
Information-Flow Control and Effects
NWPT2021

Carlos Tomé Cortiñas1 Fabian Ruch

Chalmers University of Technology

November 6, 2021



Information-Flow Control

Information-flow control (IFC) aims to protect confidentiality of data by controlling flows
of information in a system.

IFC ensures that secret data cannot influence the publicly observable behaviour of
programs.

We are interested in IFC for programs with effects.



Information-Flow Control

Information-flow control (IFC) aims to protect confidentiality of data by controlling flows
of information in a system.

IFC ensures that secret data cannot influence the publicly observable behaviour of
programs.

We are interested in IFC for programs with effects.



Information-Flow Control

Information-flow control (IFC) aims to protect confidentiality of data by controlling flows
of information in a system.

IFC ensures that secret data cannot influence the publicly observable behaviour of
programs.

We are interested in IFC for programs with effects.



Noninterference

Consider a security specification

Boolpublic × Boolsecret ⇒ Boolpublic

wrt the security policy public 6w secret.

Consider the programs

f = λx, y. not(x) g = λx, y. and(x, y)

Noninterference: the public outputs of a program do not depend on its secret

inputs, for all programs.



Noninterference

Consider a security specification

Boolpublic × Boolsecret ⇒ Boolpublic

wrt the security policy public 6w secret.

Consider the programs

f = λx, y. not(x) g = λx, y. and(x, y)

Noninterference: the public outputs of a program do not depend on its secret

inputs, for all programs.



Noninterference

Consider a security specification

Boolpublic × Boolsecret ⇒ Boolpublic

wrt the security policy public 6w secret.

Consider the programs

f = λx, y. not(x) g = λx, y. and(x, y)

Noninterference: the public outputs of a program do not depend on its secret

inputs, for all programs.



Enforcing Noninterference: Dependency Core Calculus

The Dependency Core Calculus (DCC) [1] is a simply-typed lambda calculus enhanced
with a family of type constructors Rl for l ∈ {public, secret} (pronounced
“redaction”).

R is a graded monad over the lattice public v secret.

In DCC all programs are secure.



Enforcing Noninterference: Dependency Core Calculus

The Dependency Core Calculus (DCC) [1] is a simply-typed lambda calculus enhanced
with a family of type constructors Rl for l ∈ {public, secret} (pronounced
“redaction”).

R is a graded monad over the lattice public v secret.

In DCC all programs are secure.



Enforcing Noninterference: Dependency Core Calculus

The Dependency Core Calculus (DCC) [1] is a simply-typed lambda calculus enhanced
with a family of type constructors Rl for l ∈ {public, secret} (pronounced
“redaction”).

R is a graded monad over the lattice public v secret.

In DCC all programs are secure.



Printing Effects

Consider Moggi’s monadic metalanguage [4] as a prog. language for printing to a
publicly-observable channel:

the type of computations is explicit TpublicA.

there is a do-nothing computation and sequencing of computations.

Γ ` t : A

Γ ` return(t) : TpublicA

Γ ` t : TpublicA Γ, x : A ` u : TpublicB

Γ ` let(t, x. u)

there is a primitive that prints.
Γ ` b : Bool

Γ ` print(b) : Tpublic Unit

A prog. language for IFC with printing to public = DCC + Moggiprint



Printing Effects

Consider Moggi’s monadic metalanguage [4] as a prog. language for printing to a
publicly-observable channel:

the type of computations is explicit TpublicA.

there is a do-nothing computation and sequencing of computations.

Γ ` t : A

Γ ` return(t) : TpublicA

Γ ` t : TpublicA Γ, x : A ` u : TpublicB

Γ ` let(t, x. u)

there is a primitive that prints.
Γ ` b : Bool

Γ ` print(b) : Tpublic Unit

A prog. language for IFC with printing to public = DCC + Moggiprint



Printing Effects

Consider Moggi’s monadic metalanguage [4] as a prog. language for printing to a
publicly-observable channel:

the type of computations is explicit TpublicA.

there is a do-nothing computation and sequencing of computations.

Γ ` t : A

Γ ` return(t) : TpublicA

Γ ` t : TpublicA Γ, x : A ` u : TpublicB

Γ ` let(t, x. u)

there is a primitive that prints.
Γ ` b : Bool

Γ ` print(b) : Tpublic Unit

A prog. language for IFC with printing to public = DCC + Moggiprint



Printing Effects

Consider Moggi’s monadic metalanguage [4] as a prog. language for printing to a
publicly-observable channel:

the type of computations is explicit TpublicA.

there is a do-nothing computation and sequencing of computations.

Γ ` t : A

Γ ` return(t) : TpublicA

Γ ` t : TpublicA Γ, x : A ` u : TpublicB

Γ ` let(t, x. u)

there is a primitive that prints.
Γ ` b : Bool

Γ ` print(b) : Tpublic Unit

A prog. language for IFC with printing to public = DCC + Moggiprint



Printing Effects

Consider Moggi’s monadic metalanguage [4] as a prog. language for printing to a
publicly-observable channel:

the type of computations is explicit TpublicA.

there is a do-nothing computation and sequencing of computations.

Γ ` t : A

Γ ` return(t) : TpublicA

Γ ` t : TpublicA Γ, x : A ` u : TpublicB

Γ ` let(t, x. u)

there is a primitive that prints.
Γ ` b : Bool

Γ ` print(b) : Tpublic Unit

A prog. language for IFC with printing to public = DCC + Moggiprint



Printing Effects: DCC + Moggiprint

Consider the type

Rpublic Bool × Rsecret Bool⇒ Tpublic (Rpublic Unit)

where printing to public is part of the public outputs of a program.

We can construct a public computation from a public Boolean:

Rpublic(print) : Rpublic Bool⇒ Rpublic (Tpublic Unit)

however, we cannot “run” it since the types Rpublic and Tpublic do not interact.



Printing Effects: DCC + Moggiprint

Consider the type

Rpublic Bool × Rsecret Bool⇒ Tpublic (Rpublic Unit)

where printing to public is part of the public outputs of a program.

We can construct a public computation from a public Boolean:

Rpublic(print) : Rpublic Bool⇒ Rpublic (Tpublic Unit)

however, we cannot “run” it since the types Rpublic and Tpublic do not interact.



Printing Effects: DCC + Moggiprint

Consider the type

Rpublic Bool × Rsecret Bool⇒ Tpublic (Rpublic Unit)

where printing to public is part of the public outputs of a program.

We can construct a public computation from a public Boolean:

Rpublic(print) : Rpublic Bool⇒ Rpublic (Tpublic Unit)

however, we cannot “run” it since the types Rpublic and Tpublic do not interact.



Printing Effects: DCC + Moggiprint

Consider the type

Rpublic Bool × Rsecret Bool⇒ Tpublic (Rpublic Unit)

where printing to public is part of the public outputs of a program.

We can construct a public computation from a public Boolean:

Rpublic(print) : Rpublic Bool⇒ Rpublic (Tpublic Unit)

however, we cannot “run” it since the types Rpublic and Tpublic do not interact.



Printing Effects: DCC + Moggiprint (C’ed)

We could add a new primitive

print′ : Rpublic Bool⇒ Tpublic Unit

and prove again that our language satisfies noninterference.

For combinations of Moggiprint and other calculi for “effect-free” IFC, e.g. Sealing
Calculus (SC) [5] or Moggi’s metalanguage (again), we would have to redo all the work.

And what about other effects?

This approach is not modular.



Printing Effects: DCC + Moggiprint (C’ed)

We could add a new primitive

print′ : Rpublic Bool⇒ Tpublic Unit

and prove again that our language satisfies noninterference.

For combinations of Moggiprint and other calculi for “effect-free” IFC, e.g. Sealing
Calculus (SC) [5] or Moggi’s metalanguage (again), we would have to redo all the work.

And what about other effects?

This approach is not modular.



Printing Effects: DCC + Moggiprint (C’ed)

We could add a new primitive

print′ : Rpublic Bool⇒ Tpublic Unit

and prove again that our language satisfies noninterference.

For combinations of Moggiprint and other calculi for “effect-free” IFC, e.g. Sealing
Calculus (SC) [5] or Moggi’s metalanguage (again), we would have to redo all the work.

And what about other effects?

This approach is not modular.



Printing Effects: DCC + Moggiprint (C’ed)

We could add a new primitive

print′ : Rpublic Bool⇒ Tpublic Unit

and prove again that our language satisfies noninterference.

For combinations of Moggiprint and other calculi for “effect-free” IFC, e.g. Sealing
Calculus (SC) [5] or Moggi’s metalanguage (again), we would have to redo all the work.

And what about other effects?

This approach is not modular.



Printing Effects: DCC + Moggiprint (C’ed)

We could add a new primitive

print′ : Rpublic Bool⇒ Tpublic Unit

and prove again that our language satisfies noninterference.

For combinations of Moggiprint and other calculi for “effect-free” IFC, e.g. Sealing
Calculus (SC) [5] or Moggi’s metalanguage (again), we would have to redo all the work.

And what about other effects?

This approach is not modular.



Classified Sets

To achieve (some) modularity, we abstract over concrete choices of IFC calculi and study
effects in the classified sets model of Abadi et al. [1] and Kavvos [3].

The model captures dependency (independency) by interpreting types as sets endowed
with a family of relations indexed by security levels that programs (functions) need to
preserve. For instance,

Rpublic Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

Rsecret Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

A relation at level l captures what observers at l can distinguish, and programs
preserving relations means they are forbidden to map indistinguishable inputs to
distinguishable outputs.



Classified Sets

To achieve (some) modularity, we abstract over concrete choices of IFC calculi and study
effects in the classified sets model of Abadi et al. [1] and Kavvos [3].

The model captures dependency (independency) by interpreting types as sets endowed
with a family of relations indexed by security levels that programs (functions) need to
preserve. For instance,

Rpublic Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

Rsecret Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

A relation at level l captures what observers at l can distinguish, and programs
preserving relations means they are forbidden to map indistinguishable inputs to
distinguishable outputs.



Classified Sets

To achieve (some) modularity, we abstract over concrete choices of IFC calculi and study
effects in the classified sets model of Abadi et al. [1] and Kavvos [3].

The model captures dependency (independency) by interpreting types as sets endowed
with a family of relations indexed by security levels that programs (functions) need to
preserve. For instance,

Rpublic Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

Rsecret Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

A relation at level l captures what observers at l can distinguish, and programs
preserving relations means they are forbidden to map indistinguishable inputs to
distinguishable outputs.



Classified Sets

To achieve (some) modularity, we abstract over concrete choices of IFC calculi and study
effects in the classified sets model of Abadi et al. [1] and Kavvos [3].

The model captures dependency (independency) by interpreting types as sets endowed
with a family of relations indexed by security levels that programs (functions) need to
preserve. For instance,

Rpublic Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

Rsecret Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

A relation at level l captures what observers at l can distinguish, and programs
preserving relations means they are forbidden to map indistinguishable inputs to
distinguishable outputs.



Classified Sets

To achieve (some) modularity, we abstract over concrete choices of IFC calculi and study
effects in the classified sets model of Abadi et al. [1] and Kavvos [3].

The model captures dependency (independency) by interpreting types as sets endowed
with a family of relations indexed by security levels that programs (functions) need to
preserve. For instance,

Rpublic Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

Rsecret Bool = ({tt, ff},Rpublic =
tt

ff
,Rsecret =

tt

ff
)

A relation at level l captures what observers at l can distinguish, and programs
preserving relations means they are forbidden to map indistinguishable inputs to
distinguishable outputs.



Redaction Monad in Classified Sets

Let the security policy be a join semilattice (L,v,⊥,∨).

The redaction monad is given by:

U(Rl(A)) := U(A)

Rl′(Rl(A))(a, b) :⇔

{
> l 6v l′

Rl′(A)(a, b) l v l′

In words: it forces the relation of a classified set A to be the everywhere true relation at
any level l′ such that l 6v l′.



Redaction Monad in Classified Sets

Let the security policy be a join semilattice (L,v,⊥,∨).

The redaction monad is given by:

U(Rl(A)) := U(A)

Rl′(Rl(A))(a, b) :⇔

{
> l 6v l′

Rl′(A)(a, b) l v l′

In words: it forces the relation of a classified set A to be the everywhere true relation at
any level l′ such that l 6v l′.



Redaction Monad in Classified Sets

Let the security policy be a join semilattice (L,v,⊥,∨).

The redaction monad is given by:

U(Rl(A)) := U(A)

Rl′(Rl(A))(a, b) :⇔

{
> l 6v l′

Rl′(A)(a, b) l v l′

In words: it forces the relation of a classified set A to be the everywhere true relation at
any level l′ such that l 6v l′.



Printing Effects in Classified Sets

We generalize the previous example to printing on multiple channels c ∈ C where a
function label : L → C specifies the security level of channels.

For a subset C ⊆ C, the monoid (OutC , εC , ·C) is defined by:

U(OutC) := C → List(2)
Rl(OutC)(o1, o2) :⇔ ∀c ∈ C. label(c) v l⇒ o1(c) = o2(c)

The graded monad (W, η, µ, up) is given by WC A := A× OutC .



Printing Effects in Classified Sets

We generalize the previous example to printing on multiple channels c ∈ C where a
function label : L → C specifies the security level of channels.

For a subset C ⊆ C, the monoid (OutC , εC , ·C) is defined by:

U(OutC) := C → List(2)
Rl(OutC)(o1, o2) :⇔ ∀c ∈ C. label(c) v l⇒ o1(c) = o2(c)

The graded monad (W, η, µ, up) is given by WC A := A× OutC .



Printing Effects in Classified Sets

We generalize the previous example to printing on multiple channels c ∈ C where a
function label : L → C specifies the security level of channels.

For a subset C ⊆ C, the monoid (OutC , εC , ·C) is defined by:

U(OutC) := C → List(2)
Rl(OutC)(o1, o2) :⇔ ∀c ∈ C. label(c) v l⇒ o1(c) = o2(c)

The graded monad (W, η, µ, up) is given by WC A := A× OutC .



Printing Effects in Classified Sets (C’ed)

Consider programs of type Rl(WC A)

, when are these secure to “run”?

Intuitively, when the information at level l is allowed to flow to every channel c ∈ C.

Indeed, in classified sets there is a map

δl,C,A : Rl(WC A)→WC(RlA)

exactly when l v label(c) for all c ∈ C.



Printing Effects in Classified Sets (C’ed)

Consider programs of type Rl(WC A), when are these secure to “run”?

Intuitively, when the information at level l is allowed to flow to every channel c ∈ C.

Indeed, in classified sets there is a map

δl,C,A : Rl(WC A)→WC(RlA)

exactly when l v label(c) for all c ∈ C.



Printing Effects in Classified Sets (C’ed)

Consider programs of type Rl(WC A), when are these secure to “run”?

Intuitively, when the information at level l is allowed to flow to every channel c ∈ C.

Indeed, in classified sets there is a map

δl,C,A : Rl(WC A)→WC(RlA)

exactly when l v label(c) for all c ∈ C.



Printing Effects in Classified Sets (C’ed)

Consider programs of type Rl(WC A), when are these secure to “run”?

Intuitively, when the information at level l is allowed to flow to every channel c ∈ C.

Indeed, in classified sets there is a map

δl,C,A : Rl(WC A)→WC(RlA)

exactly when l v label(c) for all c ∈ C.



What does this mean?

In the example of DCC + Moggiprint, we add the primitive

Γ ` t : Rpublic(TpublicA)

Γ ` distr(t) : Tpublic(RpublicA)

to the language.

More generally, we obtain a prog. language for IFC with printing to multiple channels by
simply combining DCC (or SC or . . . ) with EFe (Katsumata [2]) via a primitive

Γ ` t : Rl(WC A)

Γ ` distr(t) : WC(RlA)
∀c ∈ C. l v label(c)



What does this mean?

In the example of DCC + Moggiprint, we add the primitive

Γ ` t : Rpublic(TpublicA)

Γ ` distr(t) : Tpublic(RpublicA)

to the language.

More generally, we obtain a prog. language for IFC with printing to multiple channels by
simply combining DCC (or SC or . . . ) with EFe (Katsumata [2]) via a primitive

Γ ` t : Rl(WC A)

Γ ` distr(t) : WC(RlA)
∀c ∈ C. l v label(c)



Further Work

Noninterference proofs à la Kavvos [3]

“Explain” previous approaches to IFC with effects

Study other effects: e.g. exceptions or global store



Further Work

Noninterference proofs à la Kavvos [3]

“Explain” previous approaches to IFC with effects

Study other effects: e.g. exceptions or global store



Further Work

Noninterference proofs à la Kavvos [3]

“Explain” previous approaches to IFC with effects

Study other effects: e.g. exceptions or global store



Thank you for your attention!



[1] Mart́ın Abadi et al. “A Core Calculus of Dependency”. In: POPL ’99, Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20-22, 1999. Ed. by Andrew W. Appel
and Alex Aiken. ACM, 1999, pp. 147–160. doi: 10.1145/292540.292555. url:
https://doi.org/10.1145/292540.292555.

[2] Shin-ya Katsumata. “Parametric effect monads and semantics of effect systems”.
In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014.
Ed. by Suresh Jagannathan and Peter Sewell. ACM, 2014, pp. 633–646. doi:
10.1145/2535838.2535846. url:
https://doi.org/10.1145/2535838.2535846.

[3] G. A. Kavvos. “Modalities, cohesion, and information flow”. In: Proc. ACM
Program. Lang. 3.POPL (2019), 20:1–20:29. doi: 10.1145/3290333. url:
https://doi.org/10.1145/3290333.

[4] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf. Comput. 93.1
(1991), pp. 55–92. doi: 10.1016/0890-5401(91)90052-4. url:
https://doi.org/10.1016/0890-5401(91)90052-4.

[5] Naokata Shikuma and Atsushi Igarashi. “Proving Noninterference by a Fully
Complete Translation to the Simply Typed Lambda-Calculus”. In: Log. Methods
Comput. Sci. 4.3 (2008). doi: 10.2168/LMCS-4(3:10)2008. url:
https://doi.org/10.2168/LMCS-4(3:10)2008.

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3290333
https://doi.org/10.1145/3290333
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.2168/LMCS-4(3:10)2008
https://doi.org/10.2168/LMCS-4(3:10)2008

	References

