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Information-flow control (IFC) aims to protect confidentiality of data by controlling flows
of information in a system.

IFC ensures that secret data cannot influence the publicly observable behaviour of
programs.
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Consider a security specification

Boolpublic × Boolsecret ⇒ Boolpublic

wrt the security policy public 6w secret.

Consider the programs

f = λx, y. not(x) g = λx, y. and(x, y)

Noninterference: the public outputs of a program do not depend on its secret
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The Dependency Core Calculus (DCC) [1] is a simply-typed lambda calculus enhanced
with a family of type constructors Rl for l ∈ {public, secret} (pronounced
“redaction”).

R is a graded monad over the lattice public v secret.
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Printing Effects

Consider Moggi’s monadic metalanguage [4] as a prog. language for printing to a
publicly-observable channel:

the type of computations is explicit TpublicA.

there is a do-nothing computation and sequencing of computations.

Γ ` t : A

Γ ` return(t) : TpublicA

Γ ` t : TpublicA Γ, x : A ` u : TpublicB

Γ ` let(t, x. u)

there is a primitive that prints.
Γ ` b : Bool

Γ ` print(b) : Tpublic Unit

A prog. language for IFC with printing to public = DCC + Moggiprint
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Consider the type

Rpublic Bool × Rsecret Bool⇒ Tpublic (Rpublic Unit)

where printing to public is part of the public outputs of a program.

We can construct a public computation from a public Boolean:

Rpublic(print) : Rpublic Bool⇒ Rpublic (Tpublic Unit)

however, we cannot “run” it since the types Rpublic and Tpublic do not interact.
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We could add a new primitive

print′ : Rpublic Bool⇒ Tpublic Unit

and prove again that our language satisfies noninterference.

For combinations of Moggiprint and other calculi for “effect-free” IFC, e.g. Sealing
Calculus (SC) [5] or Moggi’s metalanguage (again), we would have to redo all the work.

And what about other effects?

This approach is not modular.
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To achieve (some) modularity, we abstract over concrete choices of IFC calculi and study
effects in the classified sets model of Abadi et al. [1] and Kavvos [3].

The model captures dependency (independency) by interpreting types as sets endowed
with a family of relations indexed by security levels that programs (functions) need to
preserve. For instance,

Rpublic Bool = ({tt, ff},Rpublic =
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A relation at level l captures what observers at l can distinguish, and programs
preserving relations means they are forbidden to map indistinguishable inputs to
distinguishable outputs.
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Redaction Monad in Classified Sets

Let the security policy be a join semilattice (L,v,⊥,∨).

The redaction monad is given by:

U(Rl(A)) := U(A)

Rl′(Rl(A))(a, b) :⇔

{
> l 6v l′

Rl′(A)(a, b) l v l′

In words: it forces the relation of a classified set A to be the everywhere true relation at
any level l′ such that l 6v l′.
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We generalize the previous example to printing on multiple channels c ∈ C where a
function label : L → C specifies the security level of channels.

For a subset C ⊆ C, the monoid (OutC , εC , ·C) is defined by:

U(OutC) := C → List(2)
Rl(OutC)(o1, o2) :⇔ ∀c ∈ C. label(c) v l⇒ o1(c) = o2(c)

The graded monad (W, η, µ, up) is given by WC A := A× OutC .
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exactly when l v label(c) for all c ∈ C.
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Γ ` t : Rpublic(TpublicA)
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More generally, we obtain a prog. language for IFC with printing to multiple channels by
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Thank you for your attention!
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