
Pure Information-Flow Control with Effects
Made Simple

No Author Given

No Institute Given

Abstract. Information-flow control (IFC) is a promising technology to
protect data confidentiality. The foundational work on the Dependency
Core Calculus (DCC) positions monads as a suitable abstraction for
enforcing IFC. Pure functional languages with effects, like Haskell, can
provide IFC as a library (MAC, LIO etc.), a minor task compared to
implementing compilers for IFC from scratch.
Previous works on IFC as a library introduce ad hoc primitives to type
programs whose effects do not depend on the sensitive data in context.
In this work, we start afresh and ask ourselves: what would we need to
extend an effect-free language for IFC (e.g., DCC) with secure effects?
The answer turns out to be elegant and simple. In a pure language with
effects there is a natural place where information flows from sensitive
data to effects need to be restricted, and when effects are tracked in a
more fine-grained fashion than Haskell’s IO monad (e.g., with a graded
monad) then a single primitive is enough to allow the secure flows!
To support our insight, we present and prove secure several IFC enforce-
ment mechanisms based on extensions of the Sealing Calculus (SC) with
effects using a graded monad. Effects that depend on sensitive data are
secured through a novel primitive distr. All of our security guarantees
are mechanized in the Agda proof assistant. Moreover, we provide an
implementation of these mechanisms as a new Haskell library for IFC.

1 Introduction

Information-flow control (IFC) [35, 13] is a promising technology to protect data
confidentiality. Many IFC approaches are designed to prevent sensitive data from
influencing what attackers can observe from a program’s public behavior—a
security property known as noninterference [11]. IFC mechanisms specify the
sensitivity of data via labels, and then enforce security by controlling that the flows
of information abide by the security policy. In the simplest scenario, there are two
labels (alternatively, security levels or sensitivities) public and secret and the
security policy specifies that every flow is allowed except from secret to public—
i.e., flows from more to less sensitivity are forbidden. In static approaches to
IFC, the sensitivity of data is known a priori, e.g., by specifying it using types,
and the enforcement statically decides, e.g., during type checking, whether the
program will leak information upon execution. To protect confidentiality of
data, IFC mechanisms need to protect against two kinds of potentially malicious
flows: 1) explicit flows, when public data directly depends on secret data; and

2 No Author Given

2) implicit flows, when the control flow and public outputs of the program are
indirectly influenced by secret data, e.g., due to branching on a secret.

In recent years, the use of pure functional languages has been proliferating
for tackling different IFC challenges (e.g., Vassena et al. [44], Parker, Vazou,
and Hicks [29], Polikarpova et al. [31], and Rajani and Garg [32]). From a
pragmatic perspective, pure functional languages can provide IFC security via
libraries [22, 34, 39], which is less demanding than building compilers from
scratch (e.g., Simonet [38] and Myers et al. [26]).

When it comes to controlling information flows, pure languages stand in a
privileged position thanks to their abstraction facilities and strong encapsulation
of effects. For instance, the popular Dependency Core Calculus (DCC) [1] utilizes
the abstract type TsecretA to label pieces of data of type A with sensitivity
secret and then the type system ensures that data can only be eliminated
into—or influence—data of equal or higher sensitivity. DCC’s security guarantees
ensure that programs without effects are secure.

A different strand of work aims to provide security in a pure language by
restricting the interplay between sensitive data and public effects (e.g., LIO [39],
MAC [33] and HLIO [9]). In a pure language like Haskell, the only programs
that can produce effects and thereby interact with the external world have to be
of type IOA, for some type A. In this light, in order to protect against implicit
flows through effects it is enough to control which programs of IO type are safe to
execute. To realize this idea, the MAC library, for example, replaces the IO monad
with a custom monad MACl of computations that is indexed by a type-level
label l. The label l has two purposes: (i) akin to DCC, it is an upper bound on the
sensitivity of the information “going into” the monad, as well as (ii) it is a lower
bound on the observers’ effects—restricting information “leaving” the monad.
Concretely, a computation of type MACpublic Bool cannot branch on secret

values but can perform public and secret effects; in contrast, a computation
of type MACsecret Bool can branch on secret data but cannot perform public

effects. In this manner, MAC prevents explicit and implicit flows by construction.
However, not everything in the garden is rosy. The label l in the MAC

monad MACl does too many things at once. This leads to situations where the
programmer needs to go through some contortions or use ad hoc primitives like
join1: MACl Unit⇒ MACl′ Unit (restricted to l′ v l) [41]. To illustrate this point,
we extend the two-point security policy with two incomparable labels Alice

and Bob such that public v Alice v secret and public v Bob v secret but
neither Alice v Bob nor Bob v Alice (the relation v specifies the permitted
flows). With that in mind, let us consider the following program in MAC which
receives an Alice-sensitive Bool, i.e., alice sec : MACAlice Bool,2 and prints a

1 The type of join is more general but this simplified form suffices for our purposes.
2 To the reader familiar with MAC: our point applies equally if one uses the Labeledl

type to protect sensitive Booleans.

Pure Information-Flow Control with Effects Made Simple 3

string on the Alice-observable channel ChAlice:

prog1 : MACAlice Bool⇒ MACAlice Unit
prog1 alice sec = alice sec >>= λb. if b then printChAlice("Alice is here!")

else return(unit)

In the above program, the information flows according to the security policy
(from the Alice value to Alice’s channel)—i.e., the program is secure. Consider
now a different program that combines prog1 with printing on the channel ChBob:

prog2 : MACAliceBool⇒ MAC
?

Unit

prog2 alice sec = prog1 alice sec >> printChBob("Hi Bob")

Clearly, prog2 is still secure since the decision to print to Bob’s channel
and what is printed does not depend on the contents of the Alice-sensitive
value alice sec. What label then should replace ? in its type? First, the types
of the computations on both sides of the bind (>>) have to match. By (i) and (ii)
the type of prog1 sec has to be MACAlice Unit, and by (ii) printChBob("Hi Bob")
has to be of type MACBob Unit. There is a type mismatch! Since the label public
is a lower bound of Alice and Bob, we can use MAC’s join to fix the program:

prog2 : MACAlice Bool⇒ MACpublic Unit
prog2 alice sec = join(prog1 alice sec) >> join(printChBob("Hi Bob"))

Now, something unexpected happened. To assign a type to prog2 , which only
mentions labels Alice and Bob, we have to resort to another label public. What
is worse, in the type of prog2 only the label Alice appears and does so in an
argument position which means we know nothing about the program’s possible
effects. The design decision of indexing the monad MAC by a single label, while
enabling a simple implementation of IFC as a library (cf. [33]), requires the
application of ad hoc primitives (like join) to mitigate over-approximations of
how information flows in and out of computations.

In this work, we take a step back and ask ourselves: what would it take to
allow arbitrary effects in a pure language with an already existing mechanism
for effect-free IFC (e.g., DCC)? The answer turns out to be elegant and simple.
We observe that enforcing IFC in a pure language with effects can be reduced to
the single point—which we will explain below—where effects and sensitive data
interact. Based on this observation, we present a novel IFC mechanism which is
arguably simpler than existing IFC libraries, allows to assign more natural types
to programs; and overcomes the programming contortions discussed above.

To briefly present our idea, let us assume that effect-free IFC is achieved
using a DCC-style abstract type TlA, and we have at our disposal a more refined
type constructor Eff of effectful programs akin to IO but annotated with concrete
information about observable effects. For example, Eff could be annotated with
the set of channels where the program might print, the set of exceptions the
program might raise, or the set of memory references the program might modify.
Moreover, we assume the security policy to specify the sensitivity of each effect.

Consider, for instance, a scenario with two output channels, namely Chpublic
and Chsecret, that are assigned sensitivities public and secret, respectively.

4 No Author Given

In this scenario, a program prog3 : TAlice (Eff{ChBob} Unit) is a computation that
might print to Bob’s channel ChBob depending on Alice-sensitive data. This is
where sensitive data and effects interact! Assuming alice sec : TAlice Bool is in
scope, prog3 , for instance, could have the following implementation:3

prog3 : TAlice (Eff{ChBob} Unit)
prog3 = bind b = alice sec

in returnAlice(if b then printChBob("So it was true, huh")
else return(unit))

In order to run the effects of the inner computation of type Eff{Bob} Unit we
have to “extract” it first from the TAlice value—recall that the language is pure.
In general, extracting anything from TAlice is prohibited as it would render the
IFC enforcement unsound: in prog3 , the computation of type Eff{ChBob} Unit would
become executable, and if the Alice-sensitive Boolean alice sec is true, it will
print "So it was true, huh" on Bob’s channel ChBob—a flow that violates the
security policy. On the contrary, let us consider a program of a different type,
prog4 : TAlice (Eff{Chsecret} Unit). In this program, the computation is definitely
safe to run since the only possible effects it might produce are printing to the
secret channel Chsecret and the decision on what to print depends on data of
at most sensitivity Alice—a flow permitted by the security policy. Securing
effectful programs then amounts to allowing prog4 to extract the computation of
type Eff{Chsecret} Unit from TAlice and run its observable effects while forbidding
prog3 from doing so. To achieve this, we introduce a novel primitive distr which
systematically permits computations to be extracted, and hence, executed only
when they are known to depend on data less sensitive than their observers. With
distr we can turn prog4 into an executable program: distr(prog4) : Eff{Chsecret} Unit.
We have reduced the enforcement of IFC in pure languages with effects to a
single primitive; this gives us modularity, clarity and simplicity in the language
design and its possible implementations. Thanks to distr, we can express prog2
with a more natural type:

prog ′2 : TAlice Bool⇒ Eff{ChAlice,ChBob} Unit
prog ′2 alice sec = distr(bind b = alice sec

in return(if b then printChAlice("Alice is here!")
else return(unit)))

>> printChBob("Hi Bob")

Our contributions In this work, we show that IFC in the context of pure
languages with effects can be achieved through the combination of the following
features: 1. an enforcement for effect-free IFC, 2. a type for tracking observable
effects in a fine-grained fashion, and 3. a primitive distr which selectively permits
to execute effectful computations which depend on sensitive data. We present
our idea through an IFC enforcement mechanism for the simply-typed lambda-
calculus (STLC). The mechanism is based on the Sealing Calculus (SC) [37],
which is more expressive than DCC (cf. [40, 37]), although we could have chosen
DCC instead. We then extend the language and IFC enforcement mechanism

3 bind is DCC’s eliminator for the type Tl.

Pure Information-Flow Control with Effects Made Simple 5

in two different directions with printing and global store effects in the form of
graded monads [18]. In these extensions, we include the distr primitive which
allows to type check more effecful programs that are secure. Along with our
informal argumentation for why our idea is secure for different instantiations
of effects, we have mechanized proofs in the Agda proof assistant [2] about the
strong security guarantees that the programs in the languages satisfy, namely
termination-insensitive noninterference (TINI). Our proofs are based on the
technique of logical relations [23]. Finally, we realize our idea in the form of a
new Haskell library which we call SCLib. The conciseness of our implementation
illustrates the elegance and simplicity of our insight: less than 10 lines of code
for the effect-free fragment and less than 30 for the part with effects. In order to
implement the effect-free IFC mechanism we also present a novel implementation
of SC using an encoding of contextual information as type-level capabilities
via higher-rank polymorphism [20]. Our library is at least as expressive as
previous work on libraries for IFC in Haskell, which we evidence by showing
implementations of SecLib [34], DCC (in its presentation by Algehed [4]) and
MAC in terms of SCLib’s interface.

In summary, the technical contributions of this paper are:

– A reinterpretation of the Sealing Calculus as an IFC enforcement mechanism
for STLC (Section 2)

– Two extensions of STLC and SC for enforcing IFC in pure languages with
effects via graded monads. As examples, we consider printing (Section 3.1)
and global store (Section 3.2) effects

– We present distr, a single primitive that can control the interaction of sensitive
data and effects

– Security guarantees and proofs of TINI based on logical relations for all the
enforcements (Section 4)

– A Haskell implementation using a novel encoding of contextual information as
capabilities together with evidence that SCLib can encode existing monadic
security libraries (Section 5)

– Mechanized proofs of all our security guarantees (approx. 1500 lines of Agda
code submitted as accompanying material)

2 Effect-free Information-Flow Control

In this section, we briefly recall the Sealing Calculus (SC) and explain its role as
an IFC enforcement mechanism for programs written in the STLC.

SC utilizes an abstract type SlA for protecting sensitive data.4 A value of
type SlA is “sealed” at sensitivity l in the sense that it is only available to
observers with sensitivity at least as high as l. Values of type SlA are intro-
duced and eliminated using the primitives seall and unseall. SC enforces IFC by
restricting in which contexts a sealed value can be “unsealed”. For example, the
Alice-sensitive Boolean sec :: SAlice Bool can only be unsealed in contexts of at
least sensitivity Alice.

4 In the original presentation, the authors use the notation [A]l instead.

6 No Author Given

Let us illustrate SC with a program that receives two Booleans with sensitivi-
ties Alice and Bob, respectively, and computes their conjunction with sensitivity
secret (and : Bool × Bool⇒ Bool implements conjunction):

and ′ : SAlice Bool⇒ SBob Bool⇒ Ssecret Bool
and ′ = λ(sb1 sb2 . sealsecret(and(unsealAlice(sb1), unsealBob(sb2))))

In the above program, the term sealsecret provides the context in which sb1
and sb2 can be unsealed: the term unsealAlice(sb1), for instance, is only well-typed
because its label Alice flows to secret, which is the highest label.

We take a variant of the STLC as the programming language on which we
want to enforce IFC: it has call-by-name semantics and Unit and Bool as the only
primitive types. We work directly with intrinsically well-typed terms, and thus,
for us a typing derivation Γ ` t : a is a term. The small-step sematics is specified
by the relation t −→ t′, and we call values those terms t for which t 6−→. For
reference we include its complete definition in Appendix A. Since the STLC is
well-understood we focus on SC.

Figure 1 presents the intrinsically-typed syntax of SC. The whole development
is parameterized by a security policy specified in the form of a lattice structure
on the set of labels (L,v). The types reflect those in the STLC and include
the new type constructor Sl. Typing judgements are of the form π ; Γ `sc t : A
where: π is a non-empty finite set of labels drawn from L, i.e., π ⊆ L; Γ is an SC
typing context; and A is an SC type. The component π is analogous to protection
contexts from related work by Tse and Zdancewic [40].

The set of labels π in the typing judgement represent the sensitivities of
all the data on which the program may depend. In order to clarify the role
of π, let us consider a program with a typing derivation indexed by the set
of labels π1 := {secret}, π1 ; · `sc p : A. This program may depend on data
of types SpublicA and SsecretA by unsealing. If, instead, p is indexed by the
set π2 := {public}, i.e., π2 ; ·`sc p : A, then the only terms that the program can
unseal are of type SpublicA. This mechanism ensures that the flows of information
are secure. It is useful to think that the labels that belong to π act as a kind
of type-level key whose “possession” permits access to information at most as
sensitive as the label itself.

The typing rules of the STLC fragment of SC, i.e., Rules Lam, App and If,
are rather standard: they simply propagate the set of labels π to their premises.
Observe that one has to explicitly unseal sensitive Booleans, i.e., of type Sl Bool,
in order to branch on them using the Rule If. Rules Seal and Unseal are the most
interesting since they enforce that information flows to the appropriate places.
Rule Seal serves a double purpose: from premise to conclusion, it introduces
terms of type SlA; and, from conclusion to premise, it extends the set of labels
with the label l, i.e., π ∪ {l}. The typing derivation above the premise can then
unseal any term of type Sl′ A such that its label l′ can flow to l. Rule Unseal

allows unsealing a term with type SlA if the set π in its conclusion contains at
least a label l′ such that l v l′. Continuing with the intuition of labels in π as
keys, a key l′ ∈ π can be used to unseal terms of type SlA exactly when l v l′.

Pure Information-Flow Control with Effects Made Simple 7

Types A,B ::= Unit | Bool | A⇒ B | SlA Sets of labels π ⊆ L
Typing contexts Γ ::= · | Γ, x : A

π ; Γ `sc t : A

Var
(x : A) ∈ Γ
π ; Γ `sc x : A

Lam
π ; Γ, x : A `sc t : B

π ; Γ `sc λ(x. t) : A⇒ B

App
π ; Γ `sc t : A⇒ B π ; Γ `sc u : A

π ; Γ `sc app(t, u) : B

Unit

π ; Γ `sc unit : Unit

True

π ; Γ `sc true : Bool

False

π ; Γ `sc false : Bool

If
π ; Γ `sc t : Bool π ; Γ `sc u1 : A π ; Γ `sc u2 : A

π ; Γ `sc ifte(t, u1, u2) : A

Seal
π ∪ {l} ; Γ `sc t : A

π ; Γ `sc seall(t) : SlA

Unseal
π ; Γ `sc t : SlA ∃l′ ∈ π. l v l′

π ; Γ `sc unseall(t) : A

Fig. 1. Types and intrinsically-typed terms of SC

In order to use SC to enforce IFC on STLC programs, we define an erasure
function from SC terms π ; Γ `sc t : A to STLC programs ε(Γ) ` ε(t) : ε(A):

ε(Unit) = Unit ε(·) = · ε(λ(x. t)) = λ(x. ε(t))
ε(Bool) = Bool ε(Γ, x : A) = ε(Γ), x : ε(A) ε(app(t, u)) = app(ε(t), ε(u))
ε(A⇒ B) = ε(A)⇒ ε(B) ε(seall(t)) = ε(t)
ε(SlA) = ε(A) ε(unseall(t)) = ε(t)

To clarify this point further, the noninterference property enforced by an SC
term {public} ; sec : Ssecret Bool `sc t : Bool on its underlying STLC program
sec : Bool ` ε(f) : Bool is that for all · ` s1, s2 : Bool whenever both ε(t)[s1/sec]
and ε(t)[s2/sec] terminate then they do so with the same Boolean. In this way,
SC types and typing contexts play the role of security specifications, and SC
terms of evidence that the underlying programs are secure, i.e., they satisfy the
security specification. Indeed, for us SC terms do not have operational semantics,
only their underlying STLC programs do. When convenient, we identify SC terms
with the erased STLC programs. We observe that this interpretation of SC as an
IFC enforcement mechanism is closed under the operational semantics of STLC:

Lemma 1. Given a term π ; · `sc t : A such that ε(t) −→ f then there exists a
term π ; · `sc t′ : A such that ε(t′) = f .

3 Effectful Information-Flow Control

In this section, we present the main contribution of this paper: the observation
that a single primitive distr is enough to extend IFC in pure languages with
effects. We study two extensions of the programming language and the IFC
enforcement mechanism from Section 2 with printing and global store effects.

8 No Author Given

In these extensions, we treat effects explicitly in the style of Haskell’s IO
monad [16] and Moggi’s monadic metalanguage [25]: the only programs that can
perform effects are of type EffC a for some effect annotation C and type a, and
sequencing of effects is made explicit through the primitive bind. Specifically, we
consider printing and global store effects as suitable representatives of the two
kinds of effects that need to be secured:

Printing Effects. Printing on a channel can be observed externally to the
program by the channel’s observers. Observers can infer information about
the program’s input from what is being printed to the channel. To secure
printing effects one must ensure that the decision to print and what is being
printed only depends on data less sensitive than the channel’s observers.

Global Store Effects. Reading from the store cannot be observed directly.
However, reading effects need to be secured because what is read may influence
the program’s subsequent behavior. To secure reading effects one must ensure
that what has been read is tracked as sensitive data.

In contrast to Haskell and the metalanguage, we employ a graded monad [18]
whose effect annotation C tracks precisely to which channels a computation might
print and which store locations a computation might access.

3.1 Printing Effects

In Figure 2 we present the extension of STLC which allows programs to perform
printing effects. We dub this language STLCPrint. We assume that the set of
printing channels Ch is fixed a priori, i.e., the channels are statically known. The
set of types is extended with a new type for computations EffC a that is indexed
by a set of channels C ⊆ Ch . A program of type EffC a when executed might only
print to the channels that appear in C and return a result of type a.

The typing rules of the standard monadic operations, return and bind, are as
expected: in Rule Return, the computation does not perform any effects thus the
type is indexed by the empty set of channels; and, in Rule Bind, the type is indexed
by the union of the channels on which the computations Γ ` t : EffC1

a and
Γ ` u : a⇒ EffC2

b might print, that is, C1 ∪ C2. We include subeffecting—casting
from a smaller to a larger set of channels—as the term subeff in the language, see
Rule Subeff. Printing is performed via a family of primitive operations, printch ,
one for each available channel ch ∈ Ch (Rule Print). We assume, for simplicity,
that only Boolean values can be printed. Further, observe that the resulting
monadic type is indexed by the singleton set that only contains the channel on
which the printing is performed, i.e., Eff{ch} Unit.

The operational semantics of STLCPrint is defined as the combination of
the small-step operational semantics of STLC—see Appendix A—and the small-
step operational semantics of computations defined in Figure 2. The seman-
tics of effect-free terms, inherited from STLC, t −→ u, treats computations,
such as return(t), as values even when their subterms are not values, e.g.,
return(app(λ(x. x), true)) 6−→. The semantics of computations (alternatively,
monadic semantics) is of the form t u, o and is interpreted as follows: pro-
gram · ` t : EffC a evaluates in one step to program · ` u : EffC a and produces

Pure Information-Flow Control with Effects Made Simple 9

output o. The output is a function from channels to lists of Boolean values
o ∈ Ch → List Bool, and it represents the outputs of the program during execu-
tion.

Types a, b ::= . . . | EffC a Sets of channels C , C1, C2 ⊆ Ch
Typing contexts Γ ::= . . . Outputs o, o1, o2 ∈ Ch → List Bool

Γ ` t : a

Return
Γ ` t : a

Γ ` return(t) : Eff∅ a

Bind
Γ ` t : EffC1a Γ ` u : a⇒ EffC2b

Γ ` bind(t, u) : EffC1∪C2b

Subeff
Γ ` t : EffC1a C1 ⊆ C2

Γ ` subeff(t) : EffC2 a

Print
Γ ` t : Bool

Γ ` printch(t) : Eff{ch} Unit

t u, o with · ` t : EffC a and · ` u : EffC a

Bind
t t′, o

bind(t, u) bind(t′, u), o

Bind-Ret

bind(return(t), u) app(t, u), ε

Print
t −→ u

printch(t) printch(u), ε

Print-True

printch(true) return(unit), ch 7→ [true]

Print-False

printch(false) return(unit), ch 7→ [false]

EffectFree
t −→ u

t u, ε

Fig. 2. Types, well-typed terms and small-step semantics of STLCPrint (excerpts)

We now briefly explain the semantics. Rule Bind reduces the left subterm of
bind and executes its effects, o. Once the left subterm is a value, i.e., return(t),
Bind-Ret applies the rest of the computation u to the result t. Applying the
continuation u does not produce effects—recall that we are in a pure language—
thus the step contains the empty output on the right, i.e., ε. The empty output
maps every channel to the empty output, i.e., ε := λch.[]. Rule Print reduces the
argument t of printch(t) until it is a value of type Bool, either true or false, and
then Rules Print-True and Print-False print the corresponding Boolean on the
output channel ch. The output ch 7→ [v] is the function that maps the channel
ch to the singleton list [v] and every other channel to the empty list. Observe
that these rules make printch(t) strict in its argument. Rule EffectFree serves
to lift effect-free reductions to the level of computations. Since by definition

10 No Author Given

effect-free reductions do not produce effects, the right hand side of the effect
contains the empty output ε. To complete the picture, we denote by t ∗ u, o the
reflexive-transitive closure of the monadic reduction relation. To combine effects,
we lift the monoid structure on List Bool to outputs. The rules that handle the
term subeff (omitted) are straightforward.

Two reduction relations. While it might seem unnecessary to define the
semantics using the combination of a small-step relation of effect-free programs
and a small-step relation of computations, it is a natural form of expressing
the operational semantics of pure languages with effects [45]. The effect-free
relation evaluates programs that cannot perform effects, whilst the relation for
computations evaluates programs which can, and computes those effects.

To conclude the presentation of STLCPrint, we enunciate the following lemma
which states that the index C in the type of computations EffC a is a sound
approximation of the set of channels where a program · ` t : EffC a may print,
i.e., t does not produce output in any channel not in C . In the security literature
it is usually called the confinement lemma:

Lemma 2 (Confinement for STLCPrint). For any STLCPrint program of
type · ` f : EffC a, STLCPrint value · ` v : EffC a, and output o, if t ∗ v, o then
∀ch ∈ Ch . ch 6∈ C ⇒ o(ch) = [].

Types A,B ::= . . . | EffC A Sets of channels C , C1, C2 ⊆ Ch
Typing contexts Γ ::= . . . Sensitivity of channels label ∈ Ch → L

π ; Γ `sc t : A

Return
π ; Γ `sc t : A

π ; Γ `sc return(t) : Eff∅A

Bind
π ; Γ `sc t : EffC1 A π ; Γ `sc u : A⇒ EffC2 B

π ; Γ `sc bind(t, u) : EffC1∪C2 B

Subeff
π ; Γ `sc t : EffC1 A C1 ⊆ C2

π ; Γ `sc subeff(t) : EffC2 A

Print
π ; Γ `sc t : Bool

π ; Γ `sc printch(t) : Eff{ch} Unit

Distr
π ; Γ `sc t : Sl (EffC A) ∀ch ∈ C . l v label(ch)

π ; Γ `sc distr(t) : EffC (SlA)

Fig. 3. Types and intrinsically-typed terms of SCPrint

After having defined the programming language, we are in position to turn
our attention to enforcing IFC. We assume that the security policy specifies
the sensitivity of each printing channel, i.e., the greatest lower bound of the
sensitivities of all its observers, in the form of a function label ∈ Ch → L. In

Pure Information-Flow Control with Effects Made Simple 11

Figure 3 we present the extension of SC (Figure 1) that accommodates printing
effects. We name it SCPrint hereafter. The types reflect those in SC and include the
new type constructor EffC of computations. The typing rules for the STLCPrint

fragment of SCPrint, i.e., Rules Return to Print, simply propagate the set of
labels π to their premises. Observe, again, that one has to explicitly unseal
sensitive Booleans, i.e., of type Sl Bool, to apply the Rule Print. Before detailing
Rule Distr, we extend the erasure function ε from SCPrint-terms to STLCPrint

programs in the obvious way: i.e., the type former EffC erases to “itself” and,
analogously to seall and unseall, distr is a no-op.

ε(. . .) = . . . ε(. . .) = . . .
ε(EffC A) = EffC ε(A) ε(distr(t)) = ε(t)

Rule Distr introduces one of the novelties of our work; an enforcement
mechanism that selectively permits to execute the effects of computations that
depend on sensitive data. In SCPrint, a term of type Sl (EffC A) describes a
computation that might only print on the channels in C and what is printed
and the decision to print potentially depends on data of sensitivity l. Then, it is
natural to ask, when it is secure to execute the effects of the inner computation
of type EffC A? Clearly, whenever the sensitivities of the computation’s effects,
i.e., the channels in C , are as high as the sensitivity of the data used to decide to
perform the effects, i.e., sensitivity l. The premise of the rule exactly captures
this condition: ∀ch ∈ C . l v label(ch).

To illustrate Distr in action, let us consider the following term in SCPrint

that prints Alice’s sensitive input to the Chsecret channel:

prog6 : SAlice Bool⇒ Eff{Chsecret} Unit
prog6 = λ(sb. distr(sealAlice(printChsecret(unsealAlice(sb)))) >>= return(unit))

Inside the term λ, the primitive distr permits to execute the effects of the
term sealAlice(printChsecret(unsealAlice(sb))) of type SAlice (Eff{Chsecret} Bool). The
term distr protects the return type of the computation at the same sensitivity as
the premise’s type SlA. This requirement is necessary to enforce IFC because
the trivial computation that performs no effects and just returns has access to
sensitive data, as exemplified by the following program:

prog7 : SAlice Bool⇒ SBob Bool⇒ Eff{Chsecret} (Ssecret Bool)
prog7 = λ(sb1 sb2 . distr(sealsecret(printChsecret (unsealAlice(sb1)))

>> return(unsealBob(sb2))))

3.2 Global Store Effects

We turn our attention to global store effects which combines printing effects
from the previous section with reading from locations in the store. Following
the same steps, in Figure 4 we present the extension of STLC (Appendix A) in
which programs have access to a global store and can read from and write to it.
We name this language STLCStore. Our development rests on two assumptions:
1. the set of locations in the store Loc is fixed during execution, and 2. only
terms of ground type, i.e., Bool and Unit, can be stored. This helps simplify our
presentation and permit us to side-step issues which are orthogonal to the point

12 No Author Given

of this work. Recent work by Rajani and Garg [32] and Gregersen et al. [12] hints
to possible ways of lifting these two simplifications.

STLCStore extends STLC with a type of computations EffS a, indexed by a
set of store locations S (alternatively, references), and a type of references Refs r.
By assumption 1, the whole development is parameterized by a fixed set of store
locations Loc. A program of type EffS a when executed might only write to the
references in S and finally return a result of type a. A term of type Refs r is a
reference in the store s that contains terms of ground type r. References permit
both ”printing” effects via writing—like channels in STLCPrint—but also reading
effects. Note that the type of computations does not mention the store locations
from which it might read. This asymmetry stems from how the execution of
programs performing these effects interact with their environment: writing alters
it whilst reading does not—at least directly.

Typing judgements are of the form Σ,Γ ` t : a where Σ is a store typing
which determines the shape of the store, i.e., which types it contains and in
what locations. The rest of components are like those in STLC. The typing
rules of the monadic operations return, bind and subeff follow the same pattern
as in STLCPrint (Figure 2), thus we do not discuss them any further. The
term refs (Rule Ref) is the runtime representation of references. Reading and
writing is achieved via primitives read and write (Rules Read and Write re-
spectively). Observe that in Read, the type of the computation Eff∅ r in the
conclusion of the rule is indexed by the empty set of locations, while in Write is
indexed by the singleton set {s}.

The operational semantics of the language is defined as in STLCPrint; a
combination of the small-step semantics for STLC that treats effectful primitives
as values, and a small-step semantics for computations. Given a store typing Σ,
a store θ is a function from locations to typed terms according to Σ. Since
the language considers a fixed-size store, we use the notation θ instead of θ(Σ).
The semantics of computations is of the form θ1, t θ2, u, and is interpreted
as: program Σ, · ` t : EffS a paired with store θ1 evaluates in one step to
program Σ, · ` u : EffS a and store θ2.

We now explain the semantics. Rule Read reduces the argument of read and
it does not modify the store. When the argument is a store location, i.e., refs,
Read-Ref retrieves the term t from the store, i.e., θ(s) = t. The rules for writing
Rules Write and Write-Ref first reduce the left subterm of write(u, t) to a
store location and then write the right subterm t on the store. Different from
STLCPrint, we permit to write any term on the store, not only values.

To briefly illustrate STLCStore, consider the following program:

prog8 : Bool⇒ Eff{s′} Unit
prog8 b = if b then (read(s) >>= λ(x.write(s′, x)))

else return(unit)

Based on the Boolean input, prog8 copies the contents of the store location s to
s′. Observe that the type only mentions the location s′ in its index.

We conclude the explanation of STLCStore with a confinement lemma—
similar to that of STLCPrint (Lemma 2):

Pure Information-Flow Control with Effects Made Simple 13

Store locations s ∈ Loc
Sets of s. locations S , S1, S2 ⊆ Loc

Ground types r ::= Bool | Unit
Types a, b ::= r | a⇒ b | EffS a | Refs r

Typing contexts Γ ::= . . .
Store typings Σ ∈ Loc → Ground types

Σ,Γ ` t : a

Ref
Σ(s) = r

Σ, Γ ` refs : Refs r

Read
Σ,Γ ` t : Refs r

Σ, Γ ` read(t) : Eff∅ r

Write
Σ,Γ ` t : Refs r Σ, Γ ` u : r

Σ, Γ ` write(t, u) : Eff{s} Unit

Stores θ, θ1, θ2 ∈ (Σ : Store typings)→ (s : Loc)→ Σ , · ` t : Σ(s)

θ1(Σ), t θ2(Σ), u with Σ, · ` t : EffS a and Σ, · ` u : EffS a

Read
t −→ u

θ, read(t) θ, read(u)

Read-Ref
θ(s) = t

θ, read(refs) θ, return(t)

Write
t −→ t′

θ,write(t, u) θ,write(t′, u)

Write-Ref
θ2 = θ1[s 7→ t]

θ1,write(refs, t) θ2, return(unit)

Fig. 4. Types, well-typed terms and small-step semantics of STLCStore (excerpts)

Lemma 3 (Confinement for STLCStore). For any STLCStore program
Σ, · ` f : EffS a, STLCStore value Σ, · ` v : EffS a, and stores θ2, θ2 : Σ, if
θ1, f ∗ θ2, v then ∀s ∈ Loc. s 6∈ S ⇒ θ1(s) = θ2(s).

Now its turn to explain the IFC enforcement mechanism SCStore (Figure 5).
As in SCPrint (Figure 3) we assume that the security policy specifies for each
store location its sensitivity as a function label ∈ Loc → L. The typing rules for
the monadic primitives are analogous to SCPrint thus we have omitted them.
The rule for references is straightforward (Rule Ref). More interesting is the
typing rule for reading from the store (Rule Read). In the conclusion of the rule,
the return type of the computation is the SC type for sensitive data SlR. The
sensitivity of the location is l, i.e., label(s) = l in the premise of the rule, thus to
protect the flow of information is necessary to wrap also the return type.

The type of read diverges from usual presentations of IFC libraries (e.g., LIO [39],
MAC [33] with the exception of SLIO [32]) in that reading from the store is
wrapped in the type Sl. These libraries incorporate the data into their monad of
computations, which keeps track of the sensitivities of the observed values.

We conclude the section with a concrete example of SCStore that shows
that prog8 is secure with respect to the following specification: label(s) = Alice,

14 No Author Given

Ground types R ::− Bool | Unit
Types A,B ::= R | A⇒ B | EffSA | RefsR

Store typings Σ ∈ Loc → Ground types
Sensitivity of loc. label ∈ Loc → L

π ; Σ,Γ `sc t : A

Ref
Σ(s) = R

π ; Σ,Γ `sc refs : RefsR

Read
π ; Σ,Γ `sc t : RefsR label(s) = l

π ; Σ,Γ `sc read(t) : Eff∅ (SlR)

Write
π ; Σ,Γ `sc t : RefsR π ; Σ,Γ `sc u : R

π ; Σ,Γ `sc write(t, u) : Eff{s} Unit

Distr
π ; Σ,Γ `sc t : Sl (EffS A) ∀s ∈ S . l v label(s)

π ; Γ `sc distr(t) : EffS (SlA)

Fig. 5. Types and intrinsically-typed terms of SCStore (excerpts)

label(s′) = secret and the Boolean argument is secret, i.e., sb : Ssecret Bool:

prog ′8 : Ssecret Bool⇒ Eff{s′} (Ssecret Unit)
prog ′8 sb = distr(sealsecret(if unsealAlice(sb)

then (read(s) >>= λ(x.write(s′, unsealsecret(x))))
else return(unit)))

The above program exemplifies how SCStore enforces that flows from the store
to the program and back to the store are secure. Note that ε(prog ′8) = prog8 .

4 Security Guarantees

In this section, we prove that the IFC mechanisms SC, SCPrint and SCStore

can be used to enforce noninterference for the programming languages STLC,
STLCPrint and STLCStore presented in Sections 2, 3.1 and 3.2, respectively. Our
noninterference proofs employ the technique of logical relations (LR) [23]. For
each language, we construct a family of LRs parameterized by the sensitivity of
the attacker latk and the SC types. In the effect-free setting, the LR interprets
each SC type A as a binary relation over STLC programs of the erased type ε(A).
The relation captures the idea of indistinguishable programs: if the type is public
enough, e.g., Spublic Bool and public flows to latk, then two programs are related
when they evaluate to the same value. Noninterference then follows as a corollary
of the so called fundamental theorem of the LR.

Although the languages we consider do not have primitives for writing gen-
eral recursive programs, the noninterference properties that we prove, namely
termination-insensitive noninterference (TINI), do not assume that programs
terminate. A non-terminating loop in a language with printing effects can leak
secrets, however, the leakage bandwidth is exponential in the size of the secret [6],

Pure Information-Flow Control with Effects Made Simple 15

and hence, most IFC tools (e.g., Lifty [31]) ignore such leaks and enforce TINI.
From an IFC perspective, it is straightforward to consider general recursion (e.g.,
as done in Russo, Claessen, and Hughes [34] and Schoepe, Hedin, and Sabelfeld
[36]).

TINI states that when two runs of a program with different secret inputs
terminate, then its public outputs agree. In the effect-free setting, the inputs to
a program are its arguments, and the output is its return value. In the effectful
setting, what we need to consider as inputs and outputs changes: in STLCStore,
for instance, the store must be considered an additional input to the program.

Definition 1 (TINI for STLC). An STLC program sec : Bool ` f : Bool
satisfies TINI if for any two STLC terms · ` s1, s2 : Bool, and any two STLC
values · ` v1, v2 : Bool, if f [s1/sec] −→∗ v1 and f [s2/sec] −→∗ v2 then v1 ≡ v2.

In the definition v1 ≡ v2 denotes that v1 and v2 are syntactically equal values.
Note that programs that diverge for any input vacuously satisfy TINI: the
assumption that the substituted programs terminate will never hold.

SC can be used to enforce TINI:

Theorem 1. Given any SC term {latk} ; sec : Slsec Bool `sc t : Slatk Bool where
lsec 6v latk, the erased program sec : Bool ` ε(t) : Bool satisfies TINI.

In practice, we are concerned that information does not flow from lsec-protected
data to the attacker with sensitivity latk. Thus, to show that an STLC program
sec : Bool ` f : Bool does not leak information from lsec to latk, it is enough to
find an SC term {latk} ; sec : Slsec Bool `sc t : Slatk Bool such that f = ε(t).

Logical relation. In order to prove that SC enforces TINI (Theorem 1), we
construct an LR parameterized by the attacker’s sensitivity latk and the SC
types—see Figure 6. The proof, as we will show, then falls out as a consequence
of the fundamental theorem of the LR.

At each SC type the LR defines what the attacker can observe about pairs of
STLC programs of erased type—alternatively, the same program with different
secrets. We split the definition depending on whether programs are evaluated,
Rlatk
V ⟦−⟧ and Rlatk

E ⟦−⟧ respectively. We briefly explain these. At SC type Bool,

for instance, see Rlatk
E ⟦Bool⟧ and Rlatk

V ⟦Bool⟧, the LR states that if the programs
terminate then the attacker can observe if they return equal values. At higher
types, i.e., A⇒ B, two functions are related if whenever they reduce to a value,
see Rlatk

E ⟦A⇒ B⟧, they map related inputs Rlatk
E ⟦A⟧(u1, u2) to related outputs

Rlatk
E ⟦A⟧(app(t1, u1), app(t2, u2)), see Rlatk

V ⟦A⇒ B⟧. Lastly, at SC type SlA, see

Rlatk
V ⟦SlA⟧, the LR compares the sensitivity of the attacker with the label l, and

in case it is less sensitive, i.e., l v latk, the programs have to be related at SC
type A. If the label l is more sensitive than the attacker’s label, i.e., l 6v latk then
the programs do not need to be related.

Definitions Rlatk
V ⟦−⟧ and Rlatk

E ⟦−⟧ work on closed terms, however, in order
to prove the fundamental theorem we have to lift them to substitutions. A
substitution assigns to each type a in a typing context Γ a closed term of

16 No Author Given

that type, i.e., · ` f : a. We denote substitutions by γ and use γ : · ` Γ
to mean that γ is in the set of substitutions over Γ . We define the LR for
substitutions, Rlatk

S ⟦−⟧, by induction on SC typing contexts. At the empty
context · the empty substitutions (ε, ε) are trivially related—denoted by >.
Two non-empty substitutions (γ1, t1) and (γ2, t2) are related whenever they are
pointwise related, i.e., Rlatk

E ⟦A⟧(t1, t2) and Rlatk
S ⟦Γ⟧(γ1, γ2). The LR for open

terms, written Rlatk
T ⟦(Γ,A)⟧, is indexed by a pair consisting of an SC typing

context Γ and an SC type A. It states that two STLC terms are related if for
any two related substitutions the substituted terms are related at type A.

Rlatk
V ⟦−⟧ ∈ (A : SC type)→ (t1 : · ` ε(A))→ (t2 : · ` ε(A))→ Set

Rlatk
V ⟦Unit⟧(t1, t2) :⇔ t1 ≡ t2
Rlatk
V ⟦Bool⟧(t1, t2) :⇔ t1 ≡ t2
Rlatk
V ⟦A⇒ B⟧(t1, t2) :⇔

∀(u1, u2 : · ` ε(A)). Rlatk
E ⟦A⟧(u1, u2)⇒Rlatk

E ⟦B⟧(app(t1, u1), app(t2, u2))

Rlatk
V ⟦SlA⟧(t1, t2) :⇔ l v latk ⇒Rlatk

V ⟦A⟧(t1, t2)

Rlatk
E ⟦A⟧(t1, t2) :⇔ ∀(u1, u2 : · ` ε(A)). t1 −→∗ u1 ∧ t2 −→∗ u2 ⇒Rlatk

V ⟦A⟧(u1, u2)

Rlatk
S ⟦·⟧(ε, ε) :⇔ >

Rlatk
S ⟦Γ, x : A⟧((γ1, t1), (γ2, t2)) :⇔ Rlatk

E ⟦A⟧(t1, t2) ∧Rlatk
S ⟦Γ⟧(γ1, γ2)

Rlatk
T ⟦(Γ,A)⟧(t1, t2) :⇔

∀(γ1, γ2 : · ` ε(Γ)).Rlatk
S ⟦Γ⟧(γ1, γ2)⇒Rlatk

E ⟦A⟧(t1[γ1], t2[γ2])

Fig. 6. Logical relation for STLC-SC

The fundamental theorem of the LR states that the underlying program of
an SC term is related to itself. Formally:

Theorem 2 (Fundamental Theorem of the LR for STLC). For any
attacker with sensitivity latk, and SC term {latk} ; Γ `sc t : A, it is the case that
Rlatk
T ⟦(Γ,A)⟧(ε(t), ε(t)).

Proof. By induction on the typing derivation.

TINI (Theorem 1) follows as a corollary of the fundamental theorem:

Proof. Assume two secrets · ` s1, s2 : Bool. Since lsec 6v latk, the secrets are
related, i.e., Rlatk

E ⟦Slsec Bool⟧(s1, s2), and thus the two substitutions γ1 = {sec 7→

Pure Information-Flow Control with Effects Made Simple 17

s1} and γ2 = {sec 7→ s2} are related. By the fundamental theorem, the term ε(t)
is related to itself, i.e.,Rlatk

E ⟦Slatk Bool⟧(ε(t)[γ1], ε(t)[γ2]). Unfolding the definitions
of we obtain that ∀(v1, v2 : · ` Bool). ε(t)[γ1] −→∗ v1∧ε(t)[γ2] −→∗ v2 ⇒ v1 ≡ v2.

4.1 Noninterference for Printing Effects: STLCPrint and SCPrint

It order to formalize noninterference for STLCPrint we look at effectful programs
that might print. For that, we first define indistinguishability of outputs with
respect to a subset of channels:

Definition 2 (Output indistinguishability). Let C ⊆ Ch. Two outputs o1
and o2 are C -indistinguishable, denoted by o1 =C o2, if the two outputs agree in
C , i.e., ∀ch ∈ C . o1(ch) = o2(ch).

We define TINI for STLCPrint for programs from Bool to EffC Unit, i.e., programs
that depending on a Boolean produce output in an arbitrary set of channels C :

Definition 3 (TINI for STLCPrint). An STLCPrint program sec : Bool `
f : EffC Unit satisfies TINI with respect to C ′ ⊆ C , if for any two STLCPrint

terms · ` s1, s2 : Bool, any two STLCPrint values · ` v1, v2 : EffC Unit, and
any two outputs o1 and o2, if f [s1/sec] ∗ v1, o1 and f [s2/sec] ∗ v2, o2 then
o1 =C ′ o2.

TINI is parameterized by a subset of the channels where the the outputs have to
agree. We will instantiate C ′ with the set of channels observable by the attacker.

SCPrint can be used to enforce TINI on STLCPrint programs:

Theorem 3. Given any SCPrint term {latk} ; sec : Slsec Bool `sc t : EffC Unit
where lsec 6v latk the erased program sec : Bool ` ε(t) : EffC Unit satisfies TINI
with respect to Catk where Catk := {ch | ch ∈ C , label(ch) v latk}.

Rlatk
V ⟦. . .⟧(t1, t2) :⇔ . . .

Rlatk
V ⟦EffS A⟧(t1, t2) :⇔ ∀(u1, u2 : · ` ε(A)), o1, o2. t1

∗ return(u1), o1

∧ t2 ∗ return(u2), o2 ⇒Rlatk
E ⟦A⟧(u1, u2) ∧ o1 =Catk o2

Fig. 7. Logical relation for STLCPrint (excerpts)

Logical relation. The LR for STLCPrint (Figure 7) is very similar to that
of STLC (Figure 6) so we skip over the commonalities and directly discuss
its definition at the type of computations. The LR relates two computations
Rlatk
V ⟦EffC A⟧(t1, t2) if whenever they terminate, i.e., t1 ∗ return(u1), o1 and

t2 ∗ return(u2), o2, the resulting terms are related, i.e., Rlatk
E ⟦τ⟧(u1, u2), and the

outputs are indistinguishable by the attacker, i.e., o1 =Catk o2. The fundamental
theorem of the LR states that erased terms are related to themselves:

18 No Author Given

Theorem 4 (Fundamental Theorem of the LR for STLCPrint). For any
attacker with sensitivity latk, and SCPrint term {latk} ; Γ `sc t : A, it is the case
that Rlatk

T ⟦(Γ,A)⟧(ε(t), ε(t)).

Proof. By induction on the typing derivation with use of the Lemma 2.

The proof that SCPrint enforces TINI (Theorem 3) follows as a corollary:

Proof. Let · ` s1, s2 : Bool be two secrets. Since lsec 6v latk, the secrets are
related, i.e., Rlatk

E ⟦Slsec Bool⟧(s1, s2), and thus the substitutions γ1 = {sec 7→
s1} and γ2 = {sec 7→ s2} are related. By the fundamental theorem, the
term ε(t) is related to itself Rlatk

E ⟦EffC Unit⟧(ε(t)[γ1], ε(t)[γ2]). By assumption,
ε(t)[s1/sec] ∗ v1, o1 and ε(t)[s2/sec] ∗ v′2, o2. By reasoning about the op-
erational semantics, there exists two intermediate programs, t′1, t

′
2 such that:

ε(t)[s1/sec] −→∗ t′1 and t′1
∗ v1, o1; and ε(t)[s2/sec] −→∗ t′2 and t′2

∗ v2, o2.
We apply Rlatk

E ⟦EffC Unit⟧(ε(t)[s1/sec], ε(t)[s2/sec]) to the two effect-free reduc-

tions which gives us that Rlatk
V ⟦EffC Unit⟧(t′1, t′2). We apply this to the monadic

reductions and obtain that o1 =Catk o2.

4.2 Noninterference for Global Store Effects: STLCStore and SCStore

We formalize noninterference for STLCStore by looking at effectful programs
which receive a store as input and produce a store as output. The contents of
the store are possibly unevaluated STLCStore programs of ground type (see
Figure 4). In order to compare stores, we define an indistinguishability relation
for programs. This is a sort of LR parameterized by STLCStore ground types:

I⟦−⟧ : (r : STLCStore ground type)→ (t1 : · ` r)→ (t2 : · ` r)→ Set

I⟦Unit⟧(t1, t2) :⇔ ∀(v1, v2 : · ` Unit). t1 −→∗ v1 ∧ t2 −→∗ v2 ⇒ v1 ≡ v2
I⟦Bool⟧(t1, t2) :⇔ ∀(v1, v2 : · ` Bool). t1 −→∗ v1 ∧ t2 −→∗ v2 ⇒ v1 ≡ v2

In some sense it resembles the LRs for Unit and Bool types in Figure 6.
Stores are parameterized by store typings that determine the type of the

contents at each location. Since stores neither grow nor shrink, assumption 1
(Section 3.2), we define an indistinguishability relation for stores of the same
store typing. Indistinguishability is parameterized by a subset of the locations.

Definition 4 (Store indistinguishability). Let S ⊆ Loc. Two stores θ1 and
θ2 of store typing a are S-indistinguishable, denoted by θ1 =S θ2, if the two stores
are indistinguishable at each location in S , i.e., ∀s ∈ S . I⟦Σ(s)⟧(θ1(s), θ2(s)).

TINI for STLCStore programs is:

Definition 5 (TINI for STLCStore). An STLCStore program Σ, · ` f :
EffS Unit satisfies TINI with respect to S ′ ⊆ Loc, if for any two stores θ1, θ2 : Σ,
any two STLCStore values · ` v1, v2 : EffS Unit, and any two stores θ′1, θ

′
2 : Σ, if

θ1 =S θ2 and θ1, f ∗ θ′1, v1 and θ2, f ∗ θ′2, v2 then θ′1 =S θ
′
2.

Again, SCStore enforces TINI on STLCStore programs:

Pure Information-Flow Control with Effects Made Simple 19

Rlatk
V ⟦. . .⟧(t1, t2) :⇔ . . .

Rlatk
V ⟦EffC A⟧(t1, t2) :⇔ ∀(u1, u2 : · ` ε(A))(θ1, θ2, θ

′
1, θ
′
2 : Σ). θ1 =Satk θ2 ∧

θ1, t1
∗ θ′1, return(u1) ∧ θ2, t2 ∗ θ′2, return(u2)⇒Rlatk

E ⟦A⟧(u1, u2) ∧ θ′1 =Satk θ
′
2

Fig. 8. Logical relation for STLCStore (excerpts)

Theorem 5. Given any SCStore term {latk} ; Σ, · `sc f : EffS Unit the erased
program Σ, · ` ε(f) : EffS Unit satisfies TINI with respect to Satk where Satk :=
{s | s ∈ Loc, label(s) v latk}.

The LR that we construct to prove TINI (Figure 8) is largely similar to that
of STLCPrint (Figures 6 and 7), with the difference that effectful programs take
as argument and produce as result indistinguishable pairs of stores. TINI follows
as a consequence of the fundamental theorem of the LR.

5 Implementation

In this section, we present an implementation of SC and SCPrint (Sections 2
and 3.1) as a Haskell library, which we call SCLib. We omit SCStore (Section 3.2)
for lack of space. However, its implementation is similar to that of SCPrint.
Furthermore, we demonstrate that existing Haskell libraries for static IFC can
be reimplemented in terms of the interface that SCLib exposes.

The main characteristic of SC is that typing judgements π ; Γ `sc t : A are
indexed by a set of labels π. Onwards, we refer to the left part the judgement,
i.e., π ; Γ , as the context of the term t. The set of labels plays an important role
in enforcing IFC. However, individual labels are not first-class citizens: there is
no type of labels and, hence, labels can neither be introduced nor eliminated.
Further, some typing rules in SC modify the set of labels in their context: e.g.,
the rule for unseall (cf. Figure 1) augments the set in its premise with l. When
shallowly embedding in Haskell any calculus that manipulates the context in this
fashion, there is a natural problem to overcome: Haskell does not allow library
implementors to have access to a program’s context. For instance, to embed a
linear type system in Haskell, Bernardy et al. [7] need to change the compiler.

To overcome these difficulties, our implementation resorts to a combination
of Haskell’s module system to hide the implementation details’ from users, and a
well-known trick of higher-rank polymorphism [20] to prevent first-class access to
labels. We hope to convince the reader that our simple implementation matches
the studied enforcement mechanisms, and that it can shed light on previous work
on static IFC in Haskell.

5.1 Implementation of SC

When we introduced SC, we mentioned the intuition that labels in π are some
sort of type-level keys whose possession permits access to sealed data. Our imple-
mentation takes this intuition literally: there is a type for keys whose elements
are attached with type-level labels, and the primitive to unseal, i.e., unseal, is

20 No Author Given

parameterized by a key. The elements of this type are like capabilities [17] which
need to be explicitly exercised.

1 module SCLib

2 (Key (), Label (..), FlowsTo (..), S (S), seal, unseal, ...)

3 where

4 -- Enumeration of security labels for the two-point lattice

5 data Label = H | L

6 -- "Flows to" relation as a type-class

7 class FlowsTo (l :: Label) (l' :: Label)

8 -- Instances

9 instance FlowsTo l l

10 instance FlowsTo L H

11 -- Type-level keys

12 data Key l s = Key

13 -- Security type

14 data S l a = S (forall s. Key l s -> a)

15 -- Sealing

16 seal :: (forall s. Key l s -> a) -> S l a

17 seal = Seal

18 -- Unsealing

19 unseal :: FlowsTo l' l => Key l s -> S l' a -> a

20 unseal k@Key (S f) = f Key

Fig. 9. Implementation of SC (e.g., for the two-point security lattice)

Figure 9 shows the complete implementation of SC in Haskell. Without loss of
generality, we assume the two point-security lattice. As previous work (e.g., MAC
[33], HLIO [9], and DCC [5]) we represent labels as types of kind Label (line 5,
and the use of the GHC extension DataKinds) and encode the “flows to” relation
via a type-class (lines 7–10). For simplicity we show the encoding of the two-point
security lattice, however, this can be generalized (cf. [9]). In line 12 we introduce
a new datatype Key which is parameterized by a type l of kind Label and a
phantom type s. Then, line 14 introduces the type S, which is a wrapper over the
function space between the types Key l s and a, i.e., forall s. Key l s -> a.
The constructor of S l a, i.e., S, uses higher-rank polymorphism, as evidenced
by the forall keyword, to quantify over the type variable s in Key l s. This
ensures that the type of any newly bound key will be unique: the type s will
not coincide with any other type s’. Launchbury and Jones [20] use the same
trick, for example, to provide pure mutable references in Haskell where the type
variable represents memory regions. Since the type variable s does not coincide
with any other, elements of the type Key l s are not first-class values, and, for
example, cannot be stored: the program S (\k -> k) does not type check.

We now implement the primitives seal and unseal—Rules Seal and Unseal

from Figure 1. The combinator seal (lines 16 and 17) is a wrapper over the

Pure Information-Flow Control with Effects Made Simple 21

constructor of the type S l a. The combinator unseal (lines 19–20) allows
unsealing terms of type S l a in case we have a value of type Key l' s and
the label in its type, i.e., l’, flows to l—see the constraint FlowsTo l' l. In
order to enforce IFC, it is important that the constructors of Key are kept
abstract from the user—observe Key () in the export list of the module (line
2). Otherwise, anyone could extract the underlying term of type a from an
l-sensitive value secret :: S l a by applying unseal Key. Similar to Russo,
Claessen, and Hughes [34], the combinator unseal is strict in its argument
(k@Key) in order to forbid forged keys like undefined :: Key l s. We remark
that the noninterference property—recall TINI from Definitions 1 and 3—rules
out programs that force undefined and halt with error.

The implementation discussed so far consists of the trusted computing base
(TCB) of SCLib. From now on, users of the library can derive functionalities from
the library’s interface. For example, programmers can implement the Functor,
Applicative and Monad instances for the type S l a as follows:

instance Functor (S l) where

fmap f x = seal (\k -> f (unseal k x))

instance Applicative (S l) where

pure x = seal (\k -> x)

f <*> a = seal (\k -> (unseal k f) (unseal k a))

instance Monad (S l) where

return = pure

m >>= f = seal (\k -> unseal k (f (unseal k m)))

Note that the programmer does not need access to the TBC in order to
implement these instances—as opposed to MAC (cf. [41]). This phenomenon, we
believe, is a sign of the simplicity and generality of our implementation.

5.2 Implementation of SCPrint

Figure 10 shows the implementation of SCPrint which builds on the implementa-
tion of SC (Figure 9). The datatype Eff wraps IO computations and is indexed
by a type-level set [28] ls of channels where the computation can write to. For
simplicity, we will omit the map label (Figure 3) from channels to labels and
identify channels with labels so that the index ls has kind [Label]. This makes
the implementation simpler.

In lines 15–18 we implement the return and bind of the graded monad.
returnEff does not produce effects, thus, its type is indexed by the empty
set [] (cf. Figure 3). bindEff type is indexed by the union of the sets of
labels of the computations (cf. Figure 3). The implementation of subeffecting
is the identity function (lines 20–21). Printing effects can be performed by the
combinator printEff (lines 26–30). The argument of type SLabel l is a term
level representation of a the type-level label of printing channel.

Lines 36–38 show the implementation of the novel primitive distr. The type
constraint FlowsToSet l ls (see the definitions in lines 32–35) ensures that

22 No Author Given

1 module SCLib

2 (..., Eff (), FlowsToSet (), pureEff, appEff, returnEff

3 , bindEff, distr, subeff, printEff)

4 where

5 newtype Eff (ls :: [Label]) a = Eff { runEff :: IO a }

6 -- Functor

7 instance Functor (Eff ls) where

8 fmap f (Eff io) = Eff (fmap f io)

9 -- Applicative

10 pureEff :: a -> Eff [] a

11 pureEff = returnEff

12 appEff :: Eff ls1 (a -> b) -> Eff ls2 a -> Eff (Union ls1 ls2) b

13 appEff (Eff ioff) (Eff ioa) = Eff (ioff <*> ioa)

14 -- Graded monad

15 returnEff :: a -> Eff [] a

16 returnEff a = Eff (return a)

17 bindEff :: Eff ls1 a -> (a -> Eff ls2 b) -> Eff (Union ls1 ls2) b

18 bindEff (Eff m) f = Eff (m >>= runEff . f)

19 -- Subeffecting

20 subeff :: Subset ls1 ls2 => Eff ls1 a -> Eff ls2 a

21 subeff (Eff m) = Eff m

22 -- Print

23 data SLabel :: Label -> * where

24 SH :: SLabel H

25 SL :: SLabel L

26 printEff :: (Show a) => SLabel l -> a -> Eff [l] ()

27 printEff l x = Eff (print (header l) >> print x)

28 where header :: SLabel l -> String

29 header SH = "Channel H:"

30 header SL = "Channel L:"

31 -- Distr

32 type family FlowsToSet (l :: Label) (ls :: [Label]) :: Constraint

33 where

34 FlowsToSet l1 [] = ()

35 FlowsToSet l1 (l2 : ls) = (FlowsTo l1 l2, FlowsToSet l1 ls)

36 distr :: FlowsToSet l ls => S l (Eff ls a) -> Eff ls (S l a)

37 distr m = Eff (do res <- (runEff (unseal Key m))

38 return (seal (\k -> res)))

Fig. 10. Implementation of SCPrint (excerpts)

Pure Information-Flow Control with Effects Made Simple 23

l v l’ for every label l’ in ls. The implementation uses the value Key, which
pertains to the TCB, to unseal the Eff action, i.e., unseal Key m; and then it
runs its effects, i.e., res <- runEff (unseal Key m); finally it seals the result
at the same label, i.e., return (seal (\k -> res)).

5.3 Implementing existing libraries for IFC

We conclude this section by showing that we can reimplement some of the existing
libraries in Haskell for IFC. We show implementations of SecLib [34], SDCC [4]
(an alternative presentation of DCC) and a variation of MAC [33]5 using SCLib
interface. In some sense the implementations help to explain the mentioned
libraries. Further, this shows that the programmer can choose to write programs
against SCLib’s “low-level” interface; or a more “high-level” interface, e.g., MAC;
or a combination of both. We declare future work to compare the performance
among implementations.

For each library we briefly explain its interface and show its implementation
in terms of SCLib.

SecLib and SDCC. SecLib is one of the pioneers of static IFC libraries in the
context of Haskell. Its main feature is a family of security monads Sec indexed
by labels from the security lattice, each equipped with >>= (bind) and return.
SecLib’s special ingredient is a combinator up that allows coercions from lower
to higher labels in the security monad.

SDCC is an alternative presentation of DCC which favors a simple set of
combinators instead of DCC’s non-standard bind and protected at relation.
Similar to DCC, SDCC sports a family of monads indexed by security labels.
These support fmap, return and >>= (bind). Further, SDCC implements two
combinators up and com, that allow to relabel in the style of SecLib and commute
terms of monadic type with different labels. SDCC’s interface is strictly a superset
of that of SecLib, thus we directly show the implementation of the former. The
left column displays the interface whilst the right its implementation in SCLib.
type T l a

instance Functor (Sec l) where

instance Monad (Sec l) where

up :: FlowsTo l l' -> T l a -> T l' a

com :: T l (T l' a) -> T l' (T l a)

type T l a = S l a

...

...

up :: FlowsTo l l' => T l a -> T l' a

up lv = seal (\k -> unseal k lv)

com :: T l (T l' a) -> T l' (T l a)

com lv = seal (\k' -> seal (\k ->

unseal k' (unseal k lv)))

MAC which we discussed in the introduction, is one of the state-of-the-art
libraries for effectful IFC in Haskell. At its core, MAC defines two types:
Labeled l a for pure sensitive values, and MAC l a for secure computations.
MAC l a is a monad for each label l where the label: 1. protects the data in

5 In our variation the type Labeled is a monad. This is “unsafe” in MAC (cf. [42]).

24 No Author Given

context; and 2. restricts the permitted effects. (cf. [43]) MAC’s functionality
stems from the interaction between Labeled and MAC through the primitives
label and unlabel. In order to label a value one needs to do so within the MAC l

monad: the Labeled l a type does not export a combinator a -> Labeled l a.
Our implementation, however, permits to do so. The left column shows MAC’s
interface, with the combinator join in its full generality, and the right column
hints its implementation in terms of SCLib.
type Labeled l a

type MAC l a

label :: FlowsTo l l'

=> a -> MAC l (Labeled l' a)

unlabel :: FlowsTo l l'

=> Labeled l a -> MAC l' a

join :: FlowsTo l l'

=> MAC l' a

-> MAC l (Labeled l' a)

type Labeled l a = S l a

type MAC l a = forall ls. FlowsToSet l ls

=> Eff ls (S l a)

label :: FlowsTo l l' => ...

label a = returnEff (seal (\k -> a))

unlabel :: FlowsTo l l' => ...

unlabel lv = returnEff lv

join :: FlowsTo l l' => ...

join m = bindEff m (\x -> seal (\k -> x))

6 Related work

IFC for effect-free and effectful languages. Algehed and Russo [5] add
effects to their embedding of DCC in Haskell but argue that their approach
only works for those effects that can be implemented within Haskell. Hirsch and
Cecchetti [15] develop a formal framework based on productors and type-and-
effect systems to characterize secure programs in impure languages with IFC.
They give semantics to traditional security-type systems based on controlling
implicit flows using PC labels. In contrast, our approach considers from starters
a pure language, where the type of effectful computation is separated from that
of effect-free programs.

Modalities for IFC. The languages and IFC enforcement mechanisms that
we present are based on the Sealing Calculus (SC) of Shikuma and Igarashi [37].
Differently from them, we think of SC terms as evidence that STLC programs
satisfy noninterference. The work by Miyamoto and Igarashi [24] gives an informal
connection between a classical type system for IFC and a certain modal logic.
Their type system is very different from our enforcement mechanism in that a
typing judgement has two separate variable contexts. Recently, the work by Abel
and Bernardy [3] presents a unified treatment of modalities in typed lambda
calculi. The authors present a effect-free lambda calculus parameterized by family
of modalities with certain mathematical structure, and show that many PL
analyses, including IFC, are instantiations of their framework. In contrast to our
work, it is not very clear how one would implement theirs system in Haskell,
since it would require a fine-grained control over the variables in the context.

Pure Information-Flow Control with Effects Made Simple 25

Kavvos [19] studies modalities for IFC in the classified sets model, which they
use to prove noninterference properties for a range of calculi that includes SC.

Coeffectful type systems for IFC. A recent line of work suggests using
coeffect type systems to enforce IFC. Petricek, Orchard, and Mycroft [30] develop
a calculus to capture different granularity demands on contexts, i.e., flat whole-
context coeffects (like implicit parameters [21]) or structural per-variable ones
(like usage or data access patterns). The work by Gaboardi et al. [10] expands on
that and uses graded monads and comonads to combine effects and coeffects. The
authors describe distributivity laws that are similar to our primitive distr addresses.
The article suggests IFC as an application where the coeffect system captures the
IFC constraints and the effect system gives semantics to effects. The distributive
laws explains how both are combined. However, their work does not state neither
proves a security property for their calculus. Different from it, our work does not
use comonads as the underlying structure for IFC, and further considers printing
and global store effects. Granule is a recent programming language [27] based on
graded modal types that impose usage constraints on the variables.

Logical relations for noninterference. Both Heintze and Riecke [14] and
Zdancewic [46] use logical relation arguments to prove noninterference for a simply-
typed security lambda calculus. Tse and Zdancewic [40] use logical relations
to prove soundness of a translation from DCC [1] to System F and obtain
noninterference from parametricity. Unfortunately, their translation is unsound
(cf. [37]). Bowman and Ahmed [8] fix this by using “open” logical relations show
their translation from DCC to System Fω is sound. Different from the cited
work so far, Rajani and Garg [32] use logical relations to prove noninterference
for a language with references. Gregersen et al. [12] extend the use of logical
relation to prove noninterference for languages with inpredicative polymorphism.
Different from Rajani and Garg [32] and Gregersen et al. [12], we consider
first-order references for simplicity. Otherwise, we should have had to utilize a
step-indexed Kripke-style logical-relations model, which would have introduced
technical complications that are orthogonal to the main contribution of our work.

7 Conclusions

In this paper, we have demonstrated that to enforce IFC in pure languages
with a single primitive distr suffices to securely control what information flows
from sensitive data to effects. To support our claim, we have presented IFC
enforcement mechanisms for several kinds of effects and proved that they satisfy
noninterference. Our development rests on the insight that effect-free IFC for
pure languages can already express that a computation will not leak sensitive
data through its effects when executed. Then, a single primitive, distr, to execute
these is enough to extend IFC to effects and retain the security guarantees. We
hope that this work brings a new perspective to IFC research for pure languages
with effects.

26 No Author Given

A STLC

Types a, b ::= Unit | Bool | a⇒ b
Typing contexts Γ ::= · | Γ, x : a

Γ ` t : a

Var
(x : a) ∈ Γ
Γ ` x : a

Lam
Γ, x : a ` t : b

Γ ` λ(x. t) : a⇒ b

App
Γ ` t : a⇒ b Γ ` u : a

Γ ` app(t, u) : b

Unit

Γ ` unit : Unit

True

Γ ` true : Bool

False

Γ ` false : Bool

If
Γ ` t : Bool Γ ` u1 : a Γ ` u2 : a

Γ ` ifte(t, u1, u2) : a

t −→ u with · ` t : a and · ` u : a

App
t −→ t′

app(t, u) −→ app(t′, u)

Beta

app(λ(x. t), u) −→ t[u/x]

If
t −→ t′

ifte(t, u1, u2) −→ ifte(t′, u1, u2)

If-True

ifte(true, u1, u2) −→ u1

If-False

ifte(false, u1, u2) −→ u2

Fig. 11. Types, intrinsically-typed terms and small-step semantics of (call-by-name)
STLC.

References

1. Abadi, M., Banerjee, A., Heintze, N., and Riecke, J.G.: A Core Calculus of Depen-
dency. In: Appel, A.W., and Aiken, A. (eds.) POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, TX, USA, January 20-22, 1999, pp. 147–160. ACM (1999). doi:
10.1145/292540.292555

2. [SW Rel.] Abel, A., Allais, G., Cockx, J., Danielsson, N.A., Hausmann, P., Nordvall
Forsberg, F., Norell, U., López Juan, V., Sicard-Ramı́rez, A., and Vezzosi, A., Agda
2 version 2.6.1.3, 2005–2021. Chalmers University of Technology and Gothenburg

https://doi.org/10.1145/292540.292555

Pure Information-Flow Control with Effects Made Simple 27

University. lic: BSD3. url: https://wiki.portal.chalmers.se/agda/pmwiki.p
hp, vcs: https://github.com/agda/agda.

3. Abel, A., and Bernardy, J.: A unified view of modalities in type systems. Proc.
ACM Program. Lang. 4(ICFP), 90:1–90:28 (2020). doi: 10.1145/3408972

4. Algehed, M.: A Perspective on the Dependency Core Calculus. In: Alvim, M.S., and
Delaune, S. (eds.) Proceedings of the 13th Workshop on Programming Languages
and Analysis for Security, PLAS@CCS 2018, Toronto, ON, Canada, October 15-19,
2018, pp. 24–28. ACM (2018). doi: 10.1145/3264820.3264823

5. Algehed, M., and Russo, A.: Encoding DCC in Haskell. In: Proceedings of the 2017
Workshop on Programming Languages and Analysis for Security, PLAS@CCS 2017,
Dallas, TX, USA, October 30, 2017, pp. 77–89. ACM (2017). doi: 10.1145/313933
7.3139338

6. Askarov, A., Hunt, S., Sabelfeld, A., and Sands, D.: Termination-Insensitive Non-
interference Leaks More Than Just a Bit. In: Jajodia, S., and López, J. (eds.)
Computer Security - ESORICS 2008, 13th European Symposium on Research in
Computer Security, Málaga, Spain, October 6-8, 2008. Proceedings. LNCS, vol. 5283,
pp. 333–348. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88313-5_22

7. Bernardy, J., Boespflug, M., Newton, R.R., Jones, S.P., and Spiwack, A.: Lin-
ear Haskell: practical linearity in a higher-order polymorphic language. CoRR
abs/1710.09756 (2017)

8. Bowman, W.J., and Ahmed, A.: Noninterference for free. In: Fisher, K., and Reppy,
J.H. (eds.) Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3,
2015, pp. 101–113. ACM (2015). doi: 10.1145/2784731.2784733

9. Buiras, P., Vytiniotis, D., and Russo, A.: HLIO: mixing static and dynamic typing
for information-flow control in Haskell. In: Fisher, K., and Reppy, J.H. (eds.)
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pp. 289–
301. ACM (2015). doi: 10.1145/2784731.2784758

10. Gaboardi, M., Katsumata, S., Orchard, D.A., Breuvart, F., and Uustalu, T.: Com-
bining effects and coeffects via grading. In: Garrigue, J., Keller, G., and Sumii, E.
(eds.) Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pp. 476–489.
ACM (2016). doi: 10.1145/2951913.2951939

11. Goguen, J.A., and Meseguer, J.: Security Policies and Security Models. In: 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982,
pp. 11–20. IEEE Computer Society (1982). doi: 10.1109/SP.1982.10014

12. Gregersen, S.O., Bay, J., Timany, A., and Birkedal, L.: Mechanized logical relations
for termination-insensitive noninterference. Proc. ACM Program. Lang. 5(POPL),
1–29 (2021). doi: 10.1145/3434291

13. Hedin, D., and Sabelfeld, A.: A Perspective on Information-Flow Control. In:
Software Safety and Security - Tools for Analysis and Verification. Ed. by T.
Nipkow, O. Grumberg, and B. Hauptmann, pp. 319–347. IOS Press (2012). doi:
10.3233/978-1-61499-028-4-319

14. Heintze, N., and Riecke, J.G.: The SLam Calculus: Programming with Secrecy and
Integrity. In: MacQueen, D.B., and Cardelli, L. (eds.) POPL ’98, Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, CA, USA, January 19-21, 1998, pp. 365–377. ACM (1998).
doi: 10.1145/268946.268976

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/agda/agda
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3264820.3264823
https://doi.org/10.1145/3139337.3139338
https://doi.org/10.1145/3139337.3139338
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3434291
https://doi.org/10.3233/978-1-61499-028-4-319
https://doi.org/10.1145/268946.268976

28 No Author Given

15. Hirsch, A.K., and Cecchetti, E.: Giving semantics to program-counter labels via
secure effects. Proc. ACM Program. Lang. 5(POPL), 1–29 (2021). doi: 10.1145/34
34316

16. Jones, S.L.P., and Wadler, P.: Imperative Functional Programming. In: Deusen,
M.S.V., and Lang, B. (eds.) Conference Record of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston,
South Carolina, USA, January 1993, pp. 71–84. ACM Press (1993). doi: 10.1145
/158511.158524

17. Kain, R.Y., and Landwehr, C.E.: On Access Checking in Capability-Based Systems.
IEEE Trans. Software Eng. 13(2), 202–207 (1987). doi: 10.1109/TSE.1987.232892

18. Katsumata, S.: Parametric effect monads and semantics of effect systems. In:
Jagannathan, S., and Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014, pp. 633–646. ACM (2014). doi: 10.1145/2535838.2535
846

19. Kavvos, G.A.: Modalities, cohesion, and information flow. Proc. ACM Program.
Lang. 3(POPL), 20:1–20:29 (2019). doi: 10.1145/3290333

20. Launchbury, J., and Jones, S.L.P.: Lazy Functional State Threads. In: Sarkar,
V., Ryder, B.G., and Soffa, M.L. (eds.) Proceedings of the ACM SIGPLAN’94
Conference on Programming Language Design and Implementation (PLDI), Orlando,
Florida, USA, June 20-24, 1994, pp. 24–35. ACM (1994). doi: 10.1145/178243.17
8246

21. Lewis, J.R., Launchbury, J., Meijer, E., and Shields, M.: Implicit Parameters:
Dynamic Scoping with Static Types. In: Wegman, M.N., and Reps, T.W. (eds.)
POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Boston, Massachusetts, USA, January 19-21,
2000, pp. 108–118. ACM (2000). doi: 10.1145/325694.325708

22. Li, P., and Zdancewic, S.: Encoding Information Flow in Haskell. In: 19th IEEE
Computer Security Foundations Workshop, (CSFW-19 2006), 5-7 July 2006, Venice,
Italy, p. 16. IEEE Computer Society (2006). doi: 10.1109/CSFW.2006.13

23. Mitchell, J.C.: Foundations for programming languages. MIT Press (1996)
24. Miyamoto, K., and Igarashi, A.: A modal foundation for secure information flow.

In: In Proceedings of IEEE Foundations of Computer Security (FCS), pp. 187–203
(2004)

25. Moggi, E.: Notions of Computation and Monads. Inf. Comput. 93(1), 55–92 (1991).
doi: 10.1016/0890-5401(91)90052-4

26. [SW] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., and Nystrom, N., Jif: Java
information flow version 3.0, 2006. url: http://www.cs.cornell.edu/jif.

27. Orchard, D., Liepelt, V., and III, H.E.: Quantitative program reasoning with
graded modal types. Proc. ACM Program. Lang. 3(ICFP), 110:1–110:30 (2019).
doi: 10.1145/3341714

28. Orchard, D.A., and Petricek, T.: Embedding effect systems in Haskell. In: Swier-
stra, W. (ed.) Proceedings of the 2014 ACM SIGPLAN symposium on Haskell,
Gothenburg, Sweden, September 4-5, 2014, pp. 13–24. ACM (2014). doi: 10.1145
/2633357.2633368

29. Parker, J., Vazou, N., and Hicks, M.: LWeb: information flow security for multi-tier
web applications. Proc. ACM Program. Lang. 3(POPL), 75:1–75:30 (2019). doi:
10.1145/3290388

30. Petricek, T., Orchard, D.A., and Mycroft, A.: Coeffects: a calculus of context-
dependent computation. In: Jeuring, J., and Chakravarty, M.M.T. (eds.) Proceed-

https://doi.org/10.1145/3434316
https://doi.org/10.1145/3434316
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.1109/TSE.1987.232892
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3290333
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/325694.325708
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1016/0890-5401(91)90052-4
http://www.cs.cornell.edu/jif
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1145/3290388

Pure Information-Flow Control with Effects Made Simple 29

ings of the 19th ACM SIGPLAN international conference on Functional program-
ming, Gothenburg, Sweden, September 1-3, 2014, pp. 123–135. ACM (2014). doi:
10.1145/2628136.2628160

31. Polikarpova, N., Stefan, D., Yang, J., Itzhaky, S., Hance, T., and Solar-Lezama, A.:
Liquid information flow control. Proc. ACM Program. Lang. 4(ICFP), 105:1–105:30
(2020). doi: 10.1145/3408987

32. Rajani, V., and Garg, D.: On the expressiveness and semantics of information flow
types. J. Comput. Secur. 28(1), 129–156 (2020). doi: 10.3233/JCS-191382

33. Russo, A.: Functional pearl: two can keep a secret, if one of them uses Haskell.
In: Fisher, K., and Reppy, J.H. (eds.) Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015, pp. 280–288. ACM (2015). doi: 10.1145/2784731.2
784756

34. Russo, A., Claessen, K., and Hughes, J.: A library for light-weight information-
flow security in haskell. In: Gill, A. (ed.) Proceedings of the 1st ACM SIGPLAN
Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25 September 2008,
pp. 13–24. ACM (2008). doi: 10.1145/1411286.1411289

35. Sabelfeld, A., and Myers, A.C.: Language-based information-flow security. IEEE J.
Sel. Areas Commun. 21(1), 5–19 (2003). doi: 10.1109/JSAC.2002.806121

36. Schoepe, D., Hedin, D., and Sabelfeld, A.: SeLINQ: tracking information across
application-database boundaries. In: Jeuring, J., and Chakravarty, M.M.T. (eds.)
Proceedings of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014, pp. 25–38. ACM (2014).
doi: 10.1145/2628136.2628151

37. Shikuma, N., and Igarashi, A.: Proving Noninterference by a Fully Complete
Translation to the Simply Typed Lambda-Calculus. Log. Methods Comput. Sci.
4(3) (2008). doi: 10.2168/LMCS-4(3:10)2008

38. [SW] Simonet, V., Flow Caml 2003. url: http://cristal.inria.fr/~simonet/s
oft/flowcaml/.

39. Stefan, D., Russo, A., Mitchell, J.C., and Mazières, D.: Flexible dynamic information
flow control in Haskell. In: Claessen, K. (ed.) Proceedings of the 4th ACM SIGPLAN
Symposium on Haskell, Haskell 2011, Tokyo, Japan, 22 September 2011, pp. 95–106.
ACM (2011). doi: 10.1145/2034675.2034688

40. Tse, S., and Zdancewic, S.: Translating dependency into parametricity. In: Okasaki,
C., and Fisher, K. (eds.) Proceedings of the Ninth ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2004, Snow Bird, UT, USA,
September 19-21, 2004, pp. 115–125. ACM (2004). doi: 10.1145/1016850.1016868

41. Vassena, M., Buiras, P., Waye, L., and Russo, A.: Flexible Manipulation of Labeled
Values for Information-Flow Control Libraries. In: Askoxylakis, I.G., Ioannidis, S.,
Katsikas, S.K., and Meadows, C.A. (eds.) Computer Security - ESORICS 2016 -
21st European Symposium on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part I. LNCS, vol. 9878, pp. 538–557. Springer,
Heidelberg (2016). doi: 10.1007/978-3-319-45744-4_27

42. Vassena, M., and Russo, A.: On Formalizing Information-Flow Control Libraries.
In: Murray, T.C., and Stefan, D. (eds.) Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security, PLAS@CCS 2016, Vienna,
Austria, October 24, 2016, pp. 15–28. ACM (2016). doi: 10.1145/2993600.2993608

43. Vassena, M., Russo, A., Buiras, P., and Waye, L.: MAC A verified static information-
flow control library. Journal of Logical and Algebraic Methods in Programming 95,
148–180 (2018). doi: https://doi.org/10.1016/j.jlamp.2017.12.003

https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/3408987
https://doi.org/10.3233/JCS-191382
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/2628136.2628151
https://doi.org/10.2168/LMCS-4(3:10)2008
http://cristal.inria.fr/~simonet/soft/flowcaml/
http://cristal.inria.fr/~simonet/soft/flowcaml/
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/1016850.1016868
https://doi.org/10.1007/978-3-319-45744-4_27
https://doi.org/10.1145/2993600.2993608
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003

30 No Author Given

44. Vassena, M., Russo, A., Garg, D., Rajani, V., and Stefan, D.: From fine- to coarse-
grained dynamic information flow control and back. Proc. ACM Program. Lang.
3(POPL), 76:1–76:31 (2019). doi: 10.1145/3290389

45. Wadler, P., and Thiemann, P.: The marriage of effects and monads. ACM Trans.
Comput. Log. 4(1), 1–32 (2003). doi: 10.1145/601775.601776

46. Zdancewic, S.A.: Programming languages for information security. Cornell Univer-
sity (2002)

https://doi.org/10.1145/3290389
https://doi.org/10.1145/601775.601776

	Pure Information-Flow Control with Effects Made Simple

