
Information-Flow Control and Effects

Carlos Tomé Cortiñas1 and Fabian Ruch

1 Chalmers University of Technology

Language-based information-flow control (IFC) aims to ensure the confidentiality of data by
controlling how information flows within programs. More concretely, IFC ensures that the secret
inputs of a program will not influence (and thereby leak through) its public outputs—a property
known as noninterference [5]. What constitutes program inputs and outputs (and hence what
is the precise statement of noninterference) varies with what behaviour programs can exhibit
and hypothetical attackers can observe. Since computational effects, like nontermination and
input/output for instance, are integral to the behaviour of real programs, we are interested in
studying IFC for programs that can exhibit them.

Static approaches to IFC (e.g. DCC [1] and SC [14]) usually use a graded monad R (for
“redaction”) to specify the confidentiality levels of data and control that flows abide by a security
policy L. In the simplest scenario, the policy concerns only two levels secret and public, and
declares that all flows are permitted except those from secret to public, which are forbidden. In
more complicated scenarios, the policy may be an arbitrary join semilattice L = (L,v,⊥,∨) [4]
where L denotes the set of levels, l v l′ the permission of flows from l ∈ L to l′ ∈ L, ⊥ ∈ L
the level from which all flows are permitted, and l ∨ l′ ∈ L the level from which the flows that
are permitted are exactly those that are permitted from both l and l′. We denote both the
join-semilattice structure and its underlying set of levels by L, in particular we write l ∈ L
instead of l ∈ L.

Intuitively, given a type A and a level l of a policy L = (L,v,⊥,∨), Rl(A) denotes the type
that forces the values of A to be indistinguishable from one another for any observer whose
level is not above l with respect to v. In their work on dependency analysis, Abadi et al. [1]
introduce the so-called dependency category as a model of the redaction monad, and, more
recently, Kavvos [8] formulates a “more high-tech” variation of that model called classified
sets. The common feature of the dependency category and classified sets models is that they
interpret a type by a cpo and a set of values, respectively, endowed with a family of relations Rl

indexed by levels l, and a term by a map that preserves them. If we think of Rl(a, b) as encoding
indistinguishability of a pair of values a and b ∈ A then a map f : A→ B is required to map
them to indistinguishable values f(a) and f(b), i.e. Rl(f(a), f(b)).

Starting from the work of Moggi on modelling computational effects using monads [9], there
is a plethora of models of computational effects in the programming language literature (e.g. al-
gebraic effects [11] and graded monads [7]). The basic idea is that values and computations that
produce values denote different things: in Moggi [10] for instance, the type of computations
that produce values of type A is denoted by the type T(A) where T has a monad structure.

Towards the goal of extending the type-based IFC approach to programs that can exhibit
computational effects, we start by taking a look at printing effects. Extending a calculus like
DCC or SC with nothing but a monad Tpublic and a primitive printpublic(b) : Tpublic(1) for
printing a Boolean b : 2 to a publicly observable channel is clearly insufficient because even the
most basic noninterferent programs are not typeable. In particular, the type of printpublic does
not allow us to print public Booleans r : Rpublic(2). However, we can construct the redacted
computation bind(r, b. printpublic(b)) : Rpublic(Tpublic(1)), and the classified sets model suggests
that further extending the calculus with a primitive distr(t) : Tpublic(Rpublic(1)) for “executing”
redacted computations t : Rpublic(Tpublic(1)) does not break noninterference. More generally,
such a map Rl(Tl′(A))→ Tl′(Rl(A)) exists for any A in classified sets whenever flows from l to

IFC and Effects C. Tomé Cortiñas and F. Ruch

l′ are permitted, i.e. l v l′. Thus we are led to study extensions of calculi like DCC or SC with
a family of monads Tl for l ∈ L that supports both a primitive printl(b) : Tl(1) for b : 2 and a
distributive law distrl,l′ : Rl(Tl′(A))→ Tl′(Rl(A)) for l v l′. In fact, in order to support printing
to a set C of output channels c ∈ C with assigned security levels label(c) ∈ L, we study extensions
with a monad T graded by the powerset lattice P(C). In this case the type of the distributive
law becomes Rl(TC(A)) → TC(Rl(A)) for a subset C ∈ P(C) such that ∀c ∈ C. l v label(c).
Without committing to a particular calculus yet, we study IFC and computational effects using
graded monads and distributive laws in the context of classified sets.

Graded Redaction

Let us recall the redaction monad on classified sets [8] over a join semilattice (L,v,⊥,∨):

Definition 1 (Category of classified sets). A classified set A over L consists of a set U(A) and a
family of binary relations Rl(A) on U(A) indexed by labels l ∈ L. Call two elements a1, a2 ∈ U(A)
indistinguishable at label l ∈ L if Rl(A)(a1, a2). A map f : A → B between classified sets
A and B consists of a function U(f) : U(A) → U(B) that preserves indistinguishability, i.e.
Rl(B)(f(a1), f(a2)) whenever Rl(A)(a1, a2). Denote the category of classified sets over L and
maps between them by CSet(L).

Definition 2 (Pointwise redaction monad). Given l ∈ L, the monad (Rl, ηl, µl) on CSet(L) is
defined by:

U(Rl(A)) := U(A)

Rl′(Rl(A))(a, b) :⇔

{
Rl′(A)(a, b) l v l′

> otherwise

U(Rl(f)) := U(f)
U(ηl,A) := idU(A)

U(µl,A) := idU(A)

In other words, the monad Rl at some label l forces all elements to be pairwise indistinguishable
at labels that are not above l. Note that this includes but is not restricted to those labels that
are strictly below l since the ordering of labels is not required to be total.

Proposition 1.

1. Rl is idempotent: µl : Rl ◦ Rl
·−→ Rl is invertible

2. Rl preserves limits, in particular Rl preserves binary products

3. Rl preserves exponentials, and hence Rl is a Cartesian closed functor

The family of monads Rl indexed by l ∈ L is in fact graded [7] with respect to L seen as a

(strict) monoidal category, i.e. we have coherent natural transformations upl,l′ : Rl
·−→ Rl′ for

l v l′ given by idU(A) at A and a graded multiplication µl,l′ : Rl ◦ Rl′
·−→ Rl∨l′ that generalizes

the pointwise multiplication µl : Rl ◦ Rl
·−→ Rl. Further, the grading is strongly monoidal:

Proposition 2.

1. At label ⊥, the unit η⊥ : Id
·−→ R⊥ is invertible

2. For any two labels l, l′, the graded multiplication µl,l′ : Rl ◦ Rl′
·−→ Rl∨l′ is invertible, and

hence the redaction monad is commutative and subsumptive in the sense that µ−1l′,l · µl,l′ :

Rl ◦Rl′
·−→ Rl′ ◦Rl is invertible and if l w l′ then µl,l′ : Rl ◦Rl′

·−→ Rl is invertible, respectively

2

IFC and Effects C. Tomé Cortiñas and F. Ruch

Printing Effects

We generalize the printing example from earlier to a set C of channels. We assume that the
security policy specifies a security level for each channel c ∈ C via a function label : C → L. The
idea is that only observers whose security level l is above label(c), i.e. label(c) v l, may observe
outputs on a given channel c.

We model programs with printing effects using a graded monad:

Definition 3 (Output monoid). For a subset C ⊆ C, the monoid (OutC , εC , ·C) is defined by:

U(OutC) := C → List(2)
Rl(OutC)(o1, o2) :⇔ ∀c ∈ C. label(c) v l⇒ o1(c) = o2(c)

U(εC) := c 7→ []
U(·C)(o1, o2) := c 7→ o1(c) ++ o2(c)

Note that for C ′ ⊇ C we have a monoid homomorphism upC,C′ : OutC → OutC′ that assigns
the empty list [] to channels c′ ∈ C ′ \ C.

Definition 4 (Output monad). The graded monad (W, η, µ, up) is given by WC(A) := A×OutC
and the structure maps as induced by the monoid maps εC , ·C , and upC,C′ , respectively.

Proposition 3. The output monad in the classified sets model validates the intuition that
a computation of security level l, i.e. an element of Rl(WC(A)), that only prints to channels
above l, i.e. C ⊆ C is such that l v label(c) for all c ∈ C, is secure to run in the sense that we
have a map δl,C,A : Rl(WC(A))→WC(Rl(A)). In fact, the family of maps δl,C,A indexed by A
constitutes a distributive law1.

Proof. Rl preserves products (see Proposition 1.2) and we have that ηl,OutC : OutC → Rl(OutC)
has an inverse il,C if l v label(C). The required diagrams for the composites δl,C,A :=
(Rl(fst),Rl(snd)) ; A × il,C to constitute a distributive law commute because the underlying
functions of all maps involved are identities.

As a result of these investigations of the classified sets model, a programming language for
IFC with printing effects is given by simply combining SC or DCC with EFe [7, Section 5.1]
via a primitive distr that “reifies” the map δl,C,A in the syntax:

Γ ` t : Rl(WC(A))

Γ ` distr(t) : WC(Rl(A))
∀c ∈ C. l v label(c)

Noninterference for the resulting language states that for any program prog : Rsecret(2)→ WC(1)
and any two values s1, s2 : Rsecret(2) it is the case that prog s1 and prog s2 : WC(1) produce
the same output on those channels c ∈ C that are observable by public 6w secret, i.e.
label(c) v public.

Further Work

The next step is to prove noninterference theorems along the lines of Kavvos [8] using the
framework of the redaction monad and semantic structures for effects in classified sets. This
should then apply to practical approaches to IFC (e.g. MAC [13] and SLIO [3, 12]) by, for
instance, modelling the (idealized) monad MACl (cf. [15]) for printing to a fixed set of channels C
as the composite monad WC ◦ Rl where C = {c ∈ C | l v label(c)}. We also leave it to further
work to investigate other effects in the context of classified sets and compare them to their
treatment in the IFC literature, e.g. global store [16] or exceptions [6].

1A distributive law [2] for a monad S over a monad P is given by a natural transformation δ : P ◦ S ·−→ S ◦ P
that commutes with the unit and multiplication maps of P and S.

3

IFC and Effects C. Tomé Cortiñas and F. Ruch

References

[1] Mart́ın Abadi et al. “A Core Calculus of Dependency”. In: POPL ’99, Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, TX, USA, January 20-22, 1999. Ed. by Andrew W. Appel and Alex Aiken.
ACM, 1999, pp. 147–160. doi: 10.1145/292540.292555. url: https://doi.org/10.114
5/292540.292555.

[2] Jon Beck. “Distributive laws”. In: Sem. on Triples and Categorical Homology Theory
(ETH, Zürich, 1966/67). Springer, Berlin, 1969, pp. 119–140.

[3] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. “HLIO: mixing static and
dynamic typing for information-flow control in Haskell”. In: Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2015, Vancouver,
BC, Canada, September 1-3, 2015. Ed. by Kathleen Fisher and John H. Reppy. ACM,
2015, pp. 289–301. doi: 10.1145/2784731.2784758. url: https://doi.org/10.1145/2
784731.2784758.

[4] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”. In: Commun. ACM
19.5 (1976), pp. 236–243. doi: 10.1145/360051.360056. url: https://doi.org/10.114
5/360051.360056.

[5] Joseph A. Goguen and José Meseguer. “Security Policies and Security Models”. In: 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982. IEEE
Computer Society, 1982, pp. 11–20. doi: 10.1109/SP.1982.10014. url: https://doi.o
rg/10.1109/SP.1982.10014.

[6] Catalin Hritcu et al. “All Your IFCException Are Belong to Us”. In: 2013 IEEE Symposium
on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE Computer
Society, 2013, pp. 3–17. doi: 10.1109/SP.2013.10. url: https://doi.org/10.1109
/SP.2013.10.

[7] Shin-ya Katsumata. “Parametric effect monads and semantics of effect systems”. In:
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. Ed. by Suresh Jagan-
nathan and Peter Sewell. ACM, 2014, pp. 633–646. doi: 10.1145/2535838.2535846. url:
https://doi.org/10.1145/2535838.2535846.

[8] G. A. Kavvos. “Modalities, cohesion, and information flow”. In: Proc. ACM Program.
Lang. 3.POPL (2019), 20:1–20:29. doi: 10.1145/3290333. url: https://doi.org/10.11
45/3290333.

[9] Eugenio Moggi. “Computational Lambda-Calculus and Monads”. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove,
California, USA, June 5-8, 1989. IEEE Computer Society, 1989, pp. 14–23. doi: 10.1109
/LICS.1989.39155. url: https://doi.org/10.1109/LICS.1989.39155.

[10] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf. Comput. 93.1 (1991),
pp. 55–92. doi: 10.1016/0890-5401(91)90052-4. url: https://doi.org/10.1016/089
0-5401(91)90052-4.

4

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.2013.10
https://doi.org/10.1109/SP.2013.10
https://doi.org/10.1109/SP.2013.10
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4

IFC and Effects C. Tomé Cortiñas and F. Ruch

[11] Gordon D. Plotkin and Matija Pretnar. “Handlers of Algebraic Effects”. In: Programming
Languages and Systems, 18th European Symposium on Programming, ESOP 2009, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2009, York, UK, March 22-29, 2009. Proceedings. Ed. by Giuseppe Castagna. Vol. 5502.
Lecture Notes in Computer Science. Springer, 2009, pp. 80–94. doi: 10.1007/978-3-642-
00590-9_7. url: https://doi.org/10.1007/978-3-642-00590-9%5C_7.

[12] Vineet Rajani and Deepak Garg. “On the expressiveness and semantics of information
flow types”. In: J. Comput. Secur. 28.1 (2020), pp. 129–156. doi: 10.3233/JCS-191382.
url: https://doi.org/10.3233/JCS-191382.

[13] Alejandro Russo. “Functional pearl: two can keep a secret, if one of them uses Haskell”.
In: Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015. Ed. by Kathleen
Fisher and John H. Reppy. ACM, 2015, pp. 280–288. doi: 10.1145/2784731.2784756.
url: https://doi.org/10.1145/2784731.2784756.

[14] Naokata Shikuma and Atsushi Igarashi. “Proving Noninterference by a Fully Complete
Translation to the Simply Typed Lambda-Calculus”. In: Log. Methods Comput. Sci. 4.3
(2008). doi: 10.2168/LMCS-4(3:10)2008. url: https://doi.org/10.2168/LMCS-4(3:
10)2008.

[15] Marco Vassena et al. “MAC A verified static information-flow control library”. In: Journal
of Logical and Algebraic Methods in Programming 95 (2018), pp. 148–180. issn: 2352-2208.
doi: https://doi.org/10.1016/j.jlamp.2017.12.003. url: https://www.sciencedi
rect.com/science/article/pii/S235222081730069X.

[16] Stephan Arthur Zdancewic. Programming languages for information security. Cornell
University, 2002.

5

https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9%5C_7
https://doi.org/10.3233/JCS-191382
https://doi.org/10.3233/JCS-191382
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
https://www.sciencedirect.com/science/article/pii/S235222081730069X
https://www.sciencedirect.com/science/article/pii/S235222081730069X

