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Fitch-style modal lambda calculi (Borghuis 1994; Clouston 2018) provide a solution to
programming necessity modalities (denoted by a �) in a typed lambda calculus by extending
the typing context with a delimiting operator (denoted by a µ). In this work, we perform a
semantic analysis of normalization by evaluation (NbE) (Berger and Schwichtenberg 1991) for
Fitch-style modal lambda calculi by beginning with the calculus λIK—a system for the most
basic modal logic IK (for “intuitionistic” and “Kripke”)—as our object of study. We construct
an NbE model for λIK, and show that it is an instance of the possible-worlds semantics for
IK. The presented NbE procedure has been formalized (Valliappan 2020–2021) in the proof
assistant Agda (Abel et al. 2005–2021).

The Fitch-style modal lambda calculus under consideration. IK extends intuitionistic
propositional logic with the necessity modality �, the necessitation rule (if · ` A then Γ ` �A)
and the K axiom (�(A → B) → �A → �B). Correspondingly, λIK extends the simply-typed
lambda calculus (STLC) with the typing rules in Figure 1. The rules for λ-abstraction and
function application are formulated in the usual way—but note the modified variable rule!

Ty A ::= ... | �A Ctx Γ ::= · | Γ, x : A | Γ,µ

Γ, x : A,Γ′ ` x : A
µ /∈ Γ′ Γ,µ ` t : A

Γ ` box t : �A

Γ ` t : �A

Γ,µ,Γ′ ` unbox t : A
µ /∈ Γ′

Figure 1: Typing rules for λIK (omitting λ-abstraction and application)

The NbE model for λIK. NbE is the process of evaluating, or interpreting, terms of a
calculus in a suitable model and then reifying, or extracting, normal forms from values in
that model. NbE for STLC can be performed by interpreting types and contexts as covariant
presheaves over the category W of contexts Γ, ∆ and order-preserving embeddings (OPEs)
e : Γ ≤ ∆, and terms as natural transformations (Altenkirch, Hofmann, and Streicher 1995).

Given that the category of presheaves Ŵ is a cartesian closed category (CCC), the evaluation
function L M : Γ ` A → JΓK .−→ JAK is given by the standard interpretation of STLC in a CCC.
The reification function, on the other hand, is given by a family of natural transformations
↓A : JAK .−→ Nf A, where the presheaf Nf A denotes normal forms of type A.

To achieve NbE for λIK, we define a new categoryWµ akin toW by requiring that morphisms
additionally preserve locks and refer to the resulting notion of context embedding as OLPE.
Note that whenever there is an OLPE e : Γ ≤ ∆ then ∆ has the exact same number of
locks as Γ. Further, we extend the interpretation of types and contexts to the type former �
and the context operator µ. Clouston (2018) shows that λIK can be soundly interpreted in
a CCC equipped with an adjunction Lock a Box of endofunctors by interpreting � by the
right adjoint Box and µ by the left adjoint Lock. Following this soundness result, we can use
the CCC Ŵµ as our new NbE model, after equipping it with an adjunction. By virtue of
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our definition of this adjunction (given in Figure 2), the evaluation of box and unbox is given
by the generic interpreter of Clouston (2018), and we can construct natural transformations

↓�A : Box JAK .−→ Nf �A, for every type A—thus retaining reification.
We summarize the data part of the NbE model for the modal fragment of λIK in Figure 2

as definitions in a constructive type-theoretic metalanguage. A presheaf A over Wµ consists
of a family of sets AΓ indexed by contexts Γ, and a family of functions wke : AΓ → AΓ′

indexed by OLPEs e : Γ ≤ Γ′. The reflection function ↑A defines a natural transformation
from the presheaf of neutral terms NeA, and can be used to construct an element idΓ

s : JΓKΓ.
Normalization for a term Γ ` t : A is then given by ↓AΓ (LtM(idΓ

s )).

x : A
Γ,µ

box x : BoxΓA
x : AΓ

lock x : Lock
Γ,µ,Γ′ A

µ /∈ Γ′

J K : Ty→ Ŵµ
J�AKΓ = BoxΓ JAK

J K : Ctx→ Ŵµ
J∆,µKΓ = LockΓ J∆K

L M : Γ ` A→ JΓK∆ → JAK∆

Lbox tM γ = box (LtM γ)

Lunbox tM 〈γ, 〉 = Lunbox tM γ
Lunbox tM (lock γ) = wkx

where box x = LtM γ

↓AΓ : JAKΓ → NfΓA

↓�A
Γ (box x) = box (↓A

Γ,µ x)

↑AΓ : NeΓA→ JAKΓ

↑�A
Γ n = box (↑A

Γ,µ(unboxn))

Figure 2: NbE for the modal fragment of λIK

Connection with possible-worlds semantics. Analogously to how the NbE model for
STLC can be seen as an instance of the Kripke semantics of IPL, the NbE model we present
here can be seen as an instance of the possible-worlds semantics of IK. Hence, the observation
that the NbE model construction for STLC corresponds to the completeness proof for Kripke
semantics (C. Coquand 1993; T. Coquand and Dybjer 1997) carries over to the setting here.

The possible-worlds semantics for IK is parameterized by a frame, i.e. a type W together
with two binary relations ≤ and R on W which are required to satisfy certain conditions (Božić
and Došen 1984; Došen 1985; Simpson 1994): 1. ≤ is reflexive, 2. ≤ is transitive, 3. if w ≤ w′

and w′ R v′ then there exists v : W such that w R v and v ≤ v′, and 4. if w R v and v ≤ v′

then there exists w′ : W such that w ≤ w′ and w′ R v′. An element w : W can be thought of
as a representation of the “knowledge state” about some “possible world” at a certain point in
time; w ≤ w′ as representing an increase in knowledge; and w R v as specifying accessibility of
worlds from one another.

Given a frame (W,≤, R), the possible-worlds semantics interprets a formula A at w : W
as the presheaf A(w) over (W,≤). The interpretation of �A at w is the type of functions
p assigning an element p(v) : A(v) to every v : W such that w R v. Note that, by virtue
of the frame conditions, the interpretation of � extends to a functor Box on the category of
presheaves and that Box has a left adjoint Lock. Hence, the possible-worlds semantics fits into
the semantic framework of Clouston (2018). The left adjoint Lock can be described directly as
mapping A and w : W to the type of pairs 〈v, a〉 where v : W such that v R w and a : A(v)

Now, we observe that the NbE model for λIK can be seen as the possible-worlds model where
we pick Fitch-style contexts for W , OLPEs for ≤, extensions by a µ for R, i.e. Γ R ∆ if and
only if there exists Γ′ such that µ 6∈ Γ′ and ∆ = Γ,µ,Γ′ (cf. Figures 1 and 2), and normal forms
as the interpretation of base types. Note that the required frame conditions are satisfied.
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