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Examples of communication 

interfaces 
Introduction 
With the word communication we mean the transport of information from a transmitter to at 
least one receiver and often transport in the other direction too, sometimes at the same time. 
Traditionally communication interfaces have been about interconnections without that much 
intelligence which means that many of the standards describe how to physically interconnect 
devices and does not handle the format of the information transmitted. These physical cha-
racteristics might involve changes in voltage levels or transformation from balanced to un-
balanced signal or the other way around. The protocol of the transfer is not part of the inter-
face but we use our application programs to generate this by setting the bit rate, define  how 
bits and words should look and so on maybe with the use of prewritten standard modules. 
This means that it is not that hard to get at least some simple communication going even if we 
don´t live up to the full standard of the transfer. 
In modern interfaces much of the intelligence of the transfer has moved from the application 
program to the interfaces and they have become much more complicated. In this cases there is 
normally no way to establish a communication channel without following the standards to the 
point and letting the interfaces establish their communication link before the transfer can take 
place. These new interface standards like USB and Bluetooth have increased the capabili-
ties of the interfaces tremendously but it has at the same time taken away some of the control 
of the transfer from the programmer and we have to rely on the circuits and firmware in the 
interfaces. 
In this paper we will focus on the older, less intelligent, types of communications interfaces. 
We shall see that the interfaces are quite simple and if we like we can use them for communi-
cation channels that don´t follow any standard protocol at all, the exceptions to this are GPIB, 
the I2C and one wire interfaces at the end of the paper. 
The transport in a communication channel might be in only one direction or in both direc-
tions, that is it might be uni- or bidirectional. If we have communication in only one direction 
we talk about a simplex channel. If the communication can go in both directions but not at the 
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same time we have half duplex and if the communication can take place in both directions at 
the same time then we have (full) duplex. 
The communication might take place between only two units, one transmitter and one re-
ceiver, or if the communication is bidirectional two transceivers (short for transmit-
ter/receiver). In this case we talk about peer to peer communication. If the transmission is 
from one transmitter to several receivers we talk about multicast. In this case the communica-
tion is in most cases only in one direction, which means that we have one sender and many 
receivers. A peer to peer communication could involve more than two devices but then only 
two devices are active at any one time. 
Another situation arises if we have a number of units connected together trough a common 
network, we talk about a bus topology. In its basic form of bus communication one unit trans-
mits a message containing some kind of address and the other units are listening on the bus 
and if the listening unit have the same address as the transmitted address it will accept the 
reception of the message while the other units will ignore it. We can have a number of varia-
tions to this. The address does not have to be the address of a specific unit but can instead be a 
header indicating what kind of data that will be transmitted and then all units that have inter-
est in this kind of data will accept and receive it. We will see an example of this when we talk 
about the CAN (Controller area network)  interface later on. 
Obviously only one unit can be talking at any given time on a bus network so the access to the 
bus needs to be controlled in some way. In some protocols we have a master unit which will 
always initiate the communication by sending the start message and this might be a command 
to other units or a request for an answer from some unit. In this case the other units are called 
slaves and they will only respond to requests from the master and not start any conversation 
on their own. In some cases they can request attention from the host though. In other proto-
cols more than one unit can initialize a conversation and in those cases we talk about multi 
master protocols. 
In all types of bus communication we need a way to decide which of the unit that is allowed 
to talk at any given time. This can be done in several ways. One way is to let all units talk in 
turn, we pass a token around and when a unit has the token it may speak on the bus. We have 
a token ring. This is quite simple but it is inefficient if the needed transmission rate differs 
between the different units on the bus. In this case we would vast a lot of time slots passing 
the token around to units that have nothing to transmit. 
In other bus topologies we don´t allocate separate time 
slots to the different units but we let them talk when 
they have something to say. This calls for some way to 
decide which unit that will be allowed to speak while 
the other unit(s) back off. We have what is called an 
arbitration process. This is for example typical for 
CAN networks that are quit common in automotive 
applications. We will have a brief look at this later. 
Another distinction we need to do when we talk about 
communication is how the physical transportation layer 
looks. If we base or communication on data of a given 
length, for example a byte, we could transmit all the 
bits at the same time through different, parallel wires or 
bit by bit on one single wire. In the first case we talk 
about parallel communication, Figure 1, while we in 
the other case have serial communication, Figure 2. It 

 

Figure 1 Parallel communication 

 

Figure 2 Serial communication 
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might seem like the parallel connection would always be a better choice since we can deliver 
all the bits at the same time and this would be faster than a serial communication channel. 
This might be true but we have some problems associated with parallel protocols. 
Modern equipment becomes more and more complicated and it gets harder and harder to find 
room within the integrated circuits and on the printed circuit boards for the parallel data lines 
and since the data words are getting larger 
the number of lines increase. Things are 
being even more complicated by our con-
stant effort to increase the speed of the 
data transfer. We have now reached speeds 
where we have to take in account the time 
it will take for the information to pass 
though a wire from one unit to another and 
if the parallel wires are not of exactly the 
same length the bits in the word will reach 
the receiver at slightly different times and 
we have a great risk of reading false data, 
Figure 3. This uncertainty in the arrival 
time of different bits is called skew. 
If we use serial communication the routing of wires will be simpler and we don´t have any 
skew between bits, they come one by one. For this reasons almost all modern fast communi-
cation protocols are serial. 
In the serial case we still have a risk of misreading the received data if we read it at the wrong 
time. We need a way to synchronize the transmitter and the receiver. One way to do this is to 
send a synchronization signal, a clock signal, on a separate wire, but then we need this extra 
wire. Another way is to code the information bits in a way that will give a pulse edge in every 
bit that the receiver can trigger on, see Synchronous serial transfer later on. This would 
be a somewhat more complicated protocol. In both cases we talk about synchronous commu-
nication where both transmitter and receiver use the same synchronization signal. Later we 
will have a look at the SPI protocol (Serial peripheral interface) and the Inter-integrated cir-
cuit protocol I2C. Both protocols use a separate clock line, although I2C is a bus interface. 
Another way is to let transmitter and receiver use their own internal clocks to decide the 
transmission speed and thereby decide when to transmit a bit and when to read the received 
bit respectively. We have an asynchronous protocol. Since we cannot be sure that the clocks 
in the two units run at exactly the same speed and that the phasing is the same we have to 
keep the transmission rate lower than in the synchronous case so the two clocks don´t drift 
that far apart and we have to have some kind of synchronization between the transmitter and 
the receiver to set the timing of the transfer but this synchronization will not take place on 
every bit in the transfer. One common way to do this is to add extra bits to the transmission of 
every message for synchronisation. In the SCI protocol (Serial communications interface), 
that we will look at later, the synchronization is done by adding a start bit at the beginning of 
every byte that is transmitted to trigger and synchronize the start of the transfer. 
When we talk about serial communication we need to 
separate unbalanced and balanced wire links. This 
holds true for both analog and digital signals. 
In the unbalanced case we use only one wire and the 
transmitted signal is a voltage referenced to ground, 
Figure 4. The voltages for both signal levels can be 

 

Figure 4 Unbalanced link 

 

Figure 3 Misreading caused by skew 
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separated from 0 Volts. 
In the balanced case we use two wires and the signals 
are represented by the voltage difference between 
these two wires and we have no reference to ground, 
Figure 5. 
In noisy environments or when the distance between 
the transmitter and the receiver is long the balanced, 
differential approach is to prefer. Let´s explain why. 
If an unbalanced signal is disturbed by interference, 
noise, this will be an extra voltage that will be added 
to the transmitted signal voltage and we have the risk 
of misreading the received signal, Figure 6. On the 
other hand if we use balanced transmission the distur-
bance will most likely affect both wires in the same 
way if they are placed close together and the voltage 
difference between the wires, which is the important 
voltage in this case, not the voltage levels as such, 
are only slightly affected by the disturbance and the 
received bit will still be read correctly, Figure 7. 
One thing that is used here and there in communi-
cation is modems. Modem is short for modula-
tor/demodulator and is a device that is used to trans-
form our binary bits into a suitable form for the 
transmission channel and then back again. An example is the telephone modem. These are 
used for digital communication over telephone lines. An ordinary telephone line can transfer 
signals with frequencies in the band 200 Hz to 3.3 kHz and in the simplest form of telephone 
modem the ‘1’:s and ‘0’:s are converted into two different tones that fit into this frequency 
range. To make duplex communication possible we use a total of four frequencies, two for the 
communication in one direction and the other two for the communication in the other direc-
tion. 
Table 1 show the frequencies used in the modem stan-
dard V.21. By using more frequencies and/or using 
phase information we can transmit more than one data 
bit with each transmitted symbol and thereby increase 
the transmission speed or we can communicate over 
several channels at the same time. 
So far we have mostly talked about wires but there is nothing stopping us from using other 
transmission media like light (optical fiber) or radio waves. In these media we normally mo-
dulate our information on a carrier wave, a fixed high frequency signal and this will give a 
serial channel even if we as stated earlier can use methods to embed more than one bit of in-
formation into each transmitted character. If we use so called spread spectrum for the transfer 
we can use a whole set of carrier waves and thereby transmit more than one bit at the same 
time, we send one bit per carrier wave. This is for example used in digital radio (DAB, Digital 
Audio Broadcast). 
We will now move on to some examples of communication protocols starting with two par-
allel protocols and then focus on serial solutions. 
 
 

 

Figure 5 Balanced link 

 

Figure 6 Unbalanced link with 
disturbance 

 

Figure 7 Balanced link with disturbance 

Channel One [Hz ] Zero [Hz] 
1 980 1180 
2 1650 1850 

Table 1 Frequencies in the modem 
standard V.21 
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Examples of  parallel 
communication protocols 
We will have a look at two examples of parallel interfaces. The first one is an example of a 
parallel interface between a microcontroller and external memory chip while the other de-
scribes the GPIB bus, a bus widely used to interconnect intelligent measuring instruments in 
a network together with a controller. 

Parallel memory interface 
A memory interface on a microcontroller is used to expand the available amount of mem-
ory by adding external memory devices. This could be done through a parallel or a serial 
interface. In the serial case we will in most cases use a synchronous serial interface (SPI) 
or an I2C interface. We will get back to these interfaces later on. 
For the moment we will have a look at the parallel interface. As the description implies we 
use a parallel approach, that is the data bits are presented at the same time, on separate 
wires in a data bus. This is not enough though because we need to select the address in the 
external memory to read from or write to, that is we need a parallel address bus too and fi-
nally we will need some control wires. 
Let´s look at the way the microcontroller HC12 from Freescale addresses external mem-
ory as an example. The HC12 has a number of different addressing methods when it 
comes to addressing external memory, we will just mention two of these. Both of these 
methods can be used when the processor is in emulation mode where some of the internal 
operations of the processor are emulated externally. In this mode the external bus is confi-
gured out of reset with the bus control signals enabled. We have two different emulation 
modes 
 
 Emulation expanded wide where we have a 16 bit wide address bus and a 16 bit wide 

data bus 
 Emulation expanded narrow where we have 16 bit wide address bus and a 8 bit wide 

data bus 
 
We will use the latter in our example. In both cases the 16 address lines are connected 
through PORTB (A0-A7) and PORTA (A8-A15) in the processor while the data bus uses 
the same two ports in wide mode and just PORTA in narrow mode. As we can see the data 
and address bus shares the same port(s) and to make this possible the address and data lines 
are active during separate parts of a cycle of reading data from or writing data to external 
memory. During the first part of a read/write cycle the address bus is active and during the 
latter part the data bus is active. We say that the bus is multiplexed. Now the selected ad-
dress in the memory chip will be addressed during the first phase of the clock cycle but 
when we get to the read/write phase this address still needs to be active and address the 
external unit so we need to use some external logic to hold, remember, the address during 
this second phase, the data phase. 
Let´s as an example see how we can use the emulation expanded narrow mode to address 
an 8K big static RAM memory called 6264. The memory has a 13 bit wide address bus for 
8K of data and an 8 bit wide data bus. There are four more control signals to the memory 
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 One active low output enable signal /OE that we use when we want to read data from 
the memory 

 One active low write enable signal /WE that we use when we want to write data to the 
memory 

 Two active high chip select signals CS1 and CS2 
 

From the processor we will use two signals besides the data and the address bus 
 
 The read/write signal R/W, where high level indicates read phase 
 The E clock ECLK which is low during the address phase and high during the data 

phase 
 
We will use some logic together with these two signals to create the necessary control sig-
nals for the memory. In the emulation mode we use the lower 16K of the address space to 
address internal memory while we have 48K left for external memory. The address lines 
A15-A14 will split the total address space into four slots (value 00 for the internal mem-
ory). Since our 8K memory will only fill half of one of these external slots we will use 
A15-A13 and at first some logic and then a 3/8 decoder to place the memory in the ad-
dress space. Let´s place it at the start address 0xC000. This means that A15-A13 should 
have the value 110  to activate the memory (high signal) and using NAND-logic we get 
 

131415131415 AAAAAACS1   

 
If we like we can use the decoder to place other 
memories in other slots. Now let us create the control 
signals. Let us start with the /WE signal. We can 
realize that this signal should be active (low) in the 
data phase (ECLK high) if the R/W signal is low. We 
will get the truth table in Table 2 and the logical ex-
pression 
 

R/WECLKWE   
 
The output enable signal /OE should be active (low) 
in the data phase and when the R/W signal is high. We 
will get the truth table in Table 3 and the logical ex-
pression 
 

R/WECLKOE   
 
We can draw a full schematic of the memory interface, 
Figure 8 and Figure 9. 
 
 
 
 

ECLK R/W /WE 
0 0 1 
0 1 1 
1 0 0 
1 1 1 

 
Table 2 Truth table for the 
/WE signal 

ECLK R/W /OE 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

 
Table 3 Truth table for the 
/OE signal 
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Figure 9 Parallel external memory interface using an 3/8 decoder for the address 
decoding 

 

Figure 8 Parallel external memory interface using discrete logic for the address decoding 
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In Figure 8 we have used discrete logic for the address decoding and we get a somewhat 
simpler schematic. In Figure 9 we have used a 3/8 decoder for the address decoding. Using 
this circuit we can use the same decoding to incorporate more memory circuits into the 
schematic. We just activate the other memories using some of the other outputs from the 
decoder. 
In the expanded wide mode where we have 16 data lines multiplexed with the 16 address 
lines the main difference from the description above will be that we need to remember the 
values of all 16 address lines during the data phase. 

GPIB or IEEE-488 
GPIB (General Purpose Instrumentation Bus) is an 8 bit wide parallel communication bus 
developed primarily for the connection of programmable measurement instruments. It was 
originally developed by Hewlett-Packard who named it HP-IB (Hewlett-Packard Instru-
ment bus) but when it got standardized it was given its present name. The bus has been 
standardized by the US organization IEEE (Institute of Electrical and Electronics Engi-
neers) as standard IEEE-488. The standard has later evolved to the standard 
ANSI/IEEE488.1. In Europe the bus has been standardized by IEC (International Elec-
trotechnical Commission) as standard IEC-625. Later on the standard ANSI/IEEE488.2 
defined how controllers and interfaces communicate. SCPI (Standard Commands for Pro-
grammable Instruments) took the command structure from ANSI/IEEE488.2 to create a 
comprehensive command set that can be used to program any SCPI instrument no matter 
the brand. 
Three types of devices can be connected to the bus: controllers, talkers and listeners. Some 
devices may have more than one of these functions. Up to 15 devices can be connected to 
the bus. Each device is assigned a unique primary address ranging from 0-30. A secondary 
address may also be specified in the same range. 
A control system can in its minimum configuration consist of one controller and one talker 
or listener. The controller controls the traffic on the bus. There may be more than one con-
troller connected to the bus but only one of them can be active at any one time. One of the 
controllers has the head role of system controller. A listener is a device that receives data 
from the bus when so instructed by the controller. A talker puts data one to bus when so 
instructed by the controller. 
The data transfer rate in standard GPIB can be up to 1.8 Mbyte/second. There is a newer 
high speed standard, HS488, that can use data transfers up to 8  Mbyte/second. 
The physical interface in GPIB consists of 16 signal lines and 8 ground lines, Table 4. The 
signal lines are divided into three groups: 8 data lines (each of which can be shielded by 
one ground line), three handshake lines and five interface management lines. 
The data lines DIO1 – DIO8 can transfer addresses, data and control information. DIO1 is 
the least significant bit. 
The three handshake lines control the transfer over the bus and are used to acknowledge 
the transfer of data. 
 
 The NRFD (Not Ready for Data) line is asserted by a listener to indicate that it is not 

yet ready for the next data or control byte 
 The NDAC (Not Data Accepted) line is asserted by a listener to indicate that it has not 

yet accepted the data or control byte on the data lines 
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 The DAV (Data Valid) line is as-
serted by the talker to indicate that a 
data or control byte has been placed 
on the data lines and can now safely 
be accepted by other devices 

 
The five interface management lines 
manage the flow of data and control 
bytes across the interface. 
 
 The ATN (Attention) signal is as-

serted by the controller to indicate 
that it is placing a address or control 
byte on the data bus 

 The EOI (End or Identify) signal has 
two functions. A talker may assert 
the line simultaneously with the last 
data byte to indicate end of data. The 
controller may assert EOI along with 
ATN to indicate a parallel poll 

 The IFC (Interface Clear) signal is 
asserted by the system controller to 
initialize all device interfaces to a 
known state. After releasing IFC the 
system controller is the active con-
troller 

 The REN (Remote Enable) signal is 
asserted by the system controller. 
REN enables a device to go into re-
mote mode when addressed to listen. In remote mode the device should ignore its local 
front panel controls 

 The SRQ (Service Request) signal is an interrupt signal. It may be asserted by any de-
vice to request the controller to take some kind of action 

 
The devices can be connected in either a linear configuration, Figure 10, in a star configu-
ration, Figure 11 or in a combination of the two, Figure 12, using a shielded 24 conductor 
cable. The maximal separation between two devices is 4 meters while the maximal total 
cable length is 20 meters. 
 
 
 
 
 
 
 
 
 
 

Pin Abbreviation Name 
1 DIO1 Data input/output bit 1 
2 DIO2 Data input/output bit 2 
3 DIO3 Data input/output bit 3 
4 DIO4 Data input/output bit 4 
5 EIO End or Identify 
6 DAV Data Valid 
7 NRFD Not Ready for Data 
8 NDAC Not Data Accepted 
9 IFC Interface Clear 

10 SRQ Service Request 
11 ATN Attention 
12  Shield 
13 DIO5 Data input/output bit 5 
14 DIO6 Data input/output bit 6 
15 DIO7 Data input/output bit 7 
16 DIO8 Data input/output bit 8 
17 REN Remote Enable 
18  Shield 
19  Shield 
20  Shield 
21  Shield 
22  Shield 
23  Shield 
24  Single GND 

Table 4 24 pin connector used by GPIB 

 

Figure 10 Linear GPIB configuration 

 

Figure 11 Star GPIB configuration 
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The interconnection use a chunky con-
nector with both a male and a female side 
which means that connectors can be 
stacked on top of each other, Figure 13. 
The bus uses standard TTL logic levels 
with a negative logic meaning that a one 
(1) will give a low TTL level while a zero 
(0) will give a high TTL level. 
The protocol and its connectors might seem old and bulky but is still used to a wide extent 
since there are many instruments out there equipped witch GPIB interfaces. There is a 
trend away from using GPIB instruments towards using instruments equipped with USB, 
Firewire or Ethernet interfaces. There are adapters that convert between the GPIB interface 
and the more modern interfaces so that you can keep your older instruments with GPIB 
and control them using the newer interfaces. 

Examples of serial communication 
protocols 
RS-232 
One of the most common interface standards for data communication is EIA´s Recom-
mended Standard 232C (RS-232-C). EIA is an abbreviation of Electric Industries Associ-
ation representing many manufacturers in the US electronics industry. RS-232-C is a stan-
dard that defines the electrical characteristics of signals for serial computer communica-
tion. It defines how ‘1’:s and ‘0’:s should be electrically transmitted, including the voltage 
levels needed as well as the other signal characteristics necessary in the communication but 
it doesn´t define the communication protocol used in the transfer. Since it only gives the 
electrical characteristics it can be used for different protocols, both synchronous and 
asynchronies, even if we mostly associate it with asynchronous communication. 

 

Figure 12 Combination of linear and star GPIB configuration 

 

Figure 13 GPIB connector 
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RS-232-C is an 
unbalanced 
protocol where 
ones (1) and ze-
ros (0) are 
transmitted using 
negative and po-
sitive voltages. 
A one (1), a 
mark, is repre-
sented by an 
electrical signal 
between -3 and  
-15 Volts (often 
-12 Volts). A 
zero (0), a space, 
is represented by 
an electrical sig-
nal between +3 
and +15 Volts 
(often +12 
Volts). Signals 
outside these 
ranges are con-
sidered unde-
fined and are ig-
nored. Since 
these voltages 
differ from the 
usual 0 and +5 
Volts or 3.3 
Volts levels seen 
inside computers 
the communica-
tion interface 
must contain 
means to convert 
from 0 and +5 
Volts (or +3.3 
Volts) to the RS-
232-C levels and 
back again. The 
maximal distance 
between trans-
mitter and receiver is 15 meter. The protocol can use half or full duplex. 
In RS-232-C we define two types of interfaces, the data terminal equipment (DTE) which 
uses the reception pin (RD) as input and the transmission pin (TD) as output and the data 
communication equipment (DCE) which uses the pin the other way around. The DTE 

Pin Abbriviation Name Direction 
1 GND Protective ground Both ways 
2 TD Transmitted data TDE to DCE 
3 RD Received data TCE to DTE 
4 RTS Request to send TDE to DCE 
5 CTS Clear to send TCE to DTE 
6 DSR Data set ready TCE to DTE 
7 SG Signal ground Both ways 
8 DCD Data carrier detect TCE to DTE 
9  Positive test voltage TCE to DTE 

10  Negative test voltage TCE to DTE 
11  Unassigned  
12 SDCD Secondary data carrier detect TCE to DTE 
13 SCTS Secondary clear to send TCE to DTE 
14 STD Secondary transmitted data TDE to DCE 
15 TC Transmit clock TCE to DTE 
16 SRD Secondary received data TCE to DTE 
17 RC Receive clock TCE to DTE 
18  Unassigned  
19 SRTS Secondary request to send TDE to DCE 
20 DTR Data terminal ready TDE to DCE 
21 SQ Signal quality detect TCE to DTE 
22 RI Ring indicator TCE to DTE 
23 DRS Data rate select Either way 
24 XTC External transmit clock TDE to DCE 
25  Unassigned  

Table 5 25 pin DSUB connector for RS-232-C 

Pin Abbriviation Name Direction 
1 DCD Data carrier detect TCE to DTE 
2 RD Received data TCE to DTE 
3 TD Transmitted data TDE to DCE 
4 DTR Data terminal ready TDE to DCE 
5 SG Signal ground Both ways 
6 DSR Data set ready TCE to DTE 
7 RTS Request to send TDE to DCE 
8 CTS Clear to send TCE to DTE 
9 RI Ring indicator TCE to DTE 

Table 6 9 pin DSUB connector for RS-232-C 
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should have male connectors while the TCE should have female connectors. The RS-232-
C definition does not specify the type of connector to be used but in many cases 25 pin 
DSUB connectors are used for the full implementation (Table 5) while 9 pin DSUB con-
nectors could be used if we leave out some of the rarely used signals (Table 6) and the lat-
ter is the most common case. Unfortunately the interface doesn´t contain any power line so 
we cannot supply power to external devices through the interface. 
We are not going to go through all of the signals in the interface but we can see from Table 
5  that the full implementation includes pins for clock transfer (pin 15, 17 and 24) which 
means that it can be used for synchronous communication. These signals are missing from 
the 9 pin version in Table 6 which means that this implementation can only be used for 
asynchronous transfer. 
In the simplest form of SCI communication where we don´t use any handshaking signals 
we only need three lines RD, TD and ground (SG). 
If we are to connect two interfaces of the same kind (two DTE units) some of the signals 
has to be twisted, that is go between different pins in the two connectors, Figure 14 and 
Table 7. The other signals are connected to the other DTE in the same way as in Table 6, 
that is RD and TD are twisted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a zero modem two DTE units are connected to each other and the signals are connected 
in a way that makes the two unit think that they get response from another unit while all 
communication are done through software.. To do this we need to connect some of the 
outgoing signals from a unit back into inputs. We need to this at both ends of the commu-
nication line, Figure 15 and Table 8. 
 
 
 
 
 
 
 
 
 
 

DTE1 DTE2 
Pin Abbriviation Pin Abbriviation
1 DCD 1 DCD 
2 RD 3 TD 
3 TD 2 RD 
4 DTR 6 DSR 
5 SG 5 SG 
6 DSR 4 DTR 
7 RTS 8 CTS 
8 CTS 7 RTS 
9 RI  RI 

Table 7 Connecting two DTE units to each 
other 

 

Figure 14 Connecting two DTE units to each 
other 
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Let´s look at the most common use of RS-232-C, asynchronous communication, often 
called SCI (Serial Communication Interface). 

Asynchronous serial communication, 
SCI 
The transfer will need a clock signal. The clock frequency will give the period for each 
digit in the transfer. This rate is measured in digits per second or Baud. Since we can 
use clever coding to transmit more than one bit of information in each digit the actual 
number of bits transferred each second, the symbol rate, may be greater than the Baud 
rate. Typical Baud rates are 9600, 38400 and 115200 Baud although the RS-232-C 
standard sets the speed limit to 20 kbps. 
In asynchronous communication no common clock signal is transferred between the two 
interfaces which mean that each interface has to have its own clock. Since these two 
clocks are not absolutely stable but may drift somewhat in frequency and may have dif-
ferent phases we need some way to synchronize the two units. We do this by starting 
each transmitted word with a start bit that will retrigger the receiver’s clock. 
In rest when there is no transmission the level on the transmission line is high (‘1’ typi-
cally -12 Volts) so the start bit consist of one clock interval of low level (‘0’ typically 
+12 Volts). After that we send the data bits starting with the least significant bit (LSB). 
The number of data bits may be from five to eight bits. 
When all these data bits have been sent there might come a parity bit which we will get 
back to soon. 
Finally we transmit stop bits which in reality is a return to the high, idle level. We can 
specify the number of stop bit to be 1, 1.5 or 2 bits. This means that we have to wait this 
number of clock cycles before we start sending the next word my sending a new start 
bit. 
There is always a risk of errors in the transfer so there would be a good idea to have a 
system to detect, or even better correct errors. The simplest way to detect errors is to use 
a parity bit. We can have four different types of parity bits. With odd parity we use this 
bit to make sure that the number of ones (1) in the data word, including the parity bit, is 
odd. That is if the number of ones (1) in the data word is odd we set the parity bit to 
zero (0) and if the number of ones in the data word is even then we set the parity bit to 

Pin Output Pin Input 
4 DTR 1 DCD 

6 DSR 
7 RTS 8 CTS 

Table 8 Zero modem connection 

 

Figure 15 Zero modem connection 
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one (1). In Figure 16 we see the transfer of 
the ASCII code 65 (0x41), which is the 
letter ‘A’ using an eight bit word with odd 
parity. ASCII stands for American Stan-
dard Code for Information Interchange. 
Even parity works in the same way but we 
use the parity bit to make sure that the 
number of ones (1) in the data word, in-
cluding the parity bit, is even. In Figure 17 
we see the same example as in Figure 16 
but using even parity. 
With odd or even parity we can detect, but 
not correct an odd number of errors in the 
transfer. 
Sometimes a parity bit is used but it is al-
ways set to zero (0). We call this space par-
ity, Figure 18. In this case an error, a one in 
this bit would indicate an error in the trans-
mission. 
In the same way we sometimes use a parity 
bit that is always set to one (1). We call this 
mark parity, Figure 19. 
If we are not using any parity bit and this 
bit is omitted from the transfer we say that 
we have no parity, Figure 20. 
 
 
 
 
 
 
 

 
 
There are more elaborate ways to detect and even correct errors in data transfer but 
these are not part of RS-232-C. One well known method is called Hamming coding, 
see below. 

 

Figure 16 Coding of the letter ’A with odd 
parity’ in computer and on RS-232 link 

 

Figure 17 Coding of the letter ’A’ with even 
parity

S
tartbit

S
topbit

P
aritybit

 

Figure 19 Coding of the leter ’A’ with mark 
parity 

 

Figure 20 Coding of the letter ’A’ with no 
parity 

S
tartbit

S
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P
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Figure 18 Coding of the letter ’A’ with space 
parity 
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In the asynchronous transfer we can use the other signals in the protocol, besides the 
data pins, to control the transfer. A receiving device could for example use DTR (Data 
Terminal Ready) to signal that it is ready to receive data and later to signal that it wants 
to suspend the transfer. We use what is called hardware handshaking. 
There is also software handshaking using XON and XOFF signals. The receiver sends 
the XOFF code (decimal 19, hexadecimal 0x13) to tell the transmitter to stop the trans-
fer and then it uses XON (decimal 17, hexadecimal 0x11) to tell the transmitter to re-
sume the transfer. 

Baud rate and symbol rate 
As stated above the Baud rate is the rate of the transfer over the serial interface, that 
is the rate of the bits. In modern communication protocols using serial interfaces 
there are clever methods to transfer more than one symbol within each transferred bit 
using some kind of modulation. This means that the symbol rate in the transfer can 
be higher than the bit rate. 

Simplified RS-232 
In some simple cases we rely totally 
on the information buried in the serial 
bits and do away with all the control 
and handshaking signals leaving just 
the receive and transmit lines, Rx and 
Tx respectively, and a ground signal 
of course. The connection could be 
done in two different ways depending 
on the devices involved. 
If we have one DTE and one DCE the 
connections to the DCE could be re-
versed so we can use a straight cable 
with pin 2 in one end connected to pin 
2 in the other end and pin 3 in one end 
connected to pin 3 in the other end, 
Figure 21. 
On the other hand if we are connect-
ing one DTE to another DTE then Rx 
in one end needs to be connected to 
Tx in the other end and this means 
that pin 2 in one end needs to be con-
nected to pin three in the other and for 
this we need a crossover cable, Figure 
22. 
Since both types of cables are quit 
common we need to make sure that 
we are using the correct one. 
 
 

 

Figure 21 Straight SCI connection 

 

Figure 22 Crossover SCI connection 
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Typical transmission sequence 
A typical asynchronous 
transmitter might look like 
Figure 23. The processor 
writes data to a data register. 
When the serial interface is 
ready to transmit this data it 
reads the data register and 
loads the data in parallel into 
the transmission shift register. 
At the same time the interface 
sets the signal Transmis-
sion Data Register Empty 
so the processor can write new data to the data register whenever it wants. If enabled 
a transmission interrupt request will also be triggered at this time. When the data is 
transferred to the shift register we add start, stop and parity bits to complete the word 
that is to be transmitted and then the data is shifted out through the TX pin bit by bit. 

Typical reception sequence 
A typical asynchronous receiver might look like Figure 24. The data is shifted in to 
the shift register through the RX 
pin. When the register is full it 
will in parallel be loaded into the 
data register. At the same time the 
interface will set the signal Re-
ception Data Register Full 
and if enabled a reception inter-
rupt request will be flagged. The 
interface will also do a check of 
the received parity bit if it is used 
and signal if the parity bit is 
wrong. 

Hamming Coding 
Hamming Coding is a set of algorithms that can be used to detect errors in a transfer 
and even correct some of these errors. The code can have different levels of com-
plexity handling different word lengths and different number of errors. The simplest 
form is called Hamming (7:4) Code and consists of groups of four data bits (D3, D2, 
D1 and D0) and three parity bits (P2, P1 and P0). The total word that we send has the 
structure D3D2D1P2D0P1P0. The parity bits are calculated using the following equa-
tions 
 

SCI Data Register

Transmission shift 
register

Parity 
generation

Parity type

Number of bits

New data
Load data

TX

Data in
Transmission data 

register empty

 

Figure 23 Asynchronous transmitter 

 

Figure 24 Asynchronous receiver 
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


















0120

0231

1232

DDDP

DDDP

DDDP

 

 
Where   represents exclusive-OR which is the same as addition modulo-2. 
At the receiver we calculate the equations 
 




















00120

10231

21232

PDDDS

PDDDS

PDDDS

 

 
And the binary 3 bit word S2S1S0 tells us in which position in the word, if any, there 
is an error. 000 indicates no error. 101 indicate error in bit 5 counting from the end 
of the word, that is error in bit D1. 001 indicates error in bit one, that is the last bit in 
the word P0. As we can see the coding can detect one error, no matter if it is in a data 
bit or in a parity bit and we can also indicate in which bit the error is so we can cor-
rect it. More than one error in the transmission will give us problem though. 
Example: 
We are to send the four data bits 
 

10110123 DDDD  

 
This will give the parity bits 
 



















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0101
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DDDP

 
 
and we will send the sequence 
 

10101000102123 PPDPDDD  

 
At a correct reception the receiver will calculate its check bits 
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The result 
 

000012 SSS  

 
indicates that the result is correct. 
Let´s say that we get a transmission error in bit D1 so that the received sequence is 
 

10001000102123 PPDPDDD  

 
The receiver will calculate its check signals 
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The result 
 

10012 5101 SSS  

 
indicates an error in bit five if we set the rightmost bit to bit one and we can see that 
bit five is D1 so we have not only detected an error but also detected in what bit the 
error occurred. 

RS422, RS423 and RS485 
In some more modern equipment RS-232-C has been replaced by other standards that 
could be used at longer distances and at higher speed. We will briefly mention three of 
these. All three can only use half duplex and can work up to 1200 meter. 
RS-423 is an unbalanced standard that allows one transmitter and ten receivers at a maxi-
mal speed of 100 Kbps at a distance of 12 meter while the maximal speed is 1 Kbps at a 
distance of 1200 meter. The voltage levels are compatible with RS-232-C. 
RS-422 is a balanced variation of RS-423 with the same number of transmitters and re-
ceivers. The maximal speed is 10 Mbps at a distance of 12 meter and 100 Kbps at a dis-
tance of 1200 meter. 
RS-485 is a balanced bus protocol that allows 32 transmitters and 32 receivers. The maxi-
mal speed is 35 Mbps at a distance of 12 meter and 100 Kbps at a distance of 1200 meter. 
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In most cases we use one unit as master and the other units as slaves but there are also im-
plementations where all units can act as masters and initialize a data session. RS-485 is 
used as the electrical layer for a number of well known interface standards, including 
DMX, Profibus and Modbus. 

Synchronous serial communication 
In synchronous serial communication the transmitter and the receiver use the same syn-
chronization source, the same clock signal. The clock could be embedded in the data 
stream or be distributed over a separate line. In the latter case this clock is in most cases 
generated by a master unit in the system. 
We will briefly mention how a protocol with the clock embedded in the data stream might 
look and then we will move on to synchronous protocols. We will have a look at two 
common synchronous protocols, SPI and I2C. These are both intended for short distance 
communication between a central unit, a processor, and peripheral units like memories and 
A/D converters. 

Return to zero protocols 
In a return to zero (RTZ) protocol the trans-
mitted signal will always return to zero (0) 
level in every bit period. We will give two ex-
amples. In Figure 25 a bit period always starts 
with the signal going high (1) and ends with 
the signal going low (0) but depending on if 
the signal is a zero (0) or a one (1) we will 
change the duty cycle of the signal. A high 
duty cycle (long pulse) indicates a one (1) 
while a low duty cycle (short pulse) indicates a 
zero (0). 
In Figure 26 we use three levels: positive, neg-
ative and zero. A bit period always starts with 
the signal leaving the zero state and it is going 
positive for a logic one (1) while it goes nega-
tive for a logic zero (0). After half the bit pe-
riod the signal will in both cases return to zero 
level. 
In both these examples a bit period starts with a positive or negative flank generated 
with a fixed frequency and we can use this flank to synchronize the receiver on every 
transferred bit, that is we have a clock embedded into the data stream. 

Serial peripheral interface, SPI 
The serial peripheral interface, SPI, was developed by Motorola and has received a 
broad acceptance in the industry and we can find a lot of units using this interface. Ex-
amples of units using this interface are A/D and D/A converters, memories (mostly 
EEPROM and flash memories), real time clocks and sensors. It is an expansion of an 
older interface from National Semiconductor called Microwire. Later on the SPI inter-

 

Figure 26 Return to zero protocol with 
positive and negative signal level 

1 0 01

Data

+5V

1  

Figure 25 Return to zero protocol 
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face have evolved into new incarnations as Queued SPI (QSPI) and 
MicrowirePLUS. 
Since it is a synchronous protocol for short distances the transfer rate can be high, up to 
tens of Mbps. 
The system consists of one master unit while the other units act as slaves. Although we 
can connect more than one slave unit to the master only one of these slaves can be ac-
tive at any one time. As a result the interface gives a fast and reliable communication 
channel for short distance transfers between two units (peer-to-peer). 
The physical connection consists of four wires, Figure 27 and Table 9. 
 
 
 
 
 
 
 
 
 
 
We can see from Figure 27 that the master generates the communication clock, SCLK, 
and we have separate lines for communication from the master to the slave, MOSI 
(Master Out, Slave In) and for communication from the slave to the master, MISO 
(Master In, Slave Out). In reality the two registers act as one long shift register and 
when the master is pushing a bit out on the MOSI line and into the slave it will also 
push out a bit from the slaves register and on to the MISO line. This means that we have 
communication in both directions at the same time, we have full duplex. The two lines 
are actually always sending and it is up to the receiver to decide if it wants to read the 
data or not. If a unit only transmits data it can just discard the received data. If the unit 
is only supposed to receive data how-
ever it has to produce some dummy data 
for transfer. 
The slave select signal, SS, is generated 
by the master and is used to activate the 
slave that it wants to speak to and it is 
also indicating the start and stop of each 
word in the transmission. Since the sig-
nal is active low it will often be named 
/SS. If we have more than one slave in 
the system the master must be able to 
generate one /SS signal for each slave 
and these slave signals needs to be mu-
tually excluding each other, Figure 28. 
The interface in its basic form supports 
the transfer of 8 bit data but it can be 
made to work with different word 
length and the /SS signal will then 
control when the transfer is completed. 

Symbol Name 
MOSI Master out, slave in 
MISO Master in, slave out 
SCLK Serial clock 
/SS Slave select 

Table 9 Signal lines in the SPI protocol 

 

Figure 27 SPI communication with one 
slave 

 

Figure 28 SPI communication with three slaves 



 
Microcomputer systems 

Examples of communication interfaces 
sida 21 

 

The SPI interface has no predefined 
transfer protocol but it can work in four 
different modes controlling when the 
data is read relative to the phase of the 
serial clock, Table 10. 
If CPOL=0 then the signal is low when 
idle. If CPOL=1 then the signal is high 
in idle mode. 
When CPHA=0 data is latched at the rising edge of the serial clock if CPOL=0 and on 
the falling edge if CPOL=1. If CPHA=1 the polarities are reversed, Figure 29 and Fig-
ure 30. Some units can be configured for more than one mode while others only can 
work in one of the modes. The successor Microwire only supported CPOL=0 and 
latched incoming data on the rising edge of the serial clock while outgoing data was 
latched on the falling edge of SCLK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SPI mode CPOL CPHA Active edge 
0 0 0 Rising 
1 0 1 Falling 
2 1 0 Falling 
3 1 1 Rising 

Table 10 Clocking modes in SPI 

 

Figure 30 SPI signals when CPHA=0 

 

Figure 29 SPI signals when CPHA=1 
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Inter-integrated circuit, I2C 
The inter-integrated circuit bus, I2C, I2C or I2 was developed by Philips to control the 
separate units in their stereo and TV equipment but have since moved into the same 
type of short distance applications as the SPI interface. 
The I2C has three speed grades, slow (under 100 Kbps), fast (400 Kbps) and high-speed 
(3.4 Mbps). To fulfill the specifications 
the distance between the units should be 
no longer than 3 meters. The short dis-
tance makes the bus most suited for use in 
communication between circuits inside a 
unit and not between units.  
The I2C bus is a two wire bus with one 
line, SDA, for the serial data and one line, 
SCL, for the serial clock. The bus can use 
half duplex and is a multi-master bus. No 
chip select signals or arbitration logic is 
required, Figure 31. 
Electrically the bus connec-
tion looks like Figure 32. 
We can see that the node 
connections use open drain 
devices and that the clock 
and data busses use pull up 
resistors to give the bus 
high level in rest. 
In a communication transfer 
the sequence would be as 
follows 
 
 
 
1. The master sends a start condition signal (S) and controls the clock signal 
2. The master sends a unique 7-bit address addressing the slave that the master wants to 

talk to 
3. The master sends a read/write bit. If the master wants to send (write) data to the slave 

the bit is ‘0’ and if the master wants to receive (read) data from the slave the bit is set 
to ‘1’ 

4. The receiver sends acknowledge bit (ACK) confirming that it has received the ad-
dress and the read/write bit 

5. The transmitter (master or slave) transmits one byte of data 
6. The receiver sends an ACK bit to acknowledge that it has received the data byte 
7. If more data are to be sent phase 5 and 6 are repeated 
8. For a write transaction (master transmitting) the master issues a stop condition (P) af-

ter the last byte of data 
For a read transaction (master receiving) the master does not acknowledge the final 
byte but just issues a stop condition (P) 

 

 

Figure 32 The I2C bus electrical connection 

 

Figure 31 The I2C bus 
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The start condition (S) is a high-to-low transaction on the SDA line while the SCL line 
is high, Figure 35. 
The STOP condition (P) is a low-to-high transaction on the SDA line while the SCL 
line is high, Figure 36. 
 
 
 
 
 
 
 
 
 
The ACK signal is generated when the receiver 
pulls SDA low, Figure 37, while the transmitter 
allows it to float high (NACK), Figure 38. If the 
receiver returns a low ACK signal it indicates 
that it has received the data and is ready for a 
new transfer. If it returns a high ACK signal it 
indicates that the unit cannot accept any further 
data and that the master should terminate the 
transfer by sending a STOP condition. If the 
slave has problems keeping up with the speed of 
the transfer it can slow down the transfer by 
holding the clock line, SCL, low and thereby 
stopping the clock. 
A data bit transaction takes place while SCL is 
low and the data gets valid when the SCL goes 
high, Figure 39. 
 

 

Figure 35 I2C start condition 

 

Figure 36 I2C stop condition 

 

Figure 37 I2C ACK condition 

 

Figure 38 I2C NACK condition 

S Slave address A Data A DataR/W A/A P

’0' write

From master to slave

From slave to master

R/W = read/write

A = acknowledge

S = start condition

P = stop condition

A = not acknowledge
 

Figure 33 I2C a master addressing a slave receiver and transfering two bytes of data to the slave 

 
Figure 34 I2C a master addressing a slave receiver and receiving two bytes of data from the 
slave 
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1-wire bus 
An example of a very simple bus is the 1-wire bus from Dallas Semiconductor. It uses a 
twisted-pair for transfer. In the pair one line is ground while the other carries the data 
signal and this line can at the same time supply power to the connected devices. 
The bus can have one 
master device and a num-
ber of slaves. The connec-
tions to the bus are 
through open drain cir-
cuits with a pull up resis-
tor to the power line at the 
master unit closing the cir-
cuit. This means that the 
bus is at high level when 
idle. The bus accepts 
supply voltages in the 
range 2.8 to 6 Volts and 
uses standard CMOS/TTL 
levels for the data transfer 
Figure 40. 
All communication on the bus is started by the master and no slave can talk on the bus 
if not requested by the master. Communication between slaves can only take place 
through the master. 
The master starts a transfer by resetting the bus by pulling it low for more than 480 µs. 
Within 60 µs after the end of the reset all slaves that recognize the reset pulse will be 
pulling the bus low for at least 60 µs. After that each transfer over the bus is initialized 
by the master pulling the bus low for a short moment. All the units on the bus are syn-
chronized by this falling edge. If the sending unit, be it the master or a slave, wants to 
send a ‘1’ it continues this initialization pulse by keeping the bus low for at least 60 µs. 
To send a ‘0’ the unit pulls the bus low for less than 15 µs. The transfer is taking place 
with LSB first. 
All units on a 1-wire bus have a unique 64 bit serial number. Starting from LSB the 
number begins with 8 bits giving a family code to identify the device type. This is fol-

 

Figure 39 I2C data transaction 

 

Figure 40 1-wire bus 
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lowed by 48 bits giving a unique individual address for each device. The last 8 bits are a 
CRC (Cyclic Redundancy Check) checksum. 
The slaves on the bus can be powered over 
the bus, Figure 41. To do this each unit has 
a rectifying diode and a capacitor built in. 
When the bus is at high level the bus 
charges the capacitor through the diode. 
When the bus is at low level the diode is 
reverse biased and isolates the charged ca-
pacitor. The slave unit then takes its power 
from the charge in the capacitor. 
The bus has developed into a more modern 
version, 1-wire Extended, that increases 
the noise immunity on the bus. 
Typical units developed for this bus include 
memories, A/D-converters, clocks and temperature sensors. A special type of units is 
the so called iButtons. These small buttons communicate wirelessly through induction 
with a unit on the bus and can be used for security identification, for example to gain 
access to garages end entrances. 

 

 

Figure 41 Power over 1-wire bus 


