem 6.

Note that the proofs of Theorems 6 and 7 are constructive.

Decidability As a corollary of the completeness and adequacy of an NbE model N ,
i.e. Γ ` t ∼ u : A if and only if ⟦t⟧ = ⟦u⟧ : N (⟦Γ⟧, ⟦A⟧), we obtain decidability
of the equational theory from decidability of the equality of normal forms n, m :
Γ `nf A. Given the NbE models constructed in subsections 3.1 and 3.2 this
means that the equational theories of λIK and λIS4 (cf. Fig. 7) are decidable.

To show that any of the following decision problems P (x) is decidable we
give a constructive proof of the proposition ∀x. P (x) ∨ ¬P (x). Such a proof can
be understood as the construction of an algorithm d that takes as input an x
and produces as output a Boolean d(x), alongside a correctness proof that d(x)
is true if and only if P (x) holds.

Theorem 8. For any two terms t, u : Γ ` A of λIK the problem whether t ∼ u
is decidable.

Proof. We first observe that for any two normal forms n, m : Γ `nf A of λIK
the problem whether n = m is decidable by proving ∀n,m. n = m ∨ n 6= m
constructively. All the cases of an simultaneous induction on n, m : Γ `nf A are
immediate.

Let N be the NbE model we constructed in subsection 3.1. Completeness and
adequacy of N imply that we have t ∼ u if and only if norm t = normu for
the function norm : Γ ` A → Γ `nf A, t 7→ quote ⟦t⟧. Now, t ∼ u is decidable
because norm t = normu is decidable by the observation we started with.

Theorem 9. For any two terms t, u : Γ ` A of λIS4 the problem whether t ∼ u
is decidable.

Proof. As for Theorem 8.

18 N. Valliappan et al.

Denecessitation The last of the consequences of the NbE model constructions we
record is of a less generic flavour than the other three, namely it is an application
of normal forms to a basic proof-theoretic result in modal logic.

Using invariance of truth in possible-world models under bisimulation4 it
can be shown that ◻A is a valid formula of IK (or IS4) if and only if A is. A
completeness theorem then implies the same for provability of ◻A and A. The
statement for proofs in λIK (and λIS4) can also be shown by inspection of normal
forms as follows.

Firstly, we note that while deduction is not closed under arbitrary context
extensions (including locks) it is closed under extensions (including locks) on the
left :

Lemma 2 (cf. Clouston [9, Lemma A.1]). Let ∆, Γ : Ctx be arbitrary
contexts and A : Ty an arbitrary type. There is an operation Γ ` A→ ∆,Γ ` A
on terms of λIK (and λIS4), where ∆,Γ denotes context concatenation.

Proof. By recursion on terms.

And, secondly, we note that also a converse of this lemma holds by inspection of
normal forms:

Lemma 3. Let ∆, Γ : Ctx be arbitrary contexts, A : Ty an arbitrary type and
t : ∆,Γ ` A a term of λIK (or λIS4) in the concatenated context ∆,Γ that does
not mention any variables from ∆, then there is a term t′ : Γ ` A of λIK (or
λIS4, respectively).

Proof. Since normalization (Theorem 2 and Conjecture 1) does not introduce new
free variables it suffices to prove the statement for terms in normal form. We do so
by induction on normal forms n : ∆,Γ `nf A (see Fig. 8). The only nonimmediate
step is for n of the form unboxn′ e for some neutral element n′ : ∆′ `ne ◻A and
∆′ v ∆ ≤ ∆,Γ . But in that case the induction hypothesis says that we have a
neutral element n′′ : · `ne ◻A, which is impossible.

Theorem 10. Let A : Ty be an arbitrary type. There is a term t : · ` A of λIK
(or λIS4) if and only if there is a term u : · ` ◻A of λIK (or λIS4, respectively),
where · : Ctx denotes the empty context.

Proof. From a term t : · ` A we can construct a term t′ : ·,µ ` A using Lemma 2
and thus the term u = box t′ : · ` ◻A.

In the other direction, from a term u : · ` ◻A we obtain a normal form u′ =
normu : · `nf ◻A using Theorem 2 and Conjecture 1. By inspection of normal
forms (see Fig. 8) we know that u′ must be of the form box v for some normal
form v : ·,µ `nf A, from which we obtain a term t : · ` A using Lemma 3 since
the context ·,µ does not declare any variables that could have been mentioned in
v.

This concludes this section on some consequences of the model constructions
presented in this paper.

4 Invariance of truth under bisimulation says that if w and v are two bisimilar worlds
in two possible-world models M0 and M1, respectively, then for all formulas A it is
the case that ⟦A⟧w holds in M0 if and only if ⟦A⟧v does in M1.

Normalization for Fitch-style Modal Calculi (Draft) 19

5 Programming-Language Applications

In this section, we discuss some applications of NbE for Fitch-calculi in the context
of programming languages. Concretely, we use NbE to show meta-theoretic results,
e.g. noninterference, and normalization as a tool, e.g. for staged computations.

5.1 Escaping Computational Effects

Choudhury and Krishnaswami [8] present a modal type system based on IS4 for
a programming language with implicit effects in the style of the computational
lambda calculus [24]. In their language, programs need access to capabilities in
order to produce computational effects. For example, the primitive print takes
two arguments: the string to print and a capability of type Cap. Then, a program
of type ◻A is a program of type A that does not access any capability in context;
the program is safe.

Even languages where computational effects are explicit on the type level,
e.g. Haskell with the IO monad, can benefit from a mechanism to safely escape
computations. For example, currently Haskell programmers have to use the
primitive unsafePerformIO to escape IO, which under many circumstances is
not safe (as its name clearly indicates). If the IO computation is known to not
produce effects, e.g. printing because it does not access capabilities, then the
type ◻ could provide a safe escape hatch from IO.

Motivated by this, we study purity in the context of a language that extends
Moggi’s monadic metalanguage with λIS4. In this system there is a type T of
computations, that is, values of type TA are computations that might produce
side-effects and finally return a value of type A, and programs perform printing
effects via a primitive print : Cap ⇒ String ⇒ TUnit. A computation denied of
access to capabilities does not print:

Definition 3 (Purity). A program c : Cap ` f : ◻(TUnit) is pure if c : Cap `
f ∼ box (return unit).

Building on normalization results for the metalanguage [21], we use NbE to
show that all programs are pure:

Theorem 11. Any program c : Cap ` f : ◻(TUnit) is pure.

Theorem 11 follows by correctness of normalization and inspection of the
normal forms of that type: that is, the normal form c : Cap `nf f : ◻(TUnit) is
(syntactically) equal to c : Cap `nf box (return unit).

Fitch-style λIS4 is a natural fit for purity and effects. To validate their intuition,
Choudhury and Krishnaswami construct the capability spaces model where ◻A
removes all elements of type A with access to capabilities. This functor has a left
adjoint µ that denies access to capabilities.

20 N. Valliappan et al.

5.2 Information-Flow Control

Information-flow control (IFC) [26] protects confidentiality of data by controlling
how information is allowed to flow in programs. In static IFC (e.g. [1, 27]), types
serve as the security specification, i.e. to specify what inputs of a program are
secret or public. Then, the type system enforces that information flows according
to the given security policy, i.e. secret inputs should not interfere with public
outputs. This is usually formalized as some sort of noninterference property [13].

Tomé Cortiñas and Valliappan [28] illustrate the use of normalization for
proving that an IFC language, based on Moggi’s monadic metalanguage [24], is
secure. Their idea is simple: reason about the behaviour of classes of programs
by looking at their normal forms, which are syntactically simpler. Correctness of
normalization ensures that the normal form of a program Γ ` t : A is semantically
equivalent to t, i.e. norm t ∼ t.

Without committing to a particular Fitch-style calculus, we identify ◻Bool
as the type of secret Booleans and Bool as the type of public Booleans. We state
noninterference for Fitch-style as follows.

Definition 4 (Noninterference). A program · ` f : ◻Bool→ Bool is nonin-
terferent, if for any two secrets · ` s1, s2 : ◻Bool, it is the case that · ` app f s1 ∼
app f s2 : Bool.

A calculus satisfies noninterference if all programs · ` f : ◻Bool→ Bool are
noninterferent.

Note that some of the Fitch-style calculi that we study satisfy noninterference,
e.g. λIK, while others do not, e.g. λIS4.

The Calculus λIK Satisfies Noninterference

Theorem 12. All λIK programs · ` f : ◻Bool→ Bool are noninterferent.

Proof. We show that such a program is equivalent to a constant function, which
is clearly noninterferent.

The normal forms of type · `nf ◻Bool → Bool are of the shape · `nf λx.
where the hole has type ◻Bool `nf : Bool. If the hole is true or false we are
done. If it is not then it cannot be of the shape unbox because the context does
not contain µ. The remaining cases follow a similar argument. ut

The Calculus λIS4 does not Satisfy Noninterference Axiom 4, i.e. ` λx. unboxx :
◻A⇒ A, is an example of a program that is interferent.

5.3 Staged Computation

Davies and Pfenning [11, 12] introduce a modal type system based on IS4 and
argue that it is suitable for staged computation. In their system, the type ◻A
represents code of type A and the axioms of IS4 correspond to operations for
code manipulation: K : ◻(A⇒ B)⇒ (◻A⇒ ◻B) for substituting code in code,

Normalization for Fitch-style Modal Calculi (Draft) 21

T : ◻A⇒ A for evaluating code, and 4 : ◻A⇒ ◻◻A for making code available
on subsequent stages.

One of their desiderata is stage separation, namely, code should only depend
on code. As an example, they show that the term λx. boxx, which violates stage
separation, is not typeable.

We use NbE to prove a type-based stage separation theorem for λIS4:

Theorem 13 (Stage separation). It is not the case that for all types A there
is a term · ` A⇒ ◻A.

Proof. Let A = ι be the witness. By inspection, in context x : ι there are no
normal forms of type ◻ι, and hence, there are no terms of type · ` ι⇒ ◻ι. ut

Note that, for example, for some types like Bool there are nontrivial terms of
type · ` Bool⇒ ◻Bool [19, Section 4.3]:

· ` λx. iftex (box true) (box false) : Bool⇒ ◻Bool

Staged Evaluation of Programs with Free Variables Davies and Pfenning connect
the logic IS4 to staged evaluation by defining a reduction relation on closed terms
that applies β reduction everywhere but leaves “uninterpreted code”, i.e. terms
of the form box t, unchanged.

Different from Davies and Pfenning, who disable the congruence rule for the
box term, we can reuse the normalization function for λIS4 (subsection 3.2) to
normalize open terms at every stage. Note that normalization performs both β
reductions and η expansions.

To finalize, we prove a theorem analogous to Davies and Pfenning [12, Theo-
rem 5] but adapted to NbE for Fitch-style λIS4. This theorem states that after
program staging the resulting term is “irreducible”, that is, at least the first
stage has been completely eliminated.

Theorem 14 (Eliminability). If Γ ` t : ◻A then norm t is of the form Γ `
box t′ : ◻A for some t′.

6 Related and Further Work

Fitch-style Calculi, Normalization and Their Semantics Fitch-style modal
type systems [6, 22] adapt the proof methods of Fitch-style natural deduction
systems for modal logic. In a Fitch-style natural deduction system, to eliminate
a formula of type ◻A, we open a so-called strict subordinate proof and apply an
“import” rule to produce a formula A. Fitch-style lambda calculi achieve a similar
effect, for example in λIK, by adding a µ to the context. To introduce a formula
of type ◻A, on the other hand, we close a strict subordinate proof, and apply an
“export” rule to a formula of type A—which corresponds to removing a µ from
the context. In the possible-world reading, adding a µ corresponds to travelling
to a future world, and removing it corresponds to returning to the original world.

The Fitch-style calculus λIK was presented for the logic IK by Borghuis [6],
and later investigated further by Clouston [9]. Clouston showed that µ can be

22 N. Valliappan et al.

interpreted as the left adjoint of ◻, and proves a completeness result for a term
calculus that extends λIK with a type former ⧫ that internalizes µ. The extended
term calculus is, however, somewhat unsatisfactory since the normal forms do not
enjoy the subformula property. Normalization was also considered by Clouston,
but only with Rule ◻-β and not Rule ◻-η. The normalization result presented here
considers both rules, and the corresponding completeness result achieved using
the NbE model does not require the extension of λIK with ⧫. The decidability
result that follows for the complete equational theory of λIK also appears to have
been an open problem prior to our work.

For the logic IS4, there appear to be several possible formulations of a
Fitch-style calculus, where the difference has to do with the definition of the
rule ◻-Elim/λIS4. One possibility is to define unbox by explicitly recording the
context extension as a part of the term former. Davies and Pfenning [11] present
such a system where they annotate the term former unbox as unboxn to denote
the number of µs5 added to the resulting context. Another possibility is to define
unbox without any explicit annotations, thus leaving it ambiguous and to be
inferred from a specific typing derivation. Such a system is presented by Clouston
[9], and also discussed by Davies and Pfenning. The primary difference lies in
their semantic interpretation: in the latter option, Clouston shows that ◻ can be
interpreted as an idempotent comonad, i.e. ◻◻A ∼= ◻A, while this is not the case
with the former—although it can be shown that ◻◻A↔ ◻A. The λIS4 calculus
presented here falls under the former category, where we record the extension
explicitly using a premise instead of an annotation.

Gratzer, Sterling, and Birkedal [16] present yet another possibility that
reformulates the system for IS4 in Clouston [9]. They further extend it with
dependent types, and also prove a normalization result with respect to an
equational theory that includes both Rules ◻-β and ◻-η using NbE. Although
their approach is semantic in the sense of using NbE, their semantic domain has
a very syntactic flavour [16, Section 3.2] that obscures the elegant possible-world
interpretation. For example, it is unclear as to how their NbE algorithm can be
adapted to minor variations in the syntax such as in λIK, λIK4 and λIT—a solution
to which is at the very core of our pursuit. This difference also has to do with the
fact that they are interested in NbE for type-checking (also called “untyped” or
“defunctionalized” NbE), while we are interested in NbE for well-typed terms (and
thus “typed” NbE), which is better suited for studying the underlying models.
Furthermore, we also avoid several complications that arise in accommodating
dependent types in a Fitch-style calculus, which is the main goal of their work.

Possible-World semantics Given that Fitch-style natural deduction for modal
logic has itself been motivated by possible-world semantics, it is only natural
that Fitch-style calculi can also be given possible-world semantics. It appears
to be roughly understood that the µ operator models some notion of a past
world, but this has not been—to the best of our knowledge—made precise with a

5 Precisely, the number of stack frames, since their presentation uses a stack of contexts,
as opposed to a single context with a first-class delimiting operator µ

Normalization for Fitch-style Modal Calculi (Draft) 23

concrete definition that is supported by a soundness and completeness result. As
noted earlier, this requires a minor refinement of the frame conditions that define
possible-world models for intuitionistic modal logic given by Božić and Došen [7].

Dual-Context Calculi Dual-context calculi [25, 12, 18] provide an alternative
approach to programming with the necessity modality using judgements of the
form ∆;Γ ` A where ∆ is thought of as the modal context and Γ as the
usual (or “local”) one. As opposed to a “direct” eliminator as in Fitch-style
calculi, dual-context calculi feature a pattern-matching eliminator formulated
as a let-construct. The let-construct allows a type ◻A to be eliminated into
an arbitrary type C, which induces an array of commuting conversions in the
equational theory to attain normal forms that obey the subformula property.
Furthermore, the inclusion of an η-law for the ◻ type former complicates the
ability to produce a unique normal form. Normalization (and, more specifically,
NbE) for a pattern-matching eliminator—while certainly achievable—is a much
more tedious endeavour, as evident from the work on normalizing sum types [4,
20, 3], which suffer from a similar problem. Presumably for this reason, none of
the existing normalization results for dual-context calculi consider the η-law. The
possible-world semantics of dual-context calculi is also less apparent, and it is
unclear how NbE models can be constructed as instances of that semantics.

Multimodal Type Theory (MTT) Gratzer et al. [15] present a multimodal
dependent type theory that for every choice of mode theory yields a dependent
type theory with multiple interacting modalities. In contrast to Fitch-style calculi,
their system features a variable rule that controls the use of variables of modal
type in context. Further, the elimination rule for modal types is formulated in
the style of the let-construct for dual-context calculi. In a recent result, Gratzer
[14] proves normalization for multimodal type theory. In spite of the generality
of multimodal type theory, it is worth noting that the normalization problem for
Fitch-style calculi, when considering the full equational theory, is not a special
case of normalization for multimodal type theory.

Further Modal Axioms The possible-world semantics and NbE models pre-
sented here only consider the logics IK, IT, IK4 and IS4. We wonder if it would
be possible to extend the ideas presented here to further modal axioms such as
R : A→ ◻A and GL : ◻(◻A→ A)→ ◻A, especially considering that the calculi
may differ in more than just the elimination rule for the ◻ type.

References

1. Abadi, M., Banerjee, A., Heintze, N., and Riecke, J.G.: A Core Calculus of Depen-
dency. In: Appel, A.W., and Aiken, A. (eds.) POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, TX, USA, January 20-22, 1999, pp. 147–160. ACM (1999). doi:
10.1145/292540.292555. https://doi.org/10.1145/292540.292555

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555

24 N. Valliappan et al.

2. Abel, A., Allais, G., Cockx, J., Danielsson, N.A., Hausmann, P., Nordvall Fors-
berg, F., Norell, U., López Juan, V., Sicard-Ramı́rez, A., and Vezzosi, A., Agda 2
version 2.6.1.3, 2005–2021. Chalmers University of Technology and Gothenburg Uni-
versity. lic: BSD3. url: https://wiki.portal.chalmers.se/agda/pmwiki.php,
vcs: https://github.com/agda/agda.

3. Abel, A., and Sattler, C.: Normalization by Evaluation for Call-By-Push-Value
and Polarized Lambda Calculus. In: Komendantskaya, E. (ed.) Proceedings of
the 21st International Symposium on Principles and Practice of Programming
Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019, 3:1–3:12. ACM (2019).
doi: 10.1145/3354166.3354168. https://doi.org/10.1145/3354166.3354168

4. Altenkirch, T., Dybjer, P., Hofmann, M., and Scott, P.J.: Normalization by Evalua-
tion for Typed Lambda Calculus with Coproducts. In: 16th Annual IEEE Sympo-
sium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001,
Proceedings, pp. 303–310. IEEE Computer Society (2001). doi: 10.1109/LICS.200
1.932506. https://doi.org/10.1109/LICS.2001.932506

5. Berger, U., and Schwichtenberg, H.: An Inverse of the Evaluation Functional for
Typed lambda-calculus. In: Proceedings of the Sixth Annual Symposium on Logic
in Computer Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991,
pp. 203–211. IEEE Computer Society (1991). doi: 10.1109/LICS.1991.151645.
https://doi.org/10.1109/LICS.1991.151645

6. Borghuis, V.A.J.: Coming to terms with modal logic. Technische Universiteit
Eindhoven, Eindhoven (1994). On the interpretation of modalities in typed λ-
calculus, Dissertation, Technische Universiteit Eindhoven, Eindhoven, 1994

7. Božić, M., and Došen, K.: Models for normal intuitionistic modal logics. Studia
Logica 43(3), 217–245 (1984). doi: 10.1007/BF02429840. https://doi.org/10.10
07/BF02429840

8. Choudhury, V., and Krishnaswami, N.: Recovering purity with comonads and
capabilities. Proc. ACM Program. Lang. 4(ICFP), 111:1–111:28 (2020). doi: 10.11
45/3408993. https://doi.org/10.1145/3408993

9. Clouston, R.: Fitch-Style Modal Lambda Calculi. In: Baier, C., and Lago, U.D. (eds.)
Foundations of Software Science and Computation Structures - 21st International
Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20,
2018, Proceedings. LNCS, vol. 10803, pp. 258–275. Springer, Heidelberg (2018).
doi: 10.1007/978-3-319-89366-2_14. https://doi.org/10.1007/978-3-319-8
9366-2%5C_14

10. Coquand, C.: A Formalised Proof of the Soundness and Completeness of a Simply
Typed Lambda-Calculus with Explicit Substitutions. High. Order Symb. Comput.
15(1), 57–90 (2002). doi: 10.1023/A:1019964114625. https://doi.org/10.1023
/A:1019964114625

11. Davies, R., and Pfenning, F.: A Modal Analysis of Staged Computation. In: Boehm,
H., and Jr., G.L.S. (eds.) Conference Record of POPL’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at
the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pp. 258–
270. ACM Press (1996). doi: 10.1145/237721.237788. https://doi.org/10.1145
/237721.237788

12. Davies, R., and Pfenning, F.: A modal analysis of staged computation. J. ACM
48(3), 555–604 (2001). doi: 10.1145/382780.382785. https://doi.org/10.1145
/382780.382785

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/agda/agda
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1145/3354166.3354168
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/BF02429840
https://doi.org/10.1007/BF02429840
https://doi.org/10.1007/BF02429840
https://doi.org/10.1145/3408993
https://doi.org/10.1145/3408993
https://doi.org/10.1145/3408993
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1007/978-3-319-89366-2%5C_14
https://doi.org/10.1007/978-3-319-89366-2%5C_14
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/237721.237788
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785

Normalization for Fitch-style Modal Calculi (Draft) 25

13. Goguen, J.A., and Meseguer, J.: Security Policies and Security Models. In: 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982,
pp. 11–20. IEEE Computer Society (1982). doi: 10.1109/SP.1982.10014. https:
//doi.org/10.1109/SP.1982.10014

14. Gratzer, D.: Normalization for multimodal type theory. arXiv preprint arXiv:2106.01414
(2021)

15. Gratzer, D., Kavvos, G.A., Nuyts, A., and Birkedal, L.: Multimodal Dependent
Type Theory. In: Hermanns, H., Zhang, L., Kobayashi, N., and Miller, D. (eds.)
LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8-11, 2020, pp. 492–506. ACM (2020). doi: 10.1145/3
373718.3394736. https://doi.org/10.1145/3373718.3394736

16. Gratzer, D., Sterling, J., and Birkedal, L.: Implementing a modal dependent type
theory. Proc. ACM Program. Lang. 3(ICFP), 107:1–107:29 (2019). doi: 10.1145/3
341711. https://doi.org/10.1145/3341711

17. Jay, C.B., and Ghani, N.: The Virtues of Eta-Expansion. J. Funct. Program. 5(2),
135–154 (1995). doi: 10.1017/S0956796800001301. https://doi.org/10.1017/S0
956796800001301

18. Kavvos, G.A.: Dual-Context Calculi for Modal Logic. Log. Methods Comput. Sci.
16(3) (2020). https://lmcs.episciences.org/6722

19. Kavvos, G.A.: Modalities, cohesion, and information flow. Proc. ACM Program.
Lang. 3(POPL), 20:1–20:29 (2019). doi: 10.1145/3290333. https://doi.org/10
.1145/3290333

20. Lindley, S.: Extensional Rewriting with Sums. In: Rocca, S.R.D. (ed.) Typed
Lambda Calculi and Applications, 8th International Conference, TLCA 2007, Paris,
France, June 26-28, 2007, Proceedings. LNCS, vol. 4583, pp. 255–271. Springer,
Heidelberg (2007). doi: 10.1007/978-3-540-73228-0_19. https://doi.org/10
.1007/978-3-540-73228-0%5C_19

21. Lindley, S.: Normalisation by evaluation in the compilation of typed functional
programming languages. University of Edinburgh, UK (2005)

22. Martini, S., and Masini, A.: A computational interpretation of modal proofs. In:
Proof theory of modal logic, pp. 213–241. Springer (1996)

23. Miyamoto, K., and Igarashi, A.: A modal foundation for secure information flow.
In: In Proceedings of IEEE Foundations of Computer Security (FCS), pp. 187–203
(2004)

24. Moggi, E.: Notions of Computation and Monads. Inf. Comput. 93(1), 55–92 (1991).
doi: 10.1016/0890-5401(91)90052-4. https://doi.org/10.1016/0890-5401(91
)90052-4

25. Pfenning, F., and Davies, R.: A judgmental reconstruction of modal logic. Math.
Struct. Comput. Sci. 11(4), 511–540 (2001). doi: 10.1017/S0960129501003322.
https://doi.org/10.1017/S0960129501003322

26. Sabelfeld, A., and Myers, A.C.: Language-based information-flow security. IEEE
J. Sel. Areas Commun. 21(1), 5–19 (2003). doi: 10.1109/JSAC.2002.806121.
https://doi.org/10.1109/JSAC.2002.806121

27. Shikuma, N., and Igarashi, A.: Proving Noninterference by a Fully Complete
Translation to the Simply Typed Lambda-Calculus. Log. Methods Comput. Sci.
4(3) (2008). doi: 10.2168/LMCS-4(3:10)2008. https://doi.org/10.2168/LMCS-
4(3:10)2008

28. Tomé Cortiñas, C., and Valliappan, N.: Simple Noninterference by Normalization. In:
Proceedings of the 14th ACM SIGSAC Workshop on Programming Languages and
Analysis for Security. PLAS’19, pp. 61–72. Association for Computing Machinery,

https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3341711
https://doi.org/10.1145/3341711
https://doi.org/10.1017/S0956796800001301
https://doi.org/10.1017/S0956796800001301
https://doi.org/10.1017/S0956796800001301
https://lmcs.episciences.org/6722
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1007/978-3-540-73228-0_19
https://doi.org/10.1007/978-3-540-73228-0%5C_19
https://doi.org/10.1007/978-3-540-73228-0%5C_19
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008

26 N. Valliappan et al.

London, United Kingdom (2019). doi: 10.1145/3338504.3357342. https://doi.o
rg/10.1145/3338504.3357342

https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342
https://doi.org/10.1145/3338504.3357342

	Normalization for Fitch-style Modal Calculi (Draft)

