
MOTOROLA.COM/SEMICONDUCTORS

HCS12
Microcontrollers

S12CPUV2/D
Rev. 0

S12CPUV2

Reference Manual

7/2003

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2003

S12CPUV2
Reference Manual

To provide the most up-to-date information, the revision of our documents on the
World Wide Web will be the most current. Your printed copy may be an earlier
revision. To verify you have the latest information available, refer to:

http://motorola.com/semiconductors

The following revision history table summarizes changes contained in this
document. For your convenience, the page number designators have been linked
to the appropriate location.
S12CPUV2 Reference Manual

MOTOROLA 3

Revision History
Revision History

Date
Revision

Level
Description

Page
Number(s)

July,
2003

0 Initial release N/A
Reference Manual S12CPUV2

4 Revision History MOTOROLA

Reference Manual — S12CPUV2

List of Sections
Revision History 4
List of Sections 5
Table of Contents 7
List of Figures 15
List of Tables 17

Section 1. Introduction .19

Section 2. Overview .25

Section 3. Addressing Modes .33

Section 4. Instruction Queue .51

Section 5. Instruction Set Overview 59

Section 6. Instruction Glossary .91

Section 7. Exception Processing.315

Section 8. Instruction Queue .327

Section 9. Fuzzy Logic Support341

Appendix A. Instruction Reference381

Appendix B. M68HC11 to CPU12 Upgrade Path.409

Appendix C. High-Level Language Support431
Index 439
S12CPUV2 Reference Manual

MOTOROLA List of Sections 5

List of Sections
Reference Manual S12CPUV2

6 List of Sections MOTOROLA

Reference Manual — S12CPUV2

Table of Contents
Revision History 4
List of Sections 5
Table of Contents 7
List of Figures 15
List of Tables 17

Section 1. Introduction
1.1 Introduction .19

1.2 Features .19

1.3 Symbols and Notation. .20
1.3.1 Abbreviations for System Resources20
1.3.2 Memory and Addressing .21
1.3.3 Operators .22
1.3.4 Definitions. .23

Section 2. Overview
2.1 Introduction .25

2.2 Programming Model .25
2.2.1 Accumulators .26
2.2.2 Index Registers .26
2.2.3 Stack Pointer .26
2.2.4 Program Counter .27
2.2.5 Condition Code Register .27
2.2.5.1 S Control Bi t .28
2.2.5.2 X Mask Bit .29
2.2.5.3 H Status Bit. .29
2.2.5.4 I Mask Bit .30
2.2.5.5 N Status Bit. .30
2.2.5.6 Z Status Bit .30
2.2.5.7 V Status Bit .31
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 7

Table of Contents
2.2.5.8 C Status Bit. .31

2.3 Data Types .31

2.4 Memory Organization .32

2.5 Instruction Queue .32

Section 3. Addressing Modes
3.1 Introduction .33

3.2 Mode Summary .33

3.3 Effective Address .33

3.4 Inherent Addressing Mode .35

3.5 Immediate Addressing Mode .35

3.6 Direct Addressing Mode .36

3.7 Extended Addressing Mode .37

3.8 Relative Addressing Mode .37

3.9 Indexed Addressing Modes .38
3.9.1 5-Bit Constant Offset Indexed Addressing41
3.9.2 9-Bit Constant Offset Indexed Addressing41
3.9.3 16-Bit Constant Offset Indexed Addressing42
3.9.4 16-Bit Constant Indirect Indexed Addressing42
3.9.5 Auto Pre/Post Decrement/Increment Indexed Addressing. .43
3.9.6 Accumulator Offset Indexed Addressing 44
3.9.7 Accumulator D Indirect Indexed Addressing 45

3.10 Instructions Using Multiple Modes .45
3.10.1 Move Instructions .45
3.10.2 Bit Manipulation Instructions .47

3.11 Addressing More than 64 Kbytes .48

Section 4. Instruction Queue
4.1 Introduction .51

4.2 Queue Description .51
4.2.1 Original M68HC12 Queue Implementation 52
4.2.2 HCS12 Queue Implementation .52

4.3 Data Movement in the Queue. .52
4.3.1 No Movement .53
Reference Manual S12CPUV2

8 Table of Contents MOTOROLA

Table of Contents
4.3.2 Latch Data from Bus (Applies Only to the M68HC12 Queue
Implementation)53
4.3.3 Advance and Load from Data Bus53
4.3.4 Advance and Load from Buffer (Applies Only to M68HC12
Queue Implementation)53

4.4 Changes in Execution Flow .53
4.4.1 Exceptions .54
4.4.2 Subroutines .54
4.4.3 Branches .55
4.4.3.1 Short Branches .56
4.4.3.2 Long Branches. .56
4.4.3.3 Bit Condition Branches. .57
4.4.3.4 Loop Primitives. .57
4.4.4 Jumps. .58

Section 5. Instruction Set Overview
5.1 Introduction .59

5.2 Instruction Set Description .59

5.3 Load and Store Instructions .60

5.4 Transfer and Exchange Instructions .61

5.5 Move Instructions .62

5.6 Addition and Subtraction Instructions .63

5.7 Binary-Coded Decimal Instructions .64

5.8 Decrement and Increment Instructions.65

5.9 Compare and Test Instructions. .66

5.10 Boolean Logic Instructions .67

5.11 Clear, Complement, and Negate Instructions.68

5.12 Multiplication and Division Instructions69

5.13 Bit Test and Manipulation Instructions70

5.14 Shift and Rotate Instructions. .71

5.15 Fuzzy Logic Instructions .72
5.15.1 Fuzzy Logic Membership Instruction72
5.15.2 Fuzzy Logic Rule Evaluation Instructions.72
5.15.3 Fuzzy Logic Weighted Average Instruction 73
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 9

Table of Contents
5.16 Maximum and Minimum Instructions .75

5.17 Multiply and Accumulate Instruction .76

5.18 Table Interpolation Instructions. .76

5.19 Branch Instructions .77
5.19.1 Short Branch Instructions .78
5.19.2 Long Branch Instructions .79
5.19.3 Bit Condition Branch Instructions .80

5.20 Loop Primitive Instructions .81

5.21 Jump and Subroutine Instructions .82

5.22 Interrupt Instructions .83

5.23 Index Manipulation Instructions .85

5.24 Stacking Instructions. .86

5.25 Pointer and Index Calculation Instructions87

5.26 Condition Code Instructions .88

5.27 Stop and Wait Instructions .89

5.28 Background Mode and Null Operations90

Section 6. Instruction Glossary
6.1 Introduction .91

6.2 Glossary Information. .92

6.3 Condition Code Changes .93

6.4 Object Code Notation .94

6.5 Source Forms .95

6.6 Cycle-by-Cycle Execution. .98

6.7 Glossary .103

Section 7. Exception Processing
7.1 Introduction .315

7.2 Types of Exceptions .315

7.3 Exception Priority .316

7.4 Resets. .318
7.4.1 Power-On Reset. .318
Reference Manual S12CPUV2

10 Table of Contents MOTOROLA

Table of Contents
7.4.2 External Reset .318
7.4.3 COP Reset .319
7.4.4 Clock Monitor Reset .319

7.5 Interrupts. .319
7.5.1 Non-Maskable Interrupt Request (XIRQ)319
7.5.2 Maskable Interrupts .320
7.5.3 Interrupt Recognition .320
7.5.4 External Interrupts .321
7.5.5 Return-from-Interrupt Instruction (RTI)321

7.6 Unimplemented Opcode Trap. .322

7.7 Software Interrupt Instruction (SWI) .322

7.8 Exception Processing Flow. .323
7.8.1 Vector Fetch .323
7.8.2 Reset Exception Processing .323
7.8.3 Interrupt and Unimplemented Opcode Trap Exception Pro-
cessing 325

Section 8. Instruction Queue
8.1 Introduction .327

8.2 External Reconstruction of the Queue327

8.3 Instruction Queue Status Signals .328
8.3.1 HCS12 Timing Detail .329
8.3.2 M68HC12 Timing Detail .329
8.3.3 Null (Code 0:0). .331
8.3.4 LAT — Latch Data from Bus (Code 0:1)331
8.3.5 ALD — Advance and Load from Data Bus (Code 1:0) .331
8.3.6 ALL — Advance and Load from Latch (Code 1:1).331
8.3.7 INT — Interrupt Sequence Start (Code 0:1) 331
8.3.8 SEV — Start Instruction on Even Address (Code 1:0) .332
8.3.9 SOD — Start Instruction on Odd Address (Code 1:1). .332

8.4 Queue Reconstruction (for HCS12) .332
8.4.1 Queue Reconstruction Registers (for HCS12)333
8.4.1.1 fetch_add Register. .333
8.4.1.2 st1_add, st1_dat Registers .333
8.4.1.3 st2_add, st2_dat Registers .333
8.4.1.4 st3_add, st3_dat Registers .334
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 11

Table of Contents
8.4.2 Reconstruction Algorithm (for HCS12)334

8.5 Queue Reconstruction (for M68HC12)335
8.5.1 Queue Reconstruction Registers (for M68HC12).336
8.5.1.1 in_add, in_dat Registers .336
8.5.1.2 fetch_add, fetch_dat Registers.336
8.5.1.3 st1_add, st1_dat Registers .336
8.5.1.4 st2_add, st2_dat Registers .336
8.5.2 Reconstruction Algorithm (for M68HC12) 337
8.5.2.1 LAT Decoding. .337
8.5.2.2 ALD Decoding .338
8.5.2.3 ALL Decoding. .338

8.6 Instruction Tagging .339

Section 9. Fuzzy Logic Support
9.1 Introduction .341

9.2 Fuzzy Logic Basics .342
9.2.1 Fuzzification (MEM) .344
9.2.2 Rule Evaluation (REV and REVW).346
9.2.3 Defuzzification (WAV) .348

9.3 Example Inference Kernel .349

9.4 MEM Instruction Details .351
9.4.1 Membership Function Definitions .351
9.4.2 Abnormal Membership Function Definitions.353
9.4.2.1 Abnormal Membership Function Case 1355
9.4.2.2 Abnormal Membership Function Case 2356
9.4.2.3 Abnormal Membership Function Case 3356

9.5 REV and REVW Instruction Details .357
9.5.1 Unweighted Rule Evaluation (REV)357
9.5.1.1 Set Up Prior to Executing REV 357
9.5.1.2 Interrupt Details .359
9.5.1.3 Cycle-by-Cycle Details for REV359
9.5.2 Weighted Rule Evaluation (REVW)363
9.5.2.1 Set Up Prior to Executing REVW.363
9.5.2.2 Interrupt Details .365
9.5.2.3 Cycle-by-Cycle Details for REVW365

9.6 WAV Instruction Details .368
Reference Manual S12CPUV2

12 Table of Contents MOTOROLA

Table of Contents
9.6.1 Set Up Prior to Executing WAV .369
9.6.2 WAV Interrupt Details. .369
9.6.3 Cycle-by-Cycle Details for WAV and wavr370

9.7 Custom Fuzzy Logic Programming. .374
9.7.1 Fuzzification Variations .374
9.7.2 Rule Evaluation Variations .377
9.7.3 Defuzzification Variations .378

Appendix A. Instruction Reference
A.1 Introduction .381

A.2 Stack and Memory Layout .382

A.3 Interrupt Vector Locations. .382

A.4 Notation Used in Instruction Set Summary.383

A.5 Hexadecimal to Decimal Conversion408

A.6 Decimal to Hexadecimal Conversion408

Appendix B. M68HC11 to CPU12 Upgrade Path
B.1 Introduction .409

B.2 CPU12 Design Goals .409

B.3 Source Code Compatibility .410

B.4 Programmer’s Model and Stacking. .413

B.5 True 16-Bit Architecture .413
B.5.1 Bus Structures .413
B.5.2 Instruction Queue .414
B.5.3 Stack Function .415

B.6 Improved Indexing .417
B.6.1 Constant Offset Indexing .418
B.6.2 Auto-Increment Indexing .419
B.6.3 Accumulator Offset Indexing .420
B.6.4 Indirect Indexing .420

B.7 Improved Performance .421
B.7.1 Reduced Cycle Counts. .421
B.7.2 Fast Math .421
B.7.3 Code Size Reduction .422
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 13

Table of Contents
B.8 Additional Functions .423
B.8.1 Memory-to-Memory Moves .426
B.8.2 Universal Transfer and Exchange 426
B.8.3 Loop Construct .427
B.8.4 Long Branches .427
B.8.5 Minimum and Maximum Instructions427
B.8.6 Fuzzy Logic Support. .428
B.8.7 Table Lookup and Interpolation .428
B.8.8 Extended Bit Manipulation .429
B.8.9 Push and Pull D and CCR .429
B.8.10 Compare SP. .429
B.8.11 Support for Memory Expansion .430

Appendix C. High-Level Language Support
C.1 Introduction .431

C.2 Data Types .431

C.3 Parameters and Variables .432
C.3.1 Register Pushes and Pulls .432
C.3.2 Allocating and Deallocating Stack Space.433
C.3.3 Frame Pointer. .433

C.4 Increment and Decrement Operators434

C.5 Higher Math Functions .434

C.6 Conditional If Constructs. .435

C.7 Case and Switch Statements .435

C.8 Pointers. .436

C.9 Function Calls .436

C.10 Instruction Set Orthogonality .437
Index 439
Reference Manual S12CPUV2

14 Table of Contents MOTOROLA

Reference Manual — S12CPUV2

List of Figures
Figure Title Page

2-1 . Programming Model .25

6-1 . Example Glossary Page .92
7-1 . Exception Processing Flow Diagram324

8-1 . Queue Status Signal Timing (HCS12) 329

8-2 . Queue Status Signal Timing (M68HC12)330
8-3 . Reset Sequence for HCS12 .335
8-4 . Reset Sequence for M68HC12. .338

8-5 . Tag Input Timing. .339

9-1 . Block Diagram of a Fuzzy Logic System 343

9-2 . Fuzzification Using Membership Functions 345
9-3 . Fuzzy Inference Engine .349
9-4 . Defining a Normal Membership Function352

9-5 . MEM Instruction Flow Diagram. .354

9-6 . Abnormal Membership Function Case 1 355

9-7 . Abnormal Membership Function Case 2 356

9-8 . Abnormal Membership Function Case 3 356
9-9 . REV Instruction Flow Diagram .360
9-10 . REVW Instruction Flow Diagram .367
9-11 . WAV and wavr Instruction Flow Diagram (for HCS12)372
9-12 . WAV and wavr Instruction Flow Diagram (for M68HC12) . .373
9-13 . Endpoint Table Handling .376
A-1 . Programming Model .381
S12CPUV2 Reference Manual

MOTOROLA List of Figures 15

List of Figures
Reference Manual S12CPUV2

16 List of Figures MOTOROLA

Reference Manual — S12CPUV2

List of Tables
Table Title Page

Table Title Page

3-1 . M68HC12 Addressing Mode Summary 34
3-2 . Summary of Indexed Operations .40
3-3 . PC Offsets for MOVE Instructions (M68HC12 Only) 46
5-1 . Load and Store Instructions .60
5-2 . Transfer and Exchange Instructions.62
5-3 . Move Instructions .62
5-4 . Addition and Subtraction Instructions63
5-5 . BCD Instructions. .64
5-6 . Decrement and Increment Instructions.65
5-7 . Compare and Test Instructions .66
5-8 . Boolean Logic Instructions .67
5-9 . Clear, Complement, and Negate Instructions.68
5-10 . Multiplication and Division Instructions.69
5-11 . Bit Test and Manipulation Instructions70
5-12 . Shift and Rotate Instructions .71
5-13 . Fuzzy Logic Instructions .73
5-14 . Minimum and Maximum Instructions 75
5-15 . Multiply and Accumulate Instructions76
5-16 . Table Interpolation Instructions .77
5-17 . Short Branch Instructions .78
5-18 . Long Branch Instructions .79
5-19 . Bit Condition Branch Instructions .80
5-20 . Loop Primitive Instructions .81
5-21 . Jump and Subroutine Instructions .83
5-22 . Interrupt Instructions. .84
5-23 . Index Manipulation Instructions .85
5-24 . Stacking Instructions .86
5-25 . Pointer and Index Calculation Instructions87
S12CPUV2 Reference Manual

MOTOROLA List of Tables 17

List of Tables
5-26 . Condition Code Instructions .88
5-27 . Stop and Wait Instructions .89
5-28 . Background Mode and Null Operation Instructions 90
7-1 . CPU12 Exception Vector Map .316
7-2 . Stacking Order on Entry to Interrupts321
8-1 . IPIPE1 and IPIPE0 Decoding (HCS12 and M68HC12) . . .330
8-2 . Tag Pin Function .339
A-1 . Instruction Set Summary .387
A-2 . CPU12 Opcode Map .401
A-3 . Indexed Addressing Mode Postbyte Encoding (xb)403
A-4 . Indexed Addressing Mode Summary404
A-5 . Transfer and Exchange Postbyte Encoding405
A-6 . Loop Primitive Postbyte Encoding (lb)406
A-7 . Branch/Complementary Branch .406
A-8 . Hexadecimal to ASCII Conversion407
A-9 . Hexadecimal to/from Decimal Conversion408
B-1 . Translated M68HC11 Mnemonics 410
B-2 . Instructions with Smaller Object Code412
B-3 . Comparison of Math Instruction Speeds 422
B-4 . New M68HC12 Instructions .424
Reference Manual S12CPUV2

18 List of Tables MOTOROLA

Reference Manual — S12CPUV2

Section 1. Introduction
1.1 Introduction

This manual describes the features and operation of the core (central
processing unit, or CPU, and development support functions) used in all
HCS12 microcontrollers. For reference, information is provided for the
M68HC12.

1.2 Features

The CPU12 is a high-speed, 16-bit processing unit that has a
programming model identical to that of the industry standard M68HC11
central processor unit (CPU). The CPU12 instruction set is a proper
superset of the M68HC11 instruction set, and M68HC11 source code is
accepted by CPU12 assemblers with no changes.

• Full 16-bit data paths supports efficient arithmetic operation and
high-speed math execution

• Supports instructions with odd byte counts, including many
single-byte instructions. This allows much more efficient use of
ROM space.

• An instruction queue buffers program information so the CPU has
immediate access to at least three bytes of machine code at the
start of every instruction.

• Extensive set of indexed addressing capabilities, including:

– Using the stack pointer as an indexing register in all indexed
operations

– Using the program counter as an indexing register in all but
auto increment/decrement mode

– Accumulator offsets using A, B, or D accumulators

– Automatic index predecrement, preincrement, postdecrement,
and postincrement (by –8 to +8)
S12CPUV2 Reference Manual

MOTOROLA Introduction 19

Introduction
1.3 Symbols and Notation

The symbols and notation shown here are used throughout the manual.
More specialized notation that applies only to the instruction glossary or
instruction set summary are described at the beginning of those
sections.

1.3.1 Abbreviations for System Resources

A — Accumulator A
B — Accumulator B
D — Double accumulator D (A : B)
X — Index register X
Y — Index register Y
SP — Stack pointer
PC — Program counter
CCR — Condition code register

S — STOP instruction control bit
X — Non-maskable interrupt control bit
H — Half-carry status bit
I — Maskable interrupt control bit
N — Negative status bit
Z — Zero status bit
V — Two’s complement overflow status bit
C — Carry/Borrow status bit
Reference Manual S12CPUV2

20 Introduction MOTOROLA

Introduction
Symbols and Notation
1.3.2 Memory and Addressing

M — 8-bit memory location pointed to by the effective
address of the instruction

M : M+1 — 16-bit memory location. Consists of the contents of the
location pointed to by the effective address
concatenated with the contents of the location at the
next higher memory address. The most significant byte
is at location M.

M~M+3
M(Y)~M(Y+3)

— 32-bit memory location. Consists of the contents of the
effective address of the instruction concatenated with
the contents of the next three higher memory locations.
The most significant byte is at location M or M(Y).

M(X) — Memory locations pointed to by index register X
M(SP) — Memory locations pointed to by the stack pointer
M(Y+3) — Memory locations pointed to by index register Y plus 3
PPAGE — Program overlay page (bank) number for extended

memory (>64 Kbytes).
Page — Program overlay page
XH — High-order byte
XL — Low-order byte
() — Content of register or memory location
$ — Hexadecimal value
% — Binary value
S12CPUV2 Reference Manual

MOTOROLA Introduction 21

Introduction
1.3.3 Operators

+ — Addition

– — Subtraction

• — Logical AND

+ — Logical OR (inclusive)

⊕ — Logical exclusive OR

× — Multiplication

÷ — Division

M — Negation. One’s complement (invert each bit of M)

: — Concatenate
Example: A : B means the 16-bit value formed by concatenat-
ing 8-bit accumulator A with 8-bit accumulator B.
A is in the high-order position.

⇒ — Transfer
Example: (A) ⇒ M means the content of accumulator A is
transferred to memory location M.

⇔ — Exchange
Example: D ⇔ X means exchange the contents of D with
those of X.
Reference Manual S12CPUV2

22 Introduction MOTOROLA

Introduction
Symbols and Notation
1.3.4 Definitions

Logic level 1 is the voltage that corresponds to the true (1) state.

Logic level 0 is the voltage that corresponds to the false (0) state.

Set refers specifically to establishing logic level 1 on a bit or bits.

Cleared refers specifically to establishing logic level 0 on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal
changes from logic level 1 to logic level 0 when asserted, and an
active high signal changes from logic level 0 to logic level 1.

Negated means that an asserted signal changes logic state. An active
low signal changes from logic level 0 to logic level 1 when negated,
and an active high signal changes from logic level 1 to logic level 0.

ADDR is the mnemonic for address bus.

DATA is the mnemonic for data bus.

LSB means least significant bit or bits.

MSB means most significant bit or bits.

LSW means least significant word or words.

MSW means most significant word or words.

A specific bit location within a range is referred to by mnemonic and
number. For example, A7 is bit 7 of accumulator A.

A range of bit locations is referred to by mnemonic and the numbers
that define the range. For example, DATA[15:8] form the high byte of
the data bus.
S12CPUV2 Reference Manual

MOTOROLA Introduction 23

Introduction
Reference Manual S12CPUV2

24 Introduction MOTOROLA

Reference Manual — S12CPUV2

Section 2. Overview
2.1 Introduction

This section describes the CPU12 programming model, register set, the
data types used, and basic memory organization.

2.2 Programming Model

The CPU12 programming model, shown in Figure 2-1 , is the same as
that of the M68HC11 CPU. The CPU has two 8-bit general-purpose
accumulators (A and B) that can be concatenated into a single 16-bit
accumulator (D) for certain instructions. It also has:

• Two index registers (X and Y)

• 16-bit stack pointer (SP)

• 16-bit program counter (PC)

• 8-bit condition code register (CCR)

Figure 2-1. Programming Model

7

15

15

15

15

15

D

IX

IY

SP

PC

A B

NS X H I Z V C

0

0

0

0

0

0

70

CONDITION CODE REGISTER

8-BIT ACCUMULATORS A AND B

16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

OR
S12CPUV2 Reference Manual

MOTOROLA Overview 25

Overview
2.2.1 Accumulators

General-purpose 8-bit accumulators A and B are used to hold operands
and results of operations. Some instructions treat the combination of
these two 8-bit accumulators (A : B) as a 16-bit double accumulator (D).

Most operations can use accumulator A or B interchangeably. However,
there are a few exceptions. Add, subtract, and compare instructions
involving both A and B (ABA, SBA, and CBA) only operate in one
direction, so it is important to make certain the correct operand is in the
correct accumulator. The decimal adjust accumulator A (DAA)
instruction is used after binary-coded decimal (BCD) arithmetic
operations. There is no equivalent instruction to adjust accumulator B.

2.2.2 Index Registers

16-bit index registers X and Y are used for indexed addressing. In the
indexed addressing modes, the contents of an index register are added
to 5-bit, 9-bit, or 16-bit constants or to the content of an accumulator to
form the effective address of the instruction operand. The second index
register is especially useful for moves and in cases where operands from
two separate tables are used in a calculation.

2.2.3 Stack Pointer

The CPU12 supports an automatic program stack. The stack is used to
save system context during subroutine calls and interrupts and can also
be used for temporary data storage. The stack can be located anywhere
in the standard 64-Kbyte address space and can grow to any size up to
the total amount of memory available in the system.

The stack pointer (SP) holds the 16-bit address of the last stack location
used. Normally, the SP is initialized by one of the first instructions in an
application program. The stack grows downward from the address
pointed to by the SP. Each time a byte is pushed onto the stack, the
stack pointer is automatically decremented, and each time a byte is
pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the
calling instruction is automatically calculated and pushed onto the stack.
Normally, a return-from-subroutine (RTS) or a return-from-call (RTC)
Reference Manual S12CPUV2

26 Overview MOTOROLA

Overview
Programming Model
instruction is executed at the end of a subroutine. The return instruction
loads the program counter with the previously stacked return address
and execution continues at that address.

When an interrupt occurs, the current instruction finishes execution. The
address of the next instruction is calculated and pushed onto the stack,
all the CPU registers are pushed onto the stack, the program counter is
loaded with the address pointed to by the interrupt vector, and execution
continues at that address. The stacked registers are referred to as an
interrupt stack frame. The CPU12 stack frame is the same as that of the
M68HC11.

NOTE: These instructions can be interrupted, and they resume execution once
the interrupt has been serviced:

• REV (fuzzy logic rule evaluation)
• REVW (fuzzy logic rule evaluation (weighted))
• WAV (weighted average)

2.2.4 Program Counter

The program counter (PC) is a 16-bit register that holds the address of
the next instruction to be executed. It is automatically incremented each
time an instruction is fetched.

2.2.5 Condition Code Register

The condition code register (CCR), named for its five status indicators,
contains:

• Five status indicators

• Two interrupt masking bits

• STOP instruction control bit
S12CPUV2 Reference Manual

MOTOROLA Overview 27

Overview
The status bits reflect the results of CPU operation as it executes
instructions. The five flags are:

• Half carry (H)

• Negative (N)

• Zero (Z)

• Overflow (V)

• Carry/borrow (C)

The half-carry flag is used only for BCD arithmetic operations. The N, Z,
V, and C status bits allow for branching based on the results of a
previous operation.

In some architectures, only a few instructions affect condition codes, so
that multiple instructions must be executed in order to load and test a
variable. Since most CPU12 instructions automatically update condition
codes, it is rarely necessary to execute an extra instruction for this
purpose. The challenge in using the CPU12 lies in finding instructions
that do not alter the condition codes. The most important of these
instructions are pushes, pulls, transfers, and exchanges.

It is always a good idea to refer to an instruction set summary (see
Appendix A. Instruction Reference) to check which condition codes
are affected by a particular instruction.

The following paragraphs describe normal uses of the condition codes.
There are other, more specialized uses. For instance, the C status bit is
used to enable weighted fuzzy logic rule evaluation. Specialized usages
are described in the relevant portions of this manual and in Section 6.
Instruction Glossary .

2.2.5.1 S Control Bit

Clearing the S bit enables the STOP instruction. Execution of a STOP
instruction normally causes the on-chip oscillator to stop. This may be
undesirable in some applications. If the CPU encounters a STOP
instruction while the S bit is set, it is treated like a no-operation (NOP)
instruction and continues to the next instruction. Reset sets the S bit.
Reference Manual S12CPUV2

28 Overview MOTOROLA

Overview
Programming Model
2.2.5.2 X Mask Bit

The XIRQ input is an updated version of the NMI input found on earlier
generations of MCUs. Non-maskable interrupts are typically used to deal
with major system failures, such as loss of power. However, enabling
non-maskable interrupts before a system is fully powered and initialized
can lead to spurious interrupts. The X bit provides a mechanism for
enabling non-maskable interrupts after a system is stable.

By default, the X bit is set to 1 during reset. As long as the X bit remains
set, interrupt service requests made via the XIRQ pin are not
recognized. An instruction must clear the X bit to enable non-maskable
interrupt service requests made via the XIRQ pin. Once the X bit has
been cleared to 0, software cannot reset it to 1 by writing to the CCR.
The X bit is not affected by maskable interrupts.

When an XIRQ interrupt occurs after non-maskable interrupts are
enabled, both the X bit and the I bit are set automatically to prevent other
interrupts from being recognized during the interrupt service routine. The
mask bits are set after the registers are stacked, but before the interrupt
vector is fetched.

Normally, a return-from-interrupt (RTI) instruction at the end of the
interrupt service routine restores register values that were present
before the interrupt occurred. Since the CCR is stacked before the X bit
is set, the RTI normally clears the X bit, and thus re-enables
non-maskable interrupts. While it is possible to manipulate the stacked
value of X so that X is set after an RTI, there is no software method to
reset X (and disable XIRQ) once X has been cleared.

2.2.5.3 H Status Bit

The H bit indicates a carry from accumulator A bit 3 during an addition
operation. The DAA instruction uses the value of the H bit to adjust a
result in accumulator A to correct BCD format. H is updated only by the
add accumulator A to accumulator B (ABA), add without carry (ADD),
and add with carry (ADC) instructions.
S12CPUV2 Reference Manual

MOTOROLA Overview 29

Overview
2.2.5.4 I Mask Bit

The I bit enables and disables maskable interrupt sources. By default,
the I bit is set to 1 during reset. An instruction must clear the I bit to
enable maskable interrupts. While the I bit is set, maskable interrupts
can become pending and are remembered, but operation continues
uninterrupted until the I bit is cleared.

When an interrupt occurs after interrupts are enabled, the I bit is
automatically set to prevent other maskable interrupts during the
interrupt service routine. The I bit is set after the registers are stacked,
but before the first instruction in the interrupt service routine is executed.

Normally, an RTI instruction at the end of the interrupt service routine
restores register values that were present before the interrupt occurred.
Since the CCR is stacked before the I bit is set, the RTI normally clears
the I bit, and thus re-enables interrupts. Interrupts can be re-enabled by
clearing the I bit within the service routine, but implementing a nested
interrupt management scheme requires great care and seldom improves
system performance.

2.2.5.5 N Status Bit

The N bit shows the state of the MSB of the result. N is most commonly
used in two’s complement arithmetic, where the MSB of a negative
number is 1 and the MSB of a positive number is 0, but it has other uses.
For instance, if the MSB of a register or memory location is used as a
status flag, the user can test status by loading an accumulator.

2.2.5.6 Z Status Bit

The Z bit is set when all the bits of the result are 0s. Compare
instructions perform an internal implied subtraction, and the condition
codes, including Z, reflect the results of that subtraction. The increment
index register X (INX), decrement index register X (DEX), increment
index register Y (INY), and decrement index register Y (DEY)
instructions affect the Z bit and no other condition flags. These
operations can only determine = (equal) and ≠ (not equal).
Reference Manual S12CPUV2

30 Overview MOTOROLA

Overview
Data Types
2.2.5.7 V Status Bit

The V bit is set when two’s complement overflow occurs as a result of an
operation.

2.2.5.8 C Status Bit

The C bit is set when a carry occurs during addition or a borrow occurs
during subtraction. The C bit also acts as an error flag for multiply and
divide operations. Shift and rotate instructions operate through the C bit
to facilitate multiple-word shifts.

2.3 Data Types

The CPU12 uses these types of data:

• Bits

• 5-bit signed integers

• 8-bit signed and unsigned integers

• 8-bit, 2-digit binary-coded decimal numbers

• 9-bit signed integers

• 16-bit signed and unsigned integers

• 16-bit effective addresses

• 32-bit signed and unsigned integers

Negative integers are represented in two’s complement form.

Five-bit and 9-bit signed integers are used only as offsets for indexed
addressing modes.

Sixteen-bit effective addresses are formed during addressing mode
computations.

Thirty-two-bit integer dividends are used by extended division
instructions. Extended multiply and extended multiply-and-accumulate
instructions produce 32-bit products.
S12CPUV2 Reference Manual

MOTOROLA Overview 31

Overview
2.4 Memory Organization

The standard CPU12 address space is 64 Kbytes. Some M68HC12
devices support a paged memory expansion scheme that increases the
standard space by means of predefined windows in address space. The
CPU12 has special instructions that support use of expanded memory.

Eight-bit values can be stored at any odd or even byte address in
available memory.

Sixteen-bit values are stored in memory as two consecutive bytes; the
high byte occupies the lowest address, but need not be aligned to an
even boundary.

Thirty-two-bit values are stored in memory as four consecutive bytes; the
high byte occupies the lowest address, but need not be aligned to an
even boundary.

All input/output (I/O) and all on-chip peripherals are memory-mapped.
No special instruction syntax is required to access these addresses.
On-chip registers and memory typically are grouped in blocks which can
be relocated within the standard 64-Kbyte address space. Refer to
device documentation for specific information.

2.5 Instruction Queue

The CPU12 uses an instruction queue to buffer program information.
The mechanism is called a queue rather than a pipeline because a
typical pipelined CPU executes more than one instruction at the same
time, while the CPU12 always finishes executing an instruction before
beginning to execute another. Refer to Section 4. Instruction Queue
for more information.
Reference Manual S12CPUV2

32 Overview MOTOROLA

Reference Manual — S12CPUV2

Section 3. Addressing Modes
3.1 Introduction

Addressing modes determine how the central processor unit (CPU)
accesses memory locations to be operated upon. This section discusses
the various modes and how they are used.

3.2 Mode Summary

Addressing modes are an implicit part of CPU12 instructions. Refer to
Appendix A. Instruction Reference for the modes used by each
instruction. All CPU12 addressing modes are shown in Table 3-1 .

The CPU12 uses all M68HC11 modes as well as new forms of indexed
addressing. Differences between M68HC11 and M68HC12 indexed
modes are described in 3.9 Indexed Addressing Modes . Instructions
that use more than one mode are discussed in 3.10 Instructions Using
Multiple Modes .

3.3 Effective Address

Each addressing mode except inherent mode generates a 16-bit
effective address which is used during the memory reference portion of
the instruction. Effective address computations do not require extra
execution cycles.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 33

Addressing Modes
Table 3-1. M68HC12 Addressing Mode Summary

Addressing Mode Source Format Abbreviation Description

Inherent
INST

(no externally
supplied operands)

INH Operands (if any) are in CPU registers

Immediate
INST #opr8i

or
INST #opr16i

IMM
Operand is included in instruction stream

8- or 16-bit size implied by context

Direct INST opr8a DIR
Operand is the lower 8 bits of an address

in the range $0000–$00FF

Extended INST opr16a EXT Operand is a 16-bit address

Relative
INST rel8

or
INST rel16

REL
An 8-bit or 16-bit relative offset from the current pc

is supplied in the instruction

Indexed
(5-bit offset)

INST oprx5,xysp IDX
5-bit signed constant offset

from X, Y, SP, or PC

Indexed
(pre-decrement)

INST oprx3,–xys IDX Auto pre-decrement x, y, or sp by 1 ~ 8

Indexed
(pre-increment)

INST oprx3,+xys IDX Auto pre-increment x, y, or sp by 1 ~ 8

Indexed
(post-decrement)

INST oprx3,xys– IDX Auto post-decrement x, y, or sp by 1 ~ 8

Indexed
(post-increment)

INST oprx3,xys+ IDX Auto post-increment x, y, or sp by 1 ~ 8

Indexed
(accumulator offset)

INST abd,xysp IDX
Indexed with 8-bit (A or B) or 16-bit (D)

accumulator offset from X, Y, SP, or PC

Indexed
(9-bit offset)

INST oprx9,xysp IDX1
9-bit signed constant offset from X, Y, SP, or PC

(lower 8 bits of offset in one extension byte)

Indexed
(16-bit offset)

INST oprx16,xysp IDX2
16-bit constant offset from X, Y, SP, or PC

(16-bit offset in two extension bytes)

Indexed-Indirect
(16-bit offset)

INST [oprx16,xysp] [IDX2]
Pointer to operand is found at...

16-bit constant offset from X, Y, SP, or PC
(16-bit offset in two extension bytes)

Indexed-Indirect
(D accumulator offset)

INST [D,xysp] [D,IDX]
Pointer to operand is found at...

X, Y, SP, or PC plus the value in D
Reference Manual S12CPUV2

34 Addressing Modes MOTOROLA

Addressing Modes
Inherent Addressing Mode
3.4 Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or
all operands are in internal CPU registers. In either case, the CPU does
not need to access any memory locations to complete the instruction.

Examples:
NOP ;this instruction has no operands
INX ;operand is a CPU register

3.5 Immediate Addressing Mode

Operands for immediate mode instructions are included in the instruction
stream and are fetched into the instruction queue one 16-bit word at a
time during normal program fetch cycles. Since program data is read into
the instruction queue several cycles before it is needed, when an
immediate addressing mode operand is called for by an instruction, it is
already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode
operand. One common programming error is to accidentally omit the #
symbol. This causes the assembler to misinterpret the expression that
follows it as an address rather than explicitly provided data. For
example, LDAA #$55 means to load the immediate value $55 into the A
accumulator, while LDAA $55 means to load the value from address
$0055 into the A accumulator. Without the # symbol, the instruction is
erroneously interpreted as a direct addressing mode instruction.

Examples:
LDAA #$55
LDX #$1234
LDY #$67

These are common examples of 8-bit and 16-bit immediate addressing
modes. The size of the immediate operand is implied by the instruction
context. In the third example, the instruction implies a 16-bit immediate
value but only an 8-bit value is supplied. In this case the assembler will
generate the 16-bit value $0067 because the CPU expects a 16-bit value
in the instruction stream.

Example:
BRSET FOO,#$03,THERE
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 35

Addressing Modes
In this example, extended addressing mode is used to access the
operand FOO, immediate addressing mode is used to access the mask
value $03, and relative addressing mode is used to identify the
destination address of a branch in case the branch-taken conditions are
met. BRSET is listed as an extended mode instruction even though
immediate and relative modes are also used.

3.6 Direct Addressing Mode

This addressing mode is sometimes called zero-page addressing
because it is used to access operands in the address range $0000
through $00FF. Since these addresses always begin with $00, only the
eight low-order bits of the address need to be included in the instruction,
which saves program space and execution time. A system can be
optimized by placing the most commonly accessed data in this area of
memory. The eight low-order bits of the operand address are supplied
with the instruction, and the eight high-order bits of the address are
assumed to be 0.

Example:
LDAA $55

This is a basic example of direct addressing. The value $55 is taken to
be the low-order half of an address in the range $0000 through $00FF.
The high order half of the address is assumed to be 0. During execution
of this instruction, the CPU combines the value $55 from the instruction
with the assumed value of $00 to form the address $0055, which is then
used to access the data to be loaded into accumulator A.

Example:
LDX $20

In this example, the value $20 is combined with the assumed value of
$00 to form the address $0020. Since the LDX instruction requires a
16-bit value, a 16-bit word of data is read from addresses $0020 and
$0021. After execution of this instruction, the X index register will have
the value from address $0020 in its high-order half and the value from
address $0021 in its low-order half.
Reference Manual S12CPUV2

36 Addressing Modes MOTOROLA

Addressing Modes
Extended Addressing Mode
3.7 Extended Addressing Mode

In this addressing mode, the full 16-bit address of the memory location
to be operated on is provided in the instruction. This addressing mode
can be used to access any location in the 64-Kbyte memory map.

Example:
LDAA $F03B

This is a basic example of extended addressing. The value from address
$F03B is loaded into the A accumulator.

3.8 Relative Addressing Mode

The relative addressing mode is used only by branch instructions. Short
and long conditional branch instructions use relative addressing mode
exclusively, but branching versions of bit manipulation instructions
(branch if bits set (BRSET) and branch if bits cleared (BRCLR)) use
multiple addressing modes, including relative mode. Refer to
3.10 Instructions Using Multiple Modes for more information.

Short branch instructions consist of an 8-bit opcode and a signed 8-bit
offset contained in the byte that follows the opcode. Long branch
instructions consist of an 8-bit prebyte, an 8-bit opcode, and a signed
16-bit offset contained in the two bytes that follow the opcode.

Each conditional branch instruction tests certain status bits in the
condition code register. If the bits are in a specified state, the offset is
added to the address of the next memory location after the offset to form
an effective address, and execution continues at that address. If the bits
are not in the specified state, execution continues with the instruction
immediately following the branch instruction.

Bit-condition branches test whether bits in a memory byte are in a
specific state. Various addressing modes can be used to access the
memory location. An 8-bit mask operand is used to test the bits. If each
bit in memory that corresponds to a 1 in the mask is either set (BRSET)
or clear (BRCLR), an 8-bit offset is added to the address of the next
memory location after the offset to form an effective address, and
execution continues at that address. If all the bits in memory that
correspond to a 1 in the mask are not in the specified state, execution
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 37

Addressing Modes
continues with the instruction immediately following the branch
instruction.

8-bit, 9-bit, and 16-bit offsets are signed two’s complement numbers to
support branching upward and downward in memory. The numeric
range of short branch offset values is $80 (–128) to $7F (127). Loop
primitive instructions support a 9-bit offset which allows a range of
$100 (–256) to $0FF (255). The numeric range of long branch offset
values is $8000 (–32,768) to $7FFF (32,767). If the offset is 0, the CPU
executes the instruction immediately following the branch instruction,
regardless of the test involved.

Since the offset is at the end of a branch instruction, using a negative
offset value can cause the program counter (PC) to point to the opcode
and initiate a loop. For instance, a branch always (BRA) instruction
consists of two bytes, so using an offset of $FE sets up an infinite loop;
the same is true of a long branch always (LBRA) instruction with an
offset of $FFFC.

An offset that points to the opcode can cause a bit-condition branch to
repeat execution until the specified bit condition is satisfied. Since
bit-condition branches can consist of four, five, or six bytes depending
on the addressing mode used to access the byte in memory, the offset
value that sets up a loop can vary. For instance, using an offset of $FC
with a BRCLR that accesses memory using an 8-bit indexed postbyte
sets up a loop that executes until all the bits in the specified memory byte
that correspond to 1s in the mask byte are cleared.

3.9 Indexed Addressing Modes

The CPU12 uses redefined versions of M68HC11 indexed modes that
reduce execution time and eliminate code size penalties for using the Y
index register. In most cases, CPU12 code size for indexed operations
is the same or is smaller than that for the M68HC11. Execution time is
shorter in all cases. Execution time improvements are due to both a
reduced number of cycles for all indexed instructions and to faster
system clock speed.
Reference Manual S12CPUV2

38 Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes
The indexed addressing scheme uses a postbyte plus zero, one, or two
extension bytes after the instruction opcode. The postbyte and
extensions do the following tasks:

1. Specify which index register is used

2. Determine whether a value in an accumulator is used as an offset

3. Enable automatic pre- or post-increment or pre- or
post-decrement

4. Specify size of increment or decrement

5. Specify use of 5-, 9-, or 16-bit signed offsets

This approach eliminates the differences between X and Y register use
while dramatically enhancing the indexed addressing capabilities.

Major advantages of the CPU12 indexed addressing scheme are:

• The stack pointer can be used as an index register in all indexed
operations.

• The program counter can be used as an index register in all but
autoincrement and autodecrement modes.

• A, B, or D accumulators can be used for accumulator offsets.

• Automatic pre- or post-increment or pre- or post-decrement by –8
to +8

• A choice of 5-, 9-, or 16-bit signed constant offsets

• Use of two new indexed-indirect modes:

– Indexed-indirect mode with 16-bit offset

– Indexed-indirect mode with accumulator D offset

Table 3-2 is a summary of indexed addressing mode capabilities and a
description of postbyte encoding. The postbyte is noted as xb in
instruction descriptions. Detailed descriptions of the indexed addressing
mode variations follow the table.

All indexed addressing modes use a 16-bit CPU register and additional
information to create an effective address. In most cases the effective
address specifies the memory location affected by the operation. In
some variations of indexed addressing, the effective address specifies
the location of a value that points to the memory location affected by the
operation.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 39

Addressing Modes
Indexed addressing mode instructions use a postbyte to specify index
registers (X and Y), stack pointer (SP), or program counter (PC) as the
base index register and to further classify the way the effective address
is formed. A special group of instructions cause this calculated effective
address to be loaded into an index register for further calculations:

• Load stack pointer with effective address (LEAS)

• Load X with effective address (LEAX)

• Load Y with effective address (LEAY)

Table 3-2. Summary of Indexed Operations

Postbyte
Code (xb)

Source
Code

Syntax

Comments
rr; 00 = X, 01 = Y, 10 = SP, 11 = PC

rr0nnnnn
,r

n,r
–n,r

5-bit constant offset n = –16 to +15
r can specify X, Y, SP, or PC

111rr0zs
n,r

–n,r

Constant offset (9- or 16-bit signed)
z- 0 = 9-bit with sign in LSB of postbyte(s) –256 ≤ n ≤ 255

1 = 16-bit –32,768 ≤ n ≤ 65,535
if z = s = 1, 16-bit offset indexed-indirect (see below)
r can specify X, Y, SP, or PC

111rr011 [n,r]
16-bit offset indexed-indirect

rr can specify X, Y, SP, or PC –32,768 ≤ n ≤ 65,535

rr1pnnnn
n,–r n,+r

n,r–
n,r+

Auto predecrement , preincrement , postdecrement , or postincrement ;
p = pre-(0) or post-(1), n = –8 to –1, +1 to +8
r can specify X, Y, or SP (PC not a valid choice)

+8 = 0111
…
+1 = 0000
–1 = 1111
…
–8 = 1000

111rr1aa
A,r
B,r
D,r

Accumulator offset (unsigned 8-bit or 16-bit)
aa-00 = A
01 = B
10 = D (16-bit)
11 = see accumulator D offset indexed-indirect
r can specify X, Y, SP, or PC

111rr111 [D,r]
Accumulator D offset indexed-indirect

r can specify X, Y, SP, or PC
Reference Manual S12CPUV2

40 Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes
3.9.1 5-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 5-bit signed offset which is
included in the instruction postbyte. This short offset is added to the base
index register (X, Y, SP, or PC) to form the effective address of the
memory location that will be affected by the instruction. This gives a
range of –16 through +15 from the value in the base index register.
Although other indexed addressing modes allow 9- or 16-bit offsets,
those modes also require additional extension bytes in the instruction for
this extra information. The majority of indexed instructions in real
programs use offsets that fit in the shortest 5-bit form of indexed
addressing.

Examples:
LDAA 0,X
STAB –8,Y

For these examples, assume X has a value of $1000 and Y has a value
of $2000 before execution. The 5-bit constant offset mode does not
change the value in the index register, so X will still be $1000 and Y will
still be $2000 after execution of these instructions. In the first example,
A will be loaded with the value from address $1000. In the second
example, the value from the B accumulator will be stored at address
$1FF8 ($2000 –$8).

3.9.2 9-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 9-bit signed offset which is added
to the base index register (X, Y, SP, or PC) to form the effective address
of the memory location affected by the instruction. This gives a range of
–256 through +255 from the value in the base index register. The most
significant bit (sign bit) of the offset is included in the instruction postbyte
and the remaining eight bits are provided as an extension byte after the
instruction postbyte in the instruction flow.

Examples:
LDAA $FF,X
LDAB –20,Y

For these examples, assume X is $1000 and Y is $2000 before
execution of these instructions.

NOTE: These instructions do not alter the index registers so they will still be
$1000 and $2000, respectively, after the instructions.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 41

Addressing Modes
The first instruction will load A with the value from address $10FF and
the second instruction will load B with the value from address $1FEC.

This variation of the indexed addressing mode in the CPU12 is similar to
the M68HC11 indexed addressing mode, but is functionally enhanced.
The M68HC11 CPU provides for unsigned 8-bit constant offset indexing
from X or Y, and use of Y requires an extra instruction byte and thus, an
extra execution cycle. The 9-bit signed offset used in the CPU12 covers
the same range of positive offsets as the M68HC11, and adds negative
offset capability. The CPU12 can use X, Y, SP, or PC as the base index
register.

3.9.3 16-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 16-bit offset which is added to the
base index register (X, Y, SP, or PC) to form the effective address of the
memory location affected by the instruction. This allows access to any
address in the 64-Kbyte address space. Since the address bus and the
offset are both 16 bits, it does not matter whether the offset value is
considered to be a signed or an unsigned value ($FFFF may be thought
of as +65,535 or as –1). The 16-bit offset is provided as two extension
bytes after the instruction postbyte in the instruction flow.

3.9.4 16-Bit Constant Indirect Indexed Addressing

This indexed addressing mode adds a 16-bit instruction-supplied offset
to the base index register to form the address of a memory location that
contains a pointer to the memory location affected by the instruction. The
instruction itself does not point to the address of the memory location to
be acted upon, but rather to the location of a pointer to the address to be
acted on. The square brackets distinguish this addressing mode from
16-bit constant offset indexing.

Example:

LDAA [10,X]

In this example, X holds the base address of a table of pointers. Assume
that X has an initial value of $1000, and that the value $2000 is stored at
addresses $100A and $100B. The instruction first adds the value 10 to
the value in X to form the address $100A. Next, an address pointer
($2000) is fetched from memory at $100A. Then, the value stored in
location $2000 is read and loaded into the A accumulator.
Reference Manual S12CPUV2

42 Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes
3.9.5 Auto Pre/Post Decrement/Increment Indexed Addressing

This indexed addressing mode provides four ways to automatically
change the value in a base index register as a part of instruction
execution. The index register can be incremented or decremented by an
integer value either before or after indexing takes place. The base index
register may be X, Y, or SP. (Auto-modify modes would not make sense
on PC.)

Pre-decrement and pre-increment versions of the addressing mode
adjust the value of the index register before accessing the memory
location affected by the instruction — the index register retains the
changed value after the instruction executes. Post-decrement and
post-increment versions of the addressing mode use the initial value in
the index register to access the memory location affected by the
instruction, then change the value of the index register.

The CPU12 allows the index register to be incremented or decremented
by any integer value in the ranges –8 through –1 or 1 through 8. The
value need not be related to the size of the operand for the current
instruction. These instructions can be used to incorporate an index
adjustment into an existing instruction rather than using an additional
instruction and increasing execution time. This addressing mode is also
used to perform operations on a series of data structures in memory.

When an LEAS, LEAX, or LEAY instruction is executed using this
addressing mode, and the operation modifies the index register that is
being loaded, the final value in the register is the value that would have
been used to access a memory operand. (Premodification is seen in the
result but postmodification is not.)

Examples:
STAA 1, –SP ;equivalent to PSHA
STX 2, –SP ;equivalent to PSHX
LDX 2,SP+ ;equivalent to PULX
LDAA 1,SP+ ;equivalent to PULA

For a “last-used” type of stack like the CPU12 stack, these four
examples are equivalent to common push and pull instructions.

For a “next-available” stack like the M68HC11 stack, push A onto stack
(PSHA) is equivalent to store accumulator A (STAA) 1,SP– and pull A
from stack (PULA) is equivalent to load accumulator A (LDAA) 1,+SP.
However, in the M68HC11, 16-bit operations like push register X onto
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 43

Addressing Modes
stack (PSHX) and pull register X from stack (PULX) require multiple
instructions to decrement the SP by one, then store X, then decrement
SP by one again.

In the STAA 1,–SP example, the stack pointer is pre-decremented by
one and then A is stored to the address contained in the stack pointer.
Similarly the LDX 2,SP+ first loads X from the address in the stack
pointer, then post-increments SP by two.

Example:
MOVW 2,X+,4,+Y

This example demonstrates how to work with data structures larger than
bytes and words. With this instruction in a program loop, it is possible to
move words of data from a list having one word per entry into a second
table that has four bytes per table element. In this example the source
pointer is updated after the data is read from memory (post-increment)
while the destination pointer is updated before it is used to access
memory (pre-increment).

3.9.6 Accumulator Offset Indexed Addressing

In this indexed addressing mode, the effective address is the sum of the
values in the base index register and an unsigned offset in one of the
accumulators. The value in the index register itself is not changed. The
index register can be X, Y, SP, or PC and the accumulator can be either
of the 8-bit accumulators (A or B) or the 16-bit D accumulator.

Example:

LDAA B,X

This instruction internally adds B to X to form the address from which A
will be loaded. B and X are not changed by this instruction. This example
is similar to the following 2-instruction combination in an M68HC11.

Examples:

ABX
LDAA 0,X

However, this 2-instruction sequence alters the index register. If this
sequence was part of a loop where B changed on each pass, the index
register would have to be reloaded with the reference value on each loop
pass. The use of LDAA B,X is more efficient in the CPU12.
Reference Manual S12CPUV2

44 Addressing Modes MOTOROLA

Addressing Modes
Instructions Using Multiple Modes
3.9.7 Accumulator D Indirect Indexed Addressing

This indexed addressing mode adds the value in the D accumulator to
the value in the base index register to form the address of a memory
location that contains a pointer to the memory location affected by the
instruction. The instruction operand does not point to the address of the
memory location to be acted upon, but rather to the location of a pointer
to the address to be acted upon. The square brackets distinguish this
addressing mode from D accumulator offset indexing.

Examples:
JMP [D,PC]
GO1 DC.W PLACE1
GO2 DC.W PLACE2
GO3 DC.W PLACE3

This example is a computed GOTO. The values beginning at GO1 are
addresses of potential destinations of the jump (JMP) instruction. At the
time the JMP [D,PC] instruction is executed, PC points to the address
GO1, and D holds one of the values $0000, $0002, or $0004
(determined by the program some time before the JMP).

Assume that the value in D is $0002. The JMP instruction adds the
values in D and PC to form the address of GO2. Next the CPU reads the
address PLACE2 from memory at GO2 and jumps to PLACE2. The
locations of PLACE1 through PLACE3 were known at the time of
program assembly but the destination of the JMP depends upon the
value in D computed during program execution.

3.10 Instructions Using Multiple Modes

Several CPU12 instructions use more than one addressing mode in the
course of execution.

3.10.1 Move Instructions

Move instructions use separate addressing modes to access the source
and destination of a move. There are move variations for all practical
combinations of immediate, extended, and indexed addressing modes.

The only combinations of addressing modes that are not allowed are
those with an immediate mode destination (the operand of an immediate
mode instruction is data, not an address). For indexed moves, the
reference index register may be X, Y, SP, or PC.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 45

Addressing Modes
Move instructions do not support indirect modes, 9-bit, or 16-bit offset
modes requiring extra extension bytes. There are special considerations
when using PC-relative addressing with move instructions. The original
M68HC12 implemented the instruction queue slightly differently than the
newer HCS12. In the older M68HC12 implementation, the CPU did not
maintain a pointer to the start of the instruction after the current
instruction (what the user thinks of as the PC value during execution).
This caused an offset for PC-relative move instructions.

PC-relative addressing uses the address of the location immediately
following the last byte of object code for the current instruction as a
reference point. The CPU12 normally corrects for queue offset and for
instruction alignment so that queue operation is transparent to the user.
However, in the original M68HC12, move instructions pose three special
problems:

• Some moves use an indexed source and an indexed destination.

• Some moves have object code that is too long to fit in the queue
all at one time, so the PC value changes during execution.

• All moves do not have the indexed postbyte as the last byte of
object code.

These cases are not handled by automatic queue pointer maintenance,
but it is still possible to use PC-relative indexing with move instructions
by providing for PC offsets in source code.

Table 3-3 shows PC offsets from the location immediately following the
current instruction by addressing mode.

Table 3-3. PC Offsets for MOVE Instructions (M68HC12 Only)

MOVE Instruction Addressing Modes Offset Value

MOVB

IMM ⇒ IDX +1

EXT ⇒ IDX +2

IDX ⇒ EXT –2

IDX ⇒ IDX
–1 for first operand

+1 for second operand

MOVW

IMM ⇒ IDX +2

EXT ⇒ IDX +2

IDX ⇒ EXT –2

IDX ⇒ IDX
–1 for first operand

+1 for second operand
Reference Manual S12CPUV2

46 Addressing Modes MOTOROLA

Addressing Modes
Instructions Using Multiple Modes
Example:
1000 18 09 C2 20 00 MOVB $2000 2,PC

Moves a byte of data from $2000 to $1009

The expected location of the PC = $1005. The offset = +2.
[1005 + 2 (for 2,PC) + 2 (for correction) = 1009]

$18 is the page pre-byte, 09 is the MOVB opcode for ext-idx, C2 is the
indexed postbyte for 2,PC (without correction).

The Motorola MCUasm assembler produces corrected object code for
PC-relative moves (18 09 C0 20 00 for the example shown).

NOTE: Instead of assembling the 2,PC as C2, the correction has been applied
to make it C0. Check whether an assembler makes the correction before
using PC-relative moves.

On the newer HCS12, the instruction queue was implemented such that
an internal pointer, to the start of the next instruction, is always available.
On the HCS12, PC-relative move instructions work as expected without
any offset adjustment. Although this is different from the original
M68HC12, it is unlikely to be a problem because PC-relative indexing is
rarely, if ever, used with move instructions.

3.10.2 Bit Manipulation Instructions

Bit manipulation instructions use either a combination of two or a
combination of three addressing modes.

The clear bits in memory (BCLR) and set bits in memory (BSET)
instructions use an 8-bit mask to determine which bits in a memory byte
are to be changed. The mask must be supplied with the instruction as an
immediate mode value. The memory location to be modified can be
specified by means of direct, extended, or indexed addressing modes.

The branch if bits cleared (BRCLR) and branch if bits set (BRSET)
instructions use an 8-bit mask to test the states of bits in a memory byte.
The mask is supplied with the instruction as an immediate mode value.
The memory location to be tested is specified by means of direct,
extended, or indexed addressing modes. Relative addressing mode is
used to determine the branch address. A signed 8-bit offset must be
supplied with the instruction.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 47

Addressing Modes
3.11 Addressing More than 64 Kbytes

Some M68HC12 devices incorporate hardware that supports
addressing a larger memory space than the standard 64 Kbytes. The
expanded memory system uses fast on-chip logic to implement a
transparent bank-switching scheme.

Increased code efficiency is the greatest advantage of using a switching
scheme instead of a large linear address space. In systems with large
linear address spaces, instructions require more bits of information to
address a memory location, and CPU overhead is greater. Other
advantages include the ability to change the size of system memory and
the ability to use various types of external memory.

However, the add-on bank switching schemes used in other
microcontrollers have known weaknesses. These include the cost of
external glue logic, increased programming overhead to change banks,
and the need to disable interrupts while banks are switched.

The M68HC12 system requires no external glue logic. Bank switching
overhead is reduced by implementing control logic in the MCU.
Interrupts do not need to be disabled during switching because switching
tasks are incorporated in special instructions that greatly simplify
program access to extended memory.

MCUs with expanded memory treat the 16 Kbytes of memory space
from $8000 to $BFFF as a program memory window.
Expanded-memory architecture includes an 8-bit program page register
(PPAGE), which allows up to 256 16-Kbyte program memory pages to
be switched into and out of the program memory window. This provides
for up to 4 Megabytes of paged program memory.

The CPU12 instruction set includes call subroutine in expanded memory
(CALL) and return from call (RTC) instructions, which greatly simplify the
use of expanded memory space. These instructions also execute
correctly on devices that do not have expanded-memory addressing
capability, thus providing for portable code.

The CALL instruction is similar to the jump-to-subroutine (JSR)
instruction. When CALL is executed, the current value in PPAGE is
pushed onto the stack with a return address, and a new
instruction-supplied value is written to PPAGE. This value selects the
page the called subroutine resides upon and can be considered part of
Reference Manual S12CPUV2

48 Addressing Modes MOTOROLA

Addressing Modes
Addressing More than 64 Kbytes
the effective address. For all addressing mode variations except indexed
indirect modes, the new page value is provided by an immediate
operand in the instruction. For indexed indirect variations of CALL, a
pointer specifies memory locations where the new page value and the
address of the called subroutine are stored. Use of indirect addressing
for both the page value and the address within the page frees the
program from keeping track of explicit values for either address.

The RTC instruction restores the saved program page value and the
return address from the stack. This causes execution to resume at the
next instruction after the original CALL instruction.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 49

Addressing Modes
Reference Manual S12CPUV2

50 Addressing Modes MOTOROLA

Reference Manual — S12CPUV2

Section 4. Instruction Queue
4.1 Introduction

The CPU12 uses an instruction queue to increase execution speed.
This section describes queue operation during normal program
execution and changes in execution flow. These concepts augment the
descriptions of instructions and cycle-by-cycle instruction execution in
subsequent sections, but it is important to note that queue operation is
automatic, and generally transparent to the user.

The material in this section is general. Section 6. Instruction Glossary
contains detailed information concerning cycle-by-cycle execution of
each instruction. Section 8. Instruction Queue contains detailed
information about tracking queue operation and instruction execution.

4.2 Queue Description

The fetching mechanism in the CPU12 is best described as a queue
rather than as a pipeline. Queue logic fetches program information and
positions it for execution, but instructions are executed sequentially. A
typical pipelined central processor unit (CPU) can execute more than
one instruction at the same time, but interactions between the prefetch
and execution mechanisms can make tracking and debugging difficult.
The CPU12 thus gains the advantages of independent fetches, yet
maintains a straightforward relationship between bus and execution
cycles.

Each instruction refills the queue by fetching the same number of bytes
that the instruction uses. Program information is fetched in aligned 16-bit
words. Each program fetch (P) indicates that two bytes need to be
replaced in the instruction queue. Each optional fetch (O) indicates that
only one byte needs to be replaced. For example, an instruction
composed of five bytes does two program fetches and one optional
fetch. If the first byte of the five-byte instruction was even-aligned, the
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 51

Instruction Queue
optional fetch is converted into a free cycle. If the first byte was
odd-aligned, the optional fetch is executed as a program fetch.

Two external pins, IPIPE[1:0], provide time-multiplexed information
about data movement in the queue and instruction execution. Decoding
and use of these signals is discussed in Section 8. Instruction Queue .

4.2.1 Original M68HC12 Queue Implementation

There are two 16-bit queue stages and one 16-bit buffer. Program
information is fetched in aligned 16-bit words. Unless buffering is
required, program information is first queued into stage 1, then
advanced to stage 2 for execution.

At least two words of program information are available to the CPU when
execution begins. The first byte of object code is in either the even or odd
half of the word in stage 2, and at least two more bytes of object code
are in the queue.

The buffer is used when a program word arrives before the queue can
advance. This occurs during execution of single-byte and odd-aligned
instructions. For instance, the queue cannot advance after an aligned,
single-byte instruction is executed, because the first byte of the next
instruction is also in stage 2. In these cases, information is latched into
the buffer until the queue can advance.

4.2.2 HCS12 Queue Implementation

There are three 16-bit stages in the instruction queue. Instructions enter
the queue at stage 1 and shift out of stage 3 as the CPU executes
instructions and fetches new ones into stage 1. Each byte in the queue
is selectable. An opcode prediction algorithm determines the location of
the next opcode in the instruction queue.

4.3 Data Movement in the Queue

All queue operations are combinations of four basic queue movement
cycles. Descriptions of each of these cycles follows. Queue movement
cycles are only one factor in instruction execution time and should not be
confused with bus cycles.
Reference Manual S12CPUV2

52 Instruction Queue MOTOROLA

Instruction Queue
Changes in Execution Flow
4.3.1 No Movement

There is no data movement in the instruction queue during the cycle.
This occurs during execution of instructions that must perform a number
of internal operations, such as division instructions.

4.3.2 Latch Data from Bus (Applies Only to the M68HC12 Queue Implementation)

All instructions initiate fetches to refill the queue as execution proceeds.
However, a number of conditions, including instruction alignment and
the length of previous instructions, affect when the queue advances. If
the queue is not ready to advance when fetched information arrives, the
information is latched into the buffer. Later, when the queue does
advance, stage 1 is refilled from the buffer. If more than one latch cycle
occurs before the queue advances, the buffer is filled on the first latch
event and subsequent latch events are ignored until the queue
advances.

4.3.3 Advance and Load from Data Bus

The content of queue is advanced by one stage, and stage 1 is loaded
with a word of program information from the data bus. The information
was requested two bus cycles earlier but has only become available this
cycle, due to access delay.

4.3.4 Advance and Load from Buffer (Applies Only to M68HC12 Queue Implementation)

The content of queue stage 1 advances to stage 2, and stage 1 is loaded
with a word of program information from the buffer. The information in
the buffer was latched from the data bus during a previous cycle
because the queue was not ready to advance when it arrived.

4.4 Changes in Execution Flow

During normal instruction execution, queue operations proceed as a
continuous sequence of queue movement cycles. However, situations
arise which call for changes in flow. These changes are categorized as
resets, interrupts, subroutine calls, conditional branches, and jumps.
Generally speaking, resets and interrupts are considered to be related
to events outside the current program context that require special
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 53

Instruction Queue
processing, while subroutine calls, branches, and jumps are considered
to be elements of program structure.

During design, great care is taken to assure that the mechanism that
increases instruction throughput during normal program execution does
not cause bottlenecks during changes of program flow, but internal
queue operation is largely transparent to the user. The following
information is provided to enhance subsequent descriptions of
instruction execution.

4.4.1 Exceptions

Exceptions are events that require processing outside the normal flow of
instruction execution. CPU12 exceptions include five types of
exceptions:

• Reset (including COP, clock monitor, and pin)

• Unimplemented opcode trap

• Software interrupt instruction

• X-bit interrupts

• I-bit interrupts

All exceptions use the same microcode, but the CPU follows different
execution paths for each type of exception.

CPU12 exception handling is designed to minimize the effect of queue
operation on context switching. Thus, an exception vector fetch is the
first part of exception processing, and fetches to refill the queue from the
address pointed to by the vector are interleaved with the stacking
operations that preserve context, so that program access time does not
delay the switch. Refer to Section 7. Exception Processing for detailed
information.

4.4.2 Subroutines

The CPU12 can branch to (BSR), jump to (JSR), or call (CALL)
subroutines. BSR and JSR are used to access subroutines in the normal
64-Kbyte address space. The CALL instruction is intended for use in
MCUs with expanded memory capability.
Reference Manual S12CPUV2

54 Instruction Queue MOTOROLA

Instruction Queue
Changes in Execution Flow
BSR uses relative addressing mode to generate the effective address of
the subroutine, while JSR can use various other addressing modes.
Both instructions calculate a return address, stack the address, then
perform three program word fetches to refill the queue.

Subroutines in the normal 64-Kbyte address space are terminated with
a return-from-subroutine (RTS) instruction. RTS unstacks the return
address, then performs three program word fetches from that address to
refill the queue.

CALL is similar to JSR. MCUs with expanded memory treat 16 Kbytes of
addresses from $8000 to $BFFF as a memory window. An 8-bit PPAGE
register switches memory pages into and out of the window. When CALL
is executed, a return address is calculated, then it and the current
PPAGE value are stacked, and a new instruction-supplied value is
written to PPAGE. The subroutine address is calculated, then three
program word fetches are made from that address to refill the instruction
queue.

The return-from-call (RTC) instruction is used to terminate subroutines
in expanded memory. RTC unstacks the PPAGE value and the return
address, then performs three program word fetches from that address to
refill the queue.

CALL and RTC execute correctly in the normal 64-Kbyte address space,
thus providing for portable code. However, since extra execution cycles
are required, routinely substituting CALL/RTC for JSR/RTS is not
recommended.

4.4.3 Branches

Branch instructions cause execution flow to change when specific
pre-conditions exist. The CPU12 instruction set includes:

• Short conditional branches

• Long conditional branches

• Bit-condition branches

Types and conditions of branch instructions are described in
5.19 Branch Instructions . All branch instructions affect the queue
similarly, but there are differences in overall cycle counts between the
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 55

Instruction Queue
various types. Loop primitive instructions are a special type of branch
instruction used to implement counter-based loops.

Branch instructions have two execution cases:

• The branch condition is satisfied, and a change of flow takes
place.

• The branch condition is not satisfied, and no change of flow
occurs.

4.4.3.1 Short Branches

The “not-taken” case for short branches is simple. Since the instruction
consists of a single word containing both an opcode and an 8-bit offset,
the queue advances, another program word is fetched, and execution
continues with the next instruction.

The “taken” case for short branches requires that the queue be refilled
so that execution can continue at a new address. First, the effective
address of the destination is calculated using the relative offset in the
instruction. Then, the address is loaded into the program counter, and
the CPU performs three program word fetches at the new address to
refill the instruction queue.

4.4.3.2 Long Branches

The “not-taken” case for all long branches requires three cycles, while
the “taken” case requires four cycles. This is due to differences in the
amount of program information needed to fill the queue.

Long branch instructions begin with a $18 prebyte which indicates that
the opcode is on page 2 of the opcode map. The CPU12 treats the
prebyte as a special one-byte instruction. If the prebyte is not aligned,
the first cycle is used to perform a program word access; if the prebyte
is aligned, the first cycle is used to perform a free cycle. The first cycle
for the prebyte is executed whether or not the branch is taken.

The first cycle of the branch instruction is an optional cycle. Optional
cycles make the effects of byte-sized and misaligned instructions
consistent with those of aligned word-length instructions. Program
information is always fetched as aligned 16-bit words. When an
instruction has an odd number of bytes, and the first byte is not aligned
with an even byte boundary, the optional cycle makes an additional
Reference Manual S12CPUV2

56 Instruction Queue MOTOROLA

Instruction Queue
Changes in Execution Flow
program word access that maintains queue order. In all other cases, the
optional cycle is a free cycle.

In the “not-taken” case, the queue must advance so that execution can
continue with the next instruction. Two cycles are used to refill the
queue. Alignment determines how the second of these cycles is used.

In the “taken” case, the effective address of the branch is calculated
using the 16-bit relative offset contained in the second word of the
instruction. This address is loaded into the program counter, then the
CPU performs three program word fetches at the new address.

4.4.3.3 Bit Condition Branches

Bit condition branch instructions read a location in memory, and branch
if the bits in that location are in a certain state. These instructions can
use direct, extended, or indexed addressing modes. Indexed operations
require varying amounts of information to determine the effective
address, so instruction length varies according to the mode used, which
in turn affects the amount of program information fetched. To shorten
execution time, these branches perform one program word fetch in
anticipation of the “taken” case. The data from this fetch is ignored in the
“not-taken” case. If the branch is taken, the CPU fetches three program
word fetches at the new address to fill the instruction queue.

4.4.3.4 Loop Primitives

The loop primitive instructions test a counter value in a register or
accumulator and branch to an address specified by a 9-bit relative offset
contained in the instruction if a specified condition is met. There are
auto-increment and auto-decrement versions of these instructions. The
test and increment/decrement operations are performed on internal
CPU registers, and require no additional program information. To
shorten execution time, these branches perform one program word fetch
in anticipation of the “taken” case. The data from this fetch is ignored if
the branch is not taken, and the CPU does one program fetch and one
optional fetch to refill the queue1. If the branch is taken, the CPU finishes
refilling the queue with two additional program word fetches at the new
address.

1. In the original M68HC12, the implementation of these two cycles are both program
word fetches.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 57

Instruction Queue
4.4.4 Jumps

Jump (JMP) is the simplest change of flow instruction. JMP can use
extended or indexed addressing. Indexed operations require varying
amounts of information to determine the effective address, so instruction
length varies according to the mode used, which in turn affects the
amount of program information fetched. All forms of JMP perform three
program word fetches at the new address to refill the instruction queue.
Reference Manual S12CPUV2

58 Instruction Queue MOTOROLA

Reference Manual — S12CPUV2

Section 5. Instruction Set Overview
5.1 Introduction

This section contains general information about the central processor
unit (CPU12) instruction set. It is organized into instruction categories
grouped by function.

5.2 Instruction Set Description

CPU12 instructions are a superset of the M68HC11 instruction set. Code
written for an M68HC11 can be reassembled and run on a CPU12 with
no changes. The CPU12 provides expanded functionality and increased
code efficiency. There are two implementations of the CPU12, the
original M68HC12 and the newer HCS12. Both implementations have
the same instruction set, although there are small differences in
cycle-by-cycle access details (the order of some bus cycles changed to
accommodate differences in the way the instruction queue was
implemented). These minor differences are transparent for most users.

In the M68HC12 and HCS12 architecture, all memory and input/output
(I/O) are mapped in a common 64-Kbyte address space
(memory-mapped I/O). This allows the same set of instructions to be
used to access memory, I/O, and control registers. General-purpose
load, store, transfer, exchange, and move instructions facilitate
movement of data to and from memory and peripherals.

The CPU12 has a full set of 8-bit and 16-bit mathematical instructions.
There are instructions for signed and unsigned arithmetic, division, and
multiplication with 8-bit, 16-bit, and some larger operands.

Special arithmetic and logic instructions aid stacking operations,
indexing, binary-coded decimal (BCD) calculation, and condition code
register manipulation. There are also dedicated instructions for multiply
and accumulate operations, table interpolation, and specialized fuzzy
logic operations that involve mathematical calculations.
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 59

Instruction Set Overview
Refer to Section 6. Instruction Glossary for detailed information about
individual instructions. Appendix A. Instruction Reference contains
quick-reference material, including an opcode map and postbyte
encoding for indexed addressing, transfer/exchange instructions, and
loop primitive instructions.

5.3 Load and Store Instructions

Load instructions copy memory content into an accumulator or register.
Memory content is not changed by the operation. Load instructions (but
not LEA_ instructions) affect condition code bits so no separate test
instructions are needed to check the loaded values for negative or 0
conditions.

Store instructions copy the content of a CPU register to memory.
Register/accumulator content is not changed by the operation. Store
instructions automatically update the N and Z condition code bits, which
can eliminate the need for a separate test instruction in some programs.

Table 5-1 is a summary of load and store instructions.

Table 5-1. Load and Store Instructions

Mnemonic Function Operation

Load Instructions

LDAA Load A (M) ⇒ A

LDAB Load B (M) ⇒ B

LDD Load D (M : M + 1) ⇒ (A:B)

LDS Load SP (M : M + 1) ⇒ SPH:SPL

LDX Load index register X (M : M + 1) ⇒ XH:XL

LDY Load index register Y (M : M + 1) ⇒ YH:YL

LEAS Load effective address into SP Effective address ⇒ SP

LEAX Load effective address into X Effective address ⇒ X

LEAY Load effective address into Y Effective address ⇒ Y

Continued on next page
Reference Manual S12CPUV2

60 Instruction Set Overview MOTOROLA

Instruction Set Overview
Transfer and Exchange Instructions
5.4 Transfer and Exchange Instructions

Transfer instructions copy the content of a register or accumulator into
another register or accumulator. Source content is not changed by the
operation. Transfer register to register (TFR) is a universal transfer
instruction, but other mnemonics are accepted for compatibility with the
M68HC11. The transfer A to B (TAB) and transfer B to A (TBA)
instructions affect the N, Z, and V condition code bits in the same way
as M68HC11 instructions. The TFR instruction does not affect the
condition code bits.

The sign extend 8-bit operand (SEX) instruction is a special case of the
universal transfer instruction that is used to sign extend 8-bit two’s
complement numbers so that they can be used in 16-bit operations. The
8-bit number is copied from accumulator A, accumulator B, or the
condition code register to accumulator D, the X index register, the Y
index register, or the stack pointer. All the bits in the upper byte of the
16-bit result are given the value of the most-significant bit (MSB) of the
8-bit number.

Exchange instructions exchange the contents of pairs of registers or
accumulators. When the first operand in an EXG instruction is 8-bits and
the second operand is 16 bits, a zero-extend operation is performed on
the 8-bit register as it is copied into the 16-bit register.

Section 6. Instruction Glossary contains information concerning other
transfers and exchanges between 8- and 16-bit registers.

Table 5-2 is a summary of transfer and exchange instructions.

Store Instructions

STAA Store A (A) ⇒ M

STAB Store B (B) ⇒ M

STD Store D (A) ⇒ M, (B) ⇒ M + 1

STS Store SP (SPH:SPL) ⇒ M : M + 1

STX Store X (XH:XL) ⇒ M : M + 1

STY Store Y (YH:YL) ⇒ M : M + 1

Table 5-1. Load and Store Instructions (Continued)
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 61

Instruction Set Overview
5.5 Move Instructions

Move instructions move (copy) data bytes or words from a source
(M1 or M : M +11) to a destination (M2 or M : M +12) in memory. Six
combinations of immediate, extended, and indexed addressing are
allowed to specify source and destination addresses (IMM ⇒ EXT,
IMM ⇒ IDX, EXT ⇒ EXT, EXT ⇒ IDX, IDX ⇒ EXT, IDX ⇒ IDX).
Addressing mode combinations with immediate for the destination would
not be useful.

Table 5-3 shows byte and word move instructions.

Table 5-2. Transfer and Exchange Instructions

Mnemonic Function Operation

Transfer Instructions

TAB Transfer A to B (A) ⇒ B

TAP Transfer A to CCR (A) ⇒ CCR

TBA Transfer B to A (B) ⇒ A

TFR
Transfer register

to register
(A, B, CCR, D, X, Y, or SP) ⇒

A, B, CCR, D, X, Y, or SP

TPA Transfer CCR to A (CCR) ⇒ A

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

Exchange Instructions

EXG
Exchange register

to register
(A, B, CCR, D, X, Y, or SP) ⇔

(A, B, CCR, D, X, Y, or SP)

XGDX Exchange D with X (D) ⇔ (X)

XGDY Exchange D with Y (D) ⇔ (Y)

Sign Extension Instruction

SEX
Sign extend

8-Bit operand
Sign-extended (A, B, or CCR) ⇒

D, X, Y, or SP

Table 5-3. Move Instructions

Mnemonic Function Operation

MOVB Move byte (8-bit) (M
1
) ⇒ M

2

MOVW Move word (16-bit) (M : M + 1
1
) ⇒ M : M + 12
Reference Manual S12CPUV2

62 Instruction Set Overview MOTOROLA

Instruction Set Overview
Addition and Subtraction Instructions
5.6 Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit addition can be performed between
registers or between registers and memory. Special instructions support
index calculation. Instructions that add the carry bit in the condition code
register (CCR) facilitate multiple precision computation.

Signed and unsigned 8- and 16-bit subtraction can be performed
between registers or between registers and memory. Special
instructions support index calculation. Instructions that subtract the carry
bit in the CCR facilitate multiple precision computation. Refer to
Table 5-4 for addition and subtraction instructions.

Load effective address (LEAS, LEAX, and LEAY) instructions could also
be considered as specialized addition and subtraction instructions. See
5.25 Pointer and Index Calculation Instructions for more information.

Table 5-4. Addition and Subtraction Instructions

Mnemonic Function Operation

Addition Instructions

ABA Add B to A (A) + (B) ⇒ A

ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

ADCA Add with carry to A (A) + (M) + C ⇒ A

ADCB Add with carry to B (B) + (M) + C ⇒ B

ADDA Add without carry to A (A) + (M) ⇒ A

ADDB Add without carry to B (B) + (M) ⇒ B

ADDD Add to D (A:B) + (M : M + 1) ⇒ A : B

Subtraction Instructions

SBA Subtract B from A (A) – (B) ⇒ A

SBCA Subtract with borrow from A (A) – (M) – C ⇒ A

SBCB Subtract with borrow from B (B) – (M) – C ⇒ B

SUBA Subtract memory from A (A) – (M) ⇒ A

SUBB Subtract memory from B (B) – (M) ⇒ B

SUBD Subtract memory from D (A:B) (D) – (M : M + 1) ⇒ D
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 63

Instruction Set Overview
5.7 Binary-Coded Decimal Instructions

To add binary-coded decimal (BCD) operands, use addition instructions
that set the half-carry bit in the CCR, then adjust the result with the
decimal adjust A (DAA) instruction. Table 5-5 is a summary of
instructions that can be used to perform BCD operations.

Table 5-5. BCD Instructions

Mnemonic Function Operation

ABA Add B to A (A) + (B) ⇒ A

ADCA Add with carry to A (A) + (M) + C ⇒ A

ADCB(1)

1. These instructions are not normally used for BCD operations because, although they affect
H correctly, they do not leave the result in the correct accumulator (A) to be used with the
DAA instruction. Thus additional steps would be needed to adjust the result to correct BCD
form.

Add with carry to B (B) + (M) + C ⇒ B

ADDA(1) Add memory to A (A) + (M) ⇒ A

ADDB Add memory to B (B) + (M) ⇒ B

DAA Decimal adjust A (A)10
Reference Manual S12CPUV2

64 Instruction Set Overview MOTOROLA

Instruction Set Overview
Decrement and Increment Instructions
5.8 Decrement and Increment Instructions

The decrement and increment instructions are optimized 8- and 16-bit
addition and subtraction operations. They are generally used to
implement counters. Because they do not affect the carry bit in the CCR,
they are particularly well suited for loop counters in multiple-precision
computation routines. Refer to 5.20 Loop Primitive Instructions for
information concerning automatic counter branches. Table 5-6 is a
summary of decrement and increment instructions.

Table 5-6. Decrement and Increment Instructions

Mnemonic Function Operation

Decrement Instructions

DEC Decrement memory (M) – $01 ⇒ M

DECA Decrement A (A) – $01 ⇒ A

DECB Decrement B (B) – $01 ⇒ B

DES Decrement SP (SP) – $0001 ⇒ SP

DEX Decrement X (X) – $0001 ⇒ X

DEY Decrement Y (Y) – $0001 ⇒ Y

Increment Instructions

INC Increment memory (M) + $01 ⇒ M

INCA Increment A (A) + $01 ⇒ A

INCB Increment B (B) + $01 ⇒ B

INS Increment SP (SP) + $0001 ⇒ SP

INX Increment X (X) + $0001 ⇒ X

INY Increment Y (Y) + $0001 ⇒ Y
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 65

Instruction Set Overview
5.9 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of
registers or between a register and memory. The result is not stored, but
condition codes are set by the operation. These instructions are
generally used to establish conditions for branch instructions. In this
architecture, most instructions update condition code bits automatically,
so it is often unnecessary to include separate test or compare
instructions. Table 5-7 is a summary of compare and test instructions.

Table 5-7. Compare and Test Instructions

Mnemonic Function Operation

Compare Instructions

CBA Compare A to B (A) – (B)

CMPA Compare A to memory (A) – (M)

CMPB Compare B to memory (B) – (M)

CPD Compare D to memory (16-bit) (A : B) – (M : M + 1)

CPS Compare SP to memory (16-bit) (SP) – (M : M + 1)

CPX Compare X to memory (16-bit) (X) – (M : M + 1)

CPY Compare Y to memory (16-bit) (Y) – (M : M + 1)

Test Instructions

TST Test memory for zero or minus (M) – $00

TSTA Test A for zero or minus (A) – $00

TSTB Test B for zero or minus (B) – $00
Reference Manual S12CPUV2

66 Instruction Set Overview MOTOROLA

Instruction Set Overview
Boolean Logic Instructions
5.10 Boolean Logic Instructions

The Boolean logic instructions perform a logic operation between an
8-bit accumulator or the CCR and a memory value. AND, OR, and
exclusive OR functions are supported. Table 5-8 summarizes logic
instructions.

Table 5-8. Boolean Logic Instructions

Mnemonic Function Operation

ANDA AND A with memory (A) • (M) ⇒ A

ANDB AND B with memory (B) • (M) ⇒ B

ANDCC AND CCR with memory (clear CCR bits) (CCR) • (M) ⇒ CCR

EORA Exclusive OR A with memory (A) ⊕ (M) ⇒ A

EORB Exclusive OR B with memory (B) ⊕ (M) ⇒ B

ORAA OR A with memory (A) + (M) ⇒ A

ORAB OR B with memory (B) + (M) ⇒ B

ORCC OR CCR with memory (set CCR bits) (CCR) + (M) ⇒ CCR
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 67

Instruction Set Overview
5.11 Clear, Complement, and Negate Instructions

Each of the clear, complement, and negate instructions performs a
specific binary operation on a value in an accumulator or in memory.
Clear operations clear the value to 0, complement operations replace
the value with its one’s complement, and negate operations replace the
value with its two’s complement. Table 5-9 is a summary of clear,
complement, and negate instructions.

Table 5-9. Clear, Complement, and Negate Instructions

Mnemonic Function Operation

CLC Clear C bit in CCR 0 ⇒ C

CLI Clear I bit in CCR 0 ⇒ I

CLR Clear memory $00 ⇒ M

CLRA Clear A $00 ⇒ A

CLRB Clear B $00 ⇒ B

CLV Clear V bit in CCR 0 ⇒ V

COM One’s complement memory $FF – (M) ⇒ M or (M) ⇒ M

COMA One’s complement A $FF – (A) ⇒ A or (A) ⇒ A

COMB One’s complement B $FF – (B) ⇒ B or (B) ⇒ B

NEG Two’s complement memory $00 – (M) ⇒ M or (M) + 1 ⇒ M

NEGA Two’s complement A $00 – (A) ⇒ A or (A) + 1 ⇒ A

NEGB Two’s complement B $00 – (B) ⇒ B or (B) + 1 ⇒ B
Reference Manual S12CPUV2

68 Instruction Set Overview MOTOROLA

Instruction Set Overview
Multiplication and Division Instructions
5.12 Multiplication and Division Instructions

There are instructions for signed and unsigned 8- and 16-bit
multiplication. Eight-bit multiplication operations have a 16-bit product.
Sixteen-bit multiplication operations have 32-bit products.

Integer and fractional division instructions have 16-bit dividend, divisor,
quotient, and remainder. Extended division instructions use a 32-bit
dividend and a 16-bit divisor to produce a 16-bit quotient and a 16-bit
remainder.

Table 5-10 is a summary of multiplication and division instructions.

Table 5-10. Multiplication and Division Instructions

Mnemonic Function Operation

Multiplication Instructions

EMUL 16 by 16 multiply (unsigned) (D) × (Y) ⇒ Y : D

EMULS 16 by 16 multiply (signed) (D) × (Y) ⇒ Y : D

MUL 8 by 8 multiply (unsigned) (A) × (B) ⇒ A : B

Division Instructions

EDIV 32 by 16 divide (unsigned)
(Y : D) ÷ (X) ⇒ Y
Remainder ⇒ D

EDIVS 32 by 16 divide (signed)
(Y : D) ÷ (X) ⇒ Y
Remainder ⇒ D

FDIV 16 by 16 fractional divide
(D) ÷ (X) ⇒ X

Remainder ⇒ D

IDIV 16 by 16 integer divide (unsigned)
(D) ÷ (X) ⇒ X

Remainder ⇒ D

IDIVS 16 by 16 integer divide (signed)
(D) ÷ (X) ⇒ X

Remainder ⇒ D
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 69

Instruction Set Overview
5.13 Bit Test and Manipulation Instructions

The bit test and manipulation operations use a mask value to test or
change the value of individual bits in an accumulator or in memory. Bit
test A (BITA) and bit test B (BITB) provide a convenient means of testing
bits without altering the value of either operand. Table 5-11 is a
summary of bit test and manipulation instructions.

Table 5-11. Bit Test and Manipulation Instructions

Mnemonic Function Operation

BCLR Clear bits in memory (M) • (mm) ⇒ M

BITA Bit test A (A) • (M)

BITB Bit test B (B) • (M)

BSET Set bits in memory (M) + (mm) ⇒ M
Reference Manual S12CPUV2

70 Instruction Set Overview MOTOROLA

Instruction Set Overview
Shift and Rotate Instructions
5.14 Shift and Rotate Instructions

There are shifts and rotates for all accumulators and for memory bytes.
All pass the shifted-out bit through the C status bit to facilitate
multiple-byte operations. Because logical and arithmetic left shifts are
identical, there are no separate logical left shift operations. Logic shift left
(LSL) mnemonics are assembled as arithmetic shift left memory (ASL)
operations. Table 5-12 shows shift and rotate instructions.

Table 5-12. Shift and Rotate Instructions

Mnemonic Function Operation

Logical Shifts

LSL
LSLA
LSLB

Logic shift left memory
Logic shift left A
Logic shift left B

LSLD Logic shift left D

LSR
LSRA
LSRB

Logic shift right memory
Logic shift right A
Logic shift right B

LSRD Logic shift right D

Arithmetic Shifts

ASL
ASLA
ASLB

Arithmetic shift left memory
Arithmetic shift left A
Arithmetic shift left B

ASLD Arithmetic shift left D

ASR
ASRA
ASRB

Arithmetic shift right memory
Arithmetic shift right A
Arithmetic shift right B

Rotates

ROL
ROLA
ROLB

Rotate left memory through carry
Rotate left A through carry
Rotate left B through carry

ROR
RORA
RORB

Rotate right memory through carry
Rotate right A through carry
Rotate right B through carry

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

Cb7 b0

C b7 b0

Cb7 b0
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 71

Instruction Set Overview
5.15 Fuzzy Logic Instructions

The CPU12 instruction set includes instructions that support efficient
processing of fuzzy logic operations. The descriptions of fuzzy logic
instructions given here are functional overviews. Table 5-13
summarizes the fuzzy logic instructions. Refer to Section 9. Fuzzy
Logic Support for detailed discussion.

5.15.1 Fuzzy Logic Membership Instruction

The membership function (MEM) instruction is used during the
fuzzification process. During fuzzification, current system input values
are compared against stored input membership functions to determine
the degree to which each label of each system input is true. This is
accomplished by finding the y value for the current input on a trapezoidal
membership function for each label of each system input. The MEM
instruction performs this calculation for one label of one system input. To
perform the complete fuzzification task for a system, several MEM
instructions must be executed, usually in a program loop structure.

5.15.2 Fuzzy Logic Rule Evaluation Instructions

The MIN-MAX rule evaluation (REV and REVW) instructions perform
MIN-MAX rule evaluations that are central elements of a fuzzy logic
inference program. Fuzzy input values are processed using a list of rules
from the knowledge base to produce a list of fuzzy outputs. The REV
instruction treats all rules as equally important. The REVW instruction
allows each rule to have a separate weighting factor. The two rule
evaluation instructions also differ in the way rules are encoded into the
knowledge base. Because they require a number of cycles to execute,
rule evaluation instructions can be interrupted. Once the interrupt has
been serviced, instruction execution resumes at the point the interrupt
occurred.
Reference Manual S12CPUV2

72 Instruction Set Overview MOTOROLA

Instruction Set Overview
Fuzzy Logic Instructions
5.15.3 Fuzzy Logic Weighted Average Instruction

The weighted average (WAV) instruction computes a sum-of-products
and a sum-of-weights used for defuzzification. To be usable, the fuzzy
outputs produced by rule evaluation must be defuzzified to produce a
single output value which represents the combined effect of all of the
fuzzy outputs. Fuzzy outputs correspond to the labels of a system output
and each is defined by a membership function in the knowledge base.
The CPU12 typically uses singletons for output membership functions
rather than the trapezoidal shapes used for inputs. As with inputs, the
x-axis represents the range of possible values for a system output.
Singleton membership functions consist of the x-axis position for a label
of the system output. Fuzzy outputs correspond to the y-axis height of
the corresponding output membership function. The WAV instruction
calculates the numerator and denominator sums for a weighted average
of the fuzzy outputs. Because WAV requires a number of cycles to
execute, it can be interrupted. The WAVR pseudo-instruction causes
execution to resume at the point where it was interrupted.

Table 5-13. Fuzzy Logic Instructions

Mnemonic Function Operation

MEM
Membership

function

µ (grade) ⇒ M(Y)
(X) + 4 ⇒ X; (Y) + 1 ⇒ Y; A unchanged

if (A) < P1 or (A) > P2, then µ = 0, else
µ = MIN [((A) – P1) × S1, (P2 – (A)) × S2, $FF]

where:
A = current crisp input value

X points to a 4-byte data structure
that describes a trapezoidal membership

function as base intercept
points and slopes (P1, P2, S1, S2)

Y points at fuzzy input (RAM location)

Continued on next page
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 73

Instruction Set Overview
REV
MIN-MAX rule

evaluation

Find smallest rule input (MIN)
Store to rule outputs unless fuzzy output is

larger (MAX)

Rules are unweighted

Each rule input is an 8-bit offset
from a base address in Y

Each rule output is an 8-bit offset
from a base address in Y

$FE separates rule inputs from rule outputs
$FF terminates the rule list

REV can be interrupted

REVW
MIN-MAX rule

evaluation

Find smallest rule input (MIN)
Multiply by a rule weighting factor (optional)
Store to rule outputs unless fuzzy output is

larger (MAX)

Each rule input is the 16-bit address
of a fuzzy input

Each rule output is the 16-bit address
of a fuzzy output

Address $FFFE separates rule inputs
from rule outputs

$FFFF terminates the rule list
Weights are 8-bit values in a separate table

REVW can be interrupted

WAV

Calculates numerator
(sum of products)
and denominator
(sum of weights)

for weighted average
calculation

Results are placed in
correct registers

for EDIV immediately
after WAV

WAVR
Resumes execution
of interrupted WAV

instruction

Recover immediate results from stack
rather than initializing them to 0.

Table 5-13. Fuzzy Logic Instructions (Continued)

Mnemonic Function Operation

SiFi
i 1=

B

∑ Y:D⇒

Fi
i 1=

B

∑ X⇒
Reference Manual S12CPUV2

74 Instruction Set Overview MOTOROLA

Instruction Set Overview
Maximum and Minimum Instructions
5.16 Maximum and Minimum Instructions

The maximum (MAX) and minimum (MIN) instructions are used to make
comparisons between an accumulator and a memory location. These
instructions can be used for linear programming operations, such as
simplex-method optimization, or for fuzzification.

MAX and MIN instructions use accumulator A to perform 8-bit
comparisons, while EMAX and EMIN instructions use accumulator D to
perform 16-bit comparisons. The result (maximum or minimum value)
can be stored in the accumulator (EMAXD, EMIND, MAXA, MINA) or the
memory address (EMAXM, EMINM, MAXM, MINM).

Table 5-14 is a summary of minimum and maximum instructions.

Table 5-14. Minimum and Maximum Instructions

Mnemonic Function Operation

Minimum Instructions

EMIND
MIN of two unsigned 16-bit values

result to accumulator
MIN ((D), (M : M + 1)) ⇒ D

EMINM
MIN of two unsigned 16-bit values

result to memory
MIN ((D), (M : M + 1)) ⇒ M : M+1

MINA
MIN of two unsigned 8-bit values

result to accumulator
MIN ((A), (M)) ⇒ A

MINM
MIN of two unsigned 8-bit values

result to memory
MIN ((A), (M)) ⇒ M

Maximum Instructions

EMAXD
MAX of two unsigned 16-bit values

result to accumulator
MAX ((D), (M : M + 1)) ⇒ D

EMAXM
MAX of two unsigned 16-bit values

result to memory
MAX ((D), (M : M + 1)) ⇒ M : M + 1

MAXA
MAX of two unsigned 8-bit values

result to accumulator
MAX ((A), (M)) ⇒ A

MAXM
MAX of two unsigned 8-bit values

result to memory
MAX ((A), (M)) ⇒ M
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 75

Instruction Set Overview
5.17 Multiply and Accumulate Instruction

The multiply and accumulate (EMACS) instruction multiplies two 16-bit
operands stored in memory and accumulates the 32-bit result in a third
memory location. EMACS can be used to implement simple digital filters
and defuzzification routines that use 16-bit operands. The WAV
instruction incorporates an 8- to 16-bit multiply and accumulate
operation that obtains a numerator for the weighted average calculation.
The EMACS instruction can automate this portion of the averaging
operation when 16-bit operands are used. Table 5-15 shows the
EMACS instruction.

5.18 Table Interpolation Instructions

The table interpolation instructions (TBL and ETBL) interpolate values
from tables stored in memory. Any function that can be represented as
a series of linear equations can be represented by a table of appropriate
size. Interpolation can be used for many purposes, including tabular
fuzzy logic membership functions. TBL uses 8-bit table entries and
returns an 8-bit result; ETBL uses 16-bit table entries and returns a
16-bit result. Use of indexed addressing mode provides great flexibility
in structuring tables.

Consider each of the successive values stored in a table to be y-values
for the endpoint of a line segment. The value in the B accumulator before
instruction execution begins represents the change in x from the
beginning of the line segment to the lookup point divided by total change
in x from the beginning to the end of the line segment. B is treated as an
8-bit binary fraction with radix point left of the MSB, so each line segment
is effectively divided into 256 smaller segments. During instruction
execution, the change in y between the beginning and end of the
segment (a signed byte for TBL or a signed word for ETBL) is multiplied
by the content of the B accumulator to obtain an intermediate delta-y
term. The result (stored in the A accumulator by TBL, and in the D

Table 5-15. Multiply and Accumulate Instructions

Mnemonic Function Operation

EMACS
Multiply and accumulate (signed)

16 bit by 16 bit ⇒ 32 bit
((M(X):M(X+1)) × (M(Y):M(Y+1)))
+ (M ~ M + 3) ⇒ M ~ M + 3
Reference Manual S12CPUV2

76 Instruction Set Overview MOTOROLA

Instruction Set Overview
Branch Instructions
accumulator by ETBL) is the y-value of the beginning point plus the
signed intermediate delta-y value. Table 5-16 shows the table
interpolation instructions.

5.19 Branch Instructions

Branch instructions cause a sequence to change when specific
conditions exist. The CPU12 uses three kinds of branch instructions.
These are short branches, long branches, and bit condition branches.

Branch instructions can also be classified by the type of condition that
must be satisfied in order for a branch to be taken. Some instructions
belong to more than one classification. For example:

• Unary branch instructions always execute.

• Simple branches are taken when a specific bit in the condition
code register is in a specific state as a result of a previous
operation.

• Unsigned branches are taken when comparison or test of
unsigned quantities results in a specific combination of condition
code register bits.

• Signed branches are taken when comparison or test of signed
quantities results in a specific combination of condition code
register bits.

Table 5-16. Table Interpolation Instructions

Mnemonic Function Operation

ETBL

16-bit table lookup
and interpolate

(no indirect addressing
modes allowed)

(M : M + 1) + [(B) × ((M + 2 : M + 3)
– (M : M + 1))] ⇒ D

Initialize B, and index before ETBL.
<ea> points to the first table entry (M : M + 1)

B is fractional part of lookup value

TBL

8-bit table lookup
and interpolate

(no indirect addressing
modes allowed)

(M) + [(B) × ((M + 1) – (M))] ⇒ A
Initialize B, and index before TBL.

<ea> points to the first 8-bit table entry (M)
B is fractional part of lookup value.
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 77

Instruction Set Overview
5.19.1 Short Branch Instructions

Short branch instructions operate this way: When a specified condition
is met, a signed 8-bit offset is added to the value in the program counter.
Program execution continues at the new address.

The numeric range of short branch offset values is $80 (–128) to $7F
(127) from the address of the next memory location after the offset value.

Table 5-17 is a summary of the short branch instructions.

Table 5-17. Short Branch Instructions

Mnemonic Function Equation or Operation

Unary Branches

BRA Branch always 1 = 1

BRN Branch never 1 = 0

Simple Branches

BCC Branch if carry clear C = 0

BCS Branch if carry set C = 1

BEQ Branch if equal Z = 1

BMI Branch if minus N = 1

BNE Branch if not equal Z = 0

BPL Branch if plus N = 0

BVC Branch if overflow clear V = 0

BVS Branch if overflow set V = 1

Unsigned Branches

Relation

BHI Branch if higher R > M C + Z = 0

BHS Branch if higher or same R ≥ M C = 0

BLO Branch if lower R < M C = 1

BLS Branch if lower or same R ≤ M C + Z = 1

Signed Branches

BGE Branch if greater than or equal R ≥ M N ⊕ V = 0

BGT Branch if greater than R > M Z + (N ⊕ V) = 0

BLE Branch if less than or equal R ≤ M Z + (N ⊕ V) = 1

BLT Branch if less than R < M N ⊕ V = 1
Reference Manual S12CPUV2

78 Instruction Set Overview MOTOROLA

Instruction Set Overview
Branch Instructions
5.19.2 Long Branch Instructions

Long branch instructions operate this way: When a specified condition is
met, a signed 16-bit offset is added to the value in the program counter.
Program execution continues at the new address. Long branches are
used when large displacements between decision-making steps are
necessary.

The numeric range of long branch offset values is $8000 (–32,768) to
$7FFF (32,767) from the address of the next memory location after the
offset value. This permits branching from any location in the standard
64-Kbyte address map to any other location in the 64-Kbyte map.

Table 5-18 is a summary of the long branch instructions.

Table 5-18. Long Branch Instructions
Mnemonic Function Equation or Operation

Unary Branches

LBRA Long branch always 1 = 1

LBRN Long branch never 1 = 0

Simple Branches

LBCC Long branch if carry clear C = 0

LBCS Long branch if carry set C = 1

LBEQ Long branch if equal Z = 1

LBMI Long branch if minus N = 1

LBNE Long branch if not equal Z = 0

LBPL Long branch if plus N = 0

LBVC Long branch if overflow clear V = 0

LBVS Long branch if overflow set V = 1

Unsigned Branches

LBHI Long branch if higher C + Z = 0

LBHS Long branch if higher or same C = 0

LBLO Long branch if lower Z = 1

LBLS Long branch if lower or same C + Z = 1

Signed Branches

LBGE Long branch if greater than or equal N ⊕ V = 0

LBGT Long branch if greater than Z + (N ⊕ V) = 0

LBLE Long branch if less than or equal Z + (N ⊕ V) = 1

LBLT Long branch if less than N ⊕ V = 1
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 79

Instruction Set Overview
5.19.3 Bit Condition Branch Instructions

The bit condition branches are taken when bits in a memory byte are in
a specific state. A mask operand is used to test the location. If all bits in
that location that correspond to ones in the mask are set (BRSET) or
cleared (BRCLR), the branch is taken.

The numeric range of 8-bit offset values is $80 (–128) to $7F (127)
from the address of the next memory location after the offset value.

Table 5-19 is a summary of bit condition branches.

Table 5-19. Bit Condition Branch Instructions

Mnemonic Function Equation or Operation

BRCLR Branch if selected bits clear (M) • (mm) = 0

BRSET Branch if selected bits set (M) • (mm) = 0
Reference Manual S12CPUV2

80 Instruction Set Overview MOTOROLA

Instruction Set Overview
Loop Primitive Instructions
5.20 Loop Primitive Instructions

The loop primitives can also be thought of as counter branches. The
instructions test a counter value in a register or accumulator (A, B, D, X,
Y, or SP) for zero or non-zero value as a branch condition. There are
predecrement, preincrement, and test-only versions of these
instructions.

The numeric range of 9-bit offset values is $100 (–256) to $0FF (255)
from the address of the next memory location after the offset value.

Table 5-20 is a summary of loop primitive branches.

Table 5-20. Loop Primitive Instructions

Mnemonic Function Equation or Operation

DBEQ
Decrement counter and branch if = 0

(counter = A, B, D, X, Y, or SP)

(counter) – 1⇒ counter
If (counter) = 0, then branch;

else continue to next instruction

DBNE
Decrement counter and branch if ≠ 0

(counter = A, B, D, X, Y, or SP)

(counter) – 1⇒ counter
If (counter) not = 0, then branch;
else continue to next instruction

IBEQ
Increment counter and branch if = 0

(counter = A, B, D, X, Y, or SP)

(counter) + 1⇒ counter
If (counter) = 0, then branch;

else continue to next instruction

IBNE
Increment counter and branch if ≠ 0

(counter = A, B, D, X, Y, or SP)

(counter) + 1⇒ counter
If (counter) not = 0, then branch;
else continue to next instruction

TBEQ
Test counter and branch if = 0
(counter = A, B, D, X,Y, or SP)

If (counter) = 0, then branch;
else continue to next instruction

TBNE
Test counter and branch if ≠ 0
(counter = A, B, D, X,Y, or SP)

If (counter) not = 0, then branch;
else continue to next instruction
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 81

Instruction Set Overview
5.21 Jump and Subroutine Instructions

Jump (JMP) instructions cause immediate changes in sequence. The
JMP instruction loads the PC with an address in the 64-Kbyte memory
map, and program execution continues at that address. The address can
be provided as an absolute 16-bit address or determined by various
forms of indexed addressing.

Subroutine instructions optimize the process of transferring control to a
code segment that performs a particular task. A short branch (BSR),
a jump to subroutine (JSR), or an expanded-memory call (CALL) can be
used to initiate subroutines. There is no LBSR instruction, but a
PC-relative JSR performs the same function. A return address is
stacked, then execution begins at the subroutine address. Subroutines
in the normal 64-Kbyte address space are terminated with a
return-from-subroutine (RTS) instruction. RTS unstacks the return
address so that execution resumes with the instruction after BSR
or JSR.

The call subroutine in expanded memory (CALL) instruction is intended
for use with expanded memory. CALL stacks the value in the PPAGE
register and the return address, then writes a new value to PPAGE to
select the memory page where the subroutine resides. The page value
is an immediate operand in all addressing modes except indexed
indirect modes; in these modes, an operand points to locations in
memory where the new page value and subroutine address are stored.
The return from call (RTC) instruction is used to terminate subroutines in
expanded memory. RTC unstacks the PPAGE value and the return
address so that execution resumes with the next instruction after CALL.
For software compatibility, CALL and RTC execute correctly on devices
that do not have expanded addressing capability. Table 5-21
summarizes the jump and subroutine instructions.
Reference Manual S12CPUV2

82 Instruction Set Overview MOTOROLA

Instruction Set Overview
Interrupt Instructions
5.22 Interrupt Instructions

Interrupt instructions handle transfer of control to a routine that performs
a critical task. Software interrupts are a type of exception. Section 7.
Exception Processing covers interrupt exception processing in detail.

The software interrupt (SWI) instruction initiates synchronous exception
processing. First, the return PC value is stacked. After CPU context is
stacked, execution continues at the address pointed to by the SWI
vector.

Execution of the SWI instruction causes an interrupt without an interrupt
service request. SWI is not inhibited by global mask bits I and X in the
CCR, and execution of SWI sets the I mask bit. Once an SWI interrupt
begins, maskable interrupts are inhibited until the I bit in the CCR is
cleared. This typically occurs when a return from interrupt (RTI)
instruction at the end of the SWI service routine restores context.

Table 5-21. Jump and Subroutine Instructions

Mnemonic Function Operation

BSR Branch to subroutine
SP – 2 ⇒ SP

RTNH : RTNL ⇒ M(SP) : M(SP+1)
Subroutine address ⇒ PC

CALL
Call subroutine

in expanded memory

SP – 2 ⇒ SP
RTNH:RTNL⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP
(PPAGE) ⇒ M(SP)
Page ⇒ PPAGE

Subroutine address ⇒ PC

JMP Jump Address ⇒ PC

JSR Jump to subroutine
SP – 2 ⇒ SP

RTNH : RTNL⇒ M(SP) : M(SP+1)
Subroutine address ⇒ PC

RTC Return from call

M(SP) ⇒ PPAGE
SP + 1 ⇒ SP

M(SP) : M(SP+1) ⇒ PCH : PCL
SP + 2 ⇒ SP

RTS Return from subroutine
M(SP) : M(SP+1) ⇒ PCH : PCL

SP + 2 ⇒ SP
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 83

Instruction Set Overview
The CPU12 uses a variation of the software interrupt for unimplemented
opcode trapping. There are opcodes in all 256 positions in the page 1
opcode map, but only 54 of the 256 positions on page 2 of the opcode
map are used. If the CPU attempts to execute one of the unimplemented
opcodes on page 2, an opcode trap interrupt occurs. Traps are
essentially interrupts that share the $FFF8:$FFF9 interrupt vector.

The RTI instruction is used to terminate all exception handlers, including
interrupt service routines. RTI first restores the CCR, B:A, X, Y, and the
return address from the stack. If no other interrupt is pending, normal
execution resumes with the instruction following the last instruction that
executed prior to interrupt.

Table 5-22 is a summary of interrupt instructions.

Table 5-22. Interrupt Instructions

Mnemonic Function Operation

RTI
Return

from interrupt

(M(SP)) ⇒ CCR; (SP) + $0001 ⇒ SP
(M(SP) : M(SP+1)) ⇒ B : A; (SP) + $0002 ⇒ SP

(M(SP) : M(SP+1)) ⇒ XH : XL; (SP) + $0004 ⇒ SP
(M(SP) : M(SP+1)) ⇒ PCH : PCL; (SP) + $0002 ⇒ SP

(M(SP) : M(SP+1)) ⇒ YH : YL; (SP) + $0004 ⇒ SP

SWI Software interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)

TRAP
Unimplemented
opcode interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)
Reference Manual S12CPUV2

84 Instruction Set Overview MOTOROLA

Instruction Set Overview
Index Manipulation Instructions
5.23 Index Manipulation Instructions

The index manipulation instructions perform 8- and 16-bit operations on
the three index registers and accumulators, other registers, or memory,
as shown in Table 5-23 .

Table 5-23. Index Manipulation Instructions

Mnemonic Function Operation

Addition Instructions

ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

Compare Instructions

CPS Compare SP to memory (SP) – (M : M + 1)

CPX Compare X to memory (X) – (M : M + 1)

CPY Compare Y to memory (Y) – (M : M + 1)

Load Instructions

LDS Load SP from memory M : M+1 ⇒ SP

LDX Load X from memory (M : M + 1) ⇒ X

LDY Load Y from memory (M : M + 1) ⇒ Y

LEAS Load effective address into SP Effective address ⇒ SP

LEAX Load effective address into X Effective address ⇒ X

LEAY Load effective address into Y Effective address ⇒ Y

Store Instructions

STS Store SP in memory (SP) ⇒ M:M+1

STX Store X in memory (X) ⇒ M : M + 1

STY Store Y in memory (Y) ⇒ M : M + 1

Transfer Instructions

TFR Transfer register to register
(A, B, CCR, D, X, Y, or SP)

⇒ A, B, CCR, D, X, Y, or SP

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS transfer X to SP (X) ⇒ SP

TYS transfer Y to SP (Y) ⇒ SP

Exchange Instructions

EXG Exchange register to register
(A, B, CCR, D, X, Y, or SP)

⇔ (A, B, CCR, D, X, Y, or SP)

XGDX EXchange D with X (D) ⇔ (X)

XGDY EXchange D with Y (D) ⇔ (Y)
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 85

Instruction Set Overview
5.24 Stacking Instructions

The two types of stacking instructions, are shown in Table 5-24 . Stack
pointer instructions use specialized forms of mathematical and data
transfer instructions to perform stack pointer manipulation. Stack
operation instructions save information on and retrieve information from
the system stack.

Table 5-24. Stacking Instructions

Mnemonic Function Operation

Stack Pointer Instructions

CPS Compare SP to memory (SP) – (M : M + 1)

DES Decrement SP (SP) – 1 ⇒ SP

INS Increment SP (SP) + 1 ⇒ SP

LDS Load SP (M : M + 1) ⇒ SP

LEAS
Load effective address

into SP
Effective address ⇒ SP

STS Store SP (SP) ⇒ M : M + 1

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

Stack Operation Instructions

PSHA Push A (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

PSHB Push B (SP) – 1 ⇒ SP; (B) ⇒ M(SP)

PSHC Push CCR (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

PSHD Push D (SP) – 2 ⇒ SP; (A : B) ⇒ M(SP) : M(SP+1)

PSHX Push X (SP) – 2 ⇒ SP; (X) ⇒ M(SP) : M(SP+1)

PSHY Push Y (SP) – 2 ⇒ SP; (Y) ⇒ M(SP) : M(SP+1)

PULA Pull A (M(SP)) ⇒ A; (SP) + 1 ⇒ SP

PULB Pull B (M(SP)) ⇒ B; (SP) + 1 ⇒ SP

PULC Pull CCR (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

PULD Pull D (M(SP) : M(SP+1)) ⇒ A : B; (SP) + 2 ⇒ SP

PULX Pull X (M(SP) : M(SP+1)) ⇒ X; (SP) + 2 ⇒ SP

PULY Pull Y (M(SP) : M(SP+1)) ⇒ Y; (SP) + 2 ⇒ SP
Reference Manual S12CPUV2

86 Instruction Set Overview MOTOROLA

Instruction Set Overview
Pointer and Index Calculation Instructions
5.25 Pointer and Index Calculation Instructions

The load effective address instructions allow 5-, 8-, or 16-bit constants
or the contents of 8-bit accumulators A and B or 16-bit accumulator D to
be added to the contents of the X and Y index registers, or to the SP.

Table 5-25 is a summary of pointer and index instructions.

Table 5-25. Pointer and Index Calculation Instructions

Mnemonic Function Operation

LEAS
Load result of indexed addressing mode

effective address calculation
into stack pointer

r ± constant ⇒ SP or
(r) + (accumulator) ⇒ SP

r = X, Y, SP, or PC

LEAX
Load result of indexed addressing mode

effective address calculation
into x index register

r ± constant ⇒X or
(r) + (accumulator) ⇒X

r = X, Y, SP, or PC

LEAY
Load result of indexed addressing mode

effective address calculation
into y index register

r ± constant ⇒Y or
(r) + (accumulator) ⇒ Y

r = X, Y, SP, or PC
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 87

Instruction Set Overview
5.26 Condition Code Instructions

Condition code instructions are special forms of mathematical and data
transfer instructions that can be used to change the condition code
register. Table 5-26 shows instructions that can be used to manipulate
the CCR.

Table 5-26. Condition Code Instructions

Mnemonic Function Operation

ANDCC Logical AND CCR with memory (CCR) • (M) ⇒ CCR

CLC Clear C bit 0 ⇒ C

CLI Clear I bit 0 ⇒ I

CLV Clear V bit 0 ⇒ V

ORCC Logical OR CCR with memory (CCR) + (M) ⇒ CCR

PSHC Push CCR onto stack (SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)

PULC Pull CCR from stack (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

SEC Set C bit 1 ⇒ C

SEI Set I bit 1 ⇒ I

SEV Set V bit 1 ⇒ V

TAP Transfer A to CCR (A) ⇒ CCR

TPA Transfer CCR to A (CCR) ⇒ A
Reference Manual S12CPUV2

88 Instruction Set Overview MOTOROLA

Instruction Set Overview
Stop and Wait Instructions
5.27 Stop and Wait Instructions

As shown in Table 5-27 , two instructions put the CPU12 in an inactive
state that reduces power consumption.

The stop instruction (STOP) stacks a return address and the contents of
CPU registers and accumulators, then halts all system clocks.

The wait instruction (WAI) stacks a return address and the contents of
CPU registers and accumulators, then waits for an interrupt service
request; however, system clock signals continue to run.

Both STOP and WAI require that either an interrupt or a reset exception
occur before normal execution of instructions resumes. Although both
instructions require the same number of clock cycles to resume normal
program execution after an interrupt service request is made, restarting
after a STOP requires extra time for the oscillator to reach operating
speed.

Table 5-27. Stop and Wait Instructions

Mnemonic Function Operation

STOP Stop

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)
Stop CPU clocks

WAI Wait for interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 89

Instruction Set Overview
5.28 Background Mode and Null Operations

Background debug mode (BDM) is a special CPU12 operating mode
that is used for system development and debugging. Executing enter
background debug mode (BGND) when BDM is enabled puts the
CPU12 in this mode. For complete information, refer to Section 8.
Instruction Queue .

Null operations are often used to replace other instructions during
software debugging. Replacing conditional branch instructions with
branch never (BRN), for instance, permits testing a decision-making
routine by disabling the conditional branch without disturbing the offset
value.

Null operations can also be used in software delay programs to consume
execution time without disturbing the contents of other CPU registers or
memory.

Table 5-28 shows the BGND and null operation (NOP) instructions.

Table 5-28. Background Mode and Null Operation Instructions

Mnemonic Function Operation

BGND Enter background debug mode
If BDM enabled, enter BDM;

else resume normal processing

BRN Branch never Does not branch

LBRN Long branch never Does not branch

NOP Null operation —
Reference Manual S12CPUV2

90 Instruction Set Overview MOTOROLA

Reference Manual — S12CPUV2

Section 6. Instruction Glossary
6.1 Introduction

This section is a comprehensive reference to the CPU12 instruction set.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 91

Instruction Glossary
6.2 Glossary Information

The glossary contains an entry for each assembler mnemonic, in
alphabetic order. Figure 6-1 is a representation of a glossary page.

Figure 6-1. Example Glossary Page

Each entry contains symbolic and textual descriptions of operation,
information concerning the effect of operation on status bits in the
condition code register, and a table that describes assembler syntax,
address mode variations, and cycle-by-cycle execution of the
instruction.

S X H

—

N: Set if MSB of resu

Z: Set if result is $00

V: 0; Cleared.

Load Index Regi

Operation:

Description: Loads the most significa
memory at the addres

CCR Details:

DETAILED SYNTAX
AND CYCLE-BY-CYCLE

OPERATION

EFFECT ON
CONDITION CODE REGISTER

STATUS BITS

DETAILED DESCRIPTION
OF OPERATION

SYMBOLIC DESCRIPTION
OF OPERATION

MNEMONIC LDX
(M : M+1) ⇒ X

content of the next b

——

Source Form Address Mode

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysp
LDX oprx9,xysp
LDX oprx16,xysp
LDX [D,xysp]
LDX [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CE j j
DE d d
FE h h
EE x b
EE x b
EE x b
EE x b
EE x b
Reference Manual S12CPUV2

92 Instruction Glossary MOTOROLA

Instruction Glossary
Condition Code Changes
6.3 Condition Code Changes

The following special characters are used to describe the effects of
instruction execution on the status bits in the condition code register.

– — Status bit not affected by operation

0 — Status bit cleared by operation

1 — Status bit set by operation

∆ — Status bit affected by operation

⇓ — Status bit may be cleared or remain set, but is not set
by operation.

⇑ — Status bit may be set or remain cleared, but is not
cleared by operation.

? — Status bit may be changed by operation, but the final
state is not defined.

! — Status bit used for a special purpose
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 93

Instruction Glossary
6.4 Object Code Notation

The digits 0 to 9 and the uppercase letters A to F are used to express
hexadecimal values. Pairs of lowercase letters represent the 8-bit values
as described here.

dd — 8-bit direct address $0000 to $00FF; high byte
assumed to be $00

ee — High-order byte of a 16-bit constant offset for indexed
addressing

eb — Exchange/transfer post-byte

ff — Low-order eight bits of a 9-bit signed constant offset
for indexed addressing, or low-order byte of a 16-bit
constant offset for indexed addressing

hh — High-order byte of a 16-bit extended address

ii — 8-bit immediate data value

jj — High-order byte of a 16-bit immediate data value

kk — Low-order byte of a 16-bit immediate data value

lb — Loop primitive (DBNE) post-byte

ll — Low-order byte of a 16-bit extended address

mm— 8-bit immediate mask value for bit manipulation
instructions; set bits indicate bits to be affected

pg — Program overlay page (bank) number used in CALL
instruction

qq — High-order byte of a 16-bit relative offset for long
branches

tn — Trap number $30–$39 or $40–$FF

rr — Signed relative offset $80 (–128) to $7F (+127)
offset relative to the byte following the relative offset
byte, or low-order byte of a 16-bit relative offset for
long branches

xb — Indexed addressing post-byte
Reference Manual S12CPUV2

94 Instruction Glossary MOTOROLA

Instruction Glossary
Source Forms
6.5 Source Forms

The glossary pages provide only essential information about assembler
source forms. Assemblers generally support a number of assembler
directives, allow definition of program labels, and have special
conventions for comments. For complete information about writing
source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Assemblers are typically flexible about the use of spaces and tabs.
Often, any number of spaces or tabs can be used where a single space
is shown on the glossary pages. Spaces and tabs are also normally
allowed before and after commas. When program labels are used, there
must also be at least one tab or space before all instruction mnemonics.
This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, square
brackets ([or]), plus signs (+), minus signs (–), and the register
designation D (as in [D,...), are literal characters.

Groups of italic characters in the columns represent variable information
to be supplied by the programmer. These groups can include any
alphanumeric character or the underscore character, but cannot include
a space or comma. For example, the groups xysp and oprx0_xysp are
both valid, but the two groups oprx0 xysp are not valid because there is
a space between them. Permitted syntax is described here.

The definition of a legal label or expression varies from assembler to
assembler. Assemblers also vary in the way CPU registers are specified.
Refer to assembler documentation for detailed information.
Recommended register designators are a, A, b, B, ccr, CCR, d, D, x, X,
y, Y, sp, SP, pc, and PC.

abc — Any one legal register designator for accumulators A or
B or the CCR

abcdxys — Any one legal register designator for accumulators A or
B, the CCR, the double accumulator D, index registers X
or Y, or the SP. Some assemblers may accept t2, T2, t3,
or T3 codes in certain cases of transfer and exchange
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 95

Instruction Glossary
instructions, but these forms are intended for Motorola
use only.

abd — Any one legal register designator for accumulators A or
B or the double accumulator D

abdxys — Any one legal register designator for accumulators A or
B, the double accumulator D, index register X or Y, or the
SP

dxys — Any one legal register designation for the double
accumulator D, index registers X or Y, or the SP

msk8 — Any label or expression that evaluates to an 8-bit value.
Some assemblers require a # symbol before this value.

opr8i — Any label or expression that evaluates to an 8-bit
immediate value

opr16i — Any label or expression that evaluates to a 16-bit
immediate value

opr8a — Any label or expression that evaluates to an 8-bit value.
The instruction treats this 8-bit value as the low-order 8
bits of an address in the direct page of the 64-Kbyte
address space ($00xx).

opr16a — Any label or expression that evaluates to a 16-bit value.
The instruction treats this value as an address in the
64-Kbyte address space.

oprx0_xysp — This word breaks down into one of the following
alternative forms that assemble to an 8-bit indexed
addressing postbyte code. These forms generate the
same object code except for the value of the postbyte
code, which is designated as xb in the object code
columns of the glossary pages. As with the source
forms, treat all commas, plus signs, and minus signs as
literal syntax elements. The italicized words used in
these forms are included in this key.

oprx5,xysp
oprx3,–xys
oprx3,+xys
oprx3,xys–
oprx3,xys+
abd,xysp
Reference Manual S12CPUV2

96 Instruction Glossary MOTOROLA

Instruction Glossary
Source Forms
oprx3 — Any label or expression that evaluates to a value in the
range +1 to +8

oprx5 — Any label or expression that evaluates to a 5-bit value in
the range –16 to +15

oprx9 — Any label or expression that evaluates to a 9-bit value in
the range –256 to +255

oprx16 — Any label or expression that evaluates to a 16-bit value.
Since the CPU12 has a 16-bit address bus, this can be
either a signed or an unsigned value.

page — Any label or expression that evaluates to an 8-bit value.
The CPU12 recognizes up to an 8-bit page value for
memory expansion but not all MCUs that include the
CPU12 implement all of these bits. It is the
programmer’s responsibility to limit the page value to
legal values for the intended MCU system. Some
assemblers require a # symbol before this value.

rel8 — Any label or expression that refers to an address that is
within –128 to +127 locations from the next address after
the last byte of object code for the current instruction.
The assembler will calculate the 8-bit signed offset and
include it in the object code for this instruction.

rel9 — Any label or expression that refers to an address that is
within –256 to +255 locations from the next address after
the last byte of object code for the current instruction.
The assembler will calculate the 9-bit signed offset and
include it in the object code for this instruction. The sign
bit for this 9-bit value is encoded by the assembler as a
bit in the looping postbyte (lb) of one of the loop control
instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or
TBNE. The remaining eight bits of the offset are included
as an extra byte of object code.

rel16 — Any label or expression that refers to an address
anywhere in the 64-Kbyte address space. The
assembler will calculate the 16-bit signed offset between
this address and the next address after the last byte of
object code for this instruction and include it in the object
code for this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 97

Instruction Glossary
6.6 Cycle-by-Cycle Execution

This information is found in the tables at the bottom of each instruction
glossary page. Entries show how many bytes of information are
accessed from different areas of memory during the course of instruction
execution. With this information and knowledge of the type and speed of
memory in the system, a user can determine the execution time for any
instruction in any system.

A single letter code in the column represents a single CPU cycle.
Uppercase letters indicate 16-bit access cycles. There are cycle codes
for each addressing mode variation of each instruction. Simply count
code letters to determine the execution time of an instruction in a
best-case system. An example of a best-case system is a single-chip
16-bit system with no 16-bit off-boundary data accesses to any locations
other than on-chip RAM.

Many conditions can cause one or more instruction cycles to be
stretched, but the CPU is not aware of the stretch delays because the
clock to the CPU is temporarily stopped during these delays.

The following paragraphs explain the cycle code letters used and note
conditions that can cause each type of cycle to be stretched.

trapnum — Any label or expression that evaluates to an 8-bit
number in the range $30–$39 or $40–$FF. Used for
TRAP instruction.

xys — Any one legal register designation for index registers X
or Y or the SP

xysp — Any one legal register designation for index registers X
or Y, the SP, or the PC. The reference point for
PC-relative instructions is the next address after the last
byte of object code for the current instruction.

f — Free cycle. This indicates a cycle where the CPU
does not require use of the system buses. An f cycle
is always one cycle of the system bus clock. These
cycles can be used by a queue controller or the
background debug system to perform single cycle
accesses without disturbing the CPU.
Reference Manual S12CPUV2

98 Instruction Glossary MOTOROLA

Instruction Glossary
Cycle-by-Cycle Execution
g — Read 8-bit PPAGE register. These cycles are used
only with the CALL instruction to read the current
value of the PPAGE register and are not visible on the
external bus. Since the PPAGE register is an internal
8-bit register, these cycles are never stretched.

I — Read indirect pointer. Indexed indirect instructions
use this 16-bit pointer from memory to address the
operand for the instruction. These are always 16-bit
reads but they can be either aligned or misaligned.
These cycles are extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the corresponding data is stored in external memory.
There can be additional stretching when the address
space is assigned to a chip-select circuit programmed
for slow memory. These cycles are also stretched if
they correspond to misaligned access to a memory
that is not designed for single-cycle misaligned
access.

i — Read indirect PPAGE value. These cycles are only
used with indexed indirect versions of the CALL
instruction, where the 8-bit value for the memory
expansion page register of the CALL destination is
fetched from an indirect memory location. These
cycles are stretched only when controlled by a
chip-select circuit that is programmed for slow
memory.

n — Write 8-bit PPAGE register. These cycles are used
only with the CALL and RTC instructions to write the
destination value of the PPAGE register and are not
visible on the external bus. Since the PPAGE register
is an internal 8-bit register, these cycles are never
stretched.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 99

Instruction Glossary
O — Optional cycle. Program information is always fetched
as aligned 16-bit words. When an instruction consists
of an odd number of bytes, and the first byte is
misaligned, an O cycle is used to make an additional
program word access (P) cycle that maintains queue
order. In all other cases, the O cycle appears as a free
(f) cycle. The $18 prebyte for page two opcodes is
treated as a special 1-byte instruction. If the prebyte is
misaligned, the O cycle is used as a program word
access for the prebyte; if the prebyte is aligned, the O
cycle appears as a free cycle. If the remainder of the
instruction consists of an odd number of bytes,
another O cycle is required some time before the
instruction is completed. If the O cycle for the prebyte
is treated as a P cycle, any subsequent O cycle in the
same instruction is treated as an f cycle; if the O cycle
for the prebyte is treated as an f cycle, any
subsequent O cycle in the same instruction is treated
as a P cycle. Optional cycles used for program word
accesses can be extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can
be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory. Optional cycles used as free cycles are
never stretched.

P — Program word access. Program information is fetched
as aligned 16-bit words. These cycles are extended to
two bus cycles if the MCU is operating with an 8-bit
external data bus and the program is stored
externally. There can be additional stretching when
the address space is assigned to a chip-select circuit
programmed for slow memory.

r — 8-bit data read. These cycles are stretched only when
controlled by a chip-select circuit programmed for
slow memory.
Reference Manual S12CPUV2

100 Instruction Glossary MOTOROLA

Instruction Glossary
Cycle-by-Cycle Execution
R — 16-bit data read. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is
stored in external memory. There can be additional
stretching when the address space is assigned to a
chip-select circuit programmed for slow memory.
These cycles are also stretched if they correspond to
misaligned accesses to memory that is not designed
for single-cycle misaligned access.

s — Stack 8-bit data. These cycles are stretched only
when controlled by a chip-select circuit programmed
for slow memory.

S — Stack 16-bit data. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external
memory. There can be additional stretching if the
address space is assigned to a chip-select circuit
programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses
to a memory that is not designed for single cycle
misaligned access. The internal RAM is designed to
allow single cycle misaligned word access.

w — 8-bit data write. These cycles are stretched only when
controlled by a chip-select circuit programmed for
slow memory.

W — 16-bit data write. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is
stored in external memory. There can be additional
stretching when the address space is assigned to a
chip-select circuit programmed for slow memory.
These cycles are also stretched if they correspond to
misaligned access to a memory that is not designed
for single-cycle misaligned access.

u — Unstack 8-bit data. These cycles are stretched only
when controlled by a chip-select circuit programmed
for slow memory.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 101

Instruction Glossary
U — Unstack 16-bit data. These cycles are extended to
two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external
memory. There can be additional stretching when the
address space is assigned to a chip-select circuit
programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses
to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to
allow single-cycle misaligned word access.

V — Vector fetch. Vectors are always aligned 16-bit words.
These cycles are extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can
be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory.

t — 8-bit conditional read. These cycles are either data
read cycles or unused cycles, depending on the data
and flow of the REVW instruction. These cycles are
stretched only when controlled by a chip-select circuit
programmed for slow memory.

T — 16-bit conditional read. These cycles are either data
read cycles or free cycles, depending on the data and
flow of the REV or REVW instruction. These cycles
are extended to two bus cycles if the MCU is operating
with an 8-bit external data bus and the corresponding
data is stored in external memory. There can be
additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory. These cycles are also stretched if they
correspond to misaligned accesses to a memory that
is not designed for single-cycle misaligned access.

x — 8-bit conditional write. These cycles are either data
write cycles or free cycles, depending on the data and
flow of the REV or REVW instruction. These cycles
are only stretched when controlled by a chip-select
circuit programmed for slow memory.
Reference Manual S12CPUV2

102 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
6.7 Glossary

This subsection contains an entry for each assembler mnemonic, in
alphabetic order.

Special Notation for Branch Taken/Not Taken Cases

PPP/P — Short branches require three cycles if taken, one
cycle if not taken. Since the instruction consists of a
single word containing both an opcode and an 8-bit
offset, the not-taken case is simple — the queue
advances, another program word fetch is made, and
execution continues with the next instruction. The
taken case requires that the queue be refilled so that
execution can continue at a new address. First, the
effective address of the destination is determined,
then the CPU performs three program word fetches
from that address.

OPPP/OPO — Long branches require four cycles if taken, three
cycles if not taken. Optional cycles are required
because all long branches are page two opcodes, and
thus include the $18 prebyte. The CPU12 treats the
prebyte as a special 1-byte instruction. If the prebyte
is misaligned, the optional cycle is used to perform a
program word access; if the prebyte is aligned, the
optional cycle is used to perform a free cycle. As a
result, both the taken and not-taken cases use one
optional cycle for the prebyte. In the not-taken case,
the queue must advance so that execution can
continue with the next instruction, and another
optional cycle is required to maintain the queue. The
taken case requires that the queue be refilled so that
execution can continue at a new address. First, the
effective address of the destination is determined,
then the CPU performs three program word fetches
from that address.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 103

Instruction Glossary
Operation: (A) + (B) ⇒ A

Description: Adds the content of accumulator B to the content of accumulator A and
places the result in A. The content of B is not changed. This instruction
affects the H status bit so it is suitable for use in BCD arithmetic
operations. See DAA instruction for additional information.

ABA Add Accumulator B to Accumulator A ABA

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • B3 + B3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • B7 + B7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ABA INH 18 06 OO OO
Reference Manual S12CPUV2

104 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (B) + (X) ⇒ X

Description: Adds the 8-bit unsigned content of accumulator B to the content of index
register X considering the possible carry out of the low-order byte of X;
places the result in X. The content of B is not changed.

This mnemonic is implemented by the LEAX B,X instruction. The LEAX
instruction allows A, B, D, or a constant to be added to X. For
compatibility with the M68HC11, the mnemonic ABX is translated into
the LEAX B,X instruction by the assembler.

ABX Add Accumulator B to Index Register X ABX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ABX
translates to... LEAX B,X IDX 1A E5 Pf PP (1)

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 105

Instruction Glossary
Operation: (B) + (Y) ⇒ Y

Description: Adds the 8-bit unsigned content of accumulator B to the content of index
register Y considering the possible carry out of the low-order byte of Y;
places the result in Y. The content of B is not changed.

This mnemonic is implemented by the LEAY B,Y instruction. The LEAY
instruction allows A, B, D, or a constant to be added to Y. For
compatibility with the M68HC11, the mnemonic ABY is translated into
the LEAY B,Y instruction by the assembler.

ABY Add Accumulator B to Index Register Y ABY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ABY
translates to... LEAY B,Y

IDX 19 ED Pf PP (1)

1. Due to internal M68HC12CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
Reference Manual S12CPUV2

106 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + (M) + C ⇒ A

Description: Adds the content of accumulator A to the content of memory location M,
then adds the value of the C bit and places the result in A. This
instruction affects the H status bit, so it is suitable for use in BCD
arithmetic operations. See DAA instruction for additional information.

ADCA Add with Carry to A ADCA

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysp
ADCA oprx9,xysp
ADCA oprx16,xysp
ADCA [D,xysp]
ADCA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 107

Instruction Glossary
Operation: (B) + (M) + C ⇒ B

Description: Adds the content of accumulator B to the content of memory location M,
then adds the value of the C bit and places the result in B. This
instruction affects the H status bit, so it is suitable for use in BCD
arithmetic operations. See DAA instruction for additional information.

ADCB Add with Carry to B ADCB

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysp
ADCB oprx9,xysp
ADCB oprx16,xysp
ADCB [D,xysp]
ADCB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

108 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + (M) ⇒ A

Description: Adds the content of memory location M to accumulator A and places the
result in A. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations. See DAA instruction for additional
information.

ADDA Add without Carry to A ADDA

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysp
ADDA oprx9,xysp
ADDA oprx16,xysp
ADDA [D,xysp]
ADDA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 109

Instruction Glossary
Operation: (B) + (M) ⇒ B

Description: Adds the content of memory location M to accumulator B and places the
result in B. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations. See DAA instruction for additional
information.

ADDB Add without Carry to B ADDB

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: B3 • M3 + M3 • R3 + R3 • B3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysp
ADDB oprx9,xysp
ADDB oprx16,xysp
ADDB [D,xysp]
ADDB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

110 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A : B) + (M : M+1) ⇒ A : B

Description: Adds the content of memory location M concatenated with the content of
memory location M +1 to the content of double accumulator D and
places the result in D. Accumulator A forms the high-order half of 16-bit
double accumulator D; accumulator B forms the low-order half.

ADDD Add Double Accumulator ADDD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysp
ADDD oprx9,xysp
ADDD oprx16,xysp
ADDD [D,xysp]
ADDD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPF
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 111

Instruction Glossary
Operation: (A) • (M) ⇒ A

Description: Performs logical AND between the content of memory location M and
the content of accumulator A. The result is placed in A. After the
operation is performed, each bit of A is the logical AND of the
corresponding bits of M and of A before the operation began.

ANDA Logical AND A ANDA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysp
ANDA oprx9,xysp
ANDA oprx16,xysp
ANDA [D,xysp]
ANDA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

112 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (B) • (M) ⇒ B

Description: Performs logical AND between the content of memory location M and
the content of accumulator B. The result is placed in B. After the
operation is performed, each bit of B is the logical AND of the
corresponding bits of M and of B before the operation began.

ANDB Logical AND B ANDB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysp
ANDB oprx9,xysp
ANDB oprx16,xysp
ANDB [D,xysp]
ANDB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 113

Instruction Glossary
Operation: (CCR) • (Mask) ⇒ CCR

Description: Performs bitwise logical AND between the content of a mask operand
and the content of the CCR. The result is placed in the CCR. After the
operation is performed, each bit of the CCR is the result of a logical AND
with the corresponding bits of the mask. To clear CCR bits, clear the
corresponding mask bits. CCR bits that correspond to ones in the mask
are not changed by the ANDCC operation.

If the I mask bit is cleared, there is a 1-cycle delay before the system
allows interrupt requests. This prevents interrupts from occurring
between instructions in the sequences CLI, WAI and CLI, SEI (CLI is
equivalent to ANDCC #$EF).

Condition code bits are cleared if the corresponding bit was 0 before the
operation or if the corresponding bit in the mask is 0.

ANDCC Logical AND CCR with Mask ANDCC

CCR Details:
S X H I N Z V C

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ANDCC #opr8i IMM 10 ii P P
Reference Manual S12CPUV2

114 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one bit position to the left. Bit 0 is
loaded with a 0. The C status bit is loaded from the most significant bit
of M.

ASL Arithmetic Shift Left Memory
(same as LSL) ASL

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M7
Set if the MSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASL opr16a
ASL oprx0_xysp
ASL oprx9,xysp
ASL oprx16,xysp
ASL [D,xysp]
ASL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 115

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one bit position to the left. Bit 0 is loaded
with a 0. TheC status bit is loaded from the most significant bit of A.

ASLA Arithmetic Shift Left A
(same as LSLA) ASLA

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A7
Set if the MSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASLA INH 48 O O
Reference Manual S12CPUV2

116 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one bit position to the left. Bit 0 is loaded
with a 0. The C status bit is loaded from the most significant bit of B.

ASLB Arithmetic Shift Left B
(same as LSLB) ASLB

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B7
Set if the MSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASLB INH 58 1 O
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 117

Instruction Glossary
Operation:

Description: Shifts all bits of double accumulator D one bit position to the left. Bit 0 is
loaded with a 0. The C status bit is loaded from the most significant bit
of D.

ASLD Arithmetic Shift Left Double Accumulator
(same as LSLD) ASLD

C b7 – – – – – – b0 b7 – – – – – – b0 0

Accumulator A Accumulator B

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: D15
Set if the MSB of D was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASLD INH 59 O O
Reference Manual S12CPUV2

118 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

ASR Arithmetic Shift Right Memory ASR

Cb7 – – – – – – b0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M0
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASR opr16a
ASR oprx0_xysp
ASR oprx9,xysp
ASR oprx16,xysp
ASR [D,xysp]
ASR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 119

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

ASRA Arithmetic Shift Right A ASRA

Cb7 – – – – – – b0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A0
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASRA INH 47 O O
Reference Manual S12CPUV2

120 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

ASRB Arithmetic Shift Right B ASRB

Cb7 – – – – – – b0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B0
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASRB INH 57 O O
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 121

Instruction Glossary
Operation: If C = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

BCC Branch if Carry Cleared
(Same as BHS) BCC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BCC rel8 REL 24 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

122 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (M) • (Mask) ⇒ M

Description: Clears bits in location M. To clear a bit, set the corresponding bit in the
mask byte. Bits in M that correspond to 0s in the mask byte are not
changed. Mask bytes can be located at PC + 2, PC + 3, or PC + 4,
depending on addressing mode used.

BCLR Clear Bits in Memory BCLR

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address
Mode(1)

1. Indirect forms of indexed addressing cannot be used with this instruction.

Object Code
Access Detail

HCS12 M68HC12

BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysp, msk8
BCLR oprx9,xysp, msk8
BCLR oprx16,xysp, msk8

DIR
EXT
IDX

IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 123

Instruction Glossary
Operation: If C = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

BCS Branch if Carry Set
(Same as BLO) BCS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BCS rel8 REL 25 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

124 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If Z = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

BEQ Branch if Equal BEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BEQ rel8 REL 27 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 125

Instruction Glossary
Operation: If N ⊕ V = 0, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement values
if (Accumulator) ≥ (Memory), then branch

Description: BGE can be used to branch after comparing or subtracting signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is greater than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BGE Branch if Greater than or Equal to Zero BGE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BGE rel8 REL 2C rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

126 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Description: BGND operates like a software interrupt, except that no registers are
stacked. First, the current PC value is stored in internal CPU register
TMP2. Next, the BDM ROM and background register block become
active. The BDM ROM contains a substitute vector, mapped to the
address of the software interrupt vector, which points to routines in the
BDM ROM that control background operation. The substitute vector is
fetched, and execution continues from the address that it points to.
Finally, the CPU checks the location that TMP2 points to. If the value
stored in that location is $00 (the BGND opcode), TMP2 is incremented,
so that the instruction that follows the BGND instruction is the first
instruction executed when normal program execution resumes.

For all other types of BDM entry, the CPU performs the same sequence
of operations as for a BGND instruction, but the value stored in TMP2
already points to the instruction that would have executed next had BDM
not become active. If active BDM is triggered just as a BGND instruction
is about to execute, the BDM firmware does increment TMP2, but the
change does not affect resumption of normal execution.

While BDM is active, the CPU executes debugging commands received
via a special single-wire serial interface. BDM is terminated by the
execution of specific debugging commands. Upon exit from BDM, the
background/boot ROM and registers are disabled, the instruction queue
is refilled starting with the return address pointed to by TMP2, and
normal processing resumes.

BDM is normally disabled to avoid accidental entry. While BDM is
disabled, BGND executes as described, but the firmware causes
execution to return to the user program. Refer to Section 8. Instruction
Queue for more information concerning BDM.

BGND Enter Background Debug Mode BGND

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BGND INH 00 VfPPP VfPPP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 127

Instruction Glossary
Operation: If Z + (N ⊕ V) = 0, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement values
if (Accumulator) > (Memory), then branch

Description: BGT can be used to branch after comparing or subtracting signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than the value in M. After CBA or SBA, the branch
occurs if the value in B is greater than the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BGT Branch if Greater than Zero BGT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BGT rel8 REL 2E rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

128 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 0, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) > (Memory), then branch

Description: BHI can be used to branch after comparing or subtracting unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than the value in M. After CBA or SBA, the branch occurs if the
value in B is greater than the value in A. BHI should not be used for
branching after instructions that do not affect the C bit, such as
increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

BHI Branch if Higher BHI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BHI rel8 REL 22 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 129

Instruction Glossary
Operation: If C = 0, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) ≥ (Memory), then branch

Description: BHS can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than or equal to the value in M. After CBA or SBA, the branch
occurs if the value in B is greater than or equal to the value in A. BHS
should not be used for branching after instructions that do not affect the
C bit, such as increment, decrement, load, store, test, clear, or
complement.

See 3.8 Relative Addressing Mode for details of branch execution.

BHS Branch if Higher or Same
(Same as BCC) BHS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BHS rel8 REL 24 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

130 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) • (M)

Description: Performs bitwise logical AND on the content of accumulator A and the
content of memory location M and modifies the condition codes
accordingly. Each bit of the result is the logical AND of the corresponding
bits of the accumulator and the memory location. Neither the content of
the accumulator nor the content of the memory location is affected.

BITA Bit Test A BITA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysp
BITA oprx9,xysp
BITA oprx16,xysp
BITA [D,xysp]
BITA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 131

Instruction Glossary
Operation: (B) • (M)

Description: Performs bitwise logical AND on the content of accumulator B and the
content of memory location M and modifies the condition codes
accordingly. Each bit of the result is the logical AND of the corresponding
bits of the accumulator and the memory location. Neither the content of
the accumulator nor the content of the memory location is affected.

BITB Bit Test B BITB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysp
BITB oprx9,xysp
BITB oprx16,xysp
BITB [D,xysp]
BITB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

132 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If Z + (N ⊕ V) = 1, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement numbers
if (Accumulator) ≤ (Memory), then branch

Description: BLE can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is less than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is less than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BLE Branch if Less Than or Equal to Zero BLE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLE rel8 REL 2F rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 133

Instruction Glossary
Operation: If C = 1, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) < (Memory), then branch

Description: BLO can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
less than the value in M. After CBA or SBA, the branch occurs if the
value in B is less than the value in A. BLO should not be used for
branching after instructions that do not affect the C bit, such as
increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

BLO Branch if Lower
(Same as BCS) BLO

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLO rel8 REL 25 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

134 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 1, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) ≤ (Memory), then branch

Description: If BLS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator is less than or
equal to the unsigned binary number in memory. Generally not useful
after INC/DEC, LD/ST, and TST/CLR/COM because these instructions
do not affect the C status bit.

See 3.8 Relative Addressing Mode for details of branch execution.

BLS Branch if Lower or Same BLS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLS rel8 REL 23 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 135

Instruction Glossary
Operation: If N ⊕ V = 1, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement numbers
if (Accumulator) < (Memory), then branch

Description: BLT can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CMPD, CPS, CPX, CPY,
SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU
register value is less than the value in M. After CBA or SBA, the branch
occurs if the value in B is less than the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BLT Branch if Less than Zero BLT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLT rel8 REL 2D rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

136 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

BMI Branch if Minus BMI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BMI rel8 REL 2B rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 137

Instruction Glossary
Operation: If Z = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

BNE Branch if Not Equal to Zero BNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BNE rel8 REL 26 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

138 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

BPL Branch if Plus BPL

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BPL rel8 REL 2A rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 139

Instruction Glossary
Operation: (PC) + $0002 + Rel ⇒ PC

Description: Unconditional branch to an address calculated as shown in the
expression. Rel is a relative offset stored as a two’s complement number
in the second byte of the branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must
always be refilled.

See 3.8 Relative Addressing Mode for details of branch execution.

BRA Branch Always BRA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BRA rel8 REL 20 rr PPP PPP
Reference Manual S12CPUV2

140 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If (M) • (Mask) = 0, then branch

Description: Performs a bitwise logical AND of memory location M and the mask
supplied with the instruction, then branches if and only if all bits with a
value of 1 in the mask byte correspond to bits with a value of 0 in the
tested byte. Mask operands can be located at PC + 1, PC + 2, or
PC + 4, depending on addressing mode. The branch offset is referenced
to the next address after the relative offset (rr) which is the last byte of
the instruction object code.

See 3.8 Relative Addressing Mode for details of branch execution.

BRCLR Branch if Bits Cleared BRCLR

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address
Mode(1) Object Code

Access Detail

HCS12 M68HC12

BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysp, msk8, rel8
BRCLR oprx9,xysp, msk8, rel8
BRCLR oprx16,xysp, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

1. Indirect forms of indexed addressing cannot be used with this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 141

Instruction Glossary
Operation: (PC) + $0002 ⇒ PC

Description: Never branches. BRN is effectively a 2-byte NOP that requires one cycle
to execute. BRN is included in the instruction set to provide a
complement to the BRA instruction. The instruction is useful during
program debug, to negate the effect of another branch instruction
without disturbing the offset byte. A complement for BRA is also useful
in compiler implementations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRN branch condition is never
satisfied, the branch is never taken, and only a single program fetch is
needed to update the instruction queue.

See 3.8 Relative Addressing Mode for details of branch execution.

BRN Branch Never BRN

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BRN rel8 REL 21 rr P P
Reference Manual S12CPUV2

142 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If (M) • (Mask) = 0, then branch

Description: Performs a bitwise logical AND of the inverse of memory location M and
the mask supplied with the instruction, then branches if and only if all bits
with a value of 1 in the mask byte correspond to bits with a value of one
in the tested byte. Mask operands can be located at PC + 1, PC + 2, or
PC + 4, depending on addressing mode. The branch offset is referenced
to the next address after the relative offset (rr) which is the last byte of
the instruction object code.

See 3.8 Relative Addressing Mode for details of branch execution.

BRSET Branch if Bits Set BRSET

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address
Mode(1) Object Code

Access Detail

HCS12 M68HC12

BRSET opr8a, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysp, msk8, rel8
BRSET oprx9,xysp, msk8, rel8
BRSET oprx16,xysp, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

1. Indirect forms of indexed addressing cannot be used with this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 143

Instruction Glossary
Operation: (M) + (Mask) ⇒ M

Description: Sets bits in memory location M. To set a bit, set the corresponding bit in
the mask byte. All other bits in M are unchanged. The mask byte can be
located at PC + 2, PC + 3, or PC + 4, depending upon addressing mode.

BSET Set Bit(s) in Memory BSET

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address
Mode(1) Object Code

Access Detail

HCS12 M68HC12

BSET opr8a, msk8
BSET opr16a, msk8
BSET oprx0_xysp, msk8
BSET oprx9,xysp, msk8
BSET oprx16,xysp, msk8

DIR
EXT
IDX

IDX1
IDX2

4C dd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP

1. Indirect forms of indexed addressing cannot be used with this instruction.
Reference Manual S12CPUV2

144 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
RTNH : RTNL ⇒ M(SP) : M(SP+1)
(PC) + Rel ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers
control to a subroutine. Uses the address of the instruction after the BSR
as a return address.

Decrements the SP by two, to allow the two bytes of the return address
to be stacked.

Stacks the return address (the SP points to the high-order byte of the
return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which
restores the return address from the stack.

BSR Branch to Subroutine BSR

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BSR rel8 REL 07 rr SPPP PPPS
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 145

Instruction Glossary
Operation: If V = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 0.

BVC causes a branch when a previous operation on two’s complement
binary values does not cause an overflow. That is, when BVC follows a
two’s complement operation, a branch occurs when the result of the
operation is valid.

See 3.8 Relative Addressing Mode for details of branch execution.

BVC Branch if Overflow Cleared BVC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BVC rel8 REL 28 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

146 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If V = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 1.

BVS causes a branch when a previous operation on two’s complement
binary values causes an overflow. That is, when BVS follows a two’s
complement operation, a branch occurs when the result of the operation
is invalid.

See 3.8 Relative Addressing Mode for details of branch execution.

BVS Branch if Overflow Set BVS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BVS rel8 REL 29 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 147

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
(SP) – $0001 ⇒ SP; (PPAGE) ⇒ M(SP)
page ⇒ PPAGE; Subroutine Address ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers
control to a subroutine in expanded memory. Uses the address of the
instruction following the CALL as a return address. For code
compatibility, CALL also executes correctly in devices that do not have
expanded memory capability.

Decrements the SP by two, then stores the return address on the stack.
The SP points to the high-order byte of the return address.

Decrements the SP by one, then stacks the current memory page value
from the PPAGE register on the stack.

Writes a new page value supplied by the instruction to PPAGE and
transfers control to the subroutine.

In indexed-indirect modes, the subroutine address and the PPAGE
value are fetched from memory in the order M high byte, M low byte, and
new PPAGE value.

Expanded-memory subroutines must be terminated by an RTC
instruction, which restores the return address and PPAGE value from
the stack.

CALL Call Subroutine in Expanded Memory CALL

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CALL opr16a, page
CALL oprx0_xysp, page
CALL oprx9,xysp, page
CALL oprx16,xysp, page
CALL [D,xysp]
CALL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg
4B xb
4B xb ee ff

gnSsPPP
gnSsPPP
gnSsPPP
fgnSsPPP
fIignSsPPP
fIignSsPPP

gnfSsPPP
gnfSsPPP
gnfSsPPP

fgnfSsPPP
fIignSsPPP
fIignSsPPP
Reference Manual S12CPUV2

148 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) – (B)

Description: Compares the content of accumulator A to the content of accumulator B
and sets the condition codes, which may then be used for arithmetic and
logical conditional branches. The contents of the accumulators are not
changed.

CBA Compare Accumulators CBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • B7 + B7 • R7 + R7 • A7
Set if there was a borrow from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CBA INH 18 17 OO OO
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 149

Instruction Glossary
Operation: 0 ⇒ C bit

Description: Clears the C status bit. This instruction is assembled as ANDCC #$FE.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

CLC can be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

CLC Clear Carry CLC

CCR Details:
S X H I N Z V C

– – – – – – – 0

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLC
translates to... ANDCC #$FE IMM 10 FE P P
Reference Manual S12CPUV2

150 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: 0 ⇒ I bit

Description: Clears the I mask bit. This instruction is assembled as ANDCC #$EF.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

When the I bit is cleared, interrupts are enabled. There is a 1-cycle (bus
clock) delay in the clearing mechanism for the I bit so that, if interrupts
were previously disabled, the next instruction after a CLI will always be
executed, even if there was an interrupt pending prior to execution of the
CLI instruction.

CLI Clear Interrupt Mask CLI

CCR Details:
S X H I N Z V C

– – – 0 – – – –

I: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLI
translates to... ANDCC #$EF IMM 10 EF P P
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 151

Instruction Glossary
Operation: 0 ⇒ M

Description: All bits in memory location M are cleared to 0.

CLR Clear Memory CLR

CCR Details:
S X H I N Z V C

– – – – 0 1 0 0

N: 0; cleared

Z: 1; set

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLR opr16a
CLR oprx0_xysp
CLR oprx9,xysp
CLR oprx16,xysp
CLR [D,xysp]
CLR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff

PwO
Pw
PwO
PwP
PIfw
PIPw

wOP
Pw

PwO
PwP

PIfPw
PIPPw
Reference Manual S12CPUV2

152 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: 0 ⇒ A

Description: All bits in accumulator A are cleared to 0.

CLRA Clear A CLRA

CCR Details:
S X H I N Z V C

– – – – 0 1 0 0

N: 0; cleared

Z: 1; set

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLRA INH 87 O O
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 153

Instruction Glossary
Operation: 0 ⇒ B

Description: All bits in accumulator B are cleared to 0.

CLRB Clear B CLRB

CCR Details:
S X H I N Z V C

– – – – 0 1 0 0

N: 0; cleared

Z: 1; set

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLRB INH C7 O O
Reference Manual S12CPUV2

154 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: 0 ⇒ V bit

Description: Clears the V status bit. This instruction is assembled as ANDCC #$FD.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

CLV Clear Two’s Complement Overflow Bit CLV

CCR Details:
S X H I N Z V C

– – – – – – 0 –

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLV
translates to... ANDCC #$FD IMM 10 FD P P
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 155

Instruction Glossary
Operation: (A) – (M)

Description: Compares the content of accumulator A to the content of memory
location M and sets the condition codes, which may then be used for
arithmetic and logical conditional branching. The contents of A and
location M are not changed.

CMPA Compare A CMPA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if there was a borrow from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysp
CMPA oprx9,xysp
CMPA oprx16,xysp
CMPA [D,xysp]
CMPA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

156 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (B) – (M)

Description: Compares the content of accumulator B to the content of memory
location M and sets the condition codes, which may then be used for
arithmetic and logical conditional branching. The contents of B and
location M are not changed.

CMPB Compare B CMPB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if there was a borrow from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysp
CMPB oprx9,xysp
CMPB oprx16,xysp
CMPB [D,xysp]
CMPB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 157

Instruction Glossary
Operation: (M) = $FF – (M) ⇒ M

Description: Replaces the content of memory location M with its one’s complement.
Each bit of M is complemented. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can
be expected to perform consistently. After operation on two’s
complement values, all signed branches are available.

COM Complement Memory COM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 1; set (for M6800 compatibility)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

COM opr16a
COM oprx0_xysp
COM oprx9,xysp
COM oprx16,xysp
COM [D,xysp]
COM [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

158 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) = $FF – (A) ⇒ A

Description: Replaces the content of accumulator A with its one’s complement. Each
bit of A is complemented. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can
be expected to perform consistently. After operation on two’s
complement values, all signed branches are available.

COMA Complement A COMA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 1; set (for M6800 compatibility)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

COMA INH 41 0 0
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 159

Instruction Glossary
Operation: (B) = $FF – (B) ⇒ B

Description: Replaces the content of accumulator B with its one’s complement. Each
bit of B is complemented. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can
be expected to perform consistently. After operation on two’s
complement values, all signed branches are available.

COMB Complement B COMB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 1; set (for M6800 compatibility)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

COMB INH 51 0 0
Reference Manual S12CPUV2

160 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A : B) – (M : M + 1)

Description: Compares the content of double accumulator D with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by a 16-bit subtract of (M : M + 1)
from D without modifying either D or (M : M + 1).

CPD Compare Double Accumulator CPD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysp
CPD oprx9,xysp
CPD oprx16,xysp
CPD [D,xysp]
CPD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 161

Instruction Glossary
Operation: (SP) – (M : M + 1)

Description: Compares the content of the SP with a 16-bit value at the address
specified, and sets the condition codes accordingly. The compare is
accomplished internally by doing a 16-bit subtract of (M : M + 1) from the
SP without modifying either the SP or (M : M + 1).

CPS Compare Stack Pointer CPS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: S15 • M15 • R15 + S15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: S15 • M15 + M15 • R15 + R15 • S15
Set if the absolute value of the content of memory is larger than the
absolute value of the SP; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysp
CPS oprx9,xysp
CPS oprx16,xysp
CPS [D,xysp]
CPS [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

162 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (X) – (M : M + 1)

Description: Compares the content of index register X with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by a 16-bit subtract of (M : M + 1)
from index register X without modifying either index register X or
(M : M + 1).

CPX Compare Index Register X CPX

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: X15 • M15 • R15 + X15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: X15 • M15 + M15 • R15 + R15 • X15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysp
CPX oprx9,xysp
CPX oprx16,xysp
CPX [D,xysp]
CPX [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 163

Instruction Glossary
Operation: (Y) – (M : M + 1)

Description: Compares the content of index register Y to a 16-bit value at the address
specified and sets the condition codes accordingly. The compare is
accomplished internally by a 16-bit subtract of (M : M + 1) from Y without
modifying either Y or (M : M + 1).

CPY Compare Index Register Y CPY

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: Y15 • M15 • R15 + Y15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: Y15 • M15 + M15 • R15 + R15 • Y15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysp
CPY oprx9,xysp
CPY oprx16,xysp
CPY [D,xysp]
CPY [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

164 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Description: DAA adjusts the content of accumulator A and the state of the C status
bit to represent the correct binary-coded-decimal sum and the
associated carry when a BCD calculation has been performed. To
execute DAA, the content of accumulator A, the state of the C status bit,
and the state of the H status bit must all be the result of performing an
ABA, ADD, or ADC on BCD operands, with or without an initial carry.

The table shows DAA operation for all legal combinations of input
operands. Columns 1 through 4 represent the results of ABA, ADC, or
ADD operations on BCD operands. The correction factor in column 5 is
added to the accumulator to restore the result of an operation on two
BCD operands to a valid BCD value and to set or clear the C bit. All
values are in hexadecimal.

DAA Decimal Adjust A DAA

1 2 3 4 5 6

Initial
C Bit Value

Value
of A[7:4]

Initial
H Bit Value

Value
of A[3:0]

Correction
Factor

Corrected
C Bit Value

0 0–9 0 0–9 00 0

0 0–8 0 A–F 06 0

0 0–9 1 0–3 06 0

0 A–F 0 0–9 60 1

0 9–F 0 A–F 66 1

0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1

1 0–2 0 A–F 66 1

1 0–3 1 0–3 66 1

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ? ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Undefined
C: Represents BCD carry. See bit table

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DAA INH 18 07 OfO OfO
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 165

Instruction Glossary
Operation: (Counter) – 1 ⇒ Counter
If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Subtract one from the specified counter register A, B, D, X, Y, or SP. If
the counter register has reached zero, execute a branch to the specified
relative destination. The DBEQ instruction is encoded into three bytes of
machine code including the 9-bit relative offset (–256 to +255 locations
from the start of the next instruction).

IBEQ and TBEQ instructions are similar to DBEQ except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

DBEQ Decrement and Branch if Equal to Zero DBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

Access Detail

HCS12 M68HC12

DBEQ abdxys, rel9 REL 04 lb rr PPP/PPO PPP

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero
(DBEQ – 0) or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would be 0:0
for DBEQ.

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

DBEQ A, rel9
DBEQ B, rel9

04 00 rr
04 01 rr

04 10 rr
04 11 rr

D
X
Y

SP

100
101
110
111

DBEQ D, rel9
DBEQ X, rel9
DBEQ Y, rel9
DBEQ SP, rel9

04 04 rr
04 05 rr
04 06 rr
04 07 rr

04 14 rr
04 15 rr
04 16 rr
04 17 rr
Reference Manual S12CPUV2

166 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (Counter) – 1 ⇒ Counter
If (Counter) not = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Subtract one from the specified counter register A, B, D, X, Y, or SP. If
the counter register has not been decremented to zero, execute a
branch to the specified relative destination. The DBNE instruction is
encoded into three bytes of machine code including a 9-bit relative offset
(–256 to +255 locations from the start of the next instruction).

IBNE and TBNE instructions are similar to DBNE except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

DBNE Decrement and Branch if Not Equal to Zero DBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (DBEQ – 0)
or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would be 0:0 for DBNE.

Access Detail

HCS12 M68HC12

DBNE abdxys, rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

DBNE A, rel9
DBNE B, rel9

04 20 rr
04 21 rr

04 30 rr
04 31 rr

D
X
Y

SP

100
101
110
111

DBNE D, rel9
DBNE X, rel9
DBNE Y, rel9
DBNE SP, rel9

04 24 rr
04 25 rr
04 26 rr
04 27 rr

04 34 rr
04 35 rr
04 36 rr
04 37 rr
S12CPUV2 Reference Manual

MOTOROLA 167

Instruction Glossary
Operation: (M) – $01 ⇒ M

Description: Subtract one from the content of memory location M.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in
multiple-precision computations.

DEC Decrement Memory DEC

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs
if and only if (M) was $80 before the operation.

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (DBEQ – 0)
or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would be 0:0 for DBNE.

Access Detail

HCS12 M68HC12

DEC opr16a
DEC oprx0_xysp
DEC oprx9,xysp
DEC oprx16,xysp
DEC [D,xysp]
DEC [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

168 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) – $01 ⇒ A

Description: Subtract one from the content of accumulator A.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in
multiple-precision computations.

DECA Decrement A DECA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (A) was $80 before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DECA INH 43 O O
S12CPUV2 Reference Manual

MOTOROLA 169

Instruction Glossary
Operation: (B) – $01 ⇒ B

Description: Subtract one from the content of accumulator B.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in
multiple-precision computations.

DECB Decrement B DECB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (B) was $80 before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DECB INH 53 O O
Reference Manual S12CPUV2

170 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0001 ⇒ SP

Description: Subtract one from the SP. This instruction assembles to LEAS –1,SP.
The LEAS instruction does not affect condition codes as DEX or DEY
instructions do.

DES Decrement Stack Pointer DES

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DES
translates to... LEAS –1,SP IDX 1B 9F Pf PP (1)

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA 171

Instruction Glossary
Operation: (X) – $0001 ⇒ X

Description: Subtract one from index register X. LEAX –1,X can produce the same
result, but LEAX does not affect the Z bit. Although the LEAX instruction
is more flexible, DEX requires only one byte of object code.

Only the Z bit is set or cleared according to the result of this operation.

DEX Decrement Index Register X DEX

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DEX INH 09 O O
Reference Manual S12CPUV2

172 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y) – $0001 ⇒ Y

Description: Subtract one from index register Y. LEAY –1,Y can produce the same
result, but LEAY does not affect the Z bit. Although the LEAY instruction
is more flexible, DEY requires only one byte of object code.

Only the Z bit is set or cleared according to the result of this operation.

DEY Decrement Index Register Y DEY

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DEY INH 03 O O
S12CPUV2 Reference Manual

MOTOROLA 173

Instruction Glossary
Operation: (Y : D) ÷ (X) ⇒ Y; Remainder ⇒ D

Description: Divides a 32-bit unsigned dividend by a 16-bit divisor, producing a 16-bit
unsigned quotient and an unsigned 16-bit remainder. All operands and
results are located in CPU registers. If an attempt to divide by zero is
made, C is set and the states of the N, Z, and V bits in the CCR are
undefined. In case of an overflow or a divide by zero, the contents of the
registers D and Y do not change.

EDIV Extended Divide 32-Bit by 16-Bit
(Unsigned) EDIV

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Undefined after overflow or division by zero

Z: Set if result is $0000; cleared otherwise
Undefined after overflow or division by zero

V: Set if the result was > $FFFF; cleared otherwise Undefined after
division by zero

C: Set if divisor was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EDIV INH 11 ffffffffffO ffffffffffO
Reference Manual S12CPUV2

174 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y : D) ÷ (X) ⇒ Y; Remainder ⇒ D

Description: Divides a signed 32-bit dividend by a 16-bit signed divisor, producing a
signed 16-bit quotient and a signed 16-bit remainder. All operands and
results are located in CPU registers. If an attempt to divide by zero is
made, C is set and the states of the N, Z, and V bits in the CCR are
undefined. In case of an overflow or a divide by zero, the contents of the
registers D and Y do not change.

EDIVS Extended Divide 32-Bit by 16-Bit
(Signed) EDIVS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Undefined after overflow or division by zero

Z: Set if result is $0000; cleared otherwise
Undefined after overflow or division by zero

V: Set if the result was > $7FFF or < $8000; cleared otherwise
Undefined after division by zero

C: Set if divisor was $0000; cleared otherwise
Indicates division by zero

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EDIVS INH 18 14 OffffffffffO OffffffffffO
S12CPUV2 Reference Manual

MOTOROLA 175

Instruction Glossary
Operation: (M(X) : M(X+1)) × (M(Y) : M(Y+1)) + (M ~ M+3) ⇒ M ~ M+3

Description: A 16-bit value is multiplied by a 16-bit value to produce a 32-bit
intermediate result. This 32-bit intermediate result is then added to the
content of a 32-bit accumulator in memory. EMACS is a signed integer
operation. All operands and results are located in memory. When the
EMACS instruction is executed, the first source operand is fetched from
an address pointed to by X, and the second source operand is fetched
from an address pointed to by index register Y. Before the instruction is
executed, the X and Y index registers must contain values that point to
the most significant bytes of the source operands. The most significant
byte of the 32-bit result is specified by an extended address supplied
with the instruction.

EMACS Extended Multiply and Accumulate
(Signed)

16-Bit by 16-Bit to 32-Bit
EMACS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00000000; cleared otherwise

V: M31 • I31 • R31 + M31 • I31 • R31
Set if result > $7FFFFFFF (+ overflow) or
< $80000000 (– underflow)
Indicates two’s complement overflow

C: M15 • I15 + I15 • R15 + R15 • M15
Set if there was a carry from bit 15 of the result; cleared otherwise
Indicates a carry from low word to high word of the result occurred

Source Form (1)

1. opr16a is an extended address specification. Both X and Y point to source operands.

Address
Mode

Object Code
Access Detail

HCS12 M68HC12

EMACS opr16a Special 18 12 hh ll ORROfffRRfWWP ORROfffRRfWWP
Reference Manual S12CPUV2

176 MOTOROLA

Instruction Glossary
Glossary
Operation: MAX ((D), (M : M + 1)) ⇒ D

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the larger of the two values in D. The Z status bit is set when the result
of the subtraction is zero (the values are equal), and the C status bit is
set when the subtraction requires a borrow (the value in memory is
larger than the value in the accumulator). When C = 1, the value in D has
been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

EMAXD Place Larger of Two
Unsigned 16-Bit Values

in Accumulator D
EMAXD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMAXD oprx0_xysp
EMAXD oprx9,xysp
EMAXD oprx16,xysp
EMAXD [D,xysp]
EMAXD [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP
S12CPUV2 Reference Manual

MOTOROLA 177

Instruction Glossary
Operation: MAX ((D), (M : M + 1)) ⇒ M : M + 1

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the larger of the two values in the memory location. The Z status bit is
set when the result of the subtraction is zero (the values are equal), and
the C status bit is set when the subtraction requires a borrow (the value
in memory is larger than the value in the accumulator). When C = 0, the
value in D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

EMAXM Place Larger of Two
Unsigned 16-Bit Values

in Memory
EMAXM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMAXM oprx0_xysp
EMAXM oprx9,xysp
EMAXM oprx16,xysp
EMAXM [D,xysp]
EMAXM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW
Reference Manual S12CPUV2

178 MOTOROLA

Instruction Glossary
Glossary
Operation: MIN ((D), (M : M + 1)) ⇒ D

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the smaller of the two values in D. The Z status bit is set when the result
of the subtraction is zero (the values are equal), and the C status bit is
set when the subtraction requires a borrow (the value in memory is
larger than the value in the accumulator). When C = 0, the value in D has
been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the smallest value in a list of values.

EMIND Place Smaller of Two
Unsigned 16-Bit Values

in Accumulator D
EMIND

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 + D15 • M15 • R15

Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMIND oprx0_xysp
EMIND oprx9,xysp
EMIND oprx16,xysp
EMIND [D,xysp]
EMIND [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP
S12CPUV2 Reference Manual

MOTOROLA 179

Instruction Glossary
Operation: MIN ((D), (M : M + 1)) ⇒ M : M + 1

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger and leaves
the smaller of the two values in the memory location. The Z status bit is
set when the result of the subtraction is zero (the values are equal), and
the C status bit is set when the subtraction requires a borrow (the value
in memory is larger than the value in the accumulator). When C = 1, the
value in D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

EMINM Place Smaller of Two
Unsigned 16-Bit Values

in Memory
EMINM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMINM oprx0_xysp
EMINM oprx9,xysp
EMINM oprx16,xysp
EMINM [D,xysp]
EMINM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW
Reference Manual S12CPUV2

180 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) × (Y) ⇒ Y : D

Description: An unsigned 16-bit value is multiplied by an unsigned 16-bit value to
produce an unsigned 32-bit result. The first source operand must be
loaded into 16-bit double accumulator D and the second source operand
must be loaded into index register Y before executing the instruction.
When the instruction is executed, the value in D is multiplied by the value
in Y. The upper 16-bits of the 32-bit result are stored in Y and the
low-order 16-bits of the result are stored in D.

The C status bit can be used to round the high-order 16 bits of the result.

EMUL Extended Multiply
16-Bit by 16-Bit (Unsigned) EMUL

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise

Z: Set if result is $00000000; cleared otherwise

C: Set if bit 15 of the result is set; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMUL INH 13 ffO ffO
S12CPUV2 Reference Manual

MOTOROLA 181

Instruction Glossary
A

Operation: (D) × (Y) ⇒ Y : D

Description: A signed 16-bit value is multiplied by a signed 16-bit value to produce a
signed 32-bit result. The first source operand must be loaded into 16-bit
double accumulator D, and the second source operand must be loaded
into index register Y before executing the instruction. When the
instruction is executed, D is multiplied by the value Y. The 16 high-order
bits of the 32-bit result are stored in Y and the 16 low-order bits of the
result are stored in D.

The C status bit can be used to round the high-order 16 bits of the result.

EMULS Extended Multiply
16-Bit by 16-Bit (Signed) EMULS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise

Z: Set if result is $00000000; cleared otherwise

C: Set if bit 15 of the result is set; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMULS INH 18 13
OfO
OffO (1)

1. EMULS has an extra free cycle if it is followed by another PAGE TWO instruction.

OfO
Reference Manual S12CPUV2

182 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) ⊕ (M) ⇒ A

Description: Performs the logical exclusive OR between the content of accumulator
A and the content of memory location M. The result is placed in A. Each
bit of A after the operation is the logical exclusive OR of the
corresponding bits of M and A before the operation.

EORA Exclusive OR A EORA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysp
EORA oprx9,xysp
EORA oprx16,xysp
EORA [D,xysp]
EORA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 183

Instruction Glossary
Operation: (B) ⊕ (M) ⇒ B

Description: Performs the logical exclusive OR between the content of accumulator
B and the content of memory location M. The result is placed in A. Each
bit of A after the operation is the logical exclusive OR of the
corresponding bits of M and B before the operation.

EORB Exclusive OR B EORB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysp
EORB oprx9,xysp
EORB oprx16,xysp
EORB [D,xysp]
EORB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

184 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M + 1) + [(B) × ((M + 2 : M + 3) – (M : M + 1))] ⇒ D

Description: ETBL linearly interpolates one of 256 result values that fall between
each pair of data entries in a lookup table stored in memory. Data entries
in the table represent the y values of endpoints of equally-spaced line
segments. Table entries and the interpolated result are 16-bit values.
The result is stored in the D accumulator.

Before executing ETBL, an index register points to the table entry
corresponding to the x value (X1 that is closest to, but less than or equal
to, the desired lookup point (XL, YL). This defines the left end of a line
segment and the right end is defined by the next data entry in the table.
Prior to execution, accumulator B holds a binary fraction (radix left of
MSB) representing the ratio of (XL–X1) ÷ (X2–X1).

The 16-bit unrounded result is calculated using the following expression:

D = Y1 + [(B) × (Y2 – Y1)]

Where:
(B) = (XL – X1) ÷ (X2 – X1)
Y1 = 16-bit data entry pointed to by <effective address>
Y2 = 16-bit data entry pointed to by <effective address> + 2

The intermediate value [(B) × (Y2 – Y1)] produces a 24-bit result with the
radix point between bits 7 and 8. Any indexed addressing mode, except
indirect modes or 9-bit and 16-bit offset modes, can be used to identify
the first data point (X1,Y1). The second data point is the next table entry.

1. C-bit was undefined in original M68HC12

ETBL Extended Table Lookup and Interpolate ETBL

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆(1)

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
C: Set if result can be rounded up; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ETBL oprx0_xysp IDX 18 3F xb ORRffffffP ORRffffffP
S12CPUV2 Reference Manual

MOTOROLA 185

Instruction Glossary
Operation: See table

Description: Exchanges the contents of registers specified in the instruction as shown
below. Note that the order in which exchanges between 8-bit and 16-bit
registers are specified affects the high byte of the 16-bit registers
differently. Exchanges of D with A or B are ambiguous. Cases involving
TMP2 and TMP3 are reserved for Motorola use, so some assemblers
may not permit their use, but it is possible to generate these cases by
using DC.B or DC.W assembler directives.

None affected, unless the CCR is the destination register. Condition
codes take on the value of the corresponding source bits, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only in
response to any reset or by recognition of an XIRQ interrupt.

EXG Exchange Register Contents EXG

CCR Details:
S X H I N Z V C

Or:
S X H I N Z V C

– – – – – – – – ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code (1)

1. Legal coding for eb is summarized in the following table. Columns represent the high-order source digit. Rows represent
the low-order destination digit (bit 3 is a don’t care). Values are in hexadecimal.

Access Detail

HCS12 M68HC12

EXG abcdxys,abcdxys INH B7 eb P P

8 9 A B C D E F

0 A ⇔ A B ⇔ A CCR ⇔ A
TMP3L ⇒ A

$00:A ⇒ TMP3
B ⇒ A
A ⇒ B

XL ⇒ A
$00:A ⇒ X

YL ⇒ A
$00:A ⇒ Y

SPL ⇒ A
$00:A ⇒ SP

1 A ⇔ B B ⇔ B CCR ⇔ B
TMP3L ⇒ B

$FF:B ⇒ TMP3
B ⇒ B

$FF ⇒ A
XL ⇒ B

$FF:B ⇒ X
YL ⇒ B

$FF:B ⇒ Y
SPL ⇒ B

$FF:B ⇒ SP

2 A ⇔ CCR B ⇔ CCR CCR ⇔ CCR
TMP3L ⇒ CCR

$FF:CCR ⇒ TMP3
B ⇒ CCR

$FF:CCR ⇒ D
XL ⇒ CCR

$FF:CCR ⇒ X
YL ⇒ CCR

$FF:CCR ⇒ Y
SPL ⇒ CCR

$FF:CCR ⇒ SP

3 $00:A ⇒ TMP2
TMP2L ⇒ A

$00:B ⇒ TMP2
TMP2L ⇒ B

$00:CCR ⇒ TMP2
TMP2L ⇒ CCR

TMP3 ⇔ TMP2 D ⇔ TMP2 X ⇔ TMP2 Y ⇔ TMP2 SP ⇔ TMP2

4 $00:A ⇒ D $00:B ⇒ D
$00:CCR ⇒ D

B ⇒ CCR
TMP3 ⇔ D D ⇔ D X ⇔ D Y ⇔ D SP ⇔ D

5 $00:A ⇒ X
XL ⇒ A

$00:B ⇒ X
XL ⇒ B

$00:CCR ⇒ X
XL ⇒ CCR

TMP3 ⇔ X D ⇔ X X ⇔ X Y ⇔ X SP ⇔ X

6 $00:A ⇒ Y
YL ⇒ A

$00:B ⇒ Y
YL ⇒ B

$00:CCR ⇒ Y
YL ⇒ CCR

TMP3 ⇔ Y D ⇔ Y X ⇔ Y Y ⇔ Y SP ⇔ Y

7 $00:A ⇒ SP
SPL ⇒ A

$00:B ⇒ SP
SPL ⇒ B

$00:CCR ⇒ SP
SPL ⇒ CCR

TMP3 ⇔ SP D ⇔ SP X ⇔ SP Y ⇔ SP SP ⇔ SP
Reference Manual S12CPUV2

186 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Divides an unsigned 16-bit numerator in double accumulator D by an
unsigned 16-bit denominator in index register X, producing an unsigned
16-bit quotient in X and an unsigned 16-bit remainder in D. If both the
numerator and the denominator are assumed to have radix points in the
same positions, the radix point of the quotient is to the left of bit 15. The
numerator must be less than the denominator. In the case of overflow
(denominator is less than or equal to the numerator) or division by zero,
the quotient is set to $FFFF, and the remainder is indeterminate.

FDIV is equivalent to multiplying the numerator by 216 and then
performing 32 by 16-bit integer division. The result is interpreted as a
binary-weighted fraction, which resulted from the division of a 16-bit
integer by a larger 16-bit integer. A result of $0001 corresponds to
0.000015, and $FFFF corresponds to 0.9998. The remainder of an IDIV
instruction can be resolved into a binary-weighted fraction by an FDIV
instruction. The remainder of an FDIV instruction can be resolved into
the next 16 bits of binary-weighted fraction by another FDIV instruction.

FDIV Fractional Divide FDIV

CCR Details:
S X H I N Z V C

– – – – – ∆ ∆ ∆

Z: Set if quotient is $0000; cleared otherwise

V: 1 if X ≤ D
Set if the denominator was less than or equal to the numerator;
cleared otherwise

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

FDIV INH 18 11 OffffffffffO OffffffffffO
S12CPUV2 Reference Manual

MOTOROLA 187

Instruction Glossary
Operation: (Counter) + 1 ⇒ Counter
If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Add one to the specified counter register A, B, D, X, Y, or SP. If the
counter register has reached zero, branch to the specified relative
destination. The IBEQ instruction is encoded into three bytes of machine
code including a 9-bit relative offset (–256 to +255 locations from the
start of the next instruction).

DBEQ and TBEQ instructions are similar to IBEQ except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

IBEQ Increment and Branch if Equal to Zero IBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (IBEQ –
0) or not zero (IBNE – 1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 1:0 for IBEQ.

Access Detail

HCS12 M68HC12

IBEQ abdxys, rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

IBEQ A, rel9
IBEQ B, rel9

04 80 rr
04 81 rr

04 90 rr
04 91 rr

D
X
Y

SP

100
101
110
111

IBEQ D, rel9
IBEQ X, rel9
IBEQ Y, rel9
IBEQ SP, rel9

04 84 rr
04 85 rr
04 86 rr
04 87 rr

04 94 rr
04 95 rr
04 96 rr
04 97 rr
Reference Manual S12CPUV2

188 MOTOROLA

Instruction Glossary
Glossary
Operation: (Counter) + 1 ⇒ Counter
If (Counter) not = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Add one to the specified counter register A, B, D, X, Y, or SP. If the
counter register has not been incremented to zero, branch to the
specified relative destination. The IBNE instruction is encoded into three
bytes of machine code including a 9-bit relative offset (–256 to +255
locations from the start of the next instruction).

DBNE and TBNE instructions are similar to IBNE except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

IBNE Increment and Branch if Not Equal to Zero IBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (IBEQ –
0) or not zero (IBNE – 1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 1:0 for IBNE.

Access Detail

HCS12 M68HC12

IBNE abdxys, rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

IBNE A, rel9
IBNE B, rel9

04 A0 rr
04 A1 rr

04 B0 rr
04 B1 rr

D
X
Y

SP

100
101
110
111

IBNE D, rel9
IBNE X, rel9
IBNE Y, rel9
IBNE SP, rel9

04 A4 rr
04 A5 rr
04 A6 rr
04 A7 rr

04 B4 rr
04 B5 rr
04 B6 rr
04 B7 rr
S12CPUV2 Reference Manual

MOTOROLA 189

Instruction Glossary
Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Divides an unsigned 16-bit dividend in double accumulator D by an
unsigned 16-bit divisor in index register X, producing an unsigned 16-bit
quotient in X, and an unsigned 16-bit remainder in D. If both the divisor
and the dividend are assumed to have radix points in the same positions,
the radix point of the quotient is to the right of bit 0. In the case of division
by zero, C is set, the quotient is set to $FFFF, and the remainder is
indeterminate.

IDIV Integer Divide IDIV

CCR Details:
S X H I N Z V C

– – – – – ∆ 0 ∆

Z: Set if quotient is $0000; cleared otherwise

V: 0; cleared

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

IDIV INH 18 10 OffffffffffO OffffffffffO
Reference Manual S12CPUV2

190 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Performs signed integer division of a signed 16-bit numerator in double
accumulator D by a signed 16-bit denominator in index register X,
producing a signed 16-bit quotient in X, and a signed 16-bit remainder
in D. If division by zero is attempted, the values in D and X are not
changed, C is set, and the values of the N, Z, and V status bits are
undefined.

Other than division by zero, which is not legal and causes the C status
bit to be set, the only overflow case is:

But the highest positive value that can be represented in a 16-bit two’s
complement number is 32,767 ($7FFFF).

IDIVS Integer Divide (Signed) IDIVS

$8000
$FFFF

–32,768
–1

--------------------- +32,768= =

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Undefined after overflow or division by zero

Z: Set if quotient is $0000; cleared otherwise
Undefined after overflow or division by zero

V: Set if the result was > $7FFF or < $8000; cleared otherwise
Undefined after division by zero

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

IDIVS INH 18 15 OffffffffffO OffffffffffO
S12CPUV2 Reference Manual

MOTOROLA 191

Instruction Glossary
Operation: (M) + $01 ⇒ M

Description: Add one to the content of memory location M.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in
multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

INC Increment Memory INC

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there is a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (M) was $7F before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INC opr16a
INC oprx0_xysp
INC oprx9,xysp
INC oprx16,xysp
INC [D,xysp]
INC [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

192 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + $01 ⇒ A

Description: Add one to the content of accumulator A.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in
multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

INCA Increment A INCA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there is a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (A) was $7F before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INCA INH 42 O O
S12CPUV2 Reference Manual

MOTOROLA 193

Instruction Glossary
Operation: (B) + $01 ⇒ B

Description: Add one to the content of accumulator B.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in
multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

INCB Increment B INCB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there is a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (B) was $7F before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INCB INH 52 O O
Reference Manual S12CPUV2

194 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) + $0001 ⇒ SP

Description: Add one to the SP. This instruction is assembled to LEAS 1,SP. The
LEAS instruction does not affect condition codes as an INX or INY
instruction would.

INS Increment Stack Pointer INS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INS
translates to... LEAS 1,SP IDX 1B 81 Pf PP (1)

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA 195

Instruction Glossary
Operation: (X) + $0001 ⇒ X

Description: Add one to index register X. LEAX 1,X can produce the same result but
LEAX does not affect the Z status bit. Although the LEAX instruction is
more flexible, INX requires only one byte of object code.

INX operation affects only the Z status bit.

INX Increment Index Register X INX

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INX INH 08 O O
Reference Manual S12CPUV2

196 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y) + $0001 ⇒ Y

Description: Add one to index register Y. LEAY 1,Y can produce the same result but
LEAY does not affect the Z status bit. Although the LEAY instruction is
more flexible, INY requires only one byte of object code.

INY operation affects only the Z status bit.

INY Increment Index Register Y INY

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INY INH 02 O O
S12CPUV2 Reference Manual

MOTOROLA 197

Instruction Glossary
Operation: Effective Address ⇒ PC

Description: Jumps to the instruction stored at the effective address. The effective
address is obtained according to the rules for extended or indexed
addressing.

JMP Jump JMP

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

JMP opr16a
JMP oprx0_xysp
JMP oprx9,xysp
JMP oprx16,xysp
JMP [D,xysp]
JMP [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

PPP
PPP
PPP
fPPP
fIfPPP
fIfPPP

PPP
PPP
PPP

fPPP
fIfPPP
fIfPPP
Reference Manual S12CPUV2

198 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
RTNH : RTNL ⇒ M(SP) : M(SP + 1)
Subroutine Address ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers
control to a subroutine. Uses the address of the instruction following the
JSR as a return address.

Decrements the SP by two to allow the two bytes of the return address
to be stacked.

Stacks the return address. The SP points to the high order byte of the
return address.

Calculates an effective address according to the rules for extended,
direct, or indexed addressing.

Jumps to the location determined by the effective address.

Subroutines are normally terminated with an RTS instruction, which
restores the return address from the stack.

JSR Jump to Subroutine JSR

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

JSR opr8a
JSR opr16a
JSR oprx0_xysp
JSR oprx9,xysp
JSR oprx16,xysp
JSR [D,xysp]
JSR [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

SPPP
SPPP
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS

PPPS
PPPS
PPPS
PPPS

fPPPS
fIfPPPS
fIfPPPS
S12CPUV2 Reference Manual

MOTOROLA 199

Instruction Glossary
Operation: If C = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

LBCC Long Branch if Carry Cleared
(Same as LBHS) LBCC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBCC rel16 REL 18 24 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

200 MOTOROLA

Instruction Glossary
Glossary
Operation: If C = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

LBCS Long Branch if Carry Set
(Same as LBLO) LBCS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBCS rel16 REL 18 25 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 201

Instruction Glossary
Operation: If Z = 1, (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

LBEQ Long Branch if Equal LBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBEQ rel16 REL 18 27 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

202 MOTOROLA

Instruction Glossary
Glossary
Operation: If N ⊕ V = 0, (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, if (Accumulator) ≥ Memory),
then branch

Description: LBGE can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is greater than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBGE Long Branch if Greater Than or Equal to Zero LBGE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBGE rel16 REL 18 2C qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 203

Instruction Glossary
Operation: If Z + (N ⊕ V) = 0, then (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, If (Accumulator) > (Memory),
then branch

Description: LBGT can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is greater than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBGT Long Branch if Greater Than Zero LBGT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBGT rel16 REL 18 2E qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

204 MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 0, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) > (Memory), then branch

Description: LBHI can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than the value in M. After CBA or SBA, the branch occurs if the
value in B is greater than the value in A. LBHI should not be used for
branching after instructions that do not affect the C bit, such as
increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBHI Long Branch if Higher LBHI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBHI rel16 REL 18 22 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 205

Instruction Glossary
Operation: If C = 0, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) ≥ (Memory), then branch

Description: LBHS can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than or equal to the value in M. After CBA or SBA, the branch
occurs if the value in B is greater than or equal to the value in A. LBHS
should not be used for branching after instructions that do not affect the
C bit, such as increment, decrement, load, store, test, clear, or
complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBHS Long Branch if Higher or Same
(Same as LBCC) LBHS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBHS rel16 REL 18 24 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

206 MOTOROLA

Instruction Glossary
Glossary
Operation: If Z + (N ⊕ V) = 1, then (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, if (Accumulator) ≤ (Memory),
then branch.

Description: LBLE can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is less than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is less than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLE Long Branch if Less Than or Equal to Zero LBLE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLE rel16 REL 18 2F qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 207

Instruction Glossary
Operation: If C = 1, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) < (Memory), then branch

Description: LBLO can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SUBA, SUBB, or
SUBD, the branch occurs if the CPU register value is less than the value
in M. After CBA or SBA, the branch occurs if the value in B is less than
the value in A. LBLO should not be used for branching after instructions
that do not affect the C bit, such as increment, decrement, load, store,
test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLO Long Branch if Lower
(Same as LBCS) LBLO

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLO rel16 REL 18 25 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

208 MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 1, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) ≤ (Memory), then branch

Description: LBLS can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
less than or equal to the value in M. After CBA or SBA, the branch occurs
if the value in B is less than or equal to the value in A. LBLS should not
be used for branching after instructions that do not affect the C bit, such
as increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLS Long Branch if Lower or Same LBLS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLS rel16 REL 18 23 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 209

Instruction Glossary
Operation: If N ⊕ V = 1, (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, if (Accumulator) < (Memory),
then branch

Description: LBLT can be used to branch after subtracting or comparing signed two-s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is less than the value in M. After CBA or SBA, the branch occurs
if the value in B is less than the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLT Long Branch if Less Than Zero LBLT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLT rel16 REL 18 2D qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

210 MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

LBMI Long Branch if Minus LBMI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBMI rel16 REL 18 2B qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 211

Instruction Glossary
Operation: If Z = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

LBNE Long Branch if Not Equal to Zero LBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBNE rel16 REL 18 26 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

212 MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

LBPL Long Branch if Plus LBPL

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBPL rel16 REL 18 2A qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 213

Instruction Glossary
Operation: (PC) + $0004 + Rel ⇒ PC

Description: Unconditional branch to an address calculated as shown in the
expression. Rel is a relative offset stored as a two’s complement number
in the second and third bytes of machine code corresponding to the long
branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must
always be refilled, so execution time is always the larger value.

See 3.8 Relative Addressing Mode for details of branch execution.

LBRA Long Branch Always LBRA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBRA rel16 REL 18 20 qq rr OPPP OPPP
Reference Manual S12CPUV2

214 MOTOROLA

Instruction Glossary
Glossary
Operation: (PC) + $0004 ⇒ PC

Description: Never branches. LBRN is effectively a 4-byte NOP that requires three
cycles to execute. LBRN is included in the instruction set to provide a
complement to the LBRA instruction. The instruction is useful during
program debug, to negate the effect of another branch instruction
without disturbing the offset byte. A complement for LBRA is also useful
in compiler implementations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRN branch condition is never
satisfied, the branch is never taken, and the queue does not need to be
refilled, so execution time is always the smaller value.

LBRN Long Branch Never LBRN

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBRN rel16 REL 18 21 qq rr OPO OPO
S12CPUV2 Reference Manual

MOTOROLA 215

Instruction Glossary
Operation: If V = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 0.

LBVC causes a branch when a previous operation on two’s complement
binary values does not cause an overflow. That is, when LBVC follows a
two’s complement operation, a branch occurs when the result of the
operation is valid.

See 3.8 Relative Addressing Mode for details of branch execution.

LBVC Long Branch if Overflow Cleared LBVC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBVC rel16 REL 18 28 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

216 MOTOROLA

Instruction Glossary
Glossary
Operation: If V = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 1.

LBVS causes a branch when a previous operation on two’s complement
binary values causes an overflow. That is, when LBVS follows a two’s
complement operation, a branch occurs when the result of the operation
is invalid.

See 3.8 Relative Addressing Mode for details of branch execution.

LBVS Long Branch if Overflow Set LBVS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBVS rel16 REL 18 29 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 217

Instruction Glossary
Operation: (M) ⇒ A

Description: Loads the content of memory location M into accumulator A. The
condition codes are set according to the data.

LDAA Load Accumulator A LDAA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysp
LDAA oprx9,xysp
LDAA oprx16,xysp
LDAA [D,xysp]
LDAA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

218 MOTOROLA

Instruction Glossary
Glossary
Operation: (M) ⇒ B

Description: Loads the content of memory location M into accumulator B. The
condition codes are set according to the data.

LDAB Load Accumulator B LDAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysp
LDAB oprx9,xysp
LDAB oprx16,xysp
LDAB [D,xysp]
LDAB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 219

Instruction Glossary
Operation: (M : M+1) ⇒ A : B

Description: Loads the contents of memory locations M and M+1 into double
accumulator D. The condition codes are set according to the data. The
information from M is loaded into accumulator A, and the information
from M+1 is loaded into accumulator B.

LDD Load Double Accumulator LDD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysp
LDD oprx9,xysp
LDD oprx16,xysp
LDD [D,xysp]
LDD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

220 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M+1) ⇒ SP

Description: Loads the most significant byte of the SP with the content of memory
location M, and loads the least significant byte of the SP with the content
of the next byte of memory at M+1.

LDS Load Stack Pointer LDS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysp
LDS oprx9,xysp
LDS oprx16,xysp
LDS [D,xysp]
LDS [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA 221

Instruction Glossary
Operation: (M : M+1) ⇒ X

Description: Loads the most significant byte of index register X with the content of
memory location M, and loads the least significant byte of X with the
content of the next byte of memory at M+1.

LDX Load Index Register X LDX

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysp
LDX oprx9,xysp
LDX oprx16,xysp
LDX [D,xysp]
LDX [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

222 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M+1) ⇒ Y

Description: Loads the most significant byte of index register Y with the content of
memory location M, and loads the least significant byte of Y with the
content of the next memory location at M+1.

LDY Load Index Register Y LDY

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysp
LDY oprx9,xysp
LDY oprx16,xysp
LDY [D,xysp]
LDY [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA 223

Instruction Glossary
Operation: Effective Address ⇒ SP

Description: Loads the stack pointer with an effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.9 Indexed Addressing Modes for more details.

LEAS does not alter condition code bits. This allows stack modification
without disturbing CCR bits changed by recent arithmetic operations.

Operation is a bit more complex when LEAS is used with auto-increment
or auto-decrement operand specifications and the SP is the referenced
index register. The index register is loaded with what would have gone
out to the address bus in the case of a load index instruction. In the case
of a pre-increment or pre-decrement, the modification is made before the
index register is loaded. In the case of a post-increment or
post-decrement, modification would have taken effect after the address
went out on the address bus, so post-modification does not affect the
content of the index register.

In the unusual case where LEAS involves two different index registers
and post-increment or post-decrement, both index registers are modified
as demonstrated by the following example. Consider the instruction
LEAS 4,Y+. First S is loaded with the value of Y, then Y is incremented
by 4.

LEAS Load Stack Pointer with Effective Address LEAS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LEAS oprx0_xysp
LEAS oprx9,xysp
LEAS oprx16,xysp

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

Pf
PO
PP

PP(1)

PO
PP

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
Reference Manual S12CPUV2

224 MOTOROLA

Instruction Glossary
Glossary
Operation: Effective Address ⇒ X

Description: Loads index register X with an effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.9 Indexed Addressing Modes for more details.

Operation is a bit more complex when LEAX is used with auto-increment
or auto-decrement operand specifications and index register X is the
referenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed
instruction. In the case of a pre-increment or pre-decrement, the
modification is made before the index register is loaded. In the case of a
post-increment or post-decrement, modification would have taken effect
after the address went out on the address bus, so post-modification does
not affect the content of the index register.

In the unusual case where LEAX involves two different index registers
and post-increment and post-decrement, both index registers are
modified as demonstrated by the following example. Consider the
instruction LEAX 4,Y+. First X is loaded with the value of Y, then Y is
incremented by 4.

LEAX Load X with Effective Address LEAX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LEAX oprx0_xysp
LEAX oprx9,xysp
LEAX oprx16,xysp

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

Pf
PO
PP

PP(1)

PO
PP

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA 225

Instruction Glossary
Operation: Effective Address ⇒ Y

Description: Loads index register Y with an effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.9 Indexed Addressing Modes for more details.

Operation is a bit more complex when LEAY is used with auto-increment
or auto-decrement operand specifications and index register Y is the
referenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed
instruction. In the case of a pre-increment or pre-decrement, the
modification is made before the index register is loaded. In the case of a
post-increment or post-decrement, modification would have taken effect
after the address went out on the address bus, so post-modification does
not affect the content of the index register.

In the unusual case where LEAY involves two different index registers
and post-increment and post-decrement, both index registers are
modified as demonstrated by the following example. Consider the
instruction LEAY 4,X+. First Y is loaded with the value of X, then X is
incremented by 4.

LEAY Load Y with Effective Address LEAY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LEAY oprx0_xysp
LEAY oprx9,xysp
LEAY oprx16,xysp

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

Pf
PO
PP

PP(1)

PO
PP

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
Reference Manual S12CPUV2

226 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of the memory location M one place to the left. Bit 0 is
loaded with 0. The C status bit is loaded from the most significant bit
of M.

LSL Logical Shift Left Memory
(Same as ASL) LSL

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M7
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSL opr16a
LSL oprx0_xysp
LSL oprx9,xysp
LSL oprx16,xysp
LSL [D,xysp]
LSL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 227

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the left. Bit 0 is loaded with 0.
The C status bit is loaded from the most significant bit of A.

LSLA Logical Shift Left A
(Same as ASLA) LSLA

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A7
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSLA INH 48 O O
Reference Manual S12CPUV2

228 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the left. Bit 0 is loaded with 0.
The C status bit is loaded from the most significant bit of B.

LSLB Logical Shift Left B
(Same as ASLB) LSLB

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B7
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSLB INH 58 O O
S12CPUV2 Reference Manual

MOTOROLA 229

Instruction Glossary
Operation:

Description: Shifts all bits of double accumulator D one place to the left. Bit 0 is
loaded with 0. The C status bit is loaded from the most significant bit of
accumulator A.

LSLD Logical Shift Left Double
(Same as ASLD) LSLD

C b7 – – – – – – b0 b7 – – – – – – b0 0

Accumulator A Accumulator B

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: D15
Set if the MSB of D was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSLD INH 59 O O
Reference Manual S12CPUV2

230 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is loaded
with 0. The C status bit is loaded from the least significant bit of M.

LSR Logical Shift Right Memory LSR

Cb7 – – – – – – b00

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M0
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSR opr16a
LSR oprx0_xysp
LSR oprx9,xysp
LSR oprx16,xysp
LSR [D,xysp]
LSR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 231

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is loaded
with 0. The C status bit is loaded from the least significant bit of A.

C

LSRA Logical Shift Right A LSRA

Cb7 – – – – – – b00

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A0
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSRA INH 44 O O
Reference Manual S12CPUV2

232 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is loaded
with 0. The C status bit is loaded from the least significant bit of B.

LSRB Logical Shift Right B LSRB

Cb7 – – – – – – b00

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B0
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSRB INH 54 O O
S12CPUV2 Reference Manual

MOTOROLA 233

Instruction Glossary
Operation:

Description: Shifts all bits of double accumulator D one place to the right. D15 (MSB
of A) is loaded with 0. The C status bit is loaded from D0 (LSB of B).

LSRD Logical Shift Right Double LSRD

Cb7 – – – – – – b0 b7 – – – – – – b00

Accumulator A Accumulator B

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $0000; cleared otherwise

V: D0
Set if, after the shift operation, C is set; cleared otherwise

C: D0
Set if the LSB of D was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSRD INH 49 O O
Reference Manual S12CPUV2

234 MOTOROLA

Instruction Glossary
Glossary
Operation: MAX ((A), (M)) ⇒ A

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger and leaves the larger
of the two values in A. The Z status bit is set when the result of the
subtraction is zero (the values are equal), and the C status bit is set
when the subtraction requires a borrow (the value in memory is larger
than the value in the accumulator). When C = 1, the value in A has been
replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

MAXA Place Larger of Two Unsigned 8-Bit Values
in Accumulator A MAXA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MAXA oprx0_xysp
MAXA oprx9,xysp
MAXA oprx16,xysp
MAXA [D,xysp]
MAXA [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP
S12CPUV2 Reference Manual

MOTOROLA 235

Instruction Glossary
Operation: MAX ((A), (M)) ⇒ M

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger and leaves the larger
of the two values in the memory location. The Z status bit is set when the
result of the subtraction is zero (the values are equal), and the C status
bit is set when the subtraction requires a borrow (the value in memory is
larger than the value in the accumulator). When C = 0, the value in
accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

MAXM Place Larger of Two Unsigned 8-Bit Values
in Memory MAXM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MAXM oprx0_xysp
MAXM oprx9,xysp
MAXM oprx16,xysp
MAXM [D,xysp]
MAXM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw
Reference Manual S12CPUV2

236 MOTOROLA

Instruction Glossary
Glossary
Operation: Grade of Membership ⇒ M(Y)
(Y) + $0001 ⇒ Y
(X) + $0004 ⇒ X

Description: Before executing MEM, initialize A, X, and Y. Load A with the current
crisp value of a system input variable. Load Y with the fuzzy input RAM
location where the grade of membership is to be stored. Load X with the
first address of a 4-byte data structure that describes a trapezoidal
membership function. The data structure consists of:

• Point_1 — The x-axis starting point for the leading side (at MX)

• Slope_1 — The slope of the leading side (at MX+1)

• Point_2 — The x-axis position of the rightmost point (at MX+2)

• Slope_2 — The slope of the trailing side (at MX+3); the right side
slopes up and to the left from point_2

A slope_1 or slope_2 value of $00 is a special case in which the
membership function either starts with a grade of $FF at input = point_1,
or ends with a grade of $FF at input = point_2 (infinite slope).

During execution, the value of A remains unchanged. X is incremented
by four and Y is incremented by one.

H, N, Z, V, and C may be altered by this instruction.

MEM Determine Grade of Membership
(Fuzzy Logic) MEM

CCR Details:
S X H I N Z V C

– – ? – ? ? ? ?

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MEM Special 01 RRfOw RRfOw
S12CPUV2 Reference Manual

MOTOROLA 237

Instruction Glossary
Operation: MIN ((A), (M)) ⇒ A

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
smaller of the two values in accumulator A. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C
status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 0, the
value in accumulator A has been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the smallest value in a list of values.

MINA Place Smaller of Two
Unsigned 8-Bit Values

in Accumulator A
MINA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MINA oprx0_xysp
MINA oprx9,xysp
MINA oprx16,xysp
MINA [D,xysp]
MINA [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP
Reference Manual S12CPUV2

238 MOTOROLA

Instruction Glossary
Glossary
Operation: MIN ((A), (M)) ⇒ M

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger and leaves the
smaller of the two values in the memory location. The Z status bit is set
when the result of the subtraction is zero (the values are equal), and the
C status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 1, the
value in accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

MINM Place Smaller of Two
Unsigned 8-Bit Values

in Memory
MINM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MINM oprx0_xysp
MINM oprx9,xysp
MINM oprx16,xysp
MINM [D,xysp]
MINM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw
S12CPUV2 Reference Manual

MOTOROLA 239

Instruction Glossary
Operation: (M1) ⇒ M2

Description: Moves the content of one memory location to another memory location.
The content of the source memory location is not changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM–EXT, IMM–IDX, EXT–EXT, EXT–IDX,
IDX–EXT, and IDX–IDX. IDX operands allow indexed addressing mode
specifications that fit in a single postbyte including 5-bit constant,
accumulator offsets, and auto increment/decrement modes. Nine-bit
and 16-bit constant offsets would require additional extension bytes and
are not allowed. Indexed indirect modes (for example [D,r]) are also not
allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.10 Instructions
Using Multiple Modes .

MOVB Move a Byte of Data
from One Memory Location to Another MOVB

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form (1)

1. The first operand in the source code statement specifies the source for the move.

Address
Mode

Object Code
Access Detail

HCS12 M68HC12

MOVB #opr8, opr16a
MOVB #opr8i, oprx0_xysp
MOVB opr16a, opr16a
MOVB opr16a, oprx0_xysp
MOVB oprx0_xysp, opr16a
MOVB oprx0_xysp, oprx0_xysp

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

OPwP
OPwO
OrPwPO
OPrPw
OrPwP
OrPwO

OPwP
OPwO

OrPwPO
OPrPw
OrPwP
OrPwO
Reference Manual S12CPUV2

240 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M + 11) ⇒ M : M + 12

Description: Moves the content of one 16-bit location in memory to another 16-bit
location in memory. The content of the source memory location is not
changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM–EXT, IMM–IDX, EXT–EXT, EXT–IDX,
IDX–EXT, and IDX–IDX. IDX operands allow indexed addressing mode
specifications that fit in a single postbyte including 5-bit constant,
accumulator offsets, and auto increment/decrement modes. Nine-bit
and 16-bit constant offsets would require additional extension bytes and
are not allowed. Indexed indirect modes (for example [D,r]) are also not
allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.10 Instructions
Using Multiple Modes .

MOVW Move a Word of Data
from One Memory Location to Another MOVW

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form (1)

1. The first operand in the source code statement specifies the source for the move.

Address
Mode

Object Code
Access Detail

HCS12 M68HC12

MOVW #opr16i, opr16a
MOVW #opr16i, oprx0_xysp
MOVW opr16a, opr16a
MOVW opr16a, oprx0_xysp
MOVW oprx0_xysp, opr16a
MOVW oprx0_xysp, oprx0_xysp

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

OPWPO
OPPW
ORPWPO
OPRPW
ORPWP
ORPWO

OPWPO
OPPW

ORPWPO
OPRPW
ORPWP
ORPWO
S12CPUV2 Reference Manual

MOTOROLA 241

Instruction Glossary
Operation: (A) × (B) ⇒ A : B

Description: Multiplies the 8-bit unsigned binary value in accumulator A by the 8-bit
unsigned binary value in accumulator B and places the 16-bit unsigned
result in double accumulator D. The carry flag allows rounding the most
significant byte of the result through the sequence MUL, ADCA #0.

MUL Multiply
8-Bit by 8-Bit (Unsigned) MUL

CCR Details:
S X H I N Z V C

– – – – – – – ∆

C: R7
Set if bit 7 of the result (B bit 7) is set; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MUL INH 12 O ffO
Reference Manual S12CPUV2

242 MOTOROLA

Instruction Glossary
Glossary
Operation: 0 – (M) = (M) + 1 ⇒ M

Description: Replaces the content of memory location M with its two’s complement
(the value $80 is left unchanged).

NEG Negate Memory NEG

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied
subtraction from zero; cleared otherwise. Two’s complement
overflow occurs if and only if (M) = $80

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise. Set in all cases except when (M) = $00.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NEG opr16a
NEG oprx0_xysp
NEG oprx9,xysp
NEG oprx16,xysp
NEG [D,xysp]
NEG [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 243

Instruction Glossary
Operation: 0 – (A) = (A) + 1 ⇒ A

Description: Replaces the content of accumulator A with its two’s complement (the
value $80 is left unchanged).

NEGA Negate A NEGA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied
subtraction from zero; cleared otherwise
Two’s complement overflow occurs if and only if (A) = $80

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise
Set in all cases except when (A) = $00

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NEGA INH 40 O O
Reference Manual S12CPUV2

244 MOTOROLA

Instruction Glossary
Glossary
Operation: 0 – (B) = (B) + 1 ⇒ B

Description: Replaces the content of accumulator B with its two’s complement (the
value $80 is left unchanged).

NEGB Negate B NEGB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied
subtraction from zero; cleared otherwise
Two’s complement overflow occurs if and only if (B) = $80

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise
Set in all cases except when (B) = $00

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NEGB INH 50 O O
S12CPUV2 Reference Manual

MOTOROLA 245

Instruction Glossary
Operation: No operation

Description: This single-byte instruction increments the PC and does nothing else.
No other CPU registers are affected. NOP is typically used to produce a
time delay, although some software disciplines discourage CPU
frequency-based time delays. During debug, NOP instructions are
sometimes used to temporarily replace other machine code instructions,
thus disabling the replaced instruction(s).

NOP Null Operation NOP

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NOP INH A7 O O
Reference Manual S12CPUV2

246 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + (M) ⇒ A

Description: Performs bitwise logical inclusive OR between the content of
accumulator A and the content of memory location M and places the
result in A. Each bit of A after the operation is the logical inclusive OR of
the corresponding bits of M and of A before the operation.

ORAA Inclusive OR A ORAA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysp
ORAA oprx9,xysp
ORAA oprx16,xysp
ORAA [D,xysp]
ORAA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 247

Instruction Glossary
Operation: (B) + (M) ⇒ B

Description: Performs bitwise logical inclusive OR between the content of
accumulator B and the content of memory location M. The result is
placed in B. Each bit of B after the operation is the logical inclusive OR
of the corresponding bits of M and of B before the operation.

ORAB Inclusive OR B ORAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysp
ORAB oprx9,xysp
ORAB oprx16,xysp
ORAB [D,xysp]
ORAB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

248 MOTOROLA

Instruction Glossary
Glossary
Operation: (CCR) + (M) ⇒ CCR

Description: Performs bitwise logical inclusive OR between the content of memory
location M and the content of the CCR and places the result in the CCR.
Each bit of the CCR after the operation is the logical OR of the
corresponding bits of M and of CCR before the operation. To set one or
more bits, set the corresponding bit of the mask equal to 1. Bits
corresponding to 0s in the mask are not changed by the ORCC
operation.

Condition code bits are set if the corresponding bit was 1 before the
operation or if the corresponding bit in the instruction-provided mask
is 1. The X interrupt mask cannot be set by any software instruction.

ORCC Logical OR CCR with Mask ORCC

CCR Details:
S X H I N Z V C

⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ORCC #opr8i IMM 14 ii P P
S12CPUV2 Reference Manual

MOTOROLA 249

Instruction Glossary
Operation: (SP) – $0001 ⇒ SP
(A) ⇒ M(SP)

Description: Stacks the content of accumulator A. The stack pointer is decremented
by one. The content of A is then stored at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHA Push A onto Stack PSHA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHA INH 36 Os Os
Reference Manual S12CPUV2

250 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0001 ⇒ SP
(B) ⇒ M(SP)

Description: Stacks the content of accumulator B. The stack pointer is decremented
by one. The content of B is then stored at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHB Push B onto Stack PSHB

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHB INH 37 Os Os
S12CPUV2 Reference Manual

MOTOROLA 251

Instruction Glossary
Operation: (SP) – $0001 ⇒ SP
(CCR) ⇒ M(SP)

Description: Stacks the content of the condition codes register. The stack pointer is
decremented by one. The content of the CCR is then stored at the
address to which the SP points.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHC Push CCR onto Stack PSHC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHC INH 39 Os Os
Reference Manual S12CPUV2

252 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
(A : B) ⇒ M(SP) : M(SP+1)

Description: Stacks the content of double accumulator D. The stack pointer is
decremented by two, then the contents of accumulators A and B are
stored at the location to which the SP points.

After PSHD executes, the SP points to the stacked value of accumulator
A. This stacking order is the opposite of the order in which A and B are
stacked when an interrupt is recognized. The interrupt stacking order is
backward-compatible with the M6800, which had no 16-bit accumulator.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHD Push Double Accumulator onto Stack PSHD

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHD INH 3B OS OS
S12CPUV2 Reference Manual

MOTOROLA 253

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP
(XH : XL) ⇒ M(SP) : M(SP+1)

Description: Stacks the content of index register X. The stack pointer is decremented
by two. The content of X is then stored at the address to which the SP
points. After PSHX executes, the SP points to the stacked value of the
high-order half of X.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHX Push Index Register X onto Stack PSHX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHX INH 34 OS OS
Reference Manual S12CPUV2

254 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
(YH : YL) ⇒ M(SP) : M(SP+1)

Description: Stacks the content of index register Y. The stack pointer is decremented
by two. The content of Y is then stored at the address to which the SP
points. After PSHY executes, the SP points to the stacked value of the
high-order half of Y.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHY Push Index Register Y onto Stack PSHY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHY INH 35 OS OS
S12CPUV2 Reference Manual

MOTOROLA 255

Instruction Glossary
Operation: (M(SP)) ⇒ A
(SP) + $0001 ⇒ SP

Description: Accumulator A is loaded from the address indicated by the stack pointer.
The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

PULA Pull A from Stack PULA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULA INH 32 ufO ufO
Reference Manual S12CPUV2

256 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP)) ⇒ B
(SP) + $0001 ⇒ SP

Description: Accumulator B is loaded from the address indicated by the stack pointer.
The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

PULB Pull B from Stack PULB

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULB INH 33 ufO ufO
S12CPUV2 Reference Manual

MOTOROLA 257

Instruction Glossary
Operation: (M(SP)) ⇒ CCR
(SP) + $0001 ⇒ SP

Description: The condition code register is loaded from the address indicated by the
stack pointer. The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

Condition codes take on the value pulled from the stack, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only by a reset
or by recognition of an XIRQ interrupt.

PULC Pull Condition Code Register from Stack PULC

CCR Details:
S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULC INH 38 ufO ufO
Reference Manual S12CPUV2

258 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP) : M(SP+1)) ⇒ A : B
(SP) + $0002 ⇒ SP

Description: Double accumulator D is loaded from the address indicated by the stack
pointer. The SP is then incremented by two.

The order in which A and B are pulled from the stack is the opposite of
the order in which A and B are pulled when an RTI instruction is
executed. The interrupt stacking order for A and B is
backward-compatible with the M6800, which had no 16-bit accumulator.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

PULD Pull Double Accumulator from Stack PULD

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULD INH 3A UfO UfO
S12CPUV2 Reference Manual

MOTOROLA 259

Instruction Glossary
Operation: (M(SP) : M(SP+1)) ⇒ XH : XL
(SP) + $0002 ⇒ SP

Description: Index register X is loaded from the address indicated by the stack
pointer. The SP is then incremented by two.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

PULX Pull Index Register X from Stack PULX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULX INH 30 UfO UfO
Reference Manual S12CPUV2

260 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP) : M(SP+1)) ⇒ YH : YL
(SP) + $0002 ⇒ SP

Description: Index register Y is loaded from the address indicated by the stack
pointer. The SP is then incremented by two.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

PULY Pull Index Register Y from Stack PULY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULY INH 31 UfO UfO
S12CPUV2 Reference Manual

MOTOROLA 261

Instruction Glossary
Operation: MIN-MAX Rule Evaluation

Description: Performs an unweighted evaluation of a list of rules, using fuzzy input
values to produce fuzzy outputs. REV can be interrupted, so it does not
adversely affect interrupt latency.

The REV instruction uses an 8-bit offset from a base address stored in
index register Y to determine the address of each fuzzy input and fuzzy
output. For REV to execute correctly, each rule in the knowledge base
must consist of a table of 8-bit antecedent offsets followed by a table of
8-bit consequent offsets. The value $FE marks boundaries between
antecedents and consequents and between successive rules. The value
$FF marks the end of the rule list. REV can evaluate any number of rules
with any number of inputs and outputs.

Beginning with the address pointed to by the first rule antecedent, REV
evaluates each successive fuzzy input value until it encounters an $FE
separator. Operation is similar to that of a MINA instruction. The smallest
input value is the truth value of the rule. Then, beginning with the
address pointed to by the first rule consequent, the truth value is
compared to each successive fuzzy output value until another $FE
separator is encountered; if the truth value is greater than the current
output value, it is written to the output. Operation is similar to that of a
MAXM instruction. Rules are processed until an $FF terminator is
encountered.

Before executing REV, perform these set up operations.

• X must point to the first 8-bit element in the rule list.

• Y must point to the base address for fuzzy inputs and fuzzy
outputs.

• A must contain the value $FF, and the CCR V bit must = 0.
(LDAA #$FF places the correct value in A and clears V.)

• Clear fuzzy outputs to 0s.

Index register X points to the element in the rule list that is being
evaluated. X is automatically updated so that execution can resume
correctly if the instruction is interrupted. When execution is complete, X
points to the next address after the $FF separator at the end of the rule
list.

REV Fuzzy Logic Rule Evaluation REV
Reference Manual S12CPUV2

262 MOTOROLA

Instruction Glossary
Glossary
Index register Y points to the base address for the fuzzy inputs and fuzzy
outputs. The value in Y does not change during execution.

Accumulator A holds intermediate results. During antecedent
processing, a MIN function compares each fuzzy input to the value
stored in A, and writes the smaller of the two to A. When all antecedents
have been evaluated, A contains the smallest input value. This is the
truth value used during consequent processing. Accumulator A must be
initialized to $FF for the MIN function to evaluate the inputs of the first
rule correctly. For subsequent rules, the value $FF is written to A when
an $FE marker is encountered. At the end of execution, accumulator A
holds the truth value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to 0 for processing to begin with
the antecedents of the first rule. Once execution begins, the value of V
is automatically changed as $FE separators are encountered. At the end
of execution, V should equal 1, because the last element before the $FF
end marker should be a rule consequent. If V is equal to 0 at the end of
execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work
correctly. Residual output values would cause incorrect comparison.

Refer to Section 9. Fuzzy Logic Support for details.

REV Fuzzy Logic Rule Evaluation
(Continued) REV

CCR Details:
S X H I N Z V C

– – ? – ? ? ∆ ?

V: 1; Normally set, unless rule structure is erroneous

H, N, Z, and C may be altered by this instruction

Source Form
Address

Mode
Object Code

Access Detail (1)

1. The 3-cycle loop in parentheses is executed once for each element in the rule list. When an interrupt occurs, there is a
2-cycle exit sequence, a 4-cycle re-entry sequence, then execution resumes with a prefetch of the last antecedent or
consequent being processed at the time of the interrupt.

HCS12 M68HC12

REV
(replace comma if interrupted)

Special 18 3A
Orf(t,tx)O
ff + Orf(t,

Orf(t,tx)O
ff + Orf(t,
S12CPUV2 Reference Manual

MOTOROLA 263

Instruction Glossary
Operation: MIN-MAX Rule Evaluation with Optional Rule Weighting

Description: REVW performs either weighted or unweighted evaluation of a list of
rules, using fuzzy inputs to produce fuzzy outputs. REVW can be
interrupted, so it does not adversely affect interrupt latency.

For REVW to execute correctly, each rule in the knowledge base must
consist of a table of 16-bit antecedent pointers followed by a table of
16-bit consequent pointers. The value $FFFE marks boundaries
between antecedents and consequents, and between successive rules.
The value $FFFF marks the end of the rule list. REVW can evaluate any
number of rules with any number of inputs and outputs.

Setting the C status bit enables weighted evaluation. To use weighted
evaluation, a table of 8-bit weighting factors, one per rule, must be stored
in memory. Index register Y points to the weighting factors.

Beginning with the address pointed to by the first rule antecedent,
REVW evaluates each successive fuzzy input value until it encounters
an $FFFE separator. Operation is similar to that of a MINA instruction.
The smallest input value is the truth value of the rule. Next, if weighted
evaluation is enabled, a computation is performed, and the truth value is
modified. Then, beginning with the address pointed to by the first rule
consequent, the truth value is compared to each successive fuzzy output
value until another $FFFE separator is encountered; if the truth value is
greater than the current output value, it is written to the output. Operation
is similar to that of a MAXM instruction. Rules are processed until an
$FFFF terminator is encountered.

Perform these set up operations before execution:

• X must point to the first 16-bit element in the rule list.

• A must contain the value $FF, and the CCR V bit must = 0
(LDAA #$FF places the correct value in A and clears V).

• Clear fuzzy outputs to 0s.

• Set or clear the CCR C bit. When weighted evaluation is enabled,
Y must point to the first item in a table of 8-bit weighting factors.

REVW Fuzzy Logic Rule Evaluation (Weighted) REVW
Reference Manual S12CPUV2

264 MOTOROLA

Instruction Glossary
Glossary
Index register X points to the element in the rule list that is being
evaluated. X is automatically updated so that execution can resume
correctly if the instruction is interrupted. When execution is complete, X
points to the address after the $FFFF separator at the end of the rule list.

Index register Y points to the weighting factor being used. Y is
automatically updated so that execution can resume correctly if the
instruction is interrupted. When execution is complete, Y points to the
last weighting factor used. When weighting is not used (C = 0), Y is not
changed.

Accumulator A holds intermediate results. During antecedent
processing, a MIN function compares each fuzzy input to the value
stored in A and writes the smaller of the two to A. When all antecedents
have been evaluated, A contains the smallest input value. For
unweighted evaluation, this is the truth value used during consequent
processing. For weighted evaluation, the value in A is multiplied by the
quantity (Rule Weight + 1) and the upper eight bits of the result replace
the content of A. Accumulator A must be initialized to $FF for the MIN
function to evaluate the inputs of the first rule correctly. For subsequent
rules, the value $FF is automatically written to A when an $FFFE marker
is encountered. At the end of execution, accumulator A holds the truth
value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to 0 for processing to begin with
the antecedents of the first rule. Once execution begins, the value of V
is automatically changed as $FFFE separators are encountered. At the
end of execution, V should equal 1, because the last element before the
$FF end marker should be a rule consequent. If V is equal to 0 at the end
of execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work
correctly. Residual output values would cause incorrect comparison.

Refer to Section 9. Fuzzy Logic Support for details.

REVW Fuzzy Logic Rule Evaluation (Weighted)
(Continued) REVW
S12CPUV2 Reference Manual

MOTOROLA 265

Instruction Glossary
REVW Fuzzy Logic Rule Evaluation (Weighted)
(Concluded) REVW

CCR Details:
S X H I N Z V C

– – ? – ? ? ∆ !

V: 1; Normally set, unless rule structure is erroneous
C: Selects weighted (1) or unweighted (0) rule evaluation
H, N, Z, and C may be altered by this instruction

Source Form
Address

Mode
Object Code

Access Detail (1)

1. The 3-cycle loop in parentheses expands to five cycles for separators when weighting is enabled. The loop is executed
once for each element in the rule list. When an interrupt occurs, there is a 2-cycle exit sequence, a 4-cycle re-entry
sequence, then execution resumes with a prefetch of the last antecedent or consequent being processed at the time of
the interrupt.

HCS12 M68HC12

REVW
(add 2 at end of ins if wts)
(replace comma if interrupted)

Special 18 3B
ORf(t,Tx)O
(r,RfRf)
ffff + ORf(t,

ORf(tTx)O
(r,RfRf)

ffff + ORf(t,
Reference Manual S12CPUV2

266 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one place to the left. Bit 0 is loaded
from the C status bit. The C bit is loaded from the most significant bit of
M. Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, ROL HIGH could
be used where LOW, MID and HIGH refer to the low-order, middle and
high-order bytes of the 24-bit value, respectively.

ROL Rotate Left Memory ROL

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M7
Set if the MSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROL opr16a
ROL oprx0_xysp
ROL oprx9,xysp
ROL oprx16,xysp
ROL [D,xysp]
ROL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 267

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the left. Bit 0 is loaded from
the C status bit. The C bit is loaded from the most significant bit of A.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, and ROL HIGH
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

ROLA Rotate Left A ROLA

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A7
Set if the MSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROLA INH 45 O O
Reference Manual S12CPUV2

268 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the left. Bit 0 is loaded from
the C status bit. The C bit is loaded from the most significant bit of B.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, and ROL HIGH
could be used where LOW, MID, and HIGH refer to the low-order, middle
and high-order bytes of the 24-bit value, respectively.

ROLB Rotate Left B ROLB

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B7
Set if the MSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROLB INH 55 O O
S12CPUV2 Reference Manual

MOTOROLA 269

Instruction Glossary
Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is loaded
from the C status bit. The C bit is loaded from the least significant bit of
M. Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, and ROR LOW
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

ROR Rotate Right Memory ROR

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M0
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROR opr16a
ROR oprx0_xysp
ROR oprx9,xysp
ROR oprx16,xysp
ROR [D,xysp]
ROR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

270 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is loaded from
the C status bit. The C bit is loaded from the least significant bit of A.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, and ROR LOW
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

RORA Rotate Right A RORA

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A0
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RORA INH 46 O O
S12CPUV2 Reference Manual

MOTOROLA 271

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is loaded from
the C status bit. The C bit is loaded from the least significant bit of B.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, and ROR LOW
could be used where LOW, MID, and HIGH refer to the low-order, middle
and high-order bytes of the 24-bit value, respectively.

RORB Rotate Right B RORB

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B0
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RORB INH 56 O O
Reference Manual S12CPUV2

272 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP)) ⇒ PPAGE
(SP) + $0001 ⇒ SP
(M(SP) : M(SP+1)) ⇒ PCH : PCL
(SP) + $0002 ⇒ SP

Description: Terminates subroutines in expanded memory invoked by the CALL
instruction. Returns execution flow from the subroutine to the calling
program. The program overlay page (PPAGE) register and the return
address are restored from the stack; program execution continues at the
restored address. For code compatibility purposes, CALL and RTC also
execute correctly in devices that do not have expanded memory
capability.

RTC Return from Call RTC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RTC INH 0A uUnfPPP uUnPPP
S12CPUV2 Reference Manual

MOTOROLA 273

Instruction Glossary
Operation: (M(SP)) ⇒ CCR; (SP) + $0001 ⇒ SP
(M(SP) : M(SP+1)) ⇒ B : A; (SP) + $0002 ⇒ SP
(M(SP) : M(SP+1)) ⇒ XH : XL; (SP) + $0004 ⇒ SP
(M(SP) : M(SP+1)) ⇒ PCH : PCL; (SP) – $0002 ⇒ SP
(M(SP) : M(SP+1)) ⇒ YH : YL; (SP) + $0004 ⇒ SP

Description: Restores system context after interrupt service processing is completed.
The condition codes, accumulators B and A, index register X, the PC,
and index register Y are restored to a state pulled from the stack. The X
mask bit may be cleared as a result of an RTI instruction, but cannot be
set if it was cleared prior to execution of the RTI instruction.

If another interrupt is pending when RTI has finished restoring registers
from the stack, the SP is adjusted to preserve stack content, and the new
vector is fetched. This operation is functionally identical to the same
operation in the M68HC11, where registers actually are re-stacked, but
is faster.

Condition codes take on the value pulled from the stack, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only by a reset
or by recognition of an XIRQ interrupt.

RTI Return from Interrupt RTI

CCR Details:
S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RTI
(with interrupt pending)

INH 0B
uUUUUPPP
uUUUUfVfPPP

uUUUUPPP
uUUUUVfPPP
Reference Manual S12CPUV2

274 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP) : M(SP+1)) ⇒ PCH : PCL; (SP) + $0002 ⇒ SP

Description: Restores context at the end of a subroutine. Loads the program counter
with a 16-bit value pulled from the stack and increments the stack pointer
by two. Program execution continues at the address restored from the
stack.

RTS Return from Subroutine RTS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RTS INH 3D UfPPP UfPPP
S12CPUV2 Reference Manual

MOTOROLA 275

Instruction Glossary
Operation: (A) – (B) ⇒ A

Description: Subtracts the content of accumulator B from the content of accumulator
A and places the result in A. The content of B is not affected. For
subtraction instructions, the C status bit represents a borrow.

SBA Subtract Accumulators SBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • B7 + B7 • R7 + R7 • A7
Set if the absolute value of B is larger than the absolute value of A;
cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SBA INH 18 16 OO OO
Reference Manual S12CPUV2

276 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) – (M) – C ⇒ A

Description: Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator A. The result is placed in A. For
subtraction instructions, the C status bit represents a borrow.

SBCA Subtract with Carry from A SBCA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the absolute value of the content of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysp
SBCA oprx9,xysp
SBCA oprx16,xysp
SBCA [D,xysp]
SBCA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 277

Instruction Glossary
Operation: (B) – (M) – C ⇒ B

Description: Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator B. The result is placed in B. For
subtraction instructions, the C status bit represents a borrow.

SBCB Subtract with Carry from B SBCB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if the absolute value of the content of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysp
SBCB oprx9,xysp
SBCB oprx16,xysp
SBCB [D,xysp]
SBCB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

278 MOTOROLA

Instruction Glossary
Glossary
Operation: 1 ⇒ C bit

Description: Sets the C status bit. This instruction is assembled as ORCC #$01. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation.

SEC can be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

SEC Set Carry SEC

CCR Details:
S X H I N Z V C

– – – – – – – 1

C: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SEC
translates to... ORCC #$01 IMM 14 01 P

P

S12CPUV2 Reference Manual

MOTOROLA 279

Instruction Glossary
Operation: 1 ⇒ I bit

Description: Sets the I mask bit. This instruction is assembled as ORCC #$10. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation. When the I bit is set, all maskable interrupts are
inhibited, and the CPU will recognize only non-maskable interrupt
sources or an SWI.

SEI Set Interrupt Mask SEI

CCR Details:
S X H I N Z V C

– – – 1 – – – –

I: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SEI
translates to... ORCC #$10 IMM 14 10 P

P

Reference Manual S12CPUV2

280 MOTOROLA

Instruction Glossary
Glossary
Operation: 1 ⇒ V bit

Description: Sets the V status bit. This instruction is assembled as ORCC #$02. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation.

SEV Set Two’s Complement Overflow Bit SEV

CCR Details:
S X H I N Z V C

– – – – – – 1 –

V: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SEV
translates to... ORCC #$02 IMM 14 02 P

P

S12CPUV2 Reference Manual

MOTOROLA 281

Instruction Glossary
Operation: If r1 bit 7 = 0, then $00 : (r1) ⇒ r2
If r1 bit 7 = 1, then $FF : (r1) ⇒ r2

Description: This instruction is an alternate mnemonic for the TFR r1,r2 instruction,
where r1 is an 8-bit register and r2 is a 16-bit register. The result in r2 is
the 16-bit sign extended representation of the original two’s complement
number in r1. The content of r1 is unchanged in all cases except that of
SEX A,D (D is A : B).

SEX Sign Extend into 16-Bit Register SEX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Legal coding for eb is summarized in the following table. Columns represent the high-order source digit. Rows represent
the low-order destination digit (MSB is a don’t care). Values are in hexadecimal.

Access Detail

HCS12 M68HC12

SEX abc,dxys INH B7 eb P P

0 1 2

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2

4 sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

5 sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

6 sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

7 sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP
Reference Manual S12CPUV2

282 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) ⇒ M

Description: Stores the content of accumulator A in memory location M. The content
of A is unchanged.

STAA Store Accumulator A STAA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STAA opr8a
STAA opr16a
STAA oprx0_xysp
STAA oprx9,xysp
STAA oprx16,xysp
STAA [D,xysp]
STAA [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw
S12CPUV2 Reference Manual

MOTOROLA 283

Instruction Glossary
Operation: (B) ⇒ M

Description: Stores the content of accumulator B in memory location M. The content
of B is unchanged.

STAB Store Accumulator B STAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STAB opr8a
STAB opr16a
STAB oprx0_xysp
STAB oprx9,xysp
STAB oprx16,xysp
STAB [D,xysp]
STAB [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw
Reference Manual S12CPUV2

284 MOTOROLA

Instruction Glossary
Glossary
Operation: (A : B) ⇒ M : M + 1

Description: Stores the content of double accumulator D in memory location
M : M + 1. The content of D is unchanged.

STD Store Double Accumulator STD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STD opr8a
STD opr16a
STD oprx0_xysp
STD oprx9,xysp
STD oprx16,xysp
STD [D,xysp]
STD [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
S12CPUV2 Reference Manual

MOTOROLA 285

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
Stop All Clocks

Description: When the S control bit is set, STOP is disabled and operates like a
2-cycle NOP instruction. When the S bit is cleared, STOP stacks CPU
context, stops all system clocks, and puts the device in standby mode.

Standby operation minimizes system power consumption. The contents
of registers and the states of I/O pins remain unchanged.

Asserting the RESET, XIRQ, or IRQ signals ends standby mode.
Stacking on entry to STOP allows the CPU to recover quickly when an
interrupt is used, provided a stable clock is applied to the device. If the
system uses a clock reference crystal that also stops during low-power
mode, crystal startup delay lengthens recovery time.

If XIRQ is asserted while the X mask bit = 0 (XIRQ interrupts enabled),
execution resumes with a vector fetch for the XIRQ interrupt. If the X
mask bit = 1 (XIRQ interrupts disabled), a 2-cycle recovery sequence
including an O cycle is used to adjust the instruction queue, and
execution continues with the next instruction after STOP.

STOP Stop Processing STOP

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STOP (entering STOP) INH 18 3E OOSSSSsf OOSSSfSs

(exiting STOP) fVfPPP fVfPPP

(continue) ff fO

(if STOP disabled) OO OO
Reference Manual S12CPUV2

286 MOTOROLA

Instruction Glossary
Glossary
Operation: (SPH : SPL) ⇒ M : M + 1

Description: Stores the content of the stack pointer in memory. The most significant
byte of the SP is stored at the specified address, and the least significant
byte of the SP is stored at the next higher byte address (the specified
address plus one).

STS Store Stack Pointer STS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STS opr8a
STS opr16a
STS oprx0_xysp
STS oprx9,xysp
STS oprx16,xysp
STS [D,xysp]
STS [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
S12CPUV2 Reference Manual

MOTOROLA 287

Instruction Glossary
Operation: (XH : XL) ⇒ M : M + 1

Description: Stores the content of index register X in memory. The most significant
byte of X is stored at the specified address, and the least significant byte
of X is stored at the next higher byte address (the specified address plus
one).

STX Store Index Register X STX

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STX opr8a
STX opr16a
STX oprx0_xysp
STX oprx9,xysp
STX oprx16,xysp
STX [D,xysp]
STX [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
Reference Manual S12CPUV2

288 MOTOROLA

Instruction Glossary
Glossary
Operation: (YH : YL) ⇒ M : M + 1

Description: Stores the content of index register Y in memory. The most significant
byte of Y is stored at the specified address, and the least significant byte
of Y is stored at the next higher byte address (the specified address plus
one).

STY Store Index Register Y STY

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STY opr8a
STY opr16a
STY oprx0_xysp
STY oprx9,xysp
STY oprx16,xysp
STY [D,xysp]
STY [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
S12CPUV2 Reference Manual

MOTOROLA 289

Instruction Glossary
Operation: (A) – (M) ⇒ A

Description: Subtracts the content of memory location M from the content of
accumulator A, and places the result in A. For subtraction instructions,
the C status bit represents a borrow.

SUBA Subtract A SUBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysp
SUBA oprx9,xysp
SUBA oprx16,xysp
SUBA [D,xysp]
SUBA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

290 MOTOROLA

Instruction Glossary
Glossary
Operation: (B) – (M) ⇒ B

Description: Subtracts the content of memory location M from the content of
accumulator B and places the result in B. For subtraction instructions,
the C status bit represents a borrow.

SUBB Subtract B SUBB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysp
SUBB oprx9,xysp
SUBB oprx16,xysp
SUBB [D,xysp]
SUBB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 291

Instruction Glossary
Operation: (A : B) – (M : M + 1) ⇒ A : B

Description: Subtracts the content of memory location M : M + 1 from the content of
double accumulator D and places the result in D. For subtraction
instructions, the C status bit represents a borrow.

SUBD Subtract Double Accumulator SUBD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysp
SUBD oprx9,xyssp
SUBD oprx16,xysp
SUBD [D,xysp]
SUBD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

292 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
1 ⇒ I
(SWI Vector) ⇒ PC

Description: Causes an interrupt without an external interrupt service request. Uses
the address of the next instruction after SWI as a return address. Stacks
the return address, index registers Y and X, accumulators B and A, and
the CCR, decrementing the SP before each item is stacked. The I mask
bit is then set, the PC is loaded with the SWI vector, and instruction
execution resumes at that location. SWI is not affected by the I mask bit.
Refer to Section 7. Exception Processing for more information.

SWI Software Interrupt SWI

CCR Details:
S X H I N Z V C

– – – 1 – – – –

I: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SWI INH 3F VSPSSPSsP(1)

1. The CPU also uses the SWI processing sequence for hardware interrupts and unimplemented opcode traps. A variation
of the sequence (VfPPP) is used for resets.

VSPSSPSsP(1)
S12CPUV2 Reference Manual

MOTOROLA 293

Instruction Glossary
Operation: (A) ⇒ B

Description: Moves the content of accumulator A to accumulator B. The former
content of B is lost; the content of A is not affected. Unlike the general
transfer instruction TFR A,B which does not affect condition codes, the
TAB instruction affects the N, Z, and V status bits for compatibility with
M68HC11.

TAB Transfer from Accumulator A
to Accumulator B TAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TAB INH 18 0E OO OO
Reference Manual S12CPUV2

294 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) ⇒ CCR

Description: Transfers the logic states of bits [7:0] of accumulator A to the
corresponding bit positions of the CCR. The content of A remains
unchanged. The X mask bit can be cleared as a result of a TAP, but
cannot be set if it was cleared prior to execution of the TAP. If the I bit is
cleared, there is a 1-cycle delay before the system allows interrupt
requests. This prevents interrupts from occurring between instructions in
the sequences CLI, WAI and CLI, SEI.

This instruction is accomplished with the TFR A,CCR instruction. For
compatibility with the M68HC11, the mnemonic TAP is translated by the
assembler.

Condition codes take on the value of the corresponding bit of
accumulator A, except that the X mask bit cannot change from 0 to 1.
Software can leave the X bit set, leave it cleared, or change it from 1 to
0, but it can only be set by a reset or by recognition of an XIRQ interrupt.

TAP Transfer from Accumulator A
to Condition Code Register TAP

CCR Details:
S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TAP translates to...
TFR A,CCR

INH B7 02 P P
S12CPUV2 Reference Manual

MOTOROLA 295

Instruction Glossary
Operation: (B) ⇒ A

Description: Moves the content of accumulator B to accumulator A. The former
content of A is lost; the content of B is not affected. Unlike the general
transfer instruction TFR B,A, which does not affect condition codes, the
TBA instruction affects N, Z, and V for compatibility with M68HC11.

TBA Transfer from Accumulator B
to Accumulator A TBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TBA INH 18 0F OO OO
Reference Manual S12CPUV2

296 MOTOROLA

Instruction Glossary
Glossary
Operation: If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Tests the specified counter register A, B, D, X, Y, or SP. If the counter
register is zero, branches to the specified relative destination. TBEQ is
encoded into three bytes of machine code including a 9-bit relative offset
(–256 to +255 locations from the start of the next instruction).

DBEQ and IBEQ instructions are similar to TBEQ, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which
operation is to be performed.

TBEQ Test and Branch if Equal to Zero TBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (TBEQ – 0)
or not zero (TBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 0:1 for TBEQ.

Access Detail

HCS12 M68HC12

TBEQ abdxys,rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

TBEQ A, rel9
TBEQ B, rel9

04 40 rr
04 41 rr

04 50 rr
04 51 rr

D
X
Y

SP

100
101
110
111

TBEQ D, rel9
TBEQ X, rel9
TBEQ Y, rel9
TBEQ SP, rel9

04 44 rr
04 45 rr
04 46 rr
04 47 rr

04 54 rr
04 55 rr
04 56 rr
04 57 rr
S12CPUV2 Reference Manual

MOTOROLA 297

Instruction Glossary
Operation: (M) + [(B) × ((M+1) – (M))] ⇒ A

Description: Linearly interpolates one of 256 result values that fall between each pair
of data entries in a lookup table stored in memory. Data entries in the
table represent the Y values of endpoints of equally spaced line
segments. Table entries and the interpolated result are 8-bit values. The
result is stored in accumulator A.

Before executing TBL, an index register points to the table entry
corresponding to the X value (X1) that is closest to, but less than or equal
to, the desired lookup point (XL, YL). This defines the left end of a line
segment and the right end is defined by the next data entry in the table.
Prior to execution, accumulator B holds a binary fraction (radix point to
left of MSB), representing the ratio (XL–X1) ÷ (X2–X1).

The 8-bit unrounded result is calculated using the following expression:

A = Y1 + [(B) × (Y2 – Y1)]
Where

(B) = (XL – X1) ÷ (X2 – X1)
Y1 = 8-bit data entry pointed to by <effective address>
Y2 = 8-bit data entry pointed to by <effective address> + 1

The intermediate value [(B) × (Y2 – Y1)] produces a 16-bit result with the
radix point between bits 7 and 8. Any indexed addressing mode
referenced to X, Y, SP, or PC, except indirect modes or 9-bit and 16-bit
offset modes, can be used to identify the first data point (X1,Y1). The
second data point is the next table entry.

TBL Table Lookup and Interpolate TBL

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆(1)

1. C-bit was undefined in original M68HC12.

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
C: Set if result can be rounded up; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TBL oprx0_xysp IDX 18 3D xb ORfffP OrrffffP
Reference Manual S12CPUV2

298 MOTOROLA

Instruction Glossary
Glossary
Operation: If (Counter) ≠ 0, then (PC) + $0003 + Rel ⇒ PC

Description: Tests the specified counter register A, B, D, X, Y, or SP. If the counter
register is not zero, branches to the specified relative destination. TBNE
is encoded into three bytes of machine code including a 9-bit relative
offset (–256 to +255 locations from the start of the next instruction).

DBNE and IBNE instructions are similar to TBNE, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which
operation is to be performed.

TBNE Test and Branch if Not Equal to Zero TBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (TBEQ –
0) or not zero (TBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 0:1 for TBNE.

Access Detail

HCS12 M68HC12

TBNE abdxys,rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

TBNE A, rel9
TBNE B, rel9

04 60 rr
04 61 rr

04 70 rr
04 71 rr

D
X
Y

SP

100
101
110
111

TBNE D, rel9
TBNE X, rel9
TBNE Y, rel9
TBNE SP, rel9

04 64 rr
04 65 rr
04 66 rr
04 67 rr

04 74 rr
04 75 rr
04 76 rr
04 77 rr
S12CPUV2 Reference Manual

MOTOROLA 299

Instruction Glossary
Operation: See table.

Description: Transfers the content of a source register to a destination register
specified in the instruction. The order in which transfers between 8-bit
and 16-bit registers are specified affects the high byte of the 16-bit
registers differently. Cases involving TMP2 and TMP3 are reserved for
Motorola use, so some assemblers may not permit their use. It is
possible to generate these cases by using DC.B or DC.W assembler
directives.

None affected, unless the CCR is the destination register. Condition
codes take on the value of the corresponding source bits, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only by a reset
or by recognition of an XIRQ interrupt.

TFR Transfer Register Content
to Another Register TFR

CCR Details:
S X H I N Z V C

Or:
S X H I N Z V C

– – – – – – – – ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code (1)

1. Legal coding for eb is summarized in the following table. Columns represent the high-order source digit. Rows represent
the low-order destination digit (MSB is a don’t-care). Values are in hexadecimal.

Access Detail

HCS12 M68HC12

TFR abcdxys,abcdxys INH B7 eb P P

0 1 2 3 4 5 6 7

0 A ⇒ A B ⇒ A CCR ⇒ A TMP3L ⇒ A B ⇒ A XL ⇒ A YL ⇒ A SPL ⇒ A

1 A ⇒ B B ⇒ B CCR ⇒ B TMP3L ⇒ B B ⇒ B XL ⇒ B YL ⇒ B SPL ⇒ B

2 A ⇒ CCR B ⇒ CCR CCR ⇒ CCR TMP3L ⇒ CCR B ⇒ CCR XL ⇒ CCR YL ⇒ CCR SPL ⇒ CCR

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2 TMP3 ⇒ TMP2 D ⇒ TMP2 X ⇒ TMP2 Y ⇒ TMP2 SP ⇒ TMP2

4 sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

TMP3 ⇒ D D ⇒ D X ⇒ D Y ⇒ D SP ⇒ D

5 sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

TMP3 ⇒ X D ⇒ X X ⇒ X Y ⇒ X SP ⇒ X

6 sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

TMP3 ⇒ Y D ⇒ Y X ⇒ Y Y ⇒ Y SP ⇒ Y

7 sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP

TMP3 ⇒ SP D ⇒ SP X ⇒ SP Y ⇒ SP SP ⇒ SP
Reference Manual S12CPUV2

300 MOTOROLA

Instruction Glossary
Glossary
Operation: (CCR) ⇒ A

Description: Transfers the content of the condition code register to corresponding bit
positions of accumulator A. The CCR remains unchanged.

This mnemonic is implemented by the TFR CCR,A instruction. For
compatibility with the M68HC11, the mnemonic TPA is translated into
the TFR CCR,A instruction by the assembler.

TPA Transfer from Condition Code
Register to Accumulator A TPA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TPA
translates to... TFR CCR,A INH B7 20 P P
S12CPUV2 Reference Manual

MOTOROLA 301

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
1 ⇒ I
(Trap Vector) ⇒ PC

Description: Traps unimplemented opcodes. There are opcodes in all 256 positions
in the page 1 opcode map, but only 54 of the 256 positions on page 2 of
the opcode map are used. If the CPU attempts to execute one of the
unimplemented opcodes on page 2, an opcode trap interrupt occurs.
Unimplemented opcode traps are essentially interrupts that share the
$FFF8:$FFF9 interrupt vector.

TRAP uses the next address after the unimplemented opcode as a
return address. It stacks the return address, index registers Y and X,
accumulators B and A, and the CCR, automatically decrementing the SP
before each item is stacked. The I mask bit is then set, the PC is loaded
with the trap vector, and instruction execution resumes at that location.
This instruction is not maskable by the I bit. Refer to Section 7.
Exception Processing for more information.

TRAP Unimplemented Opcode Trap TRAP

CCR Details:
S X H I N Z V C

– – – 1 – – – –

I: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TRAP trapnum INH $18 tn (1)

1. The value tn represents an unimplemented page 2 opcode in either of the two ranges $30 to $39 or $40 to $FF.

OVSPSSPSsP OfVSPSSPSsP
Reference Manual S12CPUV2

302 MOTOROLA

Instruction Glossary
Glossary
Operation: (M) – $00

Description: Subtracts $00 from the content of memory location M and sets the
condition codes accordingly.

The subtraction is accomplished internally without modifying M.

The TST instruction provides limited information when testing unsigned
values. Since no unsigned value is less than zero, BLO and BLS have
no utility following TST. While BHI can be used after TST, it performs the
same function as BNE, which is preferred. After testing signed values,
all signed branches are available.

TST Test Memory TST

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TST opr16a
TST oprx0_xysp
TST oprx9,xysp
TST oprx16,xysp
TST [D,xysp]
TST [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff

rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 303

Instruction Glossary
Operation: (A) – $00

Description: Subtracts $00 from the content of accumulator A and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying A.

The TSTA instruction provides limited information when testing
unsigned values. Since no unsigned value is less than zero, BLO and
BLS have no utility following TSTA. While BHI can be used after TST, it
performs the same function as BNE, which is preferred. After testing
signed values, all signed branches are available.

TSTA Test A TSTA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSTA INH 97 O O
Reference Manual S12CPUV2

304 MOTOROLA

Instruction Glossary
Glossary
Operation: (B) – $00

Description: Subtracts $00 from the content of accumulator B and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying B.

The TSTB instruction provides limited information when testing
unsigned values. Since no unsigned value is less than zero, BLO and
BLS have no utility following TSTB. While BHI can be used after TST, it
performs the same function as BNE, which is preferred. After testing
signed values, all signed branches are available.

TSTB Test B TSTB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSTB INH D7 O O
S12CPUV2 Reference Manual

MOTOROLA 305

Instruction Glossary
Operation: (SP) ⇒ X

Description: This is an alternate mnemonic to transfer the stack pointer value to index
register X. The content of the SP remains unchanged. After a TSX
instruction, X points at the last value that was stored on the stack.

TSX Transfer from Stack Pointer
to Index Register X TSX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSX
translates to... TFR SP,X INH B7 75 P P
Reference Manual S12CPUV2

306 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) ⇒ Y

Description: This is an alternate mnemonic to transfer the stack pointer value to index
register Y. The content of the SP remains unchanged. After a TSY
instruction, Y points at the last value that was stored on the stack.

TSY Transfer from Stack Pointer
to Index Register Y TSY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSY
translates to... TFR SP,Y INH B7 76 P P
S12CPUV2 Reference Manual

MOTOROLA 307

Instruction Glossary
Operation: (X) ⇒ SP

Description: This is an alternate mnemonic to transfer index register X value to the
stack pointer. The content of X is unchanged.

TXS Transfer from Index Register X
to Stack Pointer TXS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TXS
translates to... TFR X,SP INH B7 57 P P
Reference Manual S12CPUV2

308 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y) ⇒ SP

Description: This is an alternate mnemonic to transfer index register Y value to the
stack pointer. The content of Y is unchanged.

TYS Transfer from Index Register Y
to Stack Pointer TYS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TYS
translates to... TFR Y,SP INH B7 67 P P
S12CPUV2 Reference Manual

MOTOROLA 309

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
Stop CPU Clocks

Description: Puts the CPU into a wait state. Uses the address of the instruction
following WAI as a return address. Stacks the return address, index
registers Y and X, accumulators B and A, and the CCR, decrementing
the SP before each item is stacked.

The CPU then enters a wait state for an integer number of bus clock
cycles. During the wait state, CPU clocks are stopped, but other MCU
clocks can continue to run. The CPU leaves the wait state when it
senses an interrupt that has not been masked.

Upon leaving the wait state, the CPU sets the appropriate interrupt mask
bit(s), fetches the vector corresponding to the interrupt sensed, and
instruction execution continues at the location the vector points to.

Although the WAI instruction itself does not alter the condition codes, the
interrupt that causes the CPU to resume processing also causes the I
mask bit (and the X mask bit, if the interrupt was XIRQ) to be set as the
interrupt vector is fetched.

WAI Wait for Interrupt WAI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

WAI (before interrupt)
INH 3E

OSSSSsf OSSSfSsf

WAI (when interrupt comes) fVfPPP VfPPP
Reference Manual S12CPUV2

310 MOTOROLA

Instruction Glossary
Glossary
Operation: Do until B = 0, leave SOP in Y : D, SOW in X

Partial Product = (M pointed to by X) × (M pointed to by Y)
Sum-of-Products (24-bit SOP) = Previous SOP + Partial Product
Sum-of-Weights (16-bit SOW) = Previous SOW + (M pointed to by Y)
(X) + $0001 ⇒ X; (Y) + $0001 ⇒ Y
(B) – $01 ⇒ B

Description: Performs weighted average calculations on values stored in memory.
Uses indexed (X) addressing mode to reference one source operand list,
and indexed (Y) addressing mode to reference a second source operand
list. Accumulator B is used as a counter to control the number of
elements to be included in the weighted average.

For each pair of data points, a 24-bit sum of products (SOP) and a 16-bit
sum of weights (SOW) is accumulated in temporary registers. When B
reaches zero (no more data pairs), the SOP is placed in Y : D. The SOW
is placed in X. To arrive at the final weighted average, divide the content
of Y : D by X by executing an EDIV after the WAV.

This instruction can be interrupted. If an interrupt occurs during WAV
execution, the intermediate results (six bytes) are stacked in the order
SOW[15:0], SOP[15:0], $00:SOP[23:16] before the interrupt is processed.
The wavr pseudo-instruction is used to resume execution after an
interrupt. The mechanism is re-entrant. New WAV instructions can be
started and interrupted while a previous WAV instruction is interrupted.

This instruction is often used in fuzzy logic rule evaluation. Refer to
Section 9. Fuzzy Logic Support for more information.

WAV Weighted Average WAV

CCR Details:
S X H I N Z V C

– – ? – ? 1 ? ?

Z: 1; set
H, N, V and C may be altered by this instruction

Source Form
Address

Mode
Object Code

Access Detail (1)

HCS12 M68HC12

WAV Special
18 3C

Of(frr,ffff)O Off(frr,fffff)O
(replace comma if interrupted)

SSS + UUUrr SSSf + UUUrr

1. The replace comma sequence in parentheses represents the loop for one iteration of SOP and SOW accumulation.
S12CPUV2 Reference Manual

MOTOROLA 311

Instruction Glossary
Operation: (D) ⇔ (X)

Description: Exchanges the content of double accumulator D and the content of index
register X. For compatibility with the M68HC11, the XGDX instruction is
translated into an EXG D,X instruction by the assembler.

XGDX Exchange Double Accumulator
and Index Register X XGDX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

XGDX
translates to... EXG D,X INH B7 C5 P P
Reference Manual S12CPUV2

312 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) ⇔ (Y)

Description: Exchanges the content of double accumulator D and the content of index
register Y. For compatibility with the M68HC11, the XGDY instruction is
translated into an EXG D,Y instruction by the assembler.

XGDY Exchange Double Accumulator
and Index Register Y XGDY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

XGDY
translates to... EXG D,Y INH B7 C6 P P
S12CPUV2 Reference Manual

MOTOROLA 313

Instruction Glossary
Reference Manual S12CPUV2

314 MOTOROLA

Reference Manual — S12CPUV2

Section 7. Exception Processing
7.1 Introduction

Exceptions are events that require processing outside the normal flow of
instruction execution. This section describes exceptions and the way
each is handled.

7.2 Types of Exceptions

Central processor unit (CPU12) exceptions include:

• Resets

– Power-on reset and RESET pin

– Clock monitor reset

– COP watchdog reset

• An unimplemented opcode trap

• A software interrupt instruction (SWI)

• Non-maskable (X-bit) interrupts

• Non-maskable (I-bit) interrupts

Each exception has an associated 16-bit vector, which points to the
memory location where the routine that handles the exception is located.
As shown in Table 7-1 , vectors are stored in the upper bytes of the
standard 64-Kbyte address map.

The six highest vector addresses are used for resets and unmaskable
interrupt sources. The remaining vectors are used for maskable
interrupts. All vectors must be programmed to point to the address of the
appropriate service routine.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 315

Exception Processing
The CPU12 can handle up to 128 exception vectors, but the number
actually used varies from device to device, and some vectors are
reserved for Motorola use. Refer to Device User Guide for more
information.

Exceptions can be classified by the effect of the X and I interrupt mask
bits on recognition of a pending request.

• Resets, the unimplemented opcode trap, and the SWI instruction
are not affected by the X and I mask bits.

• Interrupt service requests from the XIRQ pin are inhibited when
X = 1, but are not affected by the I bit.

• All other interrupts are inhibited when I = 1.

7.3 Exception Priority

A hardware priority hierarchy determines which reset or interrupt is
serviced first when simultaneous requests are made. Six sources are not
maskable. The remaining sources are maskable, and the device
integration module typically can change the relative priorities of
maskable interrupts. Refer to 7.5 Interrupts for more detail concerning
interrupt priority and servicing.

Table 7-1. CPU12 Exception Vector Map (1)

1. See Device User Guide and Interrupt Block Guide for further details

Vector Address Source

$FFFE–$FFFF System reset

$FFFC–$FFFD Clock monitor reset

$FFFA–$FFFB COP reset

$FFF8–$FFF9 Unimplemented opcode trap

$FFF6–$FFF7 Software interrupt instruction (SWI)

$FFF4–$FFF5 XIRQ signal

$FFF2–$FFF3 IRQ signal

$FF00–$FFF1 Device-specific interrupt sources (HCS12)

$FFC0–$FFF1 Device-specific interrupt sources (M68HC12)
Reference Manual S12CPUV2

316 Exception Processing MOTOROLA

Exception Processing
Exception Priority
The priorities of the unmaskable sources are:

1. RESET pin or power-on reset (POR)

2. Clock monitor reset

3. Computer operating properly (COP) watchdog reset

4. Non-maskable interrupt request (XIRQ) signal

5. Unimplemented opcode trap

6. Software interrupt instruction (SWI)

External reset and POR share the highest exception-processing priority,
followed by clock monitor reset, and then the on-chip watchdog reset.

The XIRQ interrupt is pseudo-non-maskable. After reset, the X bit in the
CCR is set, which inhibits all interrupt service requests from the XIRQ
pin until the X bit is cleared. The X bit can be cleared by a program
instruction, but program instructions cannot change X from 0 to 1. Once
the X bit is cleared, interrupt service requests made via the XIRQ pin
become non-maskable.

The unimplemented page 2 opcode trap (TRAP) and the SWI are special
cases. In one sense, these two exceptions have very low priority,
because any enabled interrupt source that is pending prior to the time
exception processing begins will take precedence. However, once the
CPU begins processing a TRAP or SWI, neither can be interrupted.
Also, since these are mutually exclusive instructions, they have no
relative priority.

All remaining interrupts are subject to masking via the I bit in the CCR.
Most HCS12 microcontroller units (MCU) have an external IRQ pin,
which is assigned the highest I-bit interrupt priority and an internal
periodic real-time interrupt generator, which has the next highest priority.
The other maskable sources have default priorities that follow the
address order of the interrupt vectors — the higher the address, the
higher the priority of the interrupt. Other maskable interrupts are
associated with on-chip peripherals such as timers or serial ports.
Typically, logic in the device integration module can give one I-masked
source priority over other I-masked sources. Refer to the documentation
for the specific HCS12 derivative for more information.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 317

Exception Processing
7.4 Resets

M68HC12 devices perform resets with a combination of hardware and
software. Integration module circuitry determines the type of reset that
has occurred, performs basic system configuration, then passes control
to the CPU12. The CPU fetches a vector determined by the type of reset
that has occurred, jumps to the address pointed to by the vector, and
begins to execute code at that address.

The are four possible sources of reset are:

• Power-on reset (POR)

• External reset (RESET pin)

• COP reset

• Clock monitor reset

Power-on reset (POR) and external reset share the same reset vector.
The computer operating properly (COP) reset and the clock monitor
reset each have a vector.

7.4.1 Power-On Reset

The HCS12 incorporate circuitry to detect a positive transition in the VDD
supply and initialize the device during cold starts, generally by asserting
the reset signal internally. The signal is typically released after a delay
that allows the device clock generator to stabilize.

7.4.2 External Reset

The MCU distinguishes between internal and external resets by sensing
how quickly the signal on the RESET pin rises to logic level 1 after it has
been asserted. When the MCU senses any of the four reset conditions,
internal circuitry drives the RESET signal low for N clock cycles, then
releases. M clock cycles later, the MCU samples the state of the signal
applied to the RESET pin. If the signal is still low, an external reset has
occurred. If the signal is high, reset is assumed to have been initiated
internally by either the COP system or the clock monitor.
Reference Manual S12CPUV2

318 Exception Processing MOTOROLA

Exception Processing
Interrupts
7.4.3 COP Reset

The MCU includes a computer operating properly (COP) system to help
protect against software failures. When the COP is enabled, software
must write a particular code sequence to a specific address to keep a
watchdog timer from timing out. If software fails to execute the sequence
properly, a reset occurs.

7.4.4 Clock Monitor Reset

The clock monitor circuit uses an internal RC circuit to determine
whether clock frequency is above a predetermined limit. If clock
frequency falls below the limit when the clock monitor is enabled, a reset
occurs.

7.5 Interrupts

Each HCS12 device can recognize a number of interrupt sources. Each
source has a vector in the vector table. The XIRQ signal, the
unimplemented opcode trap, and the SWI instruction are non-maskable,
and have a fixed priority. The remaining interrupt sources can be
masked by the I bit. In most devices, the external interrupt request pin is
assigned the highest maskable interrupt priority, and the internal
periodic real-time interrupt generator has the next highest priority. Other
maskable interrupts are associated with on-chip peripherals such as
timers or serial ports. These maskable sources have default priorities
that follow the address order of the interrupt vectors. The higher the
vector address, the higher the priority of the interrupt. Typically, a device
integration module incorporates logic that can give any one maskable
source priority over other maskable sources.

7.5.1 Non-Maskable Interrupt Request (XIRQ)

The XIRQ input is an updated version of the non-maskable interrupt
(NMI) input of earlier MCUs. The XIRQ function is disabled during
system reset and upon entering the interrupt service routine for an XIRQ
interrupt.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 319

Exception Processing
During reset, both the I bit and the X bit in the CCR are set. This disables
maskable interrupts and interrupt service requests made by asserting
the XIRQ signal. After minimum system initialization, software can clear
the X bit using an instruction such as ANDCC #$BF. Software cannot set
the X bit from 0 to 1 once it has been cleared, and interrupt requests
made via the XIRQ pin become non-maskable. When a non-maskable
interrupt is recognized, both the X and I bits are set after context is
saved. The X bit is not affected by maskable interrupts. Execution of an
return-from-interrupt (RTI) instruction at the end of the interrupt service
routine normally restores the X and I bits to the pre-interrupt request
state.

7.5.2 Maskable Interrupts

Maskable interrupt sources include on-chip peripheral systems and
external interrupt service requests. Interrupts from these sources are
recognized when the global interrupt mask bit (I) in the CCR is cleared.
The default state of the I bit out of reset is 1, but it can be written at any
time.

The interrupt module manages maskable interrupt priorities. Typically,
an on-chip interrupt source is subject to masking by associated bits in
control registers in addition to global masking by the I bit in the CCR.
Sources generally must be enabled by writing one or more bits in
associated control registers. There may be other interrupt-related
control bits and flags, and there may be specific register read-write
sequences associated with interrupt service. Refer to individual on-chip
peripheral descriptions for details.

7.5.3 Interrupt Recognition

Once enabled, an interrupt request can be recognized at any time after
the I mask bit is cleared. When an interrupt service request is
recognized, the CPU responds at the completion of the instruction being
executed. Interrupt latency varies according to the number of cycles
required to complete the current instruction. Because the fuzzy logic rule
evaluation (REV), fuzzy logic rule evaluation weighted (REVW), and
weighted average (WAV) instructions can take many cycles to complete,
they are designed so that they can be interrupted. Instruction execution
resumes when interrupt execution is complete. When the CPU begins to
Reference Manual S12CPUV2

320 Exception Processing MOTOROLA

Exception Processing
Interrupts
service an interrupt, the instruction queue is refilled, a return address is
calculated, and then the return address and the contents of the CPU
registers are stacked as shown in Table 7-2 .

After the CCR is stacked, the I bit (and the X bit, if an XIRQ interrupt
service request caused the interrupt) is set to prevent other interrupts
from disrupting the interrupt service routine. Execution continues at the
address pointed to by the vector for the highest-priority interrupt that was
pending at the beginning of the interrupt sequence. At the end of the
interrupt service routine, an RTI instruction restores context from the
stacked registers, and normal program execution resumes.

7.5.4 External Interrupts

External interrupt service requests are made by asserting an active-low
signal connected to the IRQ pin. Typically, control bits affect how the
signal is detected and recognized.

The I bit serves as the IRQ interrupt enable flag. When an IRQ interrupt
is recognized, the I bit is set to inhibit interrupts during the interrupt
service routine. Before other maskable interrupt requests can be
recognized, the I bit must be cleared. This is generally done by an RTI
instruction at the end of the service routine.

7.5.5 Return-from-Interrupt Instruction (RTI)

RTI is used to terminate interrupt service routines. RTI is an 8-cycle
instruction when no other interrupt is pending and 11 cycles (10 cycles
in M68HC12) when another interrupt is pending. In either case, the first
five cycles are used to restore (pull) the CCR, B:A, X, Y, and the return

Table 7-2. Stacking Order on Entry to Interrupts

Memory Location CPU Registers

SP + 7 RTNH : RTNL

SP + 5 YH : YL

SP + 3 XH : XL

SP + 1 B : A

SP CCR
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 321

Exception Processing
address from the stack. If no other interrupt is pending at this point, three
program words are fetched to refill the instruction queue from the area
of the return address and processing proceeds from there.

If another interrupt is pending after registers are restored, a new vector
is fetched, and the stack pointer is adjusted to point at the CCR value
that was just recovered (SP = SP – 9). This makes it appear that the
registers have been stacked again. After the SP is adjusted, three
program words are fetched to refill the instruction queue, starting at the
address the vector points to. Processing then continues with execution
of the instruction that is now at the head of the queue.

7.6 Unimplemented Opcode Trap

The CPU12 has opcodes in all 256 positions in the page 1 opcode map,
but only 54 of the 256 positions on page 2 of the opcode map are used.
If the CPU attempts to execute one of the 202 unused opcodes on
page 2, an unimplemented opcode trap occurs. The 202 unimplemented
opcodes are essentially interrupts that share a common interrupt vector,
$FFF8:$FFF9.

The CPU12 uses the next address after an unimplemented page 2
opcode as a return address. This differs from the M68HC11 illegal
opcode interrupt, which uses the address of an illegal opcode as the
return address. In the CPU12, the stacked return address can be used
to calculate the address of the unimplemented opcode for
software-controlled traps.

7.7 Software Interrupt Instruction (SWI)

Execution of the SWI instruction causes an interrupt without an interrupt
service request. SWI is not inhibited by the global mask bits in the CCR,
and execution of SWI sets the I mask bit. Once an SWI interrupt begins,
maskable interrupts are inhibited until the I bit in the CCR is cleared. This
typically occurs when an RTI instruction at the end of the SWI service
routine restores context.
Reference Manual S12CPUV2

322 Exception Processing MOTOROLA

Exception Processing
Exception Processing Flow
7.8 Exception Processing Flow

The first cycle in the exception processing flow for all CPU12 exceptions
is the same, regardless of the source of the exception. Between the first
and second cycles of execution, the CPU chooses one of three
alternative paths. The first path is for resets, the second path is for
pending X or I interrupts, and the third path is used for software
interrupts (SWI) and trapping unimplemented opcodes. The last two
paths are virtually identical, differing only in the details of calculating the
return address. Refer to Figure 7-1 for the following discussion.

7.8.1 Vector Fetch

The first cycle of all exception processing, regardless of the cause, is a
vector fetch. The vector points to the address where exception
processing will continue. Exception vectors are stored in a table located
at the top of the memory map ($FFxx). The CPU cannot use the fetched
vector until the third cycle of the exception processing sequence.

During the vector fetch cycle, the CPU issues a signal that tells the
interrupt module to drive the vector address of the highest priority,
pending exception onto the system address bus (the CPU does not
provide this address).

After the vector fetch, the CPU selects one of the three alternate
execution paths, depending upon the cause of the exception.

7.8.2 Reset Exception Processing

If reset caused the exception, processing continues to cycle 2.0. This
cycle sets the S, X, and I bits in the CCR. Cycles 3.0 through 5.0 are
program word fetches that refill the instruction queue. Fetches start at
the address pointed to by the reset vector. When the fetches are
completed, exception processing ends, and the CPU starts executing
the instruction at the head of the instruction queue.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 323

Exception Processing
Figure 7-1. Exception Processing Flow Diagram

PUSH CCR (BYTE)8.2 - s

1.0 - V FETCH VECTOR

2.0 - f NO BUS ACCESS

SET S, X, AND I

START

END

NO

YES
RESET?

INTERRUPT?

2.1 - S PUSH RETURN ADDRESS

ADDRESS OF INST THAT WOULD HAVE

2.2 - S PUSH RETURN ADDRESS

ADDRESS OF INST AFTER SWI OR
EXECUTED IF NO INTERRUPT UNIMPLEMENTED OPCODE

3.0 - P FETCH PROGRAM WORD

START TO FILL INSTRUCTION QUEUE

4.0 - P FETCH PROGRAM WORD

CONTINUE TO FILL INSTRUCTION

5.0 - P FETCH PROGRAM WORD

FINISH FILLING INSTRUCTION QUEUE

3.2 - P FETCH PROGRAM WORD

START TO FILL INSTRUCTION QUEUE

4.2 - S PUSH Y

6.2 - P FETCH PROGRAM WORD

CONTINUE TO FILL INST. QUEUE

9.2 - P FETCH PROGRAM WORD

FINISH FILLING INSTRUCTION QUEUE

5.2 - S PUSH X

TRANSFER B:A TO 16-BIT TEMP REG

7.2 - S PUSH B:A

SET I BIT

END

3.1 - P FETCH PROGRAM WORD

START TO FILL INSTRUCTION QUEUE

4.1 - S PUSH Y

6.1 - P FETCH PROGRAM WORD

CONTINUE TO FILL INST. QUEUE

9.1 - P FETCH PROGRAM WORD

FINISH FILLING INSTRUCTION QUEUE

5.1 - S PUSH X

TRANSFER B:A TO 16-BIT TEMP REG

7.1 - S PUSH B:A

8.1 - s PUSH CCR (BYTE)

SET I BIT

IF XIRQ, SET X BIT

END

NO

YES

OPCODE TRAP?
YES

T.1 - f INTERNAL CALCULATIONS

NO

QUEUE
Reference Manual S12CPUV2

324 Exception Processing MOTOROLA

Exception Processing
Exception Processing Flow
7.8.3 Interrupt and Unimplemented Opcode Trap Exception Processing

If an exception was not caused by a reset, a return address is calculated.

• Cycles 2.1and 2.2 are both S cycles (stack a 16-bit word), but the
CPU12 performs different return address calculations for each
type of exception.

– When an X- or I-related interrupt causes the exception, the
return address points to the next instruction that would have
been executed had processing not been interrupted.

– When an exception is caused by an SWI opcode or by an
unimplemented opcode (see 7.6 Unimplemented Opcode
Trap), the return address points to the next address after the
opcode.

• Once calculated, the return address is pushed onto the stack.

• Cycles 3.1 through 9.1 are identical to cycles 3.2 through 9.2 for
the rest of the sequence, except for optional setting of the X mask
bit performed in cycle 8.1 (see below).

• Cycle 3.1/3.2 is the first of three program word fetches that refill
the instruction queue.

• Cycle 4.1/4.2 pushes Y onto the stack.

• Cycle 5.1/5.2 pushes X onto the stack.

• Cycle 6.1/6.2 is the second of three program word fetches that
refill the instruction queue. During this cycle, the contents of the A
and B accumulators are concatenated into a 16-bit word in the
order B:A. This makes register order in the stack frame the same
as that of the M68HC11, M6801, and the M6800.

• Cycle 7.1/7.2 pushes the 16-bit word containing B:A onto the
stack.

• Cycle 8.1/8.2 pushes the 8-bit CCR onto the stack, then updates
the mask bits.

– When an XIRQ interrupt causes an exception, both X and I are
set, which inhibits further interrupts during exception
processing.

– When any other interrupt causes an exception, the I bit is set,
but the X bit is not changed.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 325

Exception Processing
• Cycle 9.1/9.2 is the third of three program word fetches that refill
the instruction queue. It is the last cycle of exception processing.
After this cycle the CPU starts executing the first cycle of the
instruction at the head of the instruction queue.
Reference Manual S12CPUV2

326 Exception Processing MOTOROLA

Reference Manual — S12CPUV2

Section 8. Instruction Queue
8.1 Introduction

This section describes development and debug support features related
to the central processor unit (CPU12). Topics include:

• Single-wire background debug interface

• Hardware breakpoint system

• Instruction queue operation and reconstruction

• Instruction tagging

1 = Valid Data

TRACE — Trace Flag

Indicates when tracing is enabled. Firmware in the BDM ROM sets
TRACE in response to a TRACE1 command and TRACE is cleared
upon completion of the TRACE1 command. Do not attempt to write
TRACE directly with WRITE_BD_BYTE commands.

0 = Tracing not enabled
1 = TRACE1 command in progress

8.2 External Reconstruction of the Queue

The CPU12 uses an instruction queue to buffer program information and
increase instruction throughput. The HCS12 implements the queue
somewhat differently from the original M68HC12. The HCS12 queue
consists of three 16-bit stages while the M68HC12 queue consists of two
16-bit stages, plus a 16-bit holding latch. Program information is always
fetched in aligned 16-bit words. At least three bytes of program
information are available to the CPU when instruction execution begins.
The holding latch in the M68HC12 is used when a word of program
information arrives before the queue can advance.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 327

Instruction Queue
Because of the queue, program information is fetched a few cycles
before it is used by the CPU. Internally, the microcontroller unit (MCU)
only needs to buffer the fetched data. But, in order to monitor
cycle-by-cycle CPU activity externally, it is necessary to capture data
and address to discern what is happening in the instruction queue.

Two external pins, IPIPE1 and IPIPE0, provide time-multiplexed
information about data movement in the queue and instruction
execution. The instruction queue and cycle-by-cycle activity can be
reconstructed in real time or from trace history captured by a logic
analyzer. However, neither scheme can be used to stop the CPU12
at a specific instruction. By the time an operation is visible outside the
MCU, the instruction has already begun execution. A separate
instruction tagging mechanism is provided for this purpose. A tag follows
the information in the queue as the queue is advanced. During
debugging, the CPU enters active background debug mode when
a tagged instruction reaches the head of the queue, rather than
executing the tagged instruction. For more information about tagging,
refer to 8.6 Instruction Tagging .

8.3 Instruction Queue Status Signals

The IPIPE1 and IPIPE0 signals carry time-multiplexed information about
data movement and instruction execution during normal CPU operation.
The signals are available on two multifunctional device pins. During
reset, the pins are used as mode-select input signals MODA and MODB.

To reconstruct the queue, the information carried by the status signals
must be captured externally. In general, data movement and execution
start information are considered to be distinct 2-bit values, with the
low-order bit on IPIPE0 and the high-order bit on IPIPE1.
Reference Manual S12CPUV2

328 Instruction Queue MOTOROLA

Instruction Queue
Instruction Queue Status Signals
8.3.1 HCS12 Timing Detail

In the HCS12, data-movement information is available when E clock is
high or on falling edges of the E clock; execution-start information is
available when E clock is low or on rising edges of the E clock, as shown
in Figure 8-1 . Data-movement information refers to data on the bus.
Execution-start information refers to the bus cycle that starts with that
E-low time and continues through the following E-high time. Table 8-1
summarizes the information encoded on the IPIPE1 and IPIPE0 pins.

Figure 8-1. Queue Status Signal Timing (HCS12)

8.3.2 M68HC12 Timing Detail

In the M68HC12, data movement information is available on rising
edges of the E clock; execution start information is available on falling
edges of the E clock, as shown in Figure 8-2 . Data movement
information refers to data on the bus at the previous falling edge of E.
Execution information refers to the bus cycle from the current falling
edge to the next falling edge of E. Table 8-1 summarizes the information
encoded on the IPIPE1 and IPIPE0 pins.

E CLOCK

ADDRESS

DATA

IPIPE[1:0]

ADDR0 ADDR1

DATA0 DATA1

EX0 DM0 EX1 DM1

CYCLE 0 CYCLE 1

EX1 REFERS TO
THIS CYCLE

DM0 REFERS TO DATA
CAPTURED AT THE END
OF CURRENT E-HIGH PERIOD
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 329

Instruction Queue
Figure 8-2. Queue Status Signal Timing (M68HC12)

Table 8-1. IPIPE1 and IPIPE0 Decoding (HCS12 and M68HC12)

Mnemonic Meaning

Data Movement Capture at E Fall in HCS12 (E Rise in M68HC12)

0:0 — No movement

0:1 LAT(1)

1. The HCS12 implementation does not include a holding latch, so these data movement
codes are used only in the original M68HC12.

Latch data from bus

1:0 ALD Advance queue and load from bus

1:1 ALL(1) Advance queue and load from latch

Execution Start Capture at E Rise in HCS12 (E Fall in M68HC12)

0:0 — No start

0:1 INT Start interrupt sequence

1:0 SEV Start even instruction

1:1 SOD Start odd instruction

E CLOCK

ADDRESS

DATA

IPIPE[1:0]

ADDR1 ADDR2

DATA1 DATA2

DM0 EX2 DM1

CYCLE 1 CYCLE 2

EX1 REFERS TO
THIS CYCLE

DM0 REFERS TO DATA
CAPTURED AT
PREVIOUS E FALL

DATA0

ADDR0

CYCLE 0

EX1
Reference Manual S12CPUV2

330 Instruction Queue MOTOROLA

Instruction Queue
Instruction Queue Status Signals
8.3.3 Null (Code 0:0)

The 0:0 data movement state indicates that there was no data
movement in the instruction queue; the 0:0 execution start state
indicates continuation of an instruction or interrupt sequence (no new
instruction or interrupt start).

8.3.4 LAT — Latch Data from Bus (Code 0:1)

This code is not used in the HCS12. In the M68HC12, fetched program
information has arrived, but the queue is not ready to advance. The
information is latched into a buffer. Later, when the queue does
advance, stage 1 is refilled from the buffer or from the data bus if the
buffer is empty. In some instruction sequences, there can be several
latch cycles before the queue advances. In these cases, the buffer is
filled on the first latch event and additional latch requests are ignored.

8.3.5 ALD — Advance and Load from Data Bus (Code 1:0)

The instruction queue is advanced by one word and stage one is refilled
with a word of program information from the data bus. The CPU
requested the information two bus cycles earlier but, due to access
delays, the information was not available until the E cycle referred to by
the ALD code.

8.3.6 ALL — Advance and Load from Latch (Code 1:1)

This code is not used in the HCS12. In the M68HC12, the 2-stage
instruction queue is advanced by one word and stage one is refilled with
a word of program information from the buffer. The information was
latched from the data bus at the falling edge of a previous E cycle
because the instruction queue was not ready to advance when it arrived.

8.3.7 INT — Interrupt Sequence Start (Code 0:1)

The E cycle associated with this code is the first cycle of an interrupt
sequence. Normally, this cycle is a read of the interrupt vector. However,
in systems that have interrupt vectors in external memory and an 8-bit
data bus, this cycle reads the upper byte of the 16-bit interrupt vector.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 331

Instruction Queue
8.3.8 SEV — Start Instruction on Even Address (Code 1:0)

The E cycle associated with this code is the first cycle of the instruction
in the even (high order) half of the word at the head of the instruction
queue. The queue treats the $18 prebyte for instructions on page 2 of
the opcode map as a special 1-byte, 1-cycle instruction, except that
interrupts are not recognized at the boundary between the prebyte and
the rest of the instruction.

8.3.9 SOD — Start Instruction on Odd Address (Code 1:1)

The E cycle associated with this code is the first cycle of the instruction
in the odd (low order) half of the word at the head of the instruction
queue. The queue treats the $18 prebyte for instructions on page 2 of
the opcode map as a special 1-byte, 1-cycle instruction, except that
interrupts are not recognized at the boundary between the prebyte and
the rest of the instruction.

8.4 Queue Reconstruction (for HCS12)

The raw signals required for queue reconstruction are the address bus
(ADDR), the data bus (DATA), the system clock (E), and the queue
status signals (IPIPE1 and IPIPE2). An ALD data movement implies a
read; therefore, it is not necessary to capture the R/W signal. An E clock
cycle begins at a falling edge of E. Addresses and execution status must
be captured at the rising E edge in the middle of the cycle. Data and
data-movement status must be captured at the falling edge of E at the
end of the cycle. These captures can then be organized into records with
one record per E clock cycle.

Implementation details depend on the type of MCU and the mode of
operation. For instance, the data bus can be eight bits or 16 bits wide,
and nonmultiplexed or multiplexed. In all cases, the externally
reconstructed queue must use 16-bit words. Demultiplexing and
assembly of 8-bit data into 16-bit words is done before program
information enters the real queue, so it must also be done for the
external reconstruction.
Reference Manual S12CPUV2

332 Instruction Queue MOTOROLA

Instruction Queue
Queue Reconstruction (for HCS12)
An example:

Systems with an 8-bit data bus and a program stored in external
memory require two cycles for each program word fetch. MCU
bus-control logic freezes the CPU clocks long enough to do two 8-bit
accesses rather than a single 16-bit access, so the CPU sees only
16-bit words of program information. To recover the 16-bit program
words externally, latch the data bus state at the falling edge of E when
ADDR0 = 0, and gate the outputs of the latch onto DATA[15:8] when
an ALD cycle occurs. Since the 8-bit data bus is connected to
DATA[7:0], the 16-bit word on the data lines corresponds to the ALD
during the last half of the second 8-bit fetch, which is always to an odd
address. IPIPE[1:0] status signals indicate 0:0 for the second half of
the E cycle corresponding to the first 8-bit fetch.

Some MCUs have address lines to support memory expansion beyond
the standard 64-Kbyte address space. When memory expansion is
used, expanded addresses must also be captured and maintained.

8.4.1 Queue Reconstruction Registers (for HCS12)

Queue reconstruction requires the following registers, which can be
implemented as software variables when previously captured trace data
is used, or as hardware latches in real time.

8.4.1.1 fetch_add Register

This register buffers the fetch address.

8.4.1.2 st1_add, st1_dat Registers

These registers contain address and data for the first stage of the
reconstructed instruction queue.

8.4.1.3 st2_add, st2_dat Registers

These registers contain address and data for the middle stage of the
reconstructed instruction queue.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 333

Instruction Queue
8.4.1.4 st3_add, st3_dat Registers

These registers contain address and data for the final stage of the
reconstructed instruction queue. When the IPIPE[1:0] signals indicate
the execution status, the address and opcode can be found in these
registers.

8.4.2 Reconstruction Algorithm (for HCS12)

This section describes how to use IPIPE[1:0] signals and queue
reconstruction registers to reconstruct the queue.

Typically, the first few cycles of raw capture data are not useful because
it takes several cycles before an instruction propagates to the head of
the queue. During these first raw cycles, the only meaningful information
available is data movement signals. Information on the external address
and data buses during this setup time is still captured and propagated
through the reconstructed queue, but the information reflects the actions
of instructions that were fetched before data collection started.

In the special case of a reset, there is a five-cycle sequence (VfPPP)
during which the reset vector is fetched and the instruction queue is
filled, before execution of the first instruction begins. Due to the timing of
the switchover of the IPIPE[1:0] pins from their alternate function as
mode-select inputs, the status information on these two pins may be
erroneous during the first cycle or two after the release of reset. This is
not a problem because the status is correct in time for queue
reconstruction logic to correctly replicate the queue.

On an advance-and-load-from-data-bus (ALD) cycle, the information in
the instruction queue must advance by one stage. Whatever was in
stage three of the queue simply disappears. The previous contents of
stage two go to stage three, the previous contents of stage one go to
stage two, and the contents of fetch_add and data from the current cycle
go to stage one.

Figure 8-3 shows the reset sequence and illustrates the relationship
between instruction cycle codes (VfPPP) and pipe status signals. One
cycle of the data bus is shown to indicate the relationship between the
ALD data movement code and the data value it refers to. The SEV
execution start code indicates that the reset vector pointed to an even
address in this example.
Reference Manual S12CPUV2

334 Instruction Queue MOTOROLA

Instruction Queue
Queue Reconstruction (for M68HC12)
Figure 8-3. Reset Sequence for HCS12

8.5 Queue Reconstruction (for M68HC12)

The raw signals required for queue reconstruction are the address bus
(ADDR), the data bus (DATA), the system clock (E), and the queue
status signals (IPIPE1 and IPIPE0). An E-clock cycle begins after an E
fall. Addresses and data movement status must be captured at the E rise
in the middle of the cycle. Data and execution start status must be
captured at the E fall at the end of the cycle. These captures can then be
organized into records with one record per E clock cycle.

Implementation details depend upon the type of device and the mode of
operation. For instance, the data bus can be eight bits or 16 bits wide,
and non-multiplexed or multiplexed. In all cases, the externally
reconstructed queue must use 16-bit words. Demultiplexing and
assembly of 8-bit data into 16-bit words is done before program
information enters the real queue, so it must also be done for the
external reconstruction.

An example:

Systems with an 8-bit data bus and a program stored in external
memory require two cycles for each program word fetch. MCU bus
control logic freezes the CPU clocks long enough to do two 8-bit
accesses rather than a single 16-bit access, so the CPU sees only
16-bit words of program information. To recover the 16-bit program
words externally, latch the data bus state at the falling edge of E when
ADDR0 = 0, and gate the outputs of the latch onto DATA[15:8] when
a LAT or ALD cycle occurs. Since the 8-bit data bus is connected to
DATA[7:0], the 16-bit word on the data lines corresponds to the ALD
or LAT status indication at the E rise after the second 8-bit fetch,

ALD
00 00 00 00 00 10 00 10 00 10 10

ALD ALD SEV

DM EXDM DM

V f P P PINSTRUCTION
CYCLE CODES

E CLOCK

DATA BUS

IPIPE[1:0]

FIRST
USER
INSTRUCTION
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 335

Instruction Queue
which is always to an odd address. IPIPE1 and IPIPE0 status signals
indicate 0:0 at the beginning (E fall) and middle (E rise) of the first 8-bit
fetch.

Some M68HC12 devices have address lines to support memory
expansion beyond the standard 64-Kbyte address space. When
memory expansion is used, expanded addresses must also be captured
and maintained.

8.5.1 Queue Reconstruction Registers (for M68HC12)

Queue reconstruction requires these registers, which can be
implemented as software variables when previously captured trace data
is used or as hardware latches in real time.

8.5.1.1 in_add, in_dat Registers

These registers contain the address and data from the previous external
bus cycle. Depending on how records are read and processed from the
raw capture information, it may be possible to simply read this
information from the raw capture data file when needed.

8.5.1.2 fetch_add, fetch_dat Registers

These registers buffer address and data for information that was fetched
before the queue was ready to advance.

8.5.1.3 st1_add, st1_dat Registers

These registers contain address and data for the first stage of the
reconstructed instruction queue.

8.5.1.4 st2_add, st2_dat Registers

These registers contain address and data for the final stage of the
reconstructed instruction queue. When the IPIPE1 and IPIPE0 signals
indicate that an instruction is starting to execute, the address and
opcode can be found in these registers.
Reference Manual S12CPUV2

336 Instruction Queue MOTOROLA

Instruction Queue
Queue Reconstruction (for M68HC12)
8.5.2 Reconstruction Algorithm (for M68HC12)

This subsection describes in detail how to use IPIPE1 and IPIPE0
signals and queue reconstruction registers to reconstruct the queue. An
“is_full” flag is used to indicate when the fetch_add and fetch_dat buffer
registers contain information. The use of the flag is explained more fully
in subsequent paragraphs.

Typically, the first few cycles of raw capture data are not useful because
it takes several cycles before an instruction propagates to the head of
the queue. During these first raw cycles, the only meaningful information
available are data movement signals. Information on the external
address and data buses during this setup time reflects the actions of
instructions that were fetched before data collection started.

In the special case of a reset, there is a 5-cycle sequence (VfPPP)
during which the reset vector is fetched and the instruction queue is
filled, before execution of the first instruction begins. Due to the timing of
the switchover of the IPIPE1 and IPIPE0 pins from their alternate
function as mode select inputs, the status information on these two pins
may be erroneous during the first cycle or two after the release of reset.
This is not a problem because the status is correct in time for queue
reconstruction logic to correctly replicate the queue.

Before starting to reconstruct the queue, clear the is_full flag to indicate
that there is no meaningful information in the fetch_add and fetch_dat
buffers. Further movement of information in the instruction queue is
based on the decoded status on the IPIPE1 and IPIPE0 signals at the
rising edges of E.

8.5.2.1 LAT Decoding

On a latch cycle (LAT), check the is_full flag. If and only if is_full = 0,
transfer the address and data from the previous bus cycle (in_add and
in_dat) into the fetch_add and fetch_dat registers, respectively. Then,
set the is_full flag. The usual reason for a latch request instead of an
advance request is that the previous instruction ended with a single
aligned byte of program information in the last stage of the instruction
queue. Since the odd half of this word still holds the opcode for the next
instruction, the queue cannot advance on this cycle. However, the cycle
to fetch the next word of program information has already started and the
data is on its way.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 337

Instruction Queue
8.5.2.2 ALD Decoding

On an advance-and-load-from-data-bus (ALD) cycle, the information in
the instruction queue must advance by one stage. Whatever was in
stage 2 of the queue is simply thrown away. The previous contents of
stage 1 are moved to stage 2, and the address and data from the
previous cycle (in_add and in_dat) are transferred into stage 1 of the
instruction queue. Finally, clear the is_full flag to indicate the buffer latch
is ready for new data. Usually, there would be no useful information in
the fetch buffer when an ALD cycle was encountered, but in the case of
a change-of-flow, any data that was there needs to be flushed out (by
clearing the is_full flag).

8.5.2.3 ALL Decoding

On an advance-and-load-from-latch (ALL) cycle, the information in the
instruction queue must advance by one stage. Whatever was in stage 2
of the queue is simply thrown away. The previous contents of stage 1 are
moved to stage 2, and the contents of the fetch buffer latch are
transferred into stage 1 of the instruction queue. One or more cycles
preceding the ALL cycle will have been a LAT cycle. After updating the
instruction queue, clear the is_full flag to indicate the fetch buffer is ready
for new information.

Figure 8-4 shows the reset sequence and illustrates the relationship
between instruction cycle codes (VfPPP) and pipe status signals. One
cycle of the data bus is shown to indicate the relationship between the
ALD data movement code and the data value it refers to. The SEV
execution start code indicates that the reset vector pointed to an even
address in this example.

Figure 8-4. Reset Sequence for M68HC12

ALD

00 00 00 00 00 00 10 00 10 10 10
ALD ALDSEV

DM EXDM DM

V f P P PINSTRUCTION
CYCLE CODES

E CLOCK

DATA BUS

IPIPE[1:0]

FIRST USER
INSTRUCTION
Reference Manual S12CPUV2

338 Instruction Queue MOTOROLA

Instruction Queue
Instruction Tagging
8.6 Instruction Tagging

The instruction queue and cycle-by-cycle CPU activity can be
reconstructed in real time or from trace history that was captured by a
logic analyzer. However, the reconstructed queue cannot be used to
stop the CPU at a specific instruction, because execution has already
begun by the time an operation is visible outside the MCU. A separate
instruction tagging mechanism is provided for this purpose.

Executing the BDM TAGGO command configures two MCU pins for
tagging. The TAGLO signal shares a pin with the LSTRB signal, and the
TAGHI signal shares the BKGD pin. Tagging information is latched on
the falling edge of ECLK, as shown in Figure 8-5 .

Figure 8-5. Tag Input Timing

Table 8-2 shows the functions of the two independent tagging pins. The
presence of logic level 0 on either pin at the fall of ECLK tags (marks)
the associated byte of program information as it is read into the
instruction queue. Tagging is allowed in all modes. Tagging is disabled
when BDM becomes active.

Table 8-2. Tag Pin Function

TAGHI TAGLO Tag

1 1 No tag

1 0 Low byte

0 1 High byte

0 0 Both bytes

E CLOCK

LSTRB/TAGLO

BKGD/TAGHI

TAGS ARE APPLIED TO PROGRAM INFORMATION
CAPTURED ON THIS E CLOCK TRANSITION

LSTRB VALID
TAGLO

TAGHI

VALID

VALID
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 339

Instruction Queue
In HCS12 and M68HC12 derivatives that have hardware breakpoint
capability, the breakpoint control logic and BDM control logic use the
same internal signals for instruction tagging. The CPU does not
differentiate between the two kinds of tags.

The tag follows program information as it advances through the queue.
When a tagged instruction reaches the head of the queue, the CPU
enters active background debug mode rather than executing the
instruction.
Reference Manual S12CPUV2

340 Instruction Queue MOTOROLA

Reference Manual — S12CPUV2

Section 9. Fuzzy Logic Support
9.1 Introduction

The instruction set of the central processor unit (CPU12) is the first
instruction set to specifically address the needs of fuzzy logic. This
section describes the use of fuzzy logic in control systems, discusses the
CPU12 fuzzy logic instructions, and provides examples of fuzzy logic
programs.

The CPU12 includes four instructions that perform specific fuzzy logic
tasks. In addition, several other instructions are especially useful in fuzzy
logic programs. The overall C-friendliness of the instruction set also aids
development of efficient fuzzy logic programs.

This section explains the basic fuzzy logic algorithm for which the four
fuzzy logic instructions are intended. Each of the fuzzy logic instructions
are then explained in detail. Finally, other custom fuzzy logic algorithms
are discussed, with emphasis on use of other CPU12 instructions.

The four fuzzy logic instructions are:

• MEM (determine grade of membership), which evaluates
trapezoidal membership functions

• REV (fuzzy logic rule evaluation) and REVW (fuzzy logic rule
evaluation weighted), which perform unweighted or weighted
MIN-MAX rule evaluation

• WAV (weighted average), which performs weighted average
defuzzification on singleton output membership functions.

Other instructions that are useful for custom fuzzy logic programs
include:

• MINA (place smaller of two unsigned 8-bit values in
accumulator A)

• EMIND (place smaller of two unsigned 16-bit values in
accumulator D)

• MAXM (place larger of two unsigned 8-bit values in memory)
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 341

Fuzzy Logic Support
• EMAXM (place larger of two unsigned 16-bit values in memory)

• TBL (table lookup and interpolate)

• ETBL (extended table lookup and interpolate)

• EMACS (extended multiply and accumulate signed 16-bit by
16-bit to 32-bit)

For higher resolution fuzzy programs, the fast extended precision math
instructions in the CPU12 are also beneficial. Flexible indexed
addressing modes help simplify access to fuzzy logic data structures
stored as lists or tabular data structures in memory.

The actual logic additions required to implement fuzzy logic support in
the CPU12 are quite small, so there is no appreciable increase in cost
for the typical user. A fuzzy inference kernel for the CPU12 requires
one-fifth as much code space and executes almost 50 times faster than
a comparable kernel implemented on a typical midrange microcontroller.
By incorporating fuzzy logic support into a high-volume,
general-purpose microcontroller product family, Motorola has made
fuzzy logic available for a huge base of applications.

9.2 Fuzzy Logic Basics

This is an overview of basic fuzzy logic concepts. It can serve as a
general introduction to the subject, but that is not the main purpose.
There are a number of fuzzy logic programming strategies. This
discussion concentrates on the methods implemented in the CPU12
fuzzy logic instructions. The primary goal is to provide a background for
a detailed explanation of the CPU12 fuzzy logic instructions.

In general, fuzzy logic provides for set definitions that have fuzzy
boundaries rather than the crisp boundaries of Aristotelian logic. These
sets can overlap so that, for a specific input value, one or more sets
associated with linguistic labels may be true to a degree at the same
time. As the input varies from the range of one set into the range of an
adjacent set, the first set becomes progressively less true while the
second set becomes progressively more true.

Fuzzy logic has membership functions which emulate human concepts
like “temperature is warm”; that is, conditions are perceived to have
gradual boundaries. This concept seems to be a key element of the
human ability to solve certain types of complex problems that have
eluded traditional control methods.
Reference Manual S12CPUV2

342 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Fuzzy Logic Basics
Fuzzy sets provide a means of using linguistic expressions like
“temperature is warm” in rules which can then be evaluated with a high
degree of numerical precision and repeatability. This directly contradicts
the common misperception that fuzzy logic produces approximate
results — a specific set of input conditions always produces the same
result, just as a conventional control system does.

A microcontroller-based fuzzy logic control system has two parts:

• A fuzzy inference kernel which is executed periodically to
determine system outputs based on current system inputs

• A knowledge base which contains membership functions and
rules

Figure 9-1 is a block diagram of this kind of fuzzy logic system.

Figure 9-1. Block Diagram of a Fuzzy Logic System

The knowledge base can be developed by an application expert without
any microcontroller programming experience. Membership functions are
simply expressions of the expert’s understanding of the linguistic terms
that describe the system to be controlled. Rules are ordinary language
statements that describe the actions a human expert would take to solve
the application problem.

INPUT
MEMBERSHIP
FUNCTIONS

RULE LIST

OUTPUT
MEMBERSHIP
FUNCTIONS

FUZZIFICATION

RULE EVALUATION

DEFUZZIFICATION

FUZZY
INFERENCE

KERNEL

KNOWLEDGE
BASE

SYSTEM
INPUTS

SYSTEM
OUTPUTS

FUZZY INPUTS
(IN RAM)

FUZZY OUTPUTS
(IN RAM)

…

…

S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 343

Fuzzy Logic Support
Rules and membership functions can be reduced to relatively simple
data structures (the knowledge base) stored in non-volatile memory. A
fuzzy inference kernel can be written by a programmer who does not
know how the application system works. The only thing the programmer
needs to do with knowledge base information is store it in the memory
locations used by the kernel.

One execution pass through the fuzzy inference kernel generates
system output signals in response to current input conditions. The kernel
is executed as often as needed to maintain control. If the kernel is
executed more often than needed, processor bandwidth and power are
wasted; delaying too long between passes can cause the system to get
too far out of control. Choosing a periodic rate for a fuzzy control system
is the same as it would be for a conventional control system.

9.2.1 Fuzzification (MEM)

During the fuzzification step, the current system input values are
compared against stored input membership functions to determine the
degree to which each label of each system input is true. This is
accomplished by finding the y-value for the current input value on a
trapezoidal membership function for each label of each system input.
The MEM instruction in the CPU12 performs this calculation for one label
of one system input. To perform the complete fuzzification task for a
system, several MEM instructions must be executed, usually in a
program loop structure.

Figure 9-2 shows a system of three input membership functions, one for
each label of the system input. The x-axis of all three membership
functions represents the range of possible values of the system input.
The vertical line through all three membership functions represents a
specific system input value. The y-axis represents degree of truth and
varies from completely false ($00 or 0 percent) to completely true ($FF
or 100 percent). The y-value where the vertical line intersects each of the
membership functions, is the degree to which the current input value
matches the associated label for this system input. For example, the
expression “temperature is warm” is 25 percent true ($40). The value
$40 is stored to a random-access memory (RAM) location and is called
a fuzzy input (in this case, the fuzzy input for “temperature is warm”).
There is a RAM location for each fuzzy input (for each label of each
system input).
Reference Manual S12CPUV2

344 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Fuzzy Logic Basics
Figure 9-2. Fuzzification Using Membership Functions

When the fuzzification step begins, the current value of the system input
is in an accumulator of the CPU12, one index register points to the first
membership function definition in the knowledge base, and a second
index register points to the first fuzzy input in RAM. As each fuzzy input
is calculated by executing a MEM instruction, the result is stored to the
fuzzy input and both pointers are updated automatically to point to the
locations associated with the next fuzzy input. The MEM instruction
takes care of everything except counting the number of labels per
system input and loading the current value of any subsequent system
inputs.

The end result of the fuzzification step is a table of fuzzy inputs
representing current system conditions.

$00

$80

$FF

0°F 32°F 64°F 96°F 128°F

$40

$C0
HOT

$00

$80

$FF

0°F 32°F 64°F 96°F 128°F

$40

$C0
WARM

$00

$80

$FF

0°F 32°F 64°F 96°F 128°F

$40

$C0
COLD

CURRENT

IS 64°F
TEMPERATURE

MEMBERSHIP FUNCTIONS
FOR TEMPERATURE FUZZY INPUTS

TEMPERATURE IS HOT

TEMPERATURE IS WARM

TEMPERATURE IS COLD

$00

$40

$C0
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 345

Fuzzy Logic Support
9.2.2 Rule Evaluation (REV and REVW)

Rule evaluation is the central element of a fuzzy logic inference program.
This step processes a list of rules from the knowledge base using current
fuzzy input values from RAM to produce a list of fuzzy outputs in RAM.
These fuzzy outputs can be thought of as raw suggestions for what the
system output should be in response to the current input conditions.
Before the results can be applied, the fuzzy outputs must be further
processed, or defuzzified, to produce a single output value that
represents the combined effect of all of the fuzzy outputs.

The CPU12 offers two variations of rule evaluation instructions. The
REV instruction provides for unweighted rules (all rules are considered
to be equally important). The REVW instruction is similar but allows each
rule to have a separate weighting factor which is stored in a separate
parallel data structure in the knowledge base. In addition to the weights,
the two rule evaluation instructions also differ in the way rules are
encoded into the knowledge base.

An understanding of the structure and syntax of rules is needed to
understand how a microcontroller performs the rule evaluation task. An
example of a typical rule is:

If temperature is warm and pressure is high, then heat is
(should be) off.

At first glance, it seems that encoding this rule in a compact form
understandable to the microcontroller would be difficult, but it is actually
simple to reduce the rule to a small list of memory pointers. The
antecedent portion of the rule is a statement of input conditions and the
consequent portion of the rule is a statement of output actions.

The antecedent portion of a rule is made up of one or more (in this case
two) antecedents connected by a fuzzy and operator. Each antecedent
expression consists of the name of a system input, followed by is,
followed by a label name. The label must be defined by a membership
function in the knowledge base. Each antecedent expression
corresponds to one of the fuzzy inputs in RAM. Since and is the only
operator allowed to connect antecedent expressions, there is no need to
include these in the encoded rule. The antecedents can be encoded as
a simple list of pointers to (or addresses of) the fuzzy inputs to which they
refer.
Reference Manual S12CPUV2

346 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Fuzzy Logic Basics
The consequent portion of a rule is made up of one or more (in this case
one) consequents. Each consequent expression consists of the name of
a system output, followed by is, followed by a label name. Each
consequent expression corresponds to a specific fuzzy output in RAM.
Consequents for a rule can be encoded as a simple list of pointers to (or
addresses of) the fuzzy outputs to which they refer.

The complete rules are stored in the knowledge base as a list of pointers
or addresses of fuzzy inputs and fuzzy outputs. For the rule evaluation
logic to work, there must be some means of knowing which pointers refer
to fuzzy inputs and which refer to fuzzy outputs. There also must be a
way to know when the last rule in the system has been reached.

• One method of organization is to have a fixed number of rules with
a specific number of antecedents and consequents.

• A second method, employed in Motorola Freeware M68HC11
kernels, is to mark the end of the rule list with a reserved value,
and use a bit in the pointers to distinguish antecedents from
consequents.

• A third method of organization, used in the CPU12, is to mark the
end of the rule list with a reserved value, and separate
antecedents and consequents with another reserved value. This
permits any number of rules, and allows each rule to have any
number of antecedents and consequents, subject to the limits
imposed by availability of system memory.

Each rule is evaluated sequentially, but the rules as a group are treated
as if they were all evaluated simultaneously. Two mathematical
operations take place during rule evaluation. The fuzzy and operator
corresponds to the mathematical minimum operation and the fuzzy or
operation corresponds to the mathematical maximum operation. The
fuzzy and is used to connect antecedents within a rule. The fuzzy or is
implied between successive rules. Before evaluating any rules, all fuzzy
outputs are set to zero (meaning not true at all). As each rule is
evaluated, the smallest (minimum) antecedent is taken to be the overall
truth of the rule. This rule truth value is applied to each consequent of
the rule (by storing this value to the corresponding fuzzy output) unless
the fuzzy output is already larger (maximum). If two rules affect the same
fuzzy output, the rule that is most true governs the value in the fuzzy
output because the rules are connected by an implied fuzzy or.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 347

Fuzzy Logic Support
In the case of rule weighting, the truth value for a rule is determined as
usual by finding the smallest rule antecedent. Before applying this truth
value to the consequents for the rule, the value is multiplied by a fraction
from zero (rule disabled) to one (rule fully enabled). The resulting
modified truth value is then applied to the fuzzy outputs.

The end result of the rule evaluation step is a table of suggested or “raw”
fuzzy outputs in RAM. These values were obtained by plugging current
conditions (fuzzy input values) into the system rules in the knowledge
base. The raw results cannot be supplied directly to the system outputs
because they may be ambiguous. For instance, one raw output can
indicate that the system output should be medium with a degree of truth
of 50 percent while, at the same time, another indicates that the system
output should be low with a degree of truth of 25 percent. The
defuzzification step resolves these ambiguities.

9.2.3 Defuzzification (WAV)

The final step in the fuzzy logic program combines the raw fuzzy outputs
into a composite system output. Unlike the trapezoidal shapes used for
inputs, the CPU12 typically uses singletons for output membership
functions. As with the inputs, the x-axis represents the range of possible
values for a system output. Singleton membership functions consist of
the x-axis position for a label of the system output. Fuzzy outputs
correspond to the y-axis height of the corresponding output membership
function.

The WAV instruction calculates the numerator and denominator sums
for weighted average of the fuzzy outputs according to the formula:

Where n is the number of labels of a system output, Si are the singleton
positions from the knowledge base, and Fi are fuzzy outputs from RAM.
For a common fuzzy logic program on the CPU12, n is eight or less
(though this instruction can handle any value to 255) and Si and Fi are
8-bit values. The final divide is performed with a separate EDIV
instruction placed immediately after the WAV instruction.

System Output

SiFi
i 1=

n

∑

Fi
i 1=

n

∑
-----------------------=
Reference Manual S12CPUV2

348 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Example Inference Kernel
Before executing WAV, an accumulator must be loaded with the number
of iterations (n), one index register must be pointed at the list of singleton
positions in the knowledge base, and a second index register must be
pointed at the list of fuzzy outputs in RAM. If the system has more than
one system output, the WAV instruction is executed once for each
system output.

9.3 Example Inference Kernel

Figure 9-3 is a complete fuzzy inference kernel written in CPU12
assembly language. Numbers in square brackets are cycle counts for an
HCS12 device. The kernel uses two system inputs with seven labels
each and one system output with seven labels. The program assembles
to 57 bytes. It executes in about 20 µs at an 25-MHz bus rate. The basic
structure can easily be extended to a general-purpose system with a
larger number of inputs and outputs.

Figure 9-3. Fuzzy Inference Engine

*
01 [2] FUZZIFY LDX #INPUT_MFS ;Point at MF definitions
02 [2] LDY #FUZ_INS ;Point at fuzzy input table
03 [3] LDAA CURRENT_INS ;Get first input value
04 [1] LDAB #7 ;7 labels per input
05 [5] GRAD_LOOP MEM ;Evaluate one MF
06 [3] DBNE B,GRAD_LOOP ;For 7 labels of 1 input
07 [3] LDAA CURRENT_INS+1 ;Get second input value
08 [1] LDAB #7 ;7 labels per input
09 [5] GRAD_LOOP1 MEM ;Evaluate one MF
10 [3] DBNE B,GRAD_LOOP1 ;For 7 labels of 1 input

11 [1] LDAB #7 ;Loop count
12 [2] RULE_EVAL CLR 1,Y+ ;Clr a fuzzy out & inc ptr
13 [3] DBNE b,RULE_EVAL ;Loop to clr all fuzzy outs
14 [2] LDX #RULE_START ;Point at first rule element
15 [2] LDY #FUZ_INS ;Point at fuzzy ins and outs
16 [1] LDAA #$FF ;Init A (and clears V-bit)
17 [3n+4] REV ;Process rule list

18 [2] DEFUZ LDY #FUZ_OUT ;Point at fuzzy outputs
19 [2] LDX #SGLTN_POS ;Point at singleton positions
20 [1] LDAB #7 ;7 fuzzy outs per COG output
21 [7b+4] WAV ;Calculate sums for wtd av
22 [11] EDIV ;Final divide for wtd av
23 [1] TFR Y,D ;Move result to A:B
24 [3] STAB COG_OUT ;Store system output

*
***** End
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 349

Fuzzy Logic Support
Lines 1 to 3 set up pointers and load the system input value into the A
accumulator.

Line 4 sets the loop count for the loop in lines 5 and 6.

Lines 5 and 6 make up the fuzzification loop for seven labels of one
system input. The MEM instruction finds the y-value on a trapezoidal
membership function for the current input value, for one label of the
current input, and then stores the result to the corresponding fuzzy input.
Pointers in X and Y are automatically updated by four and one so they
point at the next membership function and fuzzy input respectively.

Line 7 loads the current value of the next system input. Pointers in X and
Y already point to the right places as a result of the automatic update
function of the MEM instruction in line 5.

Line 8 reloads a loop count.

Lines 9 and 10 form a loop to fuzzify the seven labels of the second
system input. When the program drops to line 11, the Y index register is
pointing at the next location after the last fuzzy input, which is the first
fuzzy output in this system.

Line 11 sets the loop count to clear seven fuzzy outputs.

Lines 12 and 13 form a loop to clear all fuzzy outputs before rule
evaluation starts.

Line 14 initializes the X index register to point at the first element in the
rule list for the REV instruction.

Line 15 initializes the Y index register to point at the fuzzy inputs and
outputs in the system. The rule list (for REV) consists of 8-bit offsets from
this base address to particular fuzzy inputs or fuzzy outputs. The special
value $FE is interpreted by REV as a marker between rule antecedents
and consequents.

Line 16 initializes the A accumulator to the highest 8-bit value in
preparation for finding the smallest fuzzy input referenced by a rule
antecedent. The LDAA #$FF instruction also clears the V-bit in the
CPU12’s condition code register so the REV instruction knows it is
processing antecedents. During rule list processing, the V bit is toggled
each time an $FE is detected in the list. The V bit indicates whether REV
is processing antecedents or consequents.
Reference Manual S12CPUV2

350 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
MEM Instruction Details
Line 17 is the REV instruction, a self-contained loop to process
successive elements in the rule list until an $FF character is found. For
a system of 17 rules with two antecedents and one consequent each, the
REV instruction takes 259 cycles, but it is interruptible so it does not
cause a long interrupt latency.

Lines 18 through 20 set up pointers and an iteration count for the WAV
instruction.

Line 21 is the beginning of defuzzification. The WAV instruction
calculates a sum-of-products and a sum-of-weights.

Line 22 completes defuzzification. The EDIV instruction performs a
32-bit by 16-bit divide on the intermediate results from WAV to get the
weighted average.

Line 23 moves the EDIV result into the double accumulator.

Line 24 stores the low 8-bits of the defuzzification result.

This example inference program shows how easy it is to incorporate
fuzzy logic into general applications using the CPU12. Code space and
execution time are no longer serious factors in the decision to use fuzzy
logic. The next section begins a much more detailed look at the fuzzy
logic instructions of the CPU12.

9.4 MEM Instruction Details

This section provides a more detailed explanation of the membership
function evaluation instruction (MEM), including details about abnormal
special cases for improperly defined membership functions.

9.4.1 Membership Function Definitions

Figure 9-4 shows how a normal membership function is specified in the
CPU12. Typically, a software tool is used to input membership functions
graphically, and the tool generates data structures for the target
processor and software kernel. Alternatively, points and slopes for the
membership functions can be determined and stored in memory with
define-constant assembler directives.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 351

Fuzzy Logic Support
Figure 9-4. Defining a Normal Membership Function

An internal CPU algorithm calculates the y-value where the current input
intersects a membership function. This algorithm assumes the
membership function obeys some common-sense rules. If the
membership function definition is improper, the results may be unusual.
See 9.4.2 Abnormal Membership Function Definitions for a
discussion of these cases.

These rules apply to normal membership functions.

• $00 ≤ point1 < $FF

• $00 < point2 ≤ $FF

• point1 < point2

• The sloping sides of the trapezoid meet at or above $FF.

Each system input such as temperature has several labels such as cold,
cool, normal, warm, and hot. Each label of each system input must have
a membership function to describe its meaning in an unambiguous
numerical way. Typically, there are three to seven labels per system
input, but there is no practical restriction on this number as far as the
fuzzification step is concerned.

GRAPHICAL REPRESENTATION

$00 $10 $20 $30 $40 $50 $60 $70 $80 $90 $A0 $B0 $C0 $D0 $E0 $F0 $FF

$00

$20

$40

$60

$80

$A0

$FF

$E0

$C0

MEMORY REPRESENTATION

ADDR

ADDR+1

ADDR+2

ADDR+3

$40

$D0

$08

$04

X-POSITION OF point_1

X-POSITION OF point_2

slope_1 ($FF/(X-POS OF SATURATION – point_1))

slope_2 ($FF/(point_2 – X-POS OF SATURATION))

point_1
point_2

slope_1

slope_2

DEGREE
OF

TRUTH

INPUT RANGE
Reference Manual S12CPUV2

352 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
MEM Instruction Details
9.4.2 Abnormal Membership Function Definitions

In the CPU12, it is possible (and proper) to define “crisp” membership
functions. A crisp membership function has one or both sides vertical
(infinite slope). Since the slope value $00 is not used otherwise, it is
assigned to mean infinite slope to the MEM instruction in the CPU12.

Although a good fuzzy development tool will not allow the user to specify
an improper membership function, it is possible to have program errors
or memory errors which result in erroneous abnormal membership
functions. Although these abnormal shapes do not correspond to any
working systems, understanding how the CPU12 treats these cases can
be helpful for debugging.

A close examination of the MEM instruction algorithm will show how
such membership functions are evaluated. Figure 9-5 is a complete flow
diagram for the execution of a MEM instruction. Each rectangular box
represents one CPU bus cycle. The number in the upper left corner
corresponds to the cycle number and the letter corresponds to the cycle
type (refer to Section 6. Instruction Glossary for details). The upper
portion of the box includes information about bus activity during this
cycle (if any). The lower portion of the box, which is separated by a
dashed line, includes information about internal CPU processes. It is
common for several internal functions to take place during a single CPU
cycle (for example, in cycle 2, two 8-bit subtractions take place and a flag
is set based on the results).

Consider 4a: If (((Slope_2 = 0) or (Grade_2 > $FF)) and (flag_d12n = 0)).

The flag_d12n is zero as long as the input value (in accumulator A) is
within the trapezoid. Everywhere outside the trapezoid, one or the other
delta term will be negative, and the flag will equal one. Slope_2 equals
zero indicates the right side of the trapezoid has infinite slope, so the
resulting grade should be $FF everywhere in the trapezoid, including at
point_2, as far as this side is concerned. The term grade_2 greater than
$FF means the value is far enough into the trapezoid that the right
sloping side of the trapezoid has crossed above the $FF cutoff level and
the resulting grade should be $FF as far as the right sloping side is
concerned. 4a decides if the value is left of the right sloping side
(Grade = $FF), or on the sloping portion of the right side of the trapezoid
(Grade = Grade_2). 4b could still override this tentative value in grade.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 353

Fuzzy Logic Support
Figure 9-5. MEM Instruction Flow Diagram

In 4b, slope_1 is zero if the left side of the trapezoid has infinite slope
(vertical). If so, the result (grade) should be $FF at and to the right of
point_1 everywhere within the trapezoid as far as the left side is
concerned. The grade_1 greater than $FF term corresponds to the input
being to the right of where the left sloping side passes the $FF cutoff
level. If either of these conditions is true, the result (grade) is left at the
value it got from 4a. The “else” condition in 4b corresponds to the input
falling on the sloping portion of the left side of the trapezoid (or possibly
outside the trapezoid), so the result is grade equal grade_1. If the input
was outside the trapezoid, flag_d12n would be one and grade_1 and

1 - R READ WORD @ 0,X — Point_1 AND Point_2

2 - R READ WORD @ –2,X — Slope_1 AND Slope_2

2a — Delta_1 = ACCA – Point_1
2b — Delta_2 = Point_2 – ACCA
2c — IF (Delta_1 OR Delta_2) < 0 THEN flag_d12n = 1 ELSE flag_d12n = 0

3 - f NO BUS ACCESS

3a — IF flag_d12n = 1 THEN Grade_1 = 0 ELSE Grade_1 = Slope_1 * Delta_1
3b — IF flag_d12n = 1 THEN Grade_2 = 0 ELSE Grade_2 = Slope_2 * Delta_2

4 - O IF MISALIGNED THEN READ PROGRAM WORD TO FILL INSTRUCTION QUEUE ELSE NO BUS ACCESS

4a — IF (((Slope_2 = 0) OR (Grade_2 > $FF)) AND (flag_d12n = 0)) THEN GRADE = $FF

ELSE GRADE = Grade_2

4b — IF (((Slope_1 = 0) OR (Grade_1 > $FF)) AND (flag_d12n = 0)) THEN GRADE = GRADE

ELSE GRADE = Grade_1

5 - w WRITE BYTE @ –1,Y — FUZZY INPUT RESULT (GRADE)

START

END

X = X + 4

Y = Y + 1
Reference Manual S12CPUV2

354 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
MEM Instruction Details
grade_2 would have been forced to $00 in cycle 3. The else condition of
4b would set the result to $00.

The special cases shown here represent abnormal membership function
definitions. The explanations describe how the specific algorithm in the
CPU12 resolves these unusual cases. The results are not all intuitively
obvious, but rather fall out from the specific algorithm. Remember, these
cases should not occur in a normal system.

9.4.2.1 Abnormal Membership Function Case 1

This membership function is abnormal because the sloping sides cross
below the $FF cutoff level. The flag_d12n signal forces the membership
function to evaluate to $00 everywhere except from point_1 to point_2.
Within this interval, the tentative values for grade_1 and grade_2
calculated in cycle 3 fall on the crossed sloping sides. In step 4a, grade
gets set to the grade_2 value, but in 4b this is overridden by the grade_1
value, which ends up as the result of the MEM instruction. One way to
say this is that the result follows the left sloping side until the input
passes point_2, where the result goes to $00.

Figure 9-6. Abnormal Membership Function Case 1

If point_1 was to the right of point_2, flag_d12n would force the result to
be $00 for all input values. In fact, flag_d12n always limits the region of
interest to the space greater than or equal to point_1 and less than or
equal to point_2.

MEMORY DEFINITION: $60, $80, $04, $04; point_1, point_2, slope_1, slope_2

GRAPHICAL REPRESENTATION HOW INTERPRETED

P1 P2 P1 P2
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 355

Fuzzy Logic Support
9.4.2.2 Abnormal Membership Function Case 2

Like the previous example, the membership function in case 2 is
abnormal because the sloping sides cross below the $FF cutoff level, but
the left sloping side reaches the $FF cutoff level before the input gets to
point_2. In this case, the result follows the left sloping side until it
reaches the $FF cutoff level. At this point, the (grade_1 > $FF) term of
4b kicks in, making the expression true so grade equals grade (no
overwrite). The result from here to point_2 becomes controlled by the
“else” part of 4a (grade = grade_2), and the result follows the right
sloping side.

Figure 9-7. Abnormal Membership Function Case 2

9.4.2.3 Abnormal Membership Function Case 3

The membership function in case 3 is abnormal because the sloping
sides cross below the $FF cutoff level, and the left sloping side has
infinite slope. In this case, 4a is not true, so grade equals grade_2. 4b is
true because slope_1 is zero, so 4b does not overwrite grade.

Figure 9-8. Abnormal Membership Function Case 3

MEMORY DEFINITION: $60, $C0, $04, $04; point_1, point_2, slope_1, slope_2

GRAPHICAL REPRESENTATION HOW INTERPRETED

P1 P2 P1 P2LEFT SIDE
CROSSES $FF

MEMORY DEFINITION: $60, $80, $00, $04; point_1, point_2, slope_1, slope_2

GRAPHICAL REPRESENTATION HOW INTERPRETED

P1 P2 P1 P2
Reference Manual S12CPUV2

356 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
9.5 REV and REVW Instruction Details

This section provides a more detailed explanation of the rule evaluation
instructions (REV and REVW). The data structures used to specify rules
are somewhat different for the weighted versus unweighted versions of
the instruction. One uses 8-bit offsets in the encoded rules, while the
other uses full 16-bit addresses. This affects the size of the rule data
structure and execution time.

9.5.1 Unweighted Rule Evaluation (REV)

This instruction implements basic min-max rule evaluation. CPU
registers are used for pointers and intermediate calculation results.

Since the REV instruction is essentially a list-processing instruction,
execution time is dependent on the number of elements in the rule list.
The REV instruction is interruptible (typically within three bus cycles), so
it does not adversely affect worst case interrupt latency. Since all
intermediate results and instruction status are held in stacked CPU
registers, the interrupt service code can even include independent REV
and REVW instructions.

9.5.1.1 Set Up Prior to Executing REV

Some CPU registers and memory locations need to be set up prior to
executing the REV instruction. X and Y index registers are used as index
pointers to the rule list and the fuzzy inputs and outputs. The A
accumulator is used for intermediate calculation results and needs to be
set to $FF initially. The V condition code bit is used as an instruction
status indicator to show whether antecedents or consequents are being
processed. Initially, the V bit is cleared to zero to indicate antecedents
are being processed. The fuzzy outputs (working RAM locations) need
to be cleared to $00. If these values are not initialized before executing
the REV instruction, results will be erroneous.

The X index register is set to the address of the first element in the rule
list (in the knowledge base). The REV instruction automatically updates
this pointer so that the instruction can resume correctly if it is interrupted.
After the REV instruction finishes, X will point at the next address past
the $FF separator character that marks the end of the rule list.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 357

Fuzzy Logic Support
The Y index register is set to the base address for the fuzzy inputs and
outputs (in working RAM). Each rule antecedent is an unsigned 8-bit
offset from this base address to the referenced fuzzy input. Each rule
consequent is an unsigned 8-bit offset from this base address to the
referenced fuzzy output. The Y index register remains constant
throughout execution of the REV instruction.

The 8-bit A accumulator is used to hold intermediate calculation results
during execution of the REV instruction. During antecedent processing,
A starts out at $FF and is replaced by any smaller fuzzy input that is
referenced by a rule antecedent (MIN). During consequent processing,
A holds the truth value for the rule. This truth value is stored to any fuzzy
output that is referenced by a rule consequent, unless that fuzzy output
is already larger (MAX).

Before starting to execute REV, A must be set to $FF (the largest 8-bit
value) because rule evaluation always starts with processing of the
antecedents of the first rule. For subsequent rules in the list, A is
automatically set to $FF when the instruction detects the $FE marker
character between the last consequent of the previous rule and the first
antecedent of a new rule.

The instruction LDAA #$FF clears the V bit at the same time it initializes
A to $FF. This satisfies the REV setup requirement to clear the V bit as
well as the requirement to initialize A to $FF. Once the REV instruction
starts, the value in the V bit is automatically maintained as $FE separator
characters are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX
algorithm. Each time a rule consequent references a fuzzy output, that
fuzzy output is compared to the truth value for the current rule. If the
current truth value is larger, it is written over the previous value in the
fuzzy output. After all rules have been evaluated, the fuzzy output
contains the truth value for the most-true rule that referenced that fuzzy
output.

After REV finishes, A will hold the truth value for the last rule in the rule
list. The V condition code bit should be one because the last element
before the $FF end marker should have been a rule consequent. If V is
zero after executing REV, it indicates the rule list was structured
incorrectly.
Reference Manual S12CPUV2

358 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
9.5.1.2 Interrupt Details

The REV instruction includes a 3-cycle processing loop for each byte in
the rule list (including antecedents, consequents, and special separator
characters). Within this loop, a check is performed to see if any qualified
interrupt request is pending. If an interrupt is detected, the current CPU
registers are stacked and the interrupt is honored. When the interrupt
service routine finishes, an RTI instruction causes the CPU to recover its
previous context from the stack, and the REV instruction is resumed as
if it had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted
REV instruction, points to the REV instruction rather than the instruction
that follows. This causes the CPU to try to execute a new REV
instruction upon return from the interrupt. Since the CPU registers
(including the V bit in the condition codes register) indicate the current
status of the interrupted REV instruction, this effectively causes the rule
evaluation operation to resume from where it left off.

9.5.1.3 Cycle-by-Cycle Details for REV

The central element of the REV instruction is a 3-cycle loop that is
executed once for each byte in the rule list. There is a small amount of
housekeeping activity to get this loop started as REV begins and a small
sequence to end the instruction. If an interrupt comes, there is a special
small sequence to save CPU status on the stack before honoring the
requested interrupt.

Figure 9-9 is a REV instruction flow diagram. Each rectangular box
represents one CPU clock cycle. Decision blocks and connecting arrows
are considered to take no time at all. The letters in the small rectangles
in the upper left corner of each bold box correspond to execution cycle
codes (refer to Section 6. Instruction Glossary for details). Lower case
letters indicate a cycle where 8-bit or no data is transferred. Upper case
letters indicate cycles where 16-bit or no data is transferred.

When a value is read from memory, it cannot be used by the CPU until
the second cycle after the read takes place. This is due to access and
propagation delays.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 359

Fuzzy Logic Support
Figure 9-9. REV Instruction Flow Diagram

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED

2.0 - r READ BYTE @ 0,X (RULE ELEMENT Rx)

X = X + 1 POINT AT NEXT RULE ELEMENT

START

END

4.0 - t

THEN READ BYTE @ Rx,Y (FUZZY IN OR OUT Fy)

5.2 - f NO BUS ACCESS

ADJUST PC TO POINT AT CURRENT REV INSTRUCTION

IF Rx $FE OR $FF

NO

YES

5.0 - t

READ BYTE @ 0,X (RULE ELEMENT Rx)

Rx = $FF, OTHER?
$FF

OTHER

X = X + 1 POINT AT NEXT RULE ELEMENT

6.2 - f NO BUS ACCESS

ADJUST X = X – 1

CONTINUE TO INTERRUPT STACKING

V-BIT

0 (MIN)

1 (MAX)

6.0 - x NO BUS ACCESS

IF Rx $FE THEN A = MIN(A, Fy)

6.1 - x
IF Rx $FE OR $FF, AND ACCA > Fy
THEN WRITE BYTE @ Rx,Y
ELSE NO BUS ACCESS

Rx = $FF (END OF RULES)?

YES

NO

7.0 - O READ PROGRAM WORD IF $3A MISALIGNED

3.0 - f NO BUS ACCESS

IF Rx = $FE & V WAS 1, RESET ACCA TO $FF
IF Rx = $FE TOGGLE V-BIT

ELSE NO BUS ACCESS

ELSE A = A (NO CHANGE TO A)

UPDATE RX WITH VALUE READ IN CYC 2 OR 5

INTERRUPT PENDING?

UPDATE FY WITH VALUE READ IN CYC 4.0
UPDATE Fy WITH VALUE READ IN CYC 4.0
Reference Manual S12CPUV2

360 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
Since there is more than one flow path through the REV instruction,
cycle numbers have a decimal place. This decimal place indicates which
of several possible paths is being used. The CPU normally moves
forward by one digit at a time within the same flow (flow number is
indicated after the decimal point in the cycle number). There are two
exceptions possible to this orderly sequence through an instruction. The
first is a branch back to an earlier cycle number to form a loop as in
6.0 to 4.0. The second type of sequence change is from one flow to a
parallel flow within the same instruction such as 4.0 to 5.2, which occurs
if the REV instruction senses an interrupt. In this second type of
sequence branch, the whole number advances by one and the flow
number changes to a new value (the digit after the decimal point).

In cycle 1.0, the CPU12 does an optional program word access to
replace the $18 prebyte of the REV instruction. Notice that cycle 7.0 is
also an O type cycle. One or the other of these will be a program word
fetch, while the other will be a free cycle where the CPU does not access
the bus. Although the $18 page prebyte is a required part of the REV
instruction, it is treated by the CPU12 as a somewhat separate single
cycle instruction.

Rule evaluation begins at cycle 2.0 with a byte read of the first element
in the rule list. Usually this would be the first antecedent of the first rule,
but the REV instruction can be interrupted, so this could be a read of any
byte in the rule list. The X index register is incremented so it points to the
next element in the rule list. Cycle 3.0 is needed to satisfy the required
delay between a read and when data is valid to the CPU. Some internal
CPU housekeeping activity takes place during this cycle, but there is no
bus activity. By cycle 4.0, the rule element that was read in cycle 2.0 is
available to the CPU.

Cycle 4.0 is the first cycle of the main three cycle rule evaluation loop.
Depending upon whether rule antecedents or consequents are being
processed, the loop will consist of cycles 4.0, 5.0, 6.0, or the sequence
4.0, 5.0, 6.1. This loop is executed once for every byte in the rule list,
including the $FE separators and the $FF end-of-rules marker.

At each cycle 4.0, a fuzzy input or fuzzy output is read, except during the
loop passes associated with the $FE and $FF marker bytes, where no
bus access takes place during cycle 4.0. The read access uses the Y
index register as the base address and the previously read rule byte (Rx)
as an unsigned offset from Y. The fuzzy input or output value read here
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 361

Fuzzy Logic Support
will be used during the next cycle 6.0 or 6.1. Besides being used as the
offset from Y for this read, the previously read Rx is checked to see if it
is a separator character ($FE). If Rx was $FE and the V bit was one, this
indicates a switch from processing consequents of one rule to starting to
process antecedents of the next rule. At this transition, the A
accumulator is initialized to $FF to prepare for the min operation to find
the smallest fuzzy input. Also, if Rx is $FE, the V bit is toggled to indicate
the change from antecedents to consequents, or consequents to
antecedents.

During cycle 5.0, a new rule byte is read unless this is the last loop pass,
and Rx is $FF (marking the end of the rule list). This new rule byte will
not be used until cycle 4.0 of the next pass through the loop.

Between cycle 5.0 and 6.x, the V-bit is used to decide which of two paths
to take. If V is zero, antecedents are being processed and the CPU
progresses to cycle 6.0. If V is one, consequents are being processed
and the CPU goes to cycle 6.1.

During cycle 6.0, the current value in the A accumulator is compared to
the fuzzy input that was read in the previous cycle 4.0, and the lower
value is placed in the A accumulator (min operation). If Rx is $FE, this is
the transition between rule antecedents and rule consequents, and this
min operation is skipped (although the cycle is still used). No bus access
takes place during cycle 6.0 but cycle 6.x is considered an x type cycle
because it could be a byte write (cycle 6.1) or a free cycle (cycle 6.0 or
6.1 with Rx = $FE or $FF).

If an interrupt arrives while the REV instruction is executing, REV can
break between cycles 4.0 and 5.0 in an orderly fashion so that the rule
evaluation operation can resume after the interrupt has been serviced.
Cycles 5.2 and 6.2 are needed to adjust the PC and X index register so
the REV operation can recover after the interrupt. PC is adjusted
backward in cycle 5.2 so it points to the currently running REV
instruction. After the interrupt, rule evaluation will resume, but the values
that were stored on the stack for index registers, accumulator A, and
CCR will cause the operation to pick up where it left off. In cycle 6.2, the
X index register is adjusted backward by one because the last rule byte
needs to be re-fetched when the REV instruction resumes.

After cycle 6.2, the REV instruction is finished, and execution would
continue to the normal interrupt processing flow.
Reference Manual S12CPUV2

362 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
9.5.2 Weighted Rule Evaluation (REVW)

This instruction implements a weighted variation of min-max rule
evaluation. The weighting factors are stored in a table with one 8-bit
entry per rule. The weight is used to multiply the truth value of the rule
(minimum of all antecedents) by a value from zero to one to get the
weighted result. This weighted result is then applied to the consequents,
just as it would be for unweighted rule evaluation.

Since the REVW instruction is essentially a list-processing instruction,
execution time is dependent on the number of rules and the number of
elements in the rule list. The REVW instruction is interruptible (typically
within three to five bus cycles), so it does not adversely affect worst case
interrupt latency. Since all intermediate results and instruction status are
held in stacked CPU registers, the interrupt service code can even
include independent REV and REVW instructions.

The rule structure is different for REVW than for REV. For REVW, the
rule list is made up of 16-bit elements rather than 8-bit elements. Each
antecedent is represented by the full 16-bit address of the corresponding
fuzzy input. Each rule consequent is represented by the full address of
the corresponding fuzzy output.

The markers separating antecedents from consequents are the
reserved 16-bit value $FFFE, and the end of the last rule is marked by
the reserved 16-bit value $FFFF. Since $FFFE and $FFFF correspond
to the addresses of the reset vector, there would never be a fuzzy input
or output at either of these locations.

9.5.2.1 Set Up Prior to Executing REVW

Some CPU registers and memory locations need to be set up prior to
executing the REVW instruction. X and Y index registers are used as
index pointers to the rule list and the list of rule weights. The A
accumulator is used for intermediate calculation results and needs to be
set to $FF initially. The V condition code bit is used as an instruction
status indicator that shows whether antecedents or consequents are
being processed. Initially the V bit is cleared to zero to indicate
antecedents are being processed. The C condition code bit is used to
indicate whether rule weights are to be used (1) or not (0). The fuzzy
outputs (working RAM locations) need to be cleared to $00. If these
values are not initialized before executing the REVW instruction, results
will be erroneous.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 363

Fuzzy Logic Support
The X index register is set to the address of the first element in the rule
list (in the knowledge base). The REVW instruction automatically
updates this pointer so that the instruction can resume correctly if it is
interrupted. After the REVW instruction finishes, X will point at the next
address past the $FFFF separator word that marks the end of the rule
list.

The Y index register is set to the starting address of the list of rule
weights. Each rule weight is an 8-bit value. The weighted result is the
truncated upper eight bits of the 16-bit result, which is derived by
multiplying the minimum rule antecedent value ($00–$FF) by the weight
plus one ($001–$100). This method of weighting rules allows an 8-bit
weighting factor to represent a value between zero and one inclusive.

The 8-bit A accumulator is used to hold intermediate calculation results
during execution of the REVW instruction. During antecedent
processing, A starts out at $FF and is replaced by any smaller fuzzy
input that is referenced by a rule antecedent. If rule weights are enabled
by the C condition code bit equal one, the rule truth value is multiplied by
the rule weight just before consequent processing starts. During
consequent processing, A holds the truth value (possibly weighted) for
the rule. This truth value is stored to any fuzzy output that is referenced
by a rule consequent, unless that fuzzy output is already larger (MAX).

Before starting to execute REVW, A must be set to $FF (the largest 8-bit
value) because rule evaluation always starts with processing of the
antecedents of the first rule. For subsequent rules in the list, A is
automatically set to $FF when the instruction detects the $FFFE marker
word between the last consequent of the previous rule, and the first
antecedent of a new rule.

Both the C and V condition code bits must be set up prior to starting a
REVW instruction. Once the REVW instruction starts, the C bit remains
constant and the value in the V bit is automatically maintained as $FFFE
separator words are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX
algorithm. Each time a rule consequent references a fuzzy output, that
fuzzy output is compared to the truth value (weighted) for the current
rule. If the current truth value is larger, it is written over the previous
value in the fuzzy output. After all rules have been evaluated, the fuzzy
output contains the truth value for the most-true rule that referenced that
fuzzy output.
Reference Manual S12CPUV2

364 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
After REVW finishes, A will hold the truth value (weighted) for the last
rule in the rule list. The V condition code bit should be one because the
last element before the $FFFF end marker should have been a rule
consequent. If V is zero after executing REVW, it indicates the rule list
was structured incorrectly.

9.5.2.2 Interrupt Details

The REVW instruction includes a 3-cycle processing loop for each word
in the rule list (this loop expands to five cycles between antecedents and
consequents to allow time for the multiplication with the rule weight).
Within this loop, a check is performed to see if any qualified interrupt
request is pending. If an interrupt is detected, the current CPU registers
are stacked and the interrupt is honored. When the interrupt service
routine finishes, an RTI instruction causes the CPU to recover its
previous context from the stack, and the REVW instruction is resumed
as if it had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted
REVW instruction, points to the REVW instruction rather than the
instruction that follows. This causes the CPU to try to execute a new
REVW instruction upon return from the interrupt. Since the CPU
registers (including the C bit and V bit in the condition codes register)
indicate the current status of the interrupted REVW instruction, this
effectively causes the rule evaluation operation to resume from where it
left off.

9.5.2.3 Cycle-by-Cycle Details for REVW

The central element of the REVW instruction is a 3-cycle loop that is
executed once for each word in the rule list. For the special case pass
(where the $FFFE separator word is read between the rule antecedents
and the rule consequents, and weights are enabled by the C bit equal
one), this loop takes five cycles. There is a small amount of
housekeeping activity to get this loop started as REVW begins and a
small sequence to end the instruction. If an interrupt comes, there is a
special small sequence to save CPU status on the stack before the
interrupt is serviced.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 365

Fuzzy Logic Support
Figure 9-10 is a detailed flow diagram for the REVW instruction. Each
rectangular box represents one CPU clock cycle. Decision blocks and
connecting arrows are considered to take no time at all. The letters in the
small rectangles in the upper left corner of each bold box correspond to
the execution cycle codes (refer to Section 6. Instruction Glossary for
details). Lower case letters indicate a cycle where 8-bit or no data is
transferred. Upper case letters indicate cycles where 16-bit data could
be transferred.

In cycle 2.0, the first element of the rule list (a 16-bit address) is read
from memory. Due to propagation delays, this value cannot be used for
calculations until two cycles later (cycle 4.0). The X index register, which
is used to access information from the rule list, is incremented by two to
point at the next element of the rule list.

The operations performed in cycle 4.0 depend on the value of the word
read from the rule list. $FFFE is a special token that indicates a transition
from antecedents to consequents or from consequents to antecedents
of a new rule. The V bit can be used to decide which transition is taking
place, and V is toggled each time the $FFFE token is detected. If V was
zero, a change from antecedents to consequents is taking place, and it
is time to apply weighting (provided it is enabled by the C bit equal one).
The address in TMP2 (derived from Y) is used to read the weight byte
from memory. In this case, there is no bus access in cycle 5.0, but the
index into the rule list is updated to point to the next rule element.

The old value of X (X0) is temporarily held on internal nodes, so it can be
used to access a rule word in cycle 7.2. The read of the rule word is
timed to start two cycles before it will be used in cycle 4.0 of the next loop
pass. The actual multiply takes place in cycles 6.2 through 8.2. The 8-bit
weight from memory is incremented (possibly overflowing to $100)
before the multiply, and the upper eight bits of the 16-bit internal result
is used as the weighted result. By using weight+1, the result can range
from 0.0 times A to 1.0 times A. After 8.2, flow continues to the next loop
pass at cycle 4.0.
Reference Manual S12CPUV2

366 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
Figure 9-10. REVW Instruction Flow Diagram

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED

2.0 - R READ WORD @ 0,X (RULE ELEMENT Rx)

X = X + 2 POINT AT NEXT RULE ELEMENT

START

END

6.3 - f NO BUS ACCESS

ADJUST X = X – 2 POINTER TO RULE LIST

INTERRUPT PENDING?
NO YES

5.0 - T

7.3 - f NO BUS ACCESS

IF (Rx = $FFFE OR $FFFE) AND V = 0

CONTINUE TO INTERRUPT STACKING
6.0 - x NO BUS ACCESS

A = MIN(A, FRx)

Rx = $FFFF (END OF RULES)?

YES

NO

7.0 - O READ PROGRAM WORD IF $3B MISALIGNED

3.0 - f NO BUS ACCESS

TMP2 = Y – 1 (WEIGHT POINTER KEPT IN TMP2)

5.3 - f

ADJUST PC TO POINT AT CURRENT REVW INSTRUCTION

IF Rx $FFFF

X0 = X, X = X0 + 2

MIN/MAX/MUL?

MAX

MULMIN

V = 1 &

V=C=1 and Rx=$FFFEOR DEFAULT

7.2 - R READ RULE WORD @,X0

CONTINUE MULTIPLY

8.2 - f NO BUS ACCESS

FINISH MULTIPLY

6.2 - f NO BUS ACCESS

BEGIN MULTIPLY OF (wt + 1) * A fi A : B

RX $FFFE or $FFFF

6.1 - x IF A > FRx WRITE A TO Rx
ELSE NO BUS ACCESS

ADJUST PC TO POINT AT NEXT INSTRUCTION
IF C = 1 (WEIGHTS ENABLED), Y = TMP2 + 1

THEN READ RULE WORD @,X0

8.3 - f NO BUS ACCESS

Y = TMP2 + 1

NO BUS ACCESS

4.0 - t

IF Rx = $FFFE

ELSE NO BUS ACCESS

IF Rx = $FFFF IF Rx = OTHER
THEN READ BYTE @,Rx FUZZY IN/OUT FRxTHEN NO BUS ACCESSIF V = 0, THEN TMP2 = TMP2 + 1

THEN READ RULE WEIGHT @,TMP2

TOGGLE V BIT; IF V NOW 0, A = $FF

IF V = 0 AND C = 1,

UPDATE Rx WITH VALUE READ IN CYC 2 OR 5

THEN TMP2 = TMP2 – 1
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 367

Fuzzy Logic Support
At cycle 4.0, if Rx is $FFFE and V was one, a change from consequents
to antecedents of a new rule is taking place, so accumulator A must be
reinitialized to $FF. During processing of rule antecedents, A is updated
with the smaller of A, or the current fuzzy input (cycle 6.0). Cycle 5.0 is
usually used to read the next rule word and update the pointer in X. This
read is skipped if the current Rx is $FFFF (end of rules mark). If this is a
weight multiply pass, the read is delayed until cycle 7.2. During
processing of consequents, cycle 6.1 is used to optionally update a fuzzy
output if the value in accumulator A is larger.

After all rules have been processed, cycle 7.0 is used to update the PC
to point at the next instruction. If weights were enabled, Y is updated to
point at the location that immediately follows the last rule weight.

9.6 WAV Instruction Details

The WAV instruction performs weighted average calculations used in
defuzzification. The pseudo-instruction wavr is used to resume an
interrupted weighted average operation. WAV calculates the numerator
and denominator sums using:

Where n is the number of labels of a system output, Si are the singleton
positions from the knowledge base, and Fi are fuzzy outputs from RAM.
Si and Fi are 8-bit values. The 8-bit B accumulator holds the iteration
count n. Internal temporary registers hold intermediate sums, 24 bits for
the numerator and 16 bits for the denominator. This makes this
instruction suitable for n values up to 255 although eight is a more typical
value. The final long division is performed with a separate EDIV
instruction immediately after the WAV instruction. The WAV instruction
returns the numerator and denominator sums in the correct registers for
the EDIV. (EDIV performs the unsigned division Y = Y : D / X; remainder
in D.)

System Output

SiFi
i 1=

n

∑

Fi
i 1=

n

∑
-----------------------=
Reference Manual S12CPUV2

368 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
WAV Instruction Details
Execution time for this instruction depends on the number of iterations
(labels for the system output). WAV is interruptible so that worst case
interrupt latency is not affected by the execution time for the complete
weighted average operation. WAV includes initialization for the 24-bit
and 16-bit partial sums so the first entry into WAV looks different than a
resume from interrupt operation. The CPU12 handles this difficulty with
a pseudo-instruction (wavr), which is specifically intended to resume an
interrupted weighted average calculation. Refer to 9.6.3
Cycle-by-Cycle Details for WAV and wavr for more detail.

9.6.1 Set Up Prior to Executing WAV

Before executing the WAV instruction, index registers X and Y and
accumulator B must be set up. Index register X is a pointer to the Si
singleton list. X must have the address of the first singleton value in the
knowledge base. Index register Y is a pointer to the fuzzy outputs Fi. Y
must have the address of the first fuzzy output for this system output. B
is the iteration count n. The B accumulator must be set to the number of
labels for this system output.

9.6.2 WAV Interrupt Details

The WAV instruction includes a 7-cycle processing loop for each label of
the system output (8 cycles in M68HC12). Within this loop, the CPU
checks whether a qualified interrupt request is pending. If an interrupt is
detected, the current values of the internal temporary registers for the
24-bit and 16-bit sums are stacked, the CPU registers are stacked, and
the interrupt is serviced.

A special processing sequence is executed when an interrupt is
detected during a weighted average calculation. This exit sequence
adjusts the PC so that it points to the second byte of the WAV object
code ($3C), before the PC is stacked. Upon return from the interrupt, the
$3C value is interpreted as a wavr pseudo-instruction. The wavr
pseudo-instruction causes the CPU to execute a special WAV
resumption sequence. The wavr recovery sequence adjusts the PC so
that it looks like it did during execution of the original WAV instruction,
then jumps back into the WAV processing loop. If another interrupt
occurs before the weighted average calculation finishes, the PC is
adjusted again as it was for the first interrupt. WAV can be interrupted
any number of times, and additional WAV instructions can be executed
while a WAV instruction is interrupted.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 369

Fuzzy Logic Support
9.6.3 Cycle-by-Cycle Details for WAV and wavr

The WAV instruction is unusual in that the logic flow has two separate
entry points. The first entry point is the normal start of a WAV instruction.
The second entry point is used to resume the weighted average
operation after a WAV instruction has been interrupted. This recovery
operation is called the wavr pseudo-instruction.

Figure 9-12 is a flow diagram of the WAV instruction in the HCS12,
including the wavr pseudo-instruction. Figure 9-12 is a flow diagram of
the WAV instruction in the M68HC12, including the wavr
pseudo-instruction. Each rectangular box in these figures represents
one CPU clock cycle. Decision blocks and connecting arrows are
considered to take no time at all. The letters in the small rectangles in
the upper left corner of the boxes correspond to execution cycle codes
(refer to Section 6. Instruction Glossary for details). Lower case letters
indicate a cycle where 8-bit or no data is transferred. Upper case letters
indicate cycles where 16-bit data could be transferred.

The cycle-by-cycle description provided here refers to the HCS12 flow in
Figure 9-11 . In terms of cycle-by-cycle bus activity, the $18 page select
prebyte is treated as a special 1-byte instruction. In cycle 1.0 of the WAV
instruction, one word of program information will be fetched into the
instruction queue if the $18 is located at an odd address. If the $18 is at
an even address, the instruction queue cannot advance so there is no
bus access in this cycle.

In cycle 2.0, three internal 16-bit temporary registers are cleared in
preparation for summation operations, but there is no bus access. The
WAV instruction maintains a 32-bit sum-of-products in TMP1 : TMP2
and a 16-bit sum-of-weights in TMP3. By keeping these sums inside the
CPU, bus accesses are reduced and the WAV operation is optimized for
high speed.

Cycles 3.0 through 9.0 form the 7-cycle main loop for WAV. The value in
the 8-bit B accumulator is used to count the number of loop iterations. B
is decremented at the top of the loop in cycle 3.0, and the test for zero is
located at the bottom of the loop after cycle 9.0. Cycle 4.0 and 5.0 are
used to fetch the 8-bit operands for one iteration of the loop. X and Y
index registers are used to access these operands. The index registers
are incremented as the operands are fetched. Cycle 6.0 is used to
accumulate the current fuzzy output into TMP3. Cycles 7.0 through 9.0
are used to perform the eight by eight multiply of Fi times Si, and
Reference Manual S12CPUV2

370 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
WAV Instruction Details
accumulate this result into TMP1 : TMP2. Even though the
sum-of-products will not exceed 24 bits, the sum is maintained in the
32-bit combined TMP1 : TMP2 register because it is easier to use
existing 16-bit operations than it would be to create a new smaller
operation to handle the high order bits of this sum.

Since the weighted average operation could be quite long, it is made to
be interruptible. The usual longest latency path is from very early in cycle
6.0, through cycle 9.0, to the top of the loop to cycle 3.0, through cycle
5.0 to the interrupt check.

If the WAV instruction is interrupted, the internal temporary registers
TMP3, TMP2, and TMP1 need to be stored on the stack so the operation
can be resumed. Since the WAV instruction included initialization in
cycle 2.0, the recovery path after an interrupt needs to be different. The
wavr pseudo-instruction has the same opcode as WAV, but it is on the
first page of the opcode map so there is no page prebyte ($18) like there
is for WAV. When WAV is interrupted, the PC is adjusted to point at the
second byte of the WAV object code, so that it will be interpreted as the
wavr pseudo-instruction on return from the interrupt, rather than the
WAV instruction. During the recovery sequence, the PC is readjusted in
case another interrupt comes before the weighted average operation
finishes.

The resume sequence includes recovery of the temporary registers from
the stack (1.1 through 3.1), and reads to get the operands for the current
iteration. The normal WAV flow is then rejoined at cycle 6.0.

Upon normal completion of the instruction (cycle 10.0), the PC is
adjusted so it points to the next instruction. The results are transferred
from the TMP registers into CPU registers in such a way that the EDIV
instruction can be used to divide the sum-of-products by the
sum-of-weights. TMP1 : TMP2 is transferred into Y : D and TMP3 is
transferred into X.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 371

Fuzzy Logic Support
Figure 9-11. WAV and wavr Instruction Flow Diagram (for HCS12)

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED 1.1 - U READ WORD @ 0,SP (UNSTACK TMP1)

SP = SP + 2

WAV

END

10.0 - O READ PROGRAM WORD IF $3C MISALIGNED

ADJUST PC TO POINT AT NEXT INSTRUCTION
Y : D = TMP1 : TMP2; X = TMP3

2.1 - U READ WORD @ 0,SP (UNSTACK TMP2)

SP = SP + 2

3.1 - U READ WORD @ 0,SP (UNSTACK TMP3)

SP = SP + 2

4.1 - r READ BYTE @ –1,Y (FUZZY OUTPUT Fi)

5.1 - r READ BYTE @ –1,X (SINGLETON Si)

6.1 - S WRITE WORD @ –2,SP (STACK TMP3)

SP = SP – 2

7.1 - S WRITE WORD @ –2,SP (STACK TMP2)

SP = SP – 2

8.1 - S WRITE WORD @ –2,SP (STACK TMP1)

SP = SP – 2

wavr

2.0 - f NO BUS ACCESS

3.0 - f NO BUS ACCESS

4.0 - f

CONTINUE TO INTERRUPT STACKING

B = 0?
NO

YES

5.0 - r

Y = Y + 1 point at next fuzzy output

READ BYTE @ 0,X (SINGLETON Si)

X = X + 1 POINT AT NEXT SINGLETON

6.0 - f NO BUS ACCESS

TMP3 = TMP3 + Fi

7.0 - f NO BUS ACCESS

START MULTIPLY, PPROD = Si*Fi

8.0 - f NO BUS ACCESS

FINISH MULTIPLY, TMP2 = TMP2 + PPROD

9.0 - f NO BUS ACCESS

INTERRUPT PENDING?

NO

YES

ADJUST PC TO POINT AT $3C wavr PSEUDO-OPCODE

TMP1 = TMP2 = TMP3 = $0000

B = B – 1 DECREMENT ITERATION COUNTER

READ BYTE @ 0,Y (FUZZY OUTPUT Fi)

TMP1 = TMP1 + (CARRY FROM PPROD ADD)
Reference Manual S12CPUV2

372 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
WAV Instruction Details
Figure 9-12. WAV and wavr Instruction Flow Diagram (for M68HC12)

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED

2.1 - U READ WORD @ 0,SP (UNSTACK TMP3)

SP = SP + 2

WAV

END

12.0 - O READ PROGRAM WORD IF $3C MISALIGNED

ADJUST PC TO POINT AT NEXT INSTRUCTION
Y : D = TMP3 : TMP2; X = TMP1

3.1 - U READ WORD @ 0,SP (UNSTACK TMP2)

SP = SP + 2

4.1 - U READ WORD @ 0,SP (UNSTACK TMP1)

SP = SP + 2

5.1 - r READ BYTE @ –1,Y (FUZZY OUTPUT Fi)

6.1 - r READ BYTE @ –1,X (SINGLETON Si)

7.1 - S WRITE WORD @ –2,SP (STACK TMP1)

SP = SP – 2

8.1 - S WRITE WORD @ –2,SP (STACK TMP2)

SP = SP – 2

9.1 - S WRITE WORD @ –2,SP (STACK TMP3)

SP = SP – 2

wavr

2.0 - f NO BUS ACCESS

3.0 - f NO BUS ACCESS

TMP1 = TMP2 = TMP3 = $0000

4.0 - f NO BUS ACCESS

B = B – 1 DECREMENT ITERATION COUNTER

CONTINUE TO INTERRUPT STACKING

B = 0?
NO

YES

5.0 - r READ BYTE @ 0,Y (FUZZY OUTPUT Fi)

Y = Y + 1 point at next fuzzy output

6.0 - r READ BYTE @ 0,X (SINGLETON Si)

X = X + 1 POINT AT NEXT SINGLETON

7.0 - f NO BUS ACCESS

TMP1 = TMP1 + Fi

8.0 - f NO BUS ACCESS

START MULTIPLY PPROD = Si*Fi

9.0 - f NO BUS ACCESS

CONTINUE MULTIPLY

10.0 - f NO BUS ACCESS

FINISH MULTIPLY, TMP2 = TMP2 + PPROD

11.0 - f NO BUS ACCESS

TMP3 = TMP3 + (CARRY FROM PPROD ADD)

INTERRUPT PENDING?

NO

YES

ADJUST PC TO POINT AT $3C wavr PSEUDO-OPCODE

10.1 - f NO BUS ACCESS
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 373

Fuzzy Logic Support
9.7 Custom Fuzzy Logic Programming

The basic fuzzy logic inference techniques described earlier are suitable
for a broad range of applications, but some systems may require
customization. The built-in fuzzy instructions use 8-bit resolution and
some systems may require finer resolution. The rule evaluation
instructions only support variations of MIN-MAX rule evaluation and
other methods have been discussed in fuzzy logic literature. The
weighted average of singletons is not the only defuzzification technique.
The CPU12 has several instructions and addressing modes that can be
helpful when developing custom fuzzy logic systems.

9.7.1 Fuzzification Variations

The MEM instruction supports trapezoidal membership functions and
several other varieties, including membership functions with vertical
sides (infinite slope sides). Triangular membership functions are a
subset of trapezoidal functions. Some practitioners refer to s-, z-, and
π-shaped membership functions. These refer to a trapezoid butted
against the right end of the x-axis, a trapezoid butted against the left end
of the x-axis, and a trapezoidal membership function that isn’t butted
against either end of the x-axis, respectively. Many other membership
function shapes are possible, if memory space and processing
bandwidth are sufficient.

Tabular membership functions offer complete flexibility in shape and
very fast evaluation time. However, tables take a very large amount of
memory space (as many as 256 bytes per label of one system input).
The excessive size to specify tabular membership functions makes them
impractical for most microcontroller-based fuzzy systems. The CPU12
instruction set includes two instructions (TBL and ETBL) for lookup and
interpolation of compressed tables.

The TBL instruction uses 8-bit table entries (y-values) and returns an
8-bit result. The ETBL instruction uses 16-bit table entries (y-values) and
returns a 16-bit result. A flexible indexed addressing mode is used to
identify the effective address of the data point at the beginning of the line
segment, and the data value for the end point of the line segment is the
next consecutive memory location (byte for TBL and word for ETBL). In
both cases, the B accumulator represents the ratio of (the x-distance
from the beginning of the line segment to the lookup point) to (the
Reference Manual S12CPUV2

374 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Custom Fuzzy Logic Programming
x-distance from the beginning of the line segment to the end of the line
segment). B is treated as an 8-bit binary fraction with radix point left of
the MSB, so each line segment can effectively be divided into 256
pieces. During execution of the TBL or ETBL instruction, the difference
between the end point y-value and the beginning point y-value (a signed
byte-TBL or word-ETBL) is multiplied by the B accumulator to get an
intermediate delta-y term. The result is the y-value of the beginning
point, plus this signed intermediate delta-y value.

Because indexed addressing mode is used to identify the starting point
of the line segment of interest, there is a great deal of flexibility in
constructing tables. A common method is to break the x-axis range into
256 equal width segments and store the y value for each of the resulting
257 endpoints. The 16-bit D accumulator is then used as the x input to
the table. The upper eight bits (A) is used as a coarse lookup to find the
line segment of interest, and the lower eight bits (B) is used to interpolate
within this line segment.

In the program sequence
LDX #TBL_START
LDD DATA_IN
TBL A,X

The notation A,X causes the TBL instruction to use the Ath line segment
in the table. The low-order half of D (B) is used by TBL to calculate the
exact data value from this line segment. This type of table uses only 257
entries to approximate a table with 16 bits of resolution. This type of table
has the disadvantage of equal width line segments, which means just as
many points are needed to describe a flat portion of the desired function
as are needed for the most active portions.

Another type of table stores x:y coordinate pairs for the endpoints of
each linear segment. This type of table may reduce the table storage
space compared to the previous fixed-width segments because flat
areas of the functions can be specified with a single pair of endpoints.
This type of table is a little harder to use with the CPU12 TBL and ETBL
instructions because the table instructions expect y-values for segment
endpoints to be in consecutive memory locations.

Consider a table made up of an arbitrary number of x:y coordinate pairs,
where all values are eight bits. The table is entered with the x-coordinate
of the desired point to lookup in the A accumulator. When the table is
exited, the corresponding y-value is in the A accumulator. Figure 9-13
shows one way to work with this type of table.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 375

Fuzzy Logic Support
Figure 9-13. Endpoint Table Handling

The basic idea is to find the segment of interest, temporarily build a
1-segment table of the correct format on the stack, then use TBL with
stack relative indexed addressing to interpolate. The most difficult part
of the routine is calculating the proportional distance from the beginning
of the segment to the lookup point versus the width of the segment
((XL–XB)/(XE–XB)). With this type of table, this calculation must be done
at run time. In the previous type of table, this proportional term is an
inherent part (the lowest order bits) of the data input to the table.

Some fuzzy theorists have suggested membership functions should be
shaped like normal distribution curves or other mathematical functions.
This may be correct, but the processing requirements to solve for an
intercept on such a function would be unacceptable for most
microcontroller-based fuzzy systems. Such a function could be encoded
into a table of one of the previously described types.

For many common systems, the thing that is most important about
membership function shape is that there is a gradual transition from
non-membership to membership as the system input value approaches
the central range of the membership function.

BEGIN LDY #TABLE_START-2 ;setup initial table pointer
FIND_LOOP CMPA 2,+Y ;find first Xn > XL

;(auto pre-inc Y by 2)
BLS FIND_LOOP ;loop if XL .le. Xn

* on fall thru, XB@-2,Y YB@-1,Y XE@0,Y and YE@1,Y
TFR D,X ;save XL in high half of X
CLRA ;zero upper half of D
LDAB 0,Y ;D = 0:XE
SUBB -2,Y ;D = 0:(XE-XB)
EXG D,X ;X = (XE-XB).. D = XL:junk
SUBA -2,Y ;A = (XL-XB)
EXG A,D ;D = 0:(XL-XB), uses trick of EXG
FDIV ;X reg = (XL-XB)/(XE-XB)
EXG D,X ;move fractional result to A:B
EXG A,B ;byte swap - need result in B
TSTA ;check for rounding
BPL NO_ROUND
INCB ;round B up by 1

NO_ROUND LDAA 1,Y ;YE
PSHA ;put on stack for TBL later
LDAA -1,Y ;YB
PSHA ;now YB@0,SP and YE@1,SP
TBL 2,SP+ ;interpolate and deallocate

;stack temps
Reference Manual S12CPUV2

376 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Custom Fuzzy Logic Programming
Examine the human problem of stopping a car at an intersection. Rules
such as “If intersection is close and speed is fast, apply brakes” might be
used. The meaning (reflected in membership function shape and
position) of the labels “close” and “fast” will be different for a teenager
than they are for a grandmother, but both can accomplish the goal of
stopping. It makes intuitive sense that the exact shape of a membership
function is much less important than the fact that it has gradual
boundaries.

9.7.2 Rule Evaluation Variations

The REV and REVW instructions expect fuzzy input and fuzzy output
values to be 8-bit values. In a custom fuzzy inference program, higher
resolution may be desirable (although this is not a common
requirement). The CPU12 includes variations of minimum and maximum
operations that work with the fuzzy MIN-MAX inference algorithm. The
problem with the fuzzy inference algorithm is that the min and max
operations need to store their results differently, so the min and max
instructions must work differently or more than one variation of these
instructions is needed.

The CPU12 has MIN and MAX instructions for 8- or 16-bit operands,
where one operand is in an accumulator and the other is a referenced
memory location. There are separate variations that replace the
accumulator or the memory location with the result. While processing
rule antecedents in a fuzzy inference program, a reference value must
be compared to each of the referenced fuzzy inputs, and the smallest
input must end up in an accumulator. The instruction

EMIND 2,X+ ;process one rule antecedent

automates the central operations needed to process rule antecedents.
The E stands for extended, so this instruction compares 16-bit operands.
The D at the end of the mnemonic stands for the D accumulator, which
is both the first operand for the comparison and the destination of the
result. The 2,X+ is an indexed addressing specification that says X
points to the second operand for the comparison and it will be
post-incremented by 2 to point at the next rule antecedent.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 377

Fuzzy Logic Support
When processing rule consequents, the operand in the accumulator
must remain constant (in case there is more than one consequent in the
rule), and the result of the comparison must replace the referenced fuzzy
output in RAM. To do this, use the instruction

EMAXM 2,X+ ;process one rule consequent

The M at the end of the mnemonic indicates that the result will replace
the referenced memory operand. Again, indexed addressing is used.
These two instructions would form the working part of a 16-bit resolution
fuzzy inference routine.

There are many other methods of performing inference, but none of
these are as widely used as the min-max method. Since the CPU12 is a
general-purpose microcontroller, the programmer has complete
freedom to program any algorithm desired. A custom programmed
algorithm would typically take more code space and execution time than
a routine that used the built-in REV or REVW instructions.

9.7.3 Defuzzification Variations

Other CPU12 instructions can help with custom defuzzification routines
in two main areas:

• The first case is working with operands that are more than eight
bits.

• The second case involves using an entirely different approach
than weighted average of singletons.

The primary part of the WAV instruction is a multiply and accumulate
operation to get the numerator for the weighted average calculation.
When working with operands as large as 16 bits, the EMACS instruction
could at least be used to automate the multiply and accumulate function.
The CPU12 has extended math capabilities, including the EMACS
instruction which uses 16-bit input operands and accumulates the sum
to a 32-bit memory location and 32-bit by 16-bit divide instructions.

One benefit of the WAV instruction is that both a sum of products and a
sum of weights are maintained, while the fuzzy output operand is only
accessed from memory once. Since memory access time is such a
significant part of execution time, this provides a speed advantage
compared to conventional instructions.
Reference Manual S12CPUV2

378 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Custom Fuzzy Logic Programming
The weighted average of singletons is the most commonly used
technique in microcontrollers because it is computationally less difficult
than most other methods. The simplest method is called max
defuzzification, which simply uses the largest fuzzy output as the system
result. However, this approach does not take into account any other
fuzzy outputs, even when they are almost as true as the chosen max
output. Max defuzzification is not a good general choice because it only
works for a subset of fuzzy logic applications.

The CPU12 is well suited for more computationally challenging
algorithms than weighted average. A 32-bit by 16-bit divide instruction
takes 11 or 12 25-MHz cycles for unsigned or signed variations. A 16-bit
by 16-bit multiply with a 32-bit result takes only three 25-MHz cycles.
The EMACS instruction uses 16-bit operands and accumulates the
result in a 32-bit memory location, taking only 12 25-MHz cycles per
iteration, including accessing all operands from memory and storing the
result to memory.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 379

Fuzzy Logic Support
Reference Manual S12CPUV2

380 Fuzzy Logic Support MOTOROLA

Reference Manual — S12CPUV2

Appendix A. Instruction Reference
A.1 Introduction

This appendix provides quick references for the instruction set, opcode
map, and encoding.

Figure A-1. Programming Model

7

15

15

15

15

15

D

X

Y

SP

PC

A B

NS X H I Z V C

0

0

0

0

0

0

70

CONDITION CODE REGISTER

8-BIT ACCUMULATORS A AND B

16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

OR

STOP DISABLE (IGNORE STOP OPCODES)
RESET DEFAULT IS 1

CARRY

OVERFLOW

ZERO

NEGATIVE

MASK (DISABLE) IRQ INTERRUPTS

HALF-CARRY
(USED IN BCD ARITHMETIC)

MASK (DISABLE) XIRQ INTERRUPTS
RESET OR XIRQ SET X,
INSTRUCTIONS MAY CLEAR X
BUT CANNOT SET X
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 381

Instruction Reference
A.2 Stack and Memory Layout

A.3 Interrupt Vector Locations

SP BEFORE
INTERRUPT

SP AFTER
INTERRUPT

HIGHER ADDRESSES

LOWER ADDRESSES

RTNLO

RTNHI

YLO

YHI

XLO

XHI

A

B

CCR

SP +9

STACK UPON ENTRY TO SERVICE ROUTINE
IF SP WAS ODD BEFORE INTERRUPT

STACK UPON ENTRY TO SERVICE ROUTINE
IF SP WAS EVEN BEFORE INTERRUPT

SP +8 RTNLO SP +9 SP +9 SP +10

SP +6 YLO RTNHI SP +7 SP +7 RTNHI RTNLO SP +8

SP +4 XLO YHI SP +5 SP +5 YHI YLO SP +6

SP +2 A XHI SP +3 SP +4 XHI XLO SP +4

SP CCR B SP +1 SP +1 B A SP +2

SP –2 SP –1 SP –1 CCR SP

$FFFE, $FFFF
$FFFC, $FFFD
$FFFA, $FFFB
$FFF8, $FFF9
$FFF6, $FFF7
$FFF4, $FFF5
$FFF2, $FFF3
$FFC0–$FFF1 (M68HC12)
$FF00–$FFF1 (HCS12)

Power-On (POR) or External Reset
Clock Monitor Reset
Computer Operating Properly (COP Watchdog Reset
Unimplemented Opcode Trap
Software Interrupt Instruction (SWI)
XIRQ
IRQ
Device-Specific Interrupt Sources
Device-Specific Interrupt Sources
Reference Manual S12CPUV2

382 Instruction Reference MOTOROLA

Instruction Reference
A.4 Notation Used in Instruction Set Summary

CPU Register Notation
Accumulator A — A or a Index Register Y — Y or y
Accumulator B — B or b Stack Pointer — SP, sp, or s
Accumulator D — D or d Program Counter — PC, pc, or p
Index Register X — X or x Condition Code Register — CCR or c

Explanation of Italic Expressions in Source Form Column
abc — A or B or CCR

abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3.
abd — A or B or D

abdxys — A or B or D or X or Y or SP
dxys — D or X or Y or SP

msk8 — 8-bit mask, some assemblers require # symbol before value
opr8i — 8-bit immediate value

opr16i — 16-bit immediate value
opr8a — 8-bit address used with direct address mode

opr16a — 16-bit address value
oprx0_xysp — Indexed addressing postbyte code:

oprx3,–xys Predecrement X or Y or SP by 1 . . . 8
oprx3,+xys Preincrement X or Y or SP by 1 . . . 8
oprx3,xys– Postdecrement X or Y or SP by 1 . . . 8
oprx3,xys+ Postincrement X or Y or SP by 1 . . . 8
oprx5,xysp 5-bit constant offset from X or Y or SP or PC
abd,xysp Accumulator A or B or D offset from X or Y or SP or PC

oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
oprx5 — Any integer in the range –16 . . . +15
oprx9 — Any integer in the range –256 . . . +255

oprx16 — Any integer in the range –32,768 . . . 65,535
page — 8-bit value for PPAGE, some assemblers require # symbol before this value

rel8 — Label of branch destination within –128 to +127 locations
rel9 — Label of branch destination within –256 to +255 locations

rel16 — Any label within 64K memory space
trapnum — Any 8-bit integer in the range $30-$39 or $40-$FF

xys — X or Y or SP
xysp — X or Y or SP or PC

Operators

+ — Addition

– — Subtraction

• — Logical AND

+ — Logical OR (inclusive)

Continued on next page
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 383

Instruction Reference
Operators (continued)

⊕ — Logical exclusive OR

× — Multiplication

÷ — Division

M — Negation. One’s complement (invert each bit of M)

: — Concatenate
Example: A : B means the 16-bit value formed by concatenating 8-bit accumulator A
with 8-bit accumulator B.
A is in the high-order position.

⇒ — Transfer
Example: (A) ⇒ M means the content of accumulator A is transferred to memory
location M.

⇔ — Exchange
Example: D ⇔ X means exchange the contents of D with those of X.

Address Mode Notation
INH — Inherent; no operands in object code
IMM — Immediate; operand in object code
DIR — Direct; operand is the lower byte of an address from $0000 to $00FF
EXT — Operand is a 16-bit address
REL — Two’s complement relative offset; for branch instructions
IDX — Indexed (no extension bytes); includes:

5-bit constant offset from X, Y, SP, or PC
Pre/post increment/decrement by 1 . . . 8
Accumulator A, B, or D offset

IDX1 — 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
IDX2 — 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes

[IDX2] — Indexed-indirect; 16-bit offset from X, Y, SP, or PC
[D, IDX] — Indexed-indirect; accumulator D offset from X, Y, SP, or PC

Machine Coding
dd — 8-bit direct address $0000 to $00FF. (High byte assumed to be $00).
ee — High-order byte of a 16-bit constant offset for indexed addressing.
eb — Exchange/Transfer post-byte. See Table A-5 on page 405.
ff — Low-order eight bits of a 9-bit signed constant offset for indexed addressing,

or low-order byte of a 16-bit constant offset for indexed addressing.
hh — High-order byte of a 16-bit extended address.
ii — 8-bit immediate data value.
jj — High-order byte of a 16-bit immediate data value.
kk — Low-order byte of a 16-bit immediate data value.
lb — Loop primitive (DBNE) post-byte. See Table A-6 on page 406.
ll — Low-order byte of a 16-bit extended address.
Reference Manual S12CPUV2

384 Instruction Reference MOTOROLA

Instruction Reference
Access Detail
Each code letter except (,), and comma equals one CPU cycle. Uppercase = 16-bit
operation and lowercase = 8-bit operation. For complex sequences see the CPU12
Reference Manual (CPU12RM/AD) for more detailed information.

mm— 8-bit immediate mask value for bit manipulation instructions.
Set bits indicate bits to be affected.

pg — Program page (bank) number used in CALL instruction.
qq — High-order byte of a 16-bit relative offset for long branches.
tn — Trap number $30–$39 or $40–$FF.
rr — Signed relative offset $80 (–128) to $7F (+127).

Offset relative to the byte following the relative offset byte, or
low-order byte of a 16-bit relative offset for long branches.

xb — Indexed addressing post-byte. See Table A-3 on page 403
and Table A-4 on page 404.

f — Free cycle, CPU doesn’t use bus
g — Read PPAGE internally
I — Read indirect pointer (indexed indirect)
i — Read indirect PPAGE value (CALL indirect only)
n — Write PPAGE internally
O — Optional program word fetch (P) if instruction is misaligned and has

an odd number of bytes of object code — otherwise, appears as
a free cycle (f); Page 2 prebyte treated as a separate 1-byte instruction

P — Program word fetch (always an aligned-word read)
r — 8-bit data read
R — 16-bit data read
s — 8-bit stack write
S — 16-bit stack write
w — 8-bit data write
W — 16-bit data write
u — 8-bit stack read
U — 16-bit stack read
V — 16-bit vector fetch (always an aligned-word read)
t — 8-bit conditional read (or free cycle)
T — 16-bit conditional read (or free cycle)
x — 8-bit conditional write (or free cycle)

() — Indicate a microcode loop
, — Indicates where an interrupt could be honored

Special Cases

PPP/P — Short branch, PPP if branch taken, P if not
OPPP/OPO— Long branch, OPPP if branch taken, OPO if not
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 385

Instruction Reference
Condition Codes Columns
– — Status bit not affected by operation.
0 — Status bit cleared by operation.
1 — Status bit set by operation.
∆ — Status bit affected by operation.
fl — Status bit may be cleared or remain set, but is not set by operation.
⇑ — Status bit may be set or remain cleared, but is not cleared by operation.
? — Status bit may be changed by operation but the final state is not defined.
! — Status bit used for a special purpose.
Reference Manual S12CPUV2

386 Instruction Reference MOTOROLA

Instruction Reference
Table A-1. Instruction Set Summary (Sheet 1 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

ABA (A) + (B) ⇒ A
Add Accumulators A and B

INH 18 06 OO OO – – ∆ – ∆ ∆ ∆ ∆

ABX (B) + (X) ⇒ X
Translates to LEAX B,X

IDX 1A E5 Pf PP1 – – – – – – – –

ABY (B) + (Y) ⇒ Y
Translates to LEAY B,Y

IDX 19 ED Pf PP1 – – – – – – – –

ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysp
ADCA oprx9,xysp
ADCA oprx16,xysp
ADCA [D,xysp]
ADCA [oprx16,xysp]

(A) + (M) + C ⇒ A
Add with Carry to A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysp
ADCB oprx9,xysp
ADCB oprx16,xysp
ADCB [D,xysp]
ADCB [oprx16,xysp]

(B) + (M) + C ⇒ B
Add with Carry to B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysp
ADDA oprx9,xysp
ADDA oprx16,xysp
ADDA [D,xysp]
ADDA [oprx16,xysp]

(A) + (M) ⇒ A
Add without Carry to A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysp
ADDB oprx9,xysp
ADDB oprx16,xysp
ADDB [D,xysp]
ADDB [oprx16,xysp]

(B) + (M) ⇒ B
Add without Carry to B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysp
ADDD oprx9,xysp
ADDD oprx16,xysp
ADDD [D,xysp]
ADDD [oprx16,xysp]

(A:B) + (M:M+1) ⇒ A:B
Add 16-Bit to D (A:B)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysp
ANDA oprx9,xysp
ANDA oprx16,xysp
ANDA [D,xysp]
ANDA [oprx16,xysp]

(A) • (M) ⇒ A
Logical AND A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysp
ANDB oprx9,xysp
ANDB oprx16,xysp
ANDB [D,xysp]
ANDB [oprx16,xysp]

(B) • (M) ⇒ B
Logical AND B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ANDCC #opr8i (CCR) • (M) ⇒ CCR
Logical AND CCR with Memory

IMM 10 ii P P ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 387

Instruction Reference
ASL opr16a
ASL oprx0_xysp
ASL oprx9,xysp
ASL oprx16,xysp
ASL [D,xysp]
ASL [oprx16,xysp]
ASLA
ASLB

Arithmetic Shift Left

Arithmetic Shift Left Accumulator A
Arithmetic Shift Left Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

ASLD

Arithmetic Shift Left Double

INH 59 O O – – – – ∆ ∆ ∆ ∆

ASR opr16a
ASR oprx0_xysp
ASR oprx9,xysp
ASR oprx16,xysp
ASR [D,xysp]
ASR [oprx16,xysp]
ASRA
ASRB

Arithmetic Shift Right

Arithmetic Shift Right Accumulator A
Arithmetic Shift Right Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff
47
57

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

BCC rel8 Branch if Carry Clear (if C = 0) REL 24 rr PPP/P1 PPP/P1 – – – – – – – –

BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysp, msk8
BCLR oprx9,xysp, msk8
BCLR oprx16,xysp, msk8

(M) • (mm) ⇒ M
Clear Bit(s) in Memory

DIR
EXT
IDX

IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP

– – – – ∆ ∆ 0 –

BCS rel8 Branch if Carry Set (if C = 1) REL 25 rr PPP/P1 PPP/P1 – – – – – – – –

BEQ rel8 Branch if Equal (if Z = 1) REL 27 rr PPP/P1 PPP/P1 – – – – – – – –

BGE rel8 Branch if Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 2C rr PPP/P1 PPP/P1 – – – – – – – –

BGND Place CPU in Background Mode
see CPU12 Reference Manual

INH 00 VfPPP VfPPP – – – – – – – –

BGT rel8 Branch if Greater Than
(if Z + (N ⊕ V) = 0) (signed)

REL 2E rr PPP/P1 PPP/P1 – – – – – – – –

BHI rel8 Branch if Higher
(if C + Z = 0) (unsigned)

REL 22 rr PPP/P1 PPP/P1 – – – – – – – –

BHS rel8 Branch if Higher or Same
(if C = 0) (unsigned)
same function as BCC

REL 24 rr PPP/P1 PPP/P1 – – – – – – – –

BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysp
BITA oprx9,xysp
BITA oprx16,xysp
BITA [D,xysp]
BITA [oprx16,xysp]

(A) • (M)
Logical AND A with Memory
Does not change Accumulator or Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysp
BITB oprx9,xysp
BITB oprx16,xysp
BITB [D,xysp]
BITB [oprx16,xysp]

(B) • (M)
Logical AND B with Memory
Does not change Accumulator or Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

BLE rel8 Branch if Less Than or Equal
(if Z + (N ⊕ V) = 1) (signed)

REL 2F rr PPP/P1 PPP/P1 – – – – – – – –

BLO rel8 Branch if Lower
(if C = 1) (unsigned)
same function as BCS

REL 25 rr PPP/P1 PPP/P1 – – – – – – – –

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 2 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

C
0

b7 b0

C
0

b7 b0A Bb7b0

Cb7 b0
Reference Manual S12CPUV2

388 Instruction Reference MOTOROLA

Instruction Reference
BLS rel8 Branch if Lower or Same
(if C + Z = 1) (unsigned)

REL 23 rr PPP/P1 PPP/P1 – – – – – – – –

BLT rel8 Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 2D rr PPP/P1 PPP/P1 – – – – – – – –

BMI rel8 Branch if Minus (if N = 1) REL 2B rr PPP/P1 PPP/P1 – – – – – – – –

BNE rel8 Branch if Not Equal (if Z = 0) REL 26 rr PPP/P1 PPP/P1 – – – – – – – –

BPL rel8 Branch if Plus (if N = 0) REL 2A rr PPP/P1 PPP/P1 – – – – – – – –

BRA rel8 Branch Always (if 1 = 1) REL 20 rr PPP PPP – – – – – – – –

BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysp, msk8, rel8
BRCLR oprx9,xysp, msk8, rel8
BRCLR oprx16,xysp, msk8, rel8

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Clear)

DIR
EXT
IDX

IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

– – – – – – – –

BRN rel8 Branch Never (if 1 = 0) REL 21 rr P P – – – – – – – –

BRSET opr8, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysp, msk8, rel8
BRSET oprx9,xysp, msk8, rel8
BRSET oprx16,xysp, msk8, rel8

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Set)

DIR
EXT
IDX

IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

– – – – – – – –

BSET opr8, msk8
BSET opr16a, msk8
BSET oprx0_xysp, msk8
BSET oprx9,xysp, msk8
BSET oprx16,xysp, msk8

(M) + (mm) ⇒ M
Set Bit(s) in Memory

DIR
EXT
IDX

IDX1
IDX2

4C dd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP

– – – – ∆ ∆ 0 –

BSR rel8 (SP) – 2 ⇒ SP; RTNH:RTNL ⇒ M(SP):M(SP+1)
Subroutine address ⇒ PC
Branch to Subroutine

REL 07 rr SPPP PPPS – – – – – – – –

BVC rel8 Branch if Overflow Bit Clear (if V = 0) REL 28 rr PPP/P1 PPP/P1 – – – – – – – –

BVS rel8 Branch if Overflow Bit Set (if V = 1) REL 29 rr PPP/P1 PPP/P1 – – – – – – – –

CALL opr16a, page
CALL oprx0_xysp, page
CALL oprx9,xysp, page
CALL oprx16,xysp, page
CALL [D,xysp]
CALL [oprx16, xysp]

(SP) – 2 ⇒ SP; RTNH:RTNL ⇒ M(SP):M(SP+1)
(SP) – 1 ⇒ SP; (PPG) ⇒ M(SP);
pg ⇒ PPAGE register; Program address ⇒ PC

Call subroutine in extended memory
(Program may be located on another
expansion memory page.)

Indirect modes get program address
and new pg value based on pointer.

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg
4B xb
4B xb ee ff

gnSsPPP
gnSsPPP
gnSsPPP
fgnSsPPP
fIignSsPPP
fIignSsPPP

gnfSsPPP
gnfSsPPP
gnfSsPPP

fgnfSsPPP
fIignSsPPP
fIignSsPPP

– – – – – – – –

CBA (A) – (B)
Compare 8-Bit Accumulators

INH 18 17 OO OO – – – – ∆ ∆ ∆ ∆

CLC 0 ⇒ C
Translates to ANDCC #$FE

IMM 10 FE P P – – – – – – – 0

CLI 0 ⇒ I
Translates to ANDCC #$EF
(enables I-bit interrupts)

IMM 10 EF P P – – – 0 – – – –

CLR opr16a
CLR oprx0_xysp
CLR oprx9,xysp
CLR oprx16,xysp
CLR [D,xysp]
CLR [oprx16,xysp]
CLRA
CLRB

0 ⇒ M Clear Memory Location

0 ⇒ A Clear Accumulator A
0 ⇒ B Clear Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff
87
C7

PwO
Pw
PwO
PwP
PIfw
PIPw
O
O

wOP
Pw

PwO
PwP

PIfPw
PIPPw

O
O

– – – – 0 1 0 0

CLV 0 ⇒ V
Translates to ANDCC #$FD

IMM 10 FD P P – – – – – – 0 –

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 389

Instruction Reference
CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysp
CMPA oprx9,xysp
CMPA oprx16,xysp
CMPA [D,xysp]
CMPA [oprx16,xysp]

(A) – (M)
Compare Accumulator A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysp
CMPB oprx9,xysp
CMPB oprx16,xysp
CMPB [D,xysp]
CMPB [oprx16,xysp]

(B) – (M)
Compare Accumulator B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

COM opr16a
COM oprx0_xysp
COM oprx9,xysp
COM oprx16,xysp
COM [D,xysp]
COM [oprx16,xysp]
COMA
COMB

(M) ⇒ M equivalent to $FF – (M) ⇒ M
1’s Complement Memory Location

(A) ⇒ A Complement Accumulator A

(B) ⇒ B Complement Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff
41
51

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ 0 1

CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysp
CPD oprx9,xysp
CPD oprx16,xysp
CPD [D,xysp]
CPD [oprx16,xysp]

(A:B) – (M:M+1)
Compare D to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysp
CPS oprx9,xysp
CPS oprx16,xysp
CPS [D,xysp]
CPS [oprx16,xysp]

(SP) – (M:M+1)
Compare SP to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysp
CPX oprx9,xysp
CPX oprx16,xysp
CPX [D,xysp]
CPX [oprx16,xysp]

(X) – (M:M+1)
Compare X to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysp
CPY oprx9,xysp
CPY oprx16,xysp
CPY [D,xysp]
CPY [oprx16,xysp]

(Y) – (M:M+1)
Compare Y to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

DAA Adjust Sum to BCD
Decimal Adjust Accumulator A

INH 18 07 OfO OfO – – – – ∆ ∆ ? ∆

DBEQ abdxys, rel9 (cntr) – 1⇒ cntr
if (cntr) = 0, then Branch
else Continue to next instruction

Decrement Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 4 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

390 Instruction Reference MOTOROLA

Instruction Reference
DBNE abdxys, rel9 (cntr) – 1 ⇒ cntr
If (cntr) not = 0, then Branch;
else Continue to next instruction

Decrement Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

DEC opr16a
DEC oprx0_xysp
DEC oprx9,xysp
DEC oprx16,xysp
DEC [D,xysp]
DEC [oprx16,xysp]
DECA
DECB

(M) – $01 ⇒ M
Decrement Memory Location

(A) – $01 ⇒ A Decrement A
(B) – $01 ⇒ B Decrement B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff
43
53

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ –

DES (SP) – $0001 ⇒ SP
Translates to LEAS –1,SP

IDX 1B 9F Pf PP1 – – – – – – – –

DEX (X) – $0001 ⇒ X
Decrement Index Register X

INH 09 O O – – – – – ∆ – –

DEY (Y) – $0001 ⇒ Y
Decrement Index Register Y

INH 03 O O – – – – – ∆ – –

EDIV (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 by 16 Bit ⇒ 16 Bit Divide (unsigned)

INH 11 ffffffffffO ffffffffffO – – – – ∆ ∆ ∆ ∆

EDIVS (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 by 16 Bit ⇒ 16 Bit Divide (signed)

INH 18 14 OffffffffffO OffffffffffO – – – – ∆ ∆ ∆ ∆

EMACS opr16a 2 (M(X):M(X+1)) × (M(Y):M(Y+1)) + (M~M+3) ⇒ M~M+3

16 by 16 Bit ⇒ 32 Bit
Multiply and Accumulate (signed)

Special 18 12 hh ll ORROfffRRfWWP ORROfffRRfWWP – – – – ∆ ∆ ∆ ∆

EMAXD oprx0_xysp
EMAXD oprx9,xysp
EMAXD oprx16,xysp
EMAXD [D,xysp]
EMAXD [oprx16,xysp]

MAX((D), (M:M+1)) ⇒ D
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP

– – – – ∆ ∆ ∆ ∆

EMAXM oprx0_xysp
EMAXM oprx9,xysp
EMAXM oprx16,xysp
EMAXM [D,xysp]
EMAXM [oprx16,xysp]

MAX((D), (M:M+1)) ⇒ M:M+1
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW

– – – – ∆ ∆ ∆ ∆

EMIND oprx0_xysp
EMIND oprx9,xysp
EMIND oprx16,xysp
EMIND [D,xysp]
EMIND [oprx16,xysp]

MIN((D), (M:M+1)) ⇒ D
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP

– – – – ∆ ∆ ∆ ∆

EMINM oprx0_xysp
EMINM oprx9,xysp
EMINM oprx16,xysp
EMINM [D,xysp]
EMINM [oprx16,xysp]

MIN((D), (M:M+1)) ⇒ M:M+1
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW

– – – – ∆ ∆ ∆ ∆

EMUL (D) × (Y) ⇒ Y:D
16 by 16 Bit Multiply (unsigned)

INH 13 ffO ffO – – – – ∆ ∆ – ∆

EMULS (D) × (Y) ⇒ Y:D
16 by 16 Bit Multiply (signed)

INH 18 13 OfO OfO – – – – ∆ ∆ – ∆
(if followed by page 2 instruction)

OffO OfO

EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysp
EORA oprx9,xysp
EORA oprx16,xysp
EORA [D,xysp]
EORA [oprx16,xysp]

(A) ⊕ (M) ⇒ A
Exclusive-OR A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.
2. opr16a is an extended address specification. Both X and Y point to source operands.

Table A-1. Instruction Set Summary (Sheet 5 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 391

Instruction Reference
EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysp
EORB oprx9,xysp
EORB oprx16,xysp
EORB [D,xysp]
EORB [oprx16,xysp]

(B) ⊕ (M) ⇒ B
Exclusive-OR B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ETBL oprx0_xysp (M:M+1)+ [(B)×((M+2:M+3) – (M:M+1))] ⇒ D
16-Bit Table Lookup and Interpolate

Initialize B, and index before ETBL.
<ea> points at first table entry (M:M+1)
and B is fractional part of lookup value

(no indirect addr. modes or extensions allowed)

IDX 18 3F xb ORRffffffP ORRffffffP – – – – ∆ ∆ – ∆
?

C Bit is undefined
in HC12

EXG abcdxys,abcdxys (r1) ⇔ (r2) (if r1 and r2 same size) or
$00:(r1) ⇒ r2 (if r1=8-bit; r2=16-bit) or
(r1low) ⇔ (r2) (if r1=16-bit; r2=8-bit)

r1 and r2 may be
A, B, CCR, D, X, Y, or SP

INH B7 eb P P – – – – – – – –

FDIV (D) ÷ (X) ⇒ X; Remainder ⇒ D
16 by 16 Bit Fractional Divide

INH 18 11 OffffffffffO OffffffffffO – – – – – ∆ ∆ ∆

IBEQ abdxys, rel9 (cntr) + 1⇒ cntr
If (cntr) = 0, then Branch
else Continue to next instruction

Increment Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

IBNE abdxys, rel9 (cntr) + 1⇒ cntr
if (cntr) not = 0, then Branch;
else Continue to next instruction

Increment Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

IDIV (D) ÷ (X) ⇒ X; Remainder ⇒ D
16 by 16 Bit Integer Divide (unsigned)

INH 18 10 OffffffffffO OffffffffffO – – – – – ∆ 0 ∆

IDIVS (D) ÷ (X) ⇒ X; Remainder ⇒ D
16 by 16 Bit Integer Divide (signed)

INH 18 15 OffffffffffO OffffffffffO – – – – ∆ ∆ ∆ ∆

INC opr16a
INC oprx0_xysp
INC oprx9,xysp
INC oprx16,xysp
INC [D,xysp]
INC [oprx16,xysp]
INCA
INCB

(M) + $01 ⇒ M
Increment Memory Byte

(A) + $01 ⇒ A Increment Acc. A
(B) + $01 ⇒ B Increment Acc. B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff
42
52

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ –

INS (SP) + $0001 ⇒ SP
Translates to LEAS 1,SP

IDX 1B 81 Pf PP1 – – – – – – – –

INX (X) + $0001 ⇒ X
Increment Index Register X

INH 08 O O – – – – – ∆ – –

INY (Y) + $0001 ⇒ Y
Increment Index Register Y

INH 02 O O – – – – – ∆ – –

JMP opr16a
JMP oprx0_xysp
JMP oprx9,xysp
JMP oprx16,xysp
JMP [D,xysp]
JMP [oprx16,xysp]

Routine address ⇒ PC

Jump

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

PPP
PPP
PPP
fPPP
fIfPPP
fIfPPP

PPP
PPP
PPP

fPPP
fIfPPP
fIfPPP

– – – – – – – –

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 6 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

392 Instruction Reference MOTOROLA

Instruction Reference
JSR opr8a
JSR opr16a
JSR oprx0_xysp
JSR oprx9,xysp
JSR oprx16,xysp
JSR [D,xysp]
JSR [oprx16,xysp]

(SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
Subroutine address ⇒ PC

Jump to Subroutine

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

SPPP
SPPP
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS

PPPS
PPPS
PPPS
PPPS

fPPPS
fIfPPPS
fIfPPPS

– – – – – – – –

LBCC rel16 Long Branch if Carry Clear (if C = 0) REL 18 24 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBCS rel16 Long Branch if Carry Set (if C = 1) REL 18 25 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBEQ rel16 Long Branch if Equal (if Z = 1) REL 18 27 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBGE rel16 Long Branch Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 18 2C qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBGT rel16 Long Branch if Greater Than
(if Z + (N ⊕ V) = 0) (signed)

REL 18 2E qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBHI rel16 Long Branch if Higher
(if C + Z = 0) (unsigned)

REL 18 22 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBHS rel16 Long Branch if Higher or Same
(if C = 0) (unsigned)
same function as LBCC

REL 18 24 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLE rel16 Long Branch if Less Than or Equal
(if Z + (N ⊕ V) = 1) (signed)

REL 18 2F qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLO rel16 Long Branch if Lower
(if C = 1) (unsigned)
same function as LBCS

REL 18 25 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLS rel16 Long Branch if Lower or Same
(if C + Z = 1) (unsigned)

REL 18 23 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLT rel16 Long Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 18 2D qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBMI rel16 Long Branch if Minus (if N = 1) REL 18 2B qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBNE rel16 Long Branch if Not Equal (if Z = 0) REL 18 26 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBPL rel16 Long Branch if Plus (if N = 0) REL 18 2A qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBRA rel16 Long Branch Always (if 1=1) REL 18 20 qq rr OPPP OPPP – – – – – – – –

LBRN rel16 Long Branch Never (if 1 = 0) REL 18 21 qq rr OPO OPO – – – – – – – –

LBVC rel16 Long Branch if Overflow Bit Clear (if V=0) REL 18 28 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBVS rel16 Long Branch if Overflow Bit Set (if V = 1) REL 18 29 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysp
LDAA oprx9,xysp
LDAA oprx16,xysp
LDAA [D,xysp]
LDAA [oprx16,xysp]

(M) ⇒ A
Load Accumulator A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysp
LDAB oprx9,xysp
LDAB oprx16,xysp
LDAB [D,xysp]
LDAB [oprx16,xysp]

(M) ⇒ B
Load Accumulator B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysp
LDD oprx9,xysp
LDD oprx16,xysp
LDD [D,xysp]
LDD [oprx16,xysp]

(M:M+1) ⇒ A:B
Load Double Accumulator D (A:B)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 7 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 393

Instruction Reference
LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysp
LDS oprx9,xysp
LDS oprx16,xysp
LDS [D,xysp]
LDS [oprx16,xysp]

(M:M+1) ⇒ SP
Load Stack Pointer

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysp
LDX oprx9,xysp
LDX oprx16,xysp
LDX [D,xysp]
LDX [oprx16,xysp]

(M:M+1) ⇒ X
Load Index Register X

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysp
LDY oprx9,xysp
LDY oprx16,xysp
LDY [D,xysp]
LDY [oprx16,xysp]

(M:M+1) ⇒ Y
Load Index Register Y

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

LEAS oprx0_xysp
LEAS oprx9,xysp
LEAS oprx16,xysp

Effective Address ⇒ SP
Load Effective Address into SP

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

Pf
PO
PP

PP1

PO
PP

– – – – – – – –

LEAX oprx0_xysp
LEAX oprx9,xysp
LEAX oprx16,xysp

Effective Address ⇒ X
Load Effective Address into X

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

Pf
PO
PP

PP1

PO
PP

– – – – – – – –

LEAY oprx0_xysp
LEAY oprx9,xysp
LEAY oprx16,xysp

Effective Address ⇒ Y
Load Effective Address into Y

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

Pf
PO
PP

PP1

PO
PP

– – – – – – – –

LSL opr16a
LSL oprx0_xysp
LSL oprx9,xysp
LSL oprx16,xysp
LSL [D,xysp]
LSL [oprx16,xysp]
LSLA
LSLB

Logical Shift Left
same function as ASL

Logical Shift Accumulator A to Left
Logical Shift Accumulator B to Left

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rPwO
rPw
rPwO
frPPw
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

LSLD

Logical Shift Left D Accumulator
same function as ASLD

INH 59 O O – – – – ∆ ∆ ∆ ∆

LSR opr16a
LSR oprx0_xysp
LSR oprx9,xysp
LSR oprx16,xysp
LSR [D,xysp]
LSR [oprx16,xysp]
LSRA
LSRB

Logical Shift Right

Logical Shift Accumulator A to Right
Logical Shift Accumulator B to Right

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff
44
54

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – 0 ∆ ∆ ∆

LSRD

Logical Shift Right D Accumulator

INH 49 O O – – – – 0 ∆ ∆ ∆

MAXA oprx0_xysp
MAXA oprx9,xysp
MAXA oprx16,xysp
MAXA [D,xysp]
MAXA [oprx16,xysp]

MAX((A), (M)) ⇒ A
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP

– – – – ∆ ∆ ∆ ∆

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 8 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0
Reference Manual S12CPUV2

394 Instruction Reference MOTOROLA

Instruction Reference
MAXM oprx0_xysp
MAXM oprx9,xysp
MAXM oprx16,xysp
MAXM [D,xysp]
MAXM [oprx16,xysp]

MAX((A), (M)) ⇒ M
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw

– – – – ∆ ∆ ∆ ∆

MEM µ (grade) ⇒ M(Y);
(X) + 4 ⇒ X; (Y) + 1 ⇒ Y; A unchanged

if (A) < P1 or (A) > P2 then µ = 0, else
µ = MIN[((A) – P1)×S1, (P2 – (A))×S2, $FF]
where:
A = current crisp input value;
X points at 4-byte data structure that describes a trapezoidal
membership function (P1, P2, S1, S2);
Y points at fuzzy input (RAM location).
See CPU12 Reference Manual for special cases.

Special 01 RRfOw RRfOw – – ? – ? ? ? ?

MINA oprx0_xysp
MINA oprx9,xysp
MINA oprx16,xysp
MINA [D,xysp]
MINA [oprx16,xysp]

MIN((A), (M)) ⇒ A
MIN of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP

– – – – ∆ ∆ ∆ ∆

MINM oprx0_xysp
MINM oprx9,xysp
MINM oprx16,xysp
MINM [D,xysp]
MINM [oprx16,xysp]

MIN((A), (M)) ⇒ M
MIN of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw

– – – – ∆ ∆ ∆ ∆

MOVB #opr8, opr16a1

MOVB #opr8i, oprx0_xysp1

MOVB opr16a, opr16a1

MOVB opr16a, oprx0_xysp1

MOVB oprx0_xysp, opr16a1

MOVB oprx0_xysp, oprx0_xysp1

(M1) ⇒ M2
Memory to Memory Byte-Move (8-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

OPwP
OPwO
OrPwPO
OPrPw
OrPwP
OrPwO

OPwP
OPwO

OrPwPO
OPrPw
OrPwP
OrPwO

– – – – – – – –

MOVW #oprx16, opr16a1

MOVW #opr16i, oprx0_xysp1

MOVW opr16a, opr16a1

MOVW opr16a, oprx0_xysp1

MOVW oprx0_xysp, opr16a1

MOVW oprx0_xysp, oprx0_xysp1

(M:M+11) ⇒ M:M+12
Memory to Memory Word-Move (16-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

OPWPO
OPPW
ORPWPO
OPRPW
ORPWP
ORPWO

OPWPO
OPPW

ORPWPO
OPRPW
ORPWP
ORPWO

– – – – – – – –

MUL (A) × (B) ⇒ A:B
8 by 8 Unsigned Multiply

INH 12 O ffO – – – – – – – ∆

NEG opr16a
NEG oprx0_xysp
NEG oprx9,xysp
NEG oprx16,xysp
NEG [D,xysp]
NEG [oprx16,xysp]
NEGA

NEGB

0 – (M) ⇒ M equivalent to (M) + 1 ⇒ M
Two’s Complement Negate

0 – (A) ⇒ A equivalent to (A) + 1 ⇒ A
Negate Accumulator A
0 – (B) ⇒ B equivalent to (B) + 1 ⇒ B
Negate Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH

INH

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff
40

50

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O

O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O

O

– – – – ∆ ∆ ∆ ∆

NOP No Operation INH A7 O O – – – – – – – –

ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysp
ORAA oprx9,xysp
ORAA oprx16,xysp
ORAA [D,xysp]
ORAA [oprx16,xysp]

(A) + (M) ⇒ A
Logical OR A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

Note 1. The first operand in the source code statement specifies the source for the move.

Table A-1. Instruction Set Summary (Sheet 9 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 395

Instruction Reference
ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysp
ORAB oprx9,xysp
ORAB oprx16,xysp
ORAB [D,xysp]
ORAB [oprx16,xysp]

(B) + (M) ⇒ B
Logical OR B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ORCC #opr8i (CCR) + M ⇒ CCR
Logical OR CCR with Memory

IMM 14 ii P P ⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

PSHA (SP) – 1 ⇒ SP; (A) ⇒ M(SP)
Push Accumulator A onto Stack

INH 36 Os Os – – – – – – – –

PSHB (SP) – 1 ⇒ SP; (B) ⇒ M(SP)
Push Accumulator B onto Stack

INH 37 Os Os – – – – – – – –

PSHC (SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
Push CCR onto Stack

INH 39 Os Os – – – – – – – –

PSHD (SP) – 2 ⇒ SP; (A:B) ⇒ M(SP):M(SP+1)
Push D Accumulator onto Stack

INH 3B OS OS – – – – – – – –

PSHX (SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1)
Push Index Register X onto Stack

INH 34 OS OS – – – – – – – –

PSHY (SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1)
Push Index Register Y onto Stack

INH 35 OS OS – – – – – – – –

PULA (M(SP)) ⇒ A; (SP) + 1 ⇒ SP
Pull Accumulator A from Stack

INH 32 ufO ufO – – – – – – – –

PULB (M(SP)) ⇒ B; (SP) + 1 ⇒ SP
Pull Accumulator B from Stack

INH 33 ufO ufO – – – – – – – –

PULC (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP
Pull CCR from Stack

INH 38 ufO ufO ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

PULD (M(SP):M(SP+1)) ⇒ A:B; (SP) + 2 ⇒ SP
Pull D from Stack

INH 3A UfO UfO – – – – – – – –

PULX (M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 2 ⇒ SP
Pull Index Register X from Stack

INH 30 UfO UfO – – – – – – – –

PULY (M(SP):M(SP+1)) ⇒ YH:YL; (SP) + 2 ⇒ SP
Pull Index Register Y from Stack

INH 31 UfO UfO – – – – – – – –

REV MIN-MAX rule evaluation
Find smallest rule input (MIN).
Store to rule outputs unless fuzzy output is already larger
(MAX).

For rule weights see REVW.

Each rule input is an 8-bit offset from the base address in Y.
Each rule output is an 8-bit offset from the base address in Y.
$FE separates rule inputs from rule outputs. $FF terminates
the rule list.

REV may be interrupted.

Special 18 3A Orf(t,tx)O Orf(t,tx)O – – ? – ? ? ∆ ?

(exit + re-entry replaces comma
above if interrupted)

ff + Orf(t, ff + Orf(t,

REVW MIN-MAX rule evaluation
Find smallest rule input (MIN),
Store to rule outputs unless fuzzy output is already larger
(MAX).

Rule weights supported, optional.

Each rule input is the 16-bit address of a fuzzy input. Each rule
output is the 16-bit address of a fuzzy output. The value
$FFFE separates rule inputs from rule outputs. $FFFF termi-
nates the rule list.

REVW may be interrupted.

Special 18 3B ORf(t,Tx)O ORf(t,Tx)O – – ? – ? ? ∆ !

(loop to read weight if enabled)

(r,RfRf) (r,RfRf)

(exit + re-entry replaces comma
above if interrupted)

ffff + ORf(t, fff + ORf(t,

Table A-1. Instruction Set Summary (Sheet 10 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

396 Instruction Reference MOTOROLA

Instruction Reference
ROL opr16a
ROL oprx0_xysp
ROL oprx9,xysp
ROL oprx16,xysp
ROL [D,xysp]
ROL [oprx16,xysp]
ROLA
ROLB

Rotate Memory Left through Carry

Rotate A Left through Carry
Rotate B Left through Carry

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff
45
55

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

ROR opr16a
ROR oprx0_xysp
ROR oprx9,xysp
ROR oprx16,xysp
ROR [D,xysp]
ROR [oprx16,xysp]
RORA
RORB

Rotate Memory Right through Carry

Rotate A Right through Carry
Rotate B Right through Carry

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff
46
56

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

RTC (M(SP)) ⇒ PPAGE; (SP) + 1 ⇒ SP;
(M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP
Return from Call

INH 0A uUnfPPP uUnPPP – – – – – – – –

RTI (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP
(M(SP):M(SP+1)) ⇒ B:A; (SP) + 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 4 ⇒ SP
(M(SP):M(SP+1)) ⇒ PCH:PCL; (SP) – 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ YH:YL; (SP) + 4 ⇒ SP
Return from Interrupt

INH 0B uUUUUPPP uUUUUPPP∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆
(with interrupt pending)

uUUUUVfPPP uUUUUfVfPPP

RTS (M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP
Return from Subroutine

INH 3D UfPPP UfPPP – – – – – – – –

SBA (A) – (B) ⇒ A
Subtract B from A

INH 18 16 OO OO – – – – ∆ ∆ ∆ ∆

SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysp
SBCA oprx9,xysp
SBCA oprx16,xysp
SBCA [D,xysp]
SBCA [oprx16,xysp]

(A) – (M) – C ⇒ A
Subtract with Borrow from A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysp
SBCB oprx9,xysp
SBCB oprx16,xysp
SBCB [D,xysp]
SBCB [oprx16,xysp]

(B) – (M) – C ⇒ B
Subtract with Borrow from B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

SEC 1 ⇒ C
Translates to ORCC #$01

IMM 14 01 P P – – – – – – – 1

SEI 1 ⇒ I; (inhibit I interrupts)
Translates to ORCC #$10

IMM 14 10 P P – – – 1 – – – –

SEV 1 ⇒ V
Translates to ORCC #$02

IMM 14 02 P P – – – – – – 1 –

SEX abc,dxys $00:(r1) ⇒ r2 if r1, bit 7 is 0 or
$FF:(r1) ⇒ r2 if r1, bit 7 is 1

Sign Extend 8-bit r1 to 16-bit r2
r1 may be A, B, or CCR
r2 may be D, X, Y, or SP

Alternate mnemonic for TFR r1, r2

INH B7 eb P P – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 11 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

C b7 b0

Cb7 b0
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 397

Instruction Reference
STAA opr8a
STAA opr16a
STAA oprx0_xysp
STAA oprx9,xysp
STAA oprx16,xysp
STAA [D,xysp]
STAA [oprx16,xysp]

(A) ⇒ M
Store Accumulator A to Memory

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw

– – – – ∆ ∆ 0 –

STAB opr8a
STAB opr16a
STAB oprx0_xysp
STAB oprx9,xysp
STAB oprx16,xysp
STAB [D,xysp]
STAB [oprx16,xysp]

(B) ⇒ M
Store Accumulator B to Memory

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw

– – – – ∆ ∆ 0 –

STD opr8a
STD opr16a
STD oprx0_xysp
STD oprx9,xysp
STD oprx16,xysp
STD [D,xysp]
STD [oprx16,xysp]

(A) ⇒ M, (B) ⇒ M+1
Store Double Accumulator

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

STOP (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);
STOP All Clocks

Registers stacked to allow quicker recovery by interrupt.

If S control bit = 1, the STOP instruction is disabled and acts
like a two-cycle NOP.

INH 18 3E (entering STOP) – – – – – – – –

OOSSSSsf OOSSSfSs

(exiting STOP)

fVfPPP fVfPPP

(continue)

ff fO

(if STOP disabled)

OO OO

STS opr8a
STS opr16a
STS oprx0_xysp
STS oprx9,xysp
STS oprx16,xysp
STS [D,xysp]
STS [oprx16,xysp]

(SPH:SPL) ⇒ M:M+1
Store Stack Pointer

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

STX opr8a
STX opr16a
STX oprx0_xysp
STX oprx9,xysp
STX oprx16,xysp
STX [D,xysp]
STX [oprx16,xysp]

(XH:XL) ⇒ M:M+1
Store Index Register X

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

STY opr8a
STY opr16a
STY oprx0_xysp
STY oprx9,xysp
STY oprx16,xysp
STY [D,xysp]
STY [oprx16,xysp]

(YH:YL) ⇒ M:M+1
Store Index Register Y

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysp
SUBA oprx9,xysp
SUBA oprx16,xysp
SUBA [D,xysp]
SUBA [oprx16,xysp]

(A) – (M) ⇒ A
Subtract Memory from Accumulator A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

Table A-1. Instruction Set Summary (Sheet 12 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

398 Instruction Reference MOTOROLA

Instruction Reference
SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysp
SUBB oprx9,xysp
SUBB oprx16,xysp
SUBB [D,xysp]
SUBB [oprx16,xysp]

(B) – (M) ⇒ B
Subtract Memory from Accumulator B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysp
SUBD oprx9,xysp
SUBD oprx16,xysp
SUBD [D,xysp]
SUBD [oprx16,xysp]

(D) – (M:M+1) ⇒ D
Subtract Memory from D (A:B)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

SWI (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (SWI Vector) ⇒ PC
Software Interrupt

INH 3F VSPSSPSsP* VSPSSPSsP* – – – 1 – – – –

(for Reset)

1 1 – 1 – – – –VfPPP VfPPP

*The CPU also uses the SWI microcode sequence for hardware interrupts and unimplemented opcode traps. Reset uses the VfPPP variation of this sequence.

TAB (A) ⇒ B
Transfer A to B

INH 18 0E OO OO – – – – ∆ ∆ 0 –

TAP (A) ⇒ CCR
Translates to TFR A , CCR

INH B7 02 P P ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

TBA (B) ⇒ A
Transfer B to A

INH 18 0F OO OO – – – – ∆ ∆ 0 –

TBEQ abdxys,rel9 If (cntr) = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

TBL oprx0_xysp (M) + [(B) × ((M+1) – (M))] ⇒ A
8-Bit Table Lookup and Interpolate

Initialize B, and index before TBL.
<ea> points at first 8-bit table entry (M) and B is fractional part
of lookup value.

(no indirect addressing modes or extensions allowed)

IDX 18 3D xb ORfffP OrrffffP – – – – ∆ ∆ – ∆
?

C Bit is undefined
in HC12

TBNE abdxys,rel9 If (cntr) not = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Not Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

TFR abcdxys,abcdxys (r1) ⇒ r2 or
$00:(r1) ⇒ r2 or
(r1[7:0]) ⇒ r2

Transfer Register to Register
r1 and r2 may be A, B, CCR, D, X, Y, or SP

INH B7 eb P P – – – – – – – –

or

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

TPA (CCR) ⇒ A
Translates to TFR CCR ,A

INH B7 20 P P – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 13 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 399

Instruction Reference
TRAP trapnum (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (TRAP Vector) ⇒ PC

Unimplemented opcode trap

INH 18 tn
tn = $30–$39

or
$40–$FF

OVSPSSPSsP OfVSPSSPSsP– – – 1 – – – –

TST opr16a
TST oprx0_xysp
TST oprx9,xysp
TST oprx16,xysp
TST [D,xysp]
TST [oprx16,xysp]
TSTA
TSTB

(M) – 0
Test Memory for Zero or Minus

(A) – 0 Test A for Zero or Minus
(B) – 0 Test B for Zero or Minus

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff
97
D7

rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
O
O

rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

O
O

– – – – ∆ ∆ 0 0

TSX (SP) ⇒ X
Translates to TFR SP,X

INH B7 75 P P – – – – – – – –

TSY (SP) ⇒ Y
Translates to TFR SP,Y

INH B7 76 P P – – – – – – – –

TXS (X) ⇒ SP
Translates to TFR X,SP

INH B7 57 P P – – – – – – – –

TYS (Y) ⇒ SP
Translates to TFR Y,SP

INH B7 67 P P – – – – – – – –

WAI (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);
WAIT for interrupt

INH 3E OSSSSsf OSSSfSsf – – – – – – – –

(after interrupt) or

fVfPPP VfPPP – – – 1 – – – –

or

– 1 – 1 – – – –

WAV

Calculate Sum of Products and Sum of Weights for Weighted
Average Calculation

Initialize B, X, and Y before WAV. B specifies number of ele-
ments. X points at first element in Si list. Y points at first ele-
ment in Fi list.

All Si and Fi elements are 8-bits.

If interrupted, six extra bytes of stack used for
intermediate values

Special 18 3C Of(frr,ffff)O
Off(frr,fffff)O

– – ? – ? ∆ ? ?

(add if interrupt)

SSS + UUUrr, SSSf + UUUrr

wavr

pseudo-
instruction

see WAV

Resume executing an interrupted WAV instruction (recover in-
termediate results from stack rather than initializing them to
zero)

Special 3C UUUrr,ffff
(frr,ffff)O

UUUrrfffff
(frr,fffff)O

– – ? – ? ∆ ? ?

(exit + re-entry replaces comma
above if interrupted)

SSS + UUUrr, SSSf + UUUrr

XGDX (D) ⇔ (X)
Translates to EXG D, X

INH B7 C5 P P – – – – – – – –

XGDY (D) ⇔ (Y)
Translates to EXG D, Y

INH B7 C6 P P – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 14 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

Fi
i 1=

B

∑ X⇒SiFi
i 1=

B

∑ Y:D⇒ and
Reference Manual S12CPUV2

400 Instruction Reference MOTOROLA

S
12C

P

M
O

T
O

R
O

LA
Instruction R

eference
 401

Instruction R
eference

Table A-2. CPU12 Opcode Map (Sheet 1 of 2)
1

BB
2

D0 3
SUBB

DI 2

E0 3-6
SUBB

ID 2-4

F0 3
SUBB

EX 3
1

PB
2

D1 3
CMPB

DI 2

E1 3-6
CMPB

ID 2-4

F1 3
CMPB

EX 3
1

CB
2

D2 3
SBCB

DI 2

E2 3-6
SBCB

ID 2-4

F2 3
SBCB

EX 3
2

DD
3

D3 3
ADDD

DI 2

E3 3-6
ADDD

ID 2-4

F3 3
ADDD

EX 3
1

DB
2

D4 3
ANDB

DI 2

E4 3-6
ANDB

ID 2-4

F4 3
ANDB

EX 3
1

B
2

D5 3
BITB

DI 2

E5 3-6
BITB

ID 2-4

F5 3
BITB

EX 3
1

AB
2

D6 3
LDAB

DI 2

E6 3-6
LDAB

ID 2-4

F6 3
LDAB

EX 3
1

RB
1

D7 1
TSTB

IH 1

E7 3-6
TST

ID 2-4

F7 3
TST

EX 3
1

RB
2

D8 3
EORB

DI 2

E8 3-6
EORB

ID 2-4

F8 3
EORB

EX 3
1

CB
2

D9 3
ADCB

DI 2

E9 3-6
ADCB

ID 2-4

F9 3
ADCB

EX 3
1

AB
2

DA 3
ORAB

DI 2

EA 3-6
ORAB

ID 2-4

FA 3
ORAB

EX 3
1

DB
2

DB 3
ADDB

DI 2

EB 3-6
ADDB

ID 2-4

FB 3
ADDB

EX 3
2

D
3

DC 3
LDD

DI 2

EC 3-6
LDD

ID 2-4

FC 3
LDD

EX 3
2

Y
3

DD 3
LDY

DI 2

ED 3-6
LDY

ID 2-4

FD 3
LDY

EX 3
2

X
3

DE 3
LDX

DI 2

EE 3-6
LDX

ID 2-4

FE 3
LDX

EX 3
2

S
3

DF 3
LDS

DI 2

EF 3-6
LDS

ID 2-4

FF 3
LDS

EX 3

 different)
U
V

2
R

eference M
anual

00 †5
BGND

IH 1

10 1
ANDCC
IM 2

20 3
BRA

RL 2

30 3
PULX

IH 1

40 1
NEGA

IH 1

50 1
NEGB

IH 1

60 3-6
NEG

ID 2-4

70 4
NEG

EX 3

80 1
SUBA

IM 2

90 3
SUBA

DI 2

A0 3-6
SUBA

ID 2-4

B0 3
SUBA

EX 3

C0
SU

IM
01 5

MEM
IH 1

11 11
EDIV

IH 1

21 1
BRN

RL 2

31 3
PULY

IH 1

41 1
COMA

IH 1

51 1
COMB

IH 1

61 3-6
COM

ID 2-4

71 4
COM

EX 3

81 1
CMPA

IM 2

91 3
CMPA

DI 2

A1 3-6
CMPA

ID 2-4

B1 3
CMPA

EX 3

C1
CM

IM
02 1

INY
IH 1

12 ‡1
MUL

IH 1

22 3/1
BHI

RL 2

32 3
PULA

IH 1

42 1
INCA

IH 1

52 1
INCB

IH 1

62 3-6
INC

ID 2-4

72 4
INC

EX 3

82 1
SBCA

IM 2

92 3
SBCA

DI 2

A2 3-6
SBCA

ID 2-4

B2 3
SBCA

EX 3

C2
SB

IM
03 1

DEY
IH 1

13 3
EMUL

IH 1

23 3/1
BLS

RL 2

33 3
PULB

IH 1

43 1
DECA

IH 1

53 1
DECB

IH 1

63 3-6
DEC

ID 2-4

73 4
DEC

EX 3

83 2
SUBD

IM 3

93 3
SUBD

DI 2

A3 3-6
SUBD

ID 2-4

B3 3
SUBD

EX 3

C3
AD

IM
04 3

loop*

RL 3

14 1
ORCC

IM 2

24 3/1
BCC

RL 2

34 2
PSHX

IH 1

44 1
LSRA

IH 1

54 1
LSRB

IH 1

64 3-6
LSR

ID 2-4

74 4
LSR

EX 3

84 1
ANDA

IM 2

94 3
ANDA

DI 2

A4 3-6
ANDA

ID 2-4

B4 3
ANDA

EX 3

C4
AN

IM
05 3-6

JMP
ID 2-4

15 4-7
JSR

ID 2-4

25 3/1
BCS

RL 2

35 2
PSHY

IH 1

45 1
ROLA

IH 1

55 1
ROLB

IH 1

65 3-6
ROL

ID 2-4

75 4
ROL

EX 3

85 1
BITA

IM 2

95 3
BITA

DI 2

A5 3-6
BITA

ID 2-4

B5 3
BITA

EX 3

C5
BIT

IM
06 3

JMP
EX 3

16 4
JSR

EX 3

26 3/1
BNE

RL 2

36 2
PSHA

IH 1

46 1
RORA

IH 1

56 1
RORB

IH 1

66 3-6
ROR

ID 2-4

76 4
ROR

EX 3

86 1
LDAA

IM 2

96 3
LDAA

DI 2

A6 3-6
LDAA

ID 2-4

B6 3
LDAA

EX 3

C6
LD

IM
07 4

BSR
RL 2

17 4
JSR

DI 2

27 3/1
BEQ

RL 2

37 2
PSHB

IH 1

47 1
ASRA

IH 1

57 1
ASRB

IH 1

67 3-6
ASR

ID 2-4

77 4
ASR

EX 3

87 1
CLRA

IH 1

97 1
TSTA

IH 1

A7 1
NOP

IH 1

B7 1
TFR/EXG
IH 2

C7
CL

IH
08 1

INX
IH 1

18 -
Page 2

- -

28 3/1
BVC

RL 2

38 3
PULC

IH 1

48 1
ASLA

IH 1

58 1
ASLB

IH 1

68 3-6
ASL

ID 2-4

78 4
ASL

EX 3

88 1
EORA

IM 2

98 3
EORA

DI 2

A8 3-6
EORA

ID 2-4

B8 3
EORA

EX 3

C8
EO

IM
09 1

DEX
IH 1

19 2
LEAY

ID 2-4

29 3/1
BVS

RL 2

39 2
PSHC

IH 1

49 1
LSRD

IH 1

59 1
ASLD

IH 1

69 ‡2-4
CLR

ID 2-4

79 3
CLR

EX 3

89 1
ADCA

IM 2

99 3
ADCA

DI 2

A9 3-6
ADCA

ID 2-4

B9 3
ADCA

EX 3

C9
AD

IM
0A ‡7

RTC
IH 1

1A 2
LEAX

ID 2-4

2A 3/1
BPL

RL 2

3A 3
PULD

IH 1

4A ‡7
CALL

EX 4

5A 2
STAA

DI 2

6A ‡2-4
STAA

ID 2-4

7A 3
STAA

EX 3

8A 1
ORAA

IM 2

9A 3
ORAA

DI 2

AA 3-6
ORAA

ID 2-4

BA 3
ORAA

EX 3

CA
OR

IM
0B †8

RTI
IH 1

1B 2
LEAS

ID 2-4

2B 3/1
BMI

RL 2

3B 2
PSHD

IH 1

4B ‡7-10
CALL

ID 2-5

5B 2
STAB

DI 2

6B ‡2-4
STAB

ID 2-4

7B 3
STAB

EX 3

8B 1
ADDA

IM 2

9B 3
ADDA

DI 2

AB 3-6
ADDA

ID 2-4

BB 3
ADDA

EX 3

CB
AD

IM
0C 4-6

BSET
ID 3-5

1C 4
BSET

EX 4

2C 3/1
BGE

RL 2

3C ‡+5
wavr

SP 1

4C 4
BSET

DI 3

5C 2
STD

DI 2

6C ‡2-4
STD

ID 2-4

7C 3
STD

EX 3

8C 2
CPD

IM 3

9C 3
CPD

DI 2

AC 3-6
CPD

ID 2-4

BC 3
CPD

EX 3

CC
LD

IM
0D 4-6

BCLR
ID 3-5

1D 4
BCLR

EX 4

2D 3/1
BLT

RL 2

3D 5
RTS

IH 1

4D 4
BCLR

DI 3

5D 2
STY

DI 2

6D ‡2-4
STY

ID 2-4

7D 3
STY

EX 3

8D 2
CPY

IM 3

9D 3
CPY

DI 2

AD 3-6
CPY

ID 2-4

BD 3
CPY

EX 3

CD
LD

IM
0E ‡4-6
BRSET

ID 4-6

1E 5
BRSET

EX 5

2E 3/1
BGT

RL 2

3E ‡†7
WAI

IH 1

4E 4
BRSET

DI 4

5E 2
STX

DI 2

6E ‡2-4
STX

ID 2-4

7E 3
STX

EX 3

8E 2
CPX

IM 3

9E 3
CPX

DI 2

AE 3-6
CPX

ID 2-4

BE 3
CPX

EX 3

CE
LD

IM
0F ‡4-6
BRCLR

ID 4-6

1F 5
BRCLR

EX 5

2F 3/1
BLE

RL 2

3F 9
SWI

IH 1

4F 4
BRCLR

DI 4

5F 2
STS

DI 2

6F ‡2-4
STS

ID 2-4

7F 3
STS

EX 3

8F 2
CPS

IM 3

9F 3
CPS

DI 2

AF 3-6
CPS

ID 2-4

BF 3
CPS

EX 3

CF
LD

IM

00 5
BGND

IH I

Number of HCS12 cycles (‡ indicates HC12
Key to Table A-2

Number of bytes

Opcode
Mnemonic

Address Mode

R
efere

402
Instruction R

eference
M

O
T

O
R

O
LA

Instruction R
eference

Q, or TBNE.

e as a page 2 instruction opcode.

00 4 10 12 20 4 30 10 40 10 50 10 60 10 70 10 80 10 90 10 A0 10 B0 10 C0 10
AP

2

D0 10
TRAP

IH 2

E0 10
TRAP

IH 2

F0 10
TRAP

IH 2
10

AP
2

D1 10
TRAP

IH 2

E1 10
TRAP

IH 2

F1 10
TRAP

IH 2
10

AP
2

D2 10
TRAP

IH 2

E2 10
TRAP

IH 2

F2 10
TRAP

IH 2
10

AP
2

D3 10
TRAP

IH 2

E3 10
TRAP

IH 2

F3 10
TRAP

IH 2
10

AP
2

D4 10
TRAP

IH 2

E4 10
TRAP

IH 2

F4 10
TRAP

IH 2
10

AP
2

D5 10
TRAP

IH 2

E5 10
TRAP

IH 2

F5 10
TRAP

IH 2
10

AP
2

D6 10
TRAP

IH 2

E6 10
TRAP

IH 2

F6 10
TRAP

IH 2
10

AP
2

D7 10
TRAP

IH 2

E7 10
TRAP

IH 2

F7 10
TRAP

IH 2
10

AP
2

D8 10
TRAP

IH 2

E8 10
TRAP

IH 2

F8 10
TRAP

IH 2
10

AP
2

D9 10
TRAP

IH 2

E9 10
TRAP

IH 2

F9 10
TRAP

IH 2
10

AP
2

DA 10
TRAP

IH 2

EA 10
TRAP

IH 2

FA 10
TRAP

IH 2
10

AP
2

DB 10
TRAP

IH 2

EB 10
TRAP

IH 2

FB 10
TRAP

IH 2
10

AP
2

DC 10
TRAP

IH 2

EC 10
TRAP

IH 2

FC 10
TRAP

IH 2
10

AP
2

DD 10
TRAP

IH 2

ED 10
TRAP

IH 2

FD 10
TRAP

IH 2
10

AP
2

DE 10
TRAP

IH 2

EE 10
TRAP

IH 2

FE 10
TRAP

IH 2
10

AP
2

DF 10
TRAP

IH 2

EF 10
TRAP

IH 2

FF 10
TRAP

IH 2

Table A-2. CPU12 Opcode Map (Sheet 2 of 2)
nce M
anual

S
12C

P
U

V
2

* The opcode $04 (on sheet 1 of 2) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBE
† Refer to instruction summary for more information.
‡ Refer to instruction summary for different HC12 cycle count.
Page 2: When the CPU encounters a page 2 opcode ($18 on page 1 of the opcode map), it treats the next byte of object cod

MOVW
IM-ID 5

IDIV
IH 2

LBRA
RL 4

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TR
IH

01 5
MOVW

EX-ID 5

11 12
FDIV

IH 2

21 3
LBRN

RL 4

31 10
TRAP

IH 2

41 10
TRAP

IH 2

51 10
TRAP

IH 2

61 10
TRAP

IH 2

71 10
TRAP

IH 2

81 10
TRAP

IH 2

91 10
TRAP

IH 2

A1 10
TRAP

IH 2

B1 10
TRAP

IH 2

C1
TR

IH
02 5
MOVW

ID-ID 4

12 13
EMACS
SP 4

22 4/3
LBHI

RL 4

32 10
TRAP

IH 2

42 10
TRAP

IH 2

52 10
TRAP

IH 2

62 10
TRAP

IH 2

72 10
TRAP

IH 2

82 10
TRAP

IH 2

92 10
TRAP

IH 2

A2 10
TRAP

IH 2

B2 10
TRAP

IH 2

C2
TR

IH
03 5
MOVW

IM-EX 6

13 3
EMULS
IH 2

23 4/3
LBLS

RL 4

33 10
TRAP

IH 2

43 10
TRAP

IH 2

53 10
TRAP

IH 2

63 10
TRAP

IH 2

73 10
TRAP

IH 2

83 10
TRAP

IH 2

93 10
TRAP

IH 2

A3 10
TRAP

IH 2

B3 10
TRAP

IH 2

C3
TR

IH
04 6
MOVW

EX-EX 6

14 12
EDIVS

IH 2

24 4/3
LBCC

RL 4

34 10
TRAP

IH 2

44 10
TRAP

IH 2

54 10
TRAP

IH 2

64 10
TRAP

IH 2

74 10
TRAP

IH 2

84 10
TRAP

IH 2

94 10
TRAP

IH 2

A4 10
TRAP

IH 2

B4 10
TRAP

IH 2

C4
TR

IH
05 5
MOVW

ID-EX 5

15 12
IDIVS

IH 2

25 4/3
LBCS

RL 4

35 10
TRAP

IH 2

45 10
TRAP

IH 2

55 10
TRAP

IH 2

65 10
TRAP

IH 2

75 10
TRAP

IH 2

85 10
TRAP

IH 2

95 10
TRAP

IH 2

A5 10
TRAP

IH 2

B5 10
TRAP

IH 2

C5
TR

IH
06 2

ABA
IH 2

16 2
SBA

IH 2

26 4/3
LBNE

RL 4

36 10
TRAP

IH 2

46 10
TRAP

IH 2

56 10
TRAP

IH 2

66 10
TRAP

IH 2

76 10
TRAP

IH 2

86 10
TRAP

IH 2

96 10
TRAP

IH 2

A6 10
TRAP

IH 2

B6 10
TRAP

IH 2

C6
TR

IH
07 3

DAA
IH 2

17 2
CBA

IH 2

27 4/3
LBEQ

RL 4

37 10
TRAP

IH 2

47 10
TRAP

IH 2

57 10
TRAP

IH 2

67 10
TRAP

IH 2

77 10
TRAP

IH 2

87 10
TRAP

IH 2

97 10
TRAP

IH 2

A7 10
TRAP

IH 2

B7 10
TRAP

IH 2

C7
TR

IH
08 4
MOVB

IM-ID 4

18 4-7
MAXA

ID 3-5

28 4/3
LBVC

RL 4

38 10
TRAP

IH 2

48 10
TRAP

IH 2

58 10
TRAP

IH 2

68 10
TRAP

IH 2

78 10
TRAP

IH 2

88 10
TRAP

IH 2

98 10
TRAP

IH 2

A8 10
TRAP

IH 2

B8 10
TRAP

IH 2

C8
TR

IH
09 5
MOVB

EX-ID 5

19 4-7
MINA

ID 3-5

29 4/3
LBVS

RL 4

39 10
TRAP

IH 2

49 10
TRAP

IH 2

59 10
TRAP

IH 2

69 10
TRAP

IH 2

79 10
TRAP

IH 2

89 10
TRAP

IH 2

99 10
TRAP

IH 2

A9 10
TRAP

IH 2

B9 10
TRAP

IH 2

C9
TR

IH
0A 5
MOVB

ID-ID 4

1A 4-7
EMAXD
ID 3-5

2A 4/3
LBPL

RL 4

3A †3n
REV

SP 2

4A 10
TRAP

IH 2

5A 10
TRAP

IH 2

6A 10
TRAP

IH 2

7A 10
TRAP

IH 2

8A 10
TRAP

IH 2

9A 10
TRAP

IH 2

AA 10
TRAP

IH 2

BA 10
TRAP

IH 2

CA
TR

IH
0B 4
MOVB

IM-EX 5

1B 4-7
EMIND

ID 3-5

2B 4/3
LBMI

RL 4

3B †5n/3n
REVW

SP 2

4B 10
TRAP

IH 2

5B 10
TRAP

IH 2

6B 10
TRAP

IH 2

7B 10
TRAP

IH 2

8B 10
TRAP

IH 2

9B 10
TRAP

IH 2

AB 10
TRAP

IH 2

BB 10
TRAP

IH 2

CB
TR

IH
0C 6
MOVB

EX-EX 6

1C 4-7
MAXM

ID 3-5

2C 4/3
LBGE

RL 4

3C ‡†7B
WAV

SP 2

4C 10
TRAP

IH 2

5C 10
TRAP

IH 2

6C 10
TRAP

IH 2

7C 10
TRAP

IH 2

8C 10
TRAP

IH 2

9C 10
TRAP

IH 2

AC 10
TRAP

IH 2

BC 10
TRAP

IH 2

CC
TR

IH
0D 5
MOVB

ID-EX 5

1D D4-7
MINM

ID 3-5

2D 4/3
LBLT

RL 4

3D ‡6
TBL

ID 3

4D 10
TRAP

IH 2

5D 10
TRAP

IH 2

6D 10
TRAP

IH 2

7D 10
TRAP

IH 2

8D 10
TRAP

IH 2

9D 10
TRAP

IH 2

AD 10
TRAP

IH 2

BD 10
TRAP

IH 2

CD
TR

IH
0E 2

TAB
IH 2

1E 4-7
EMAXM
ID 3-5

2E 4/3
LBGT

RL 4

3E ‡8
STOP

IH 2

4E 10
TRAP

IH 2

5E 10
TRAP

IH 2

6E 10
TRAP

IH 2

7E 10
TRAP

IH 2

8E 10
TRAP

IH 2

9E 10
TRAP

IH 2

AE 10
TRAP

IH 2

BE 10
TRAP

IH 2

CE
TR

IH
0F 2

TBA
IH 2

1F 4-7
EMINM

ID 3-5

2F 4/3
LBLE

RL 4

3F 10
ETBL

ID 3

4F 10
TRAP

IH 2

5F 10
TRAP

IH 2

6F 10
TRAP

IH 2

7F 10
TRAP

IH 2

8F 10
TRAP

IH 2

9F 10
TRAP

IH 2

AF 10
TRAP

IH 2

BF 10
TRAP

IH 2

CF
TR

IH

S
12C

P

M
O

T
O

R
O

LA
Instruction R

eference
 403

Instruction R
eference

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)
00 10 20 30 40 50 60 70 80 90 A0 B0 C0

,PC
onst

D0
–16,PC

5b const

E0
n,X

9b const

F0
n,SP

9b const

,PC
onst

D1
–15,PC

5b const

E1
–n,X

9b const

F1
–n,SP

9b const

,PC
onst

D2
–14,PC

5b const

E2
n,X

16b const

F2
n,SP

16b const

,PC
onst

D3
–13,PC

5b const

E3
[n,X]

16b indr

F3
[n,SP]

16b indr

,PC
onst

D4
–12,PC

5b const

E4
A,X

A offset

F4
A,SP

A offset

,PC
onst

D5
–11,PC

5b const

E5
B,X

B offset

F5
B,SP

B offset

,PC
onst

D6
–10,PC

5b const

E6
D,X

D offset

F6
D,SP

D offset

,PC
onst

D7
–9,PC

5b const

E7
[D,X]

D indirect

F7
[D,SP]

D indirect

,PC
onst

D8
–8,PC

5b const

E8
n,Y

9b const

F8
n,PC

9b const

,PC
onst

D9
–7,PC

5b const

E9
–n,Y

9b const

F9
–n,PC

9b const

0,PC
onst

DA
–6,PC

5b const

EA
n,Y

16b const

FA
n,PC

16b const

1,PC
onst

DB
–5,PC

5b const

EB
[n,Y]

16b indr

FB
[n,PC]

16b indr

2,PC
onst

DC
–4,PC

5b const

EC
A,Y

A offset

FC
A,PC

A offset

3,PC
onst

DD
–3,PC

5b const

ED
B,Y

B offset

FD
B,PC

B offset

4,PC
onst

DE
–2,PC

5b const

EE
D,Y

D offset

FE
D,PC

D offset

5,PC
onst

DF
–1,PC

5b const

EF
[D,Y]

D indirect

FF
[D,PC]

D indirect
U
V

2
R

eference M
anual

0,X
5b const

–16,X
5b const

1,+X
pre-inc

1,X+
post-inc

0,Y
5b const

–16,Y
5b const

1,+Y
pre-inc

1,Y+
post-inc

0,SP
5b const

–16,SP
5b const

1,+SP
pre-inc

1,SP+
post-inc

0
5b c

01
1,X

5b const

11
–15,X

5b const

21
2,+X

pre-inc

31
2,X+

post-inc

41
1,Y

5b const

51
–15,Y

5b const

61
2,+Y

pre-inc

71
2,Y+

post-inc

81
1,SP

5b const

91
–15,SP

5b const

A1
2,+SP

pre-inc

B1
2,SP+

post-inc

C1
1

5b c
02

2,X
5b const

12
–14,X

5b const

22
3,+X

pre-inc

32
3,X+

post-inc

42
2,Y

5b const

52
–14,Y

5b const

62
3,+Y

pre-inc

72
3,Y+

post-inc

82
2,SP

5b const

92
–14,SP

5b const

A2
3,+SP

pre-inc

B2
3,SP+

post-inc

C2
2

5b c
03

3,X
5b const

13
–13,X

5b const

23
4,+X

pre-inc

33
4,X+

post-inc

43
3,Y

5b const

53
–13,Y

5b const

63
4,+Y

pre-inc

73
4,Y+

post-inc

83
3,SP

5b const

93
–13,SP

5b const

A3
4,+SP

pre-inc

B3
4,SP+

post-inc

C3
3

5b c
04

4,X
5b const

14
–12,X

5b const

24
5,+X

pre-inc

34
5,X+

post-inc

44
4,Y

5b const

54
–12,Y

5b const

64
5,+Y

pre-inc

74
5,Y+

post-inc

84
4,SP

5b const

94
–12,SP

5b const

A4
5,+SP

pre-inc

B4
5,SP+

post-inc

C4
4

5b c
05

5,X
5b const

15
–11,X

5b const

25
6,+X

pre-inc

35
6,X+

post-inc

45
5,Y

5b const

55
–11,Y

5b const

65
6,+Y

pre-inc

75
6,Y+

post-inc

85
5,SP

5b const

95
–11,SP

5b const

A5
6,+SP

pre-inc

B5
6,SP+

post-inc

C5
5

5b c
06

6,X
5b const

16
–10,X

5b const

26
7,+X

pre-inc

36
7,X+

post-inc

46
6,Y

5b const

56
–10,Y

5b const

66
7,+Y

pre-inc

76
7,Y+

post-inc

86
6,SP

5b const

96
–10,SP

5b const

A6
7,+SP

pre-inc

B6
7,SP+

post-inc

C6
6

5b c
07

7,X
5b const

17
–9,X

5b const

27
8,+X

pre-inc

37
8,X+

post-inc

47
7,Y

5b const

57
–9,Y

5b const

67
8,+Y

pre-inc

77
8,Y+

post-inc

87
7,SP

5b const

97
–9,SP

5b const

A7
8,+SP

pre-inc

B7
8,SP+

post-inc

C7
7

5b c
08

8,X
5b const

18
–8,X

5b const

28
8,–X

pre-dec

38
8,X–

post-dec

48
8,Y

5b const

58
–8,Y

5b const

68
8,–Y

pre-dec

78
8,Y–

post-dec

88
8,SP

5b const

98
–8,SP

5b const

A8
8,–SP

pre-dec

B8
8,SP–

post-dec

C8
8

5b c
09

9,X
5b const

19
–7,X

5b const

29
7,–X

pre-dec

39
7,X–

post-dec

49
9,Y

5b const

59
–7,Y

5b const

69
7,–Y

pre-dec

79
7,Y–

post-dec

89
9,SP

5b const

99
–7,SP

5b const

A9
7,–SP

pre-dec

B9
7,SP–

post-dec

C9
9

5b c
0A

10,X
5b const

1A
–6,X

5b const

2A
6,–X

pre-dec

3A
6,X–

post-dec

4A
10,Y

5b const

5A
–6,Y

5b const

6A
6,–Y

pre-dec

7A
6,Y–

post-dec

8A
10,SP

5b const

9A
–6,SP

5b const

AA
6,–SP

pre-dec

BA
6,SP–

post-dec

CA
1

5b c
0B

11,X
5b const

1B
–5,X

5b const

2B
5,–X

pre-dec

3B
5,X–

post-dec

4B
11,Y

5b const

5B
–5,Y

5b const

6B
5,–Y

pre-dec

7B
5,Y–

post-dec

8B
11,SP

5b const

9B
–5,SP

5b const

AB
5,–SP

pre-dec

BB
5,SP–

post-dec

CB
1

5b c
0C

12,X
5b const

1C
–4,X

5b const

2C
4,–X

pre-dec

3C
4,X–

post-dec

4C
12,Y

5b const

5C
–4,Y

5b const

6C
4,–Y

pre-dec

7C
4,Y–

post-dec

8C
12,SP

5b const

9C
–4,SP

5b const

AC
4,–SP

pre-dec

BC
4,SP–

post-dec

CC
1

5b c
0D

13,X
5b const

1D
–3,X

5b const

2D
3,–X

pre-dec

3D
3,X–

post-dec

4D
13,Y

5b const

5D
–3,Y

5b const

6D
3,–Y

pre-dec

7D
3,Y–

post-dec

8D
13,SP

5b const

9D
–3,SP

5b const

AD
3,–SP

pre-dec

BD
3,SP–

post-dec

CD
1

5b c
0E

14,X
5b const

1E
–2,X

5b const

2E
2,–X

pre-dec

3E
2,X–

post-dec

4E
14,Y

5b const

5E
–2,Y

5b const

6E
2,–Y

pre-dec

7E
2,Y–

post-dec

8E
14,SP

5b const

9E
–2,SP

5b const

AE
2,–SP

pre-dec

BE
2,SP–

post-dec

CE
1

5b c
0F

15,X
5b const

1F
–1,X

5b const

2F
1,–X

pre-dec

3F
1,X–

post-dec

4F
15,Y

5b const

5F
–1,Y

5b const

6F
1,–Y

pre-dec

7F
1,Y–

post-dec

8F
15,SP

5b const

9F
–1,SP

5b const

AF
1,–SP

pre-dec

BF
1,SP–

post-dec

CF
1

5b c

postbyte (hex)
B0
#,REG

type

type offset used

source code syntax

Key to Table A-3

Instruction Reference
Table A-4. Indexed Addressing Mode Summary

Postbyte
Code (xb)

Operand
Syntax Comments

rr0nnnnn ,r
n,r
–n,r

5-bit constant offset
n = –16 to +15
rr can specify X, Y, SP, or PC

111rr0zs n,r
–n,r

Constant offset (9- or 16-bit signed)
z- 0 = 9-bit with sign in LSB of postbyte (s)

1 = 16-bit
if z = s = 1, 16-bit offset indexed-indirect (see below)
rr can specify X, Y, SP, or PC

rr1pnnnn n,–r
n,+r
n,r–
n,r+

Auto predecrement, preincrement, postdecrement, or postincrement ;
p = pre-(0) or post-(1), n = –8 to –1, +1 to +8
rr can specify X, Y, or SP (PC not a valid choice)

111rr1aa A,r
B,r
D,r

Accumulator offset (unsigned 8-bit or 16-bit)
aa - 00 = A

01 = B
10 = D (16-bit)
11 = see accumulator D offset indexed-indirect

rr can specify X, Y, SP, or PC

111rr011 [n,r] 16-bit offset indexed-indirect
rr can specify X, Y, SP, or PC

111rr111 [D,r] Accumulator D offset indexed-indirect
rr can specify X, Y, SP, or PC
Reference Manual S12CPUV2

404 Instruction Reference MOTOROLA

S
12C

P

M
O

T
O

R
O

LA
Instruction R

eference
 405

Instruction R
eference

Table A-5. Transfer and Exchange Postbyte Encoding

6 7

YL ⇒ A SPL ⇒ A

YL ⇒ B SPL ⇒ B

YL ⇒ CCR SPL ⇒ CCR

2 Y ⇒ TMP2 SP ⇒ TMP2

Y ⇒ D SP ⇒ D

Y ⇒ X SP ⇒ X

Y ⇒ Y SP ⇒ Y

Y ⇒ SP SP ⇒ SP

E F

YL ⇒ A
$00:A ⇒ Y

SPL ⇒ A
$00:A ⇒ SP

YL ⇒ B
$FF:B ⇒ Y

SPL ⇒ B
$FF:B ⇒ SP

 X
YL ⇒ CCR

$FF:CCR ⇒ Y
SPL ⇒ CCR

$FF:CCR ⇒ SP

2 Y ⇔ TMP2 SP ⇔ TMP2

Y ⇔ D SP ⇔ D

Y ⇔ X SP ⇔ X

Y ⇔ Y SP ⇔ Y

Y ⇔ SP SP ⇔ SP
U
V

2
R

eference M
anual

TRANSFERS

⇓ LS MS⇒ 0 1 2 3 4 5

0 A ⇒ A B ⇒ A CCR ⇒ A TMP3L ⇒ A B ⇒ A XL ⇒ A

1 A ⇒ B B ⇒ B CCR ⇒ B TMP3L ⇒ B B ⇒ B XL ⇒ B

2 A ⇒ CCR B ⇒ CCR CCR ⇒ CCR TMP3L ⇒ CCR B ⇒ CCR XL ⇒ CCR

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2 TMP3 ⇒ TMP2 D ⇒ TMP2 X ⇒ TMP

4
sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

TMP3 ⇒ D D ⇒ D X ⇒ D

5
sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

TMP3 ⇒ X D ⇒ X X ⇒ X

6
sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

TMP3 ⇒ Y D ⇒ Y X ⇒ Y

7
sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP

TMP3 ⇒ SP D ⇒ SP X ⇒ SP

EXCHANGES

⇓ LS MS⇒ 8 9 A B C D

0 A ⇔ A B ⇔ A CCR ⇔ A
TMP3L ⇒ A

$00:A ⇒ TMP3
B ⇒ A
A ⇒ B

XL ⇒ A
$00:A ⇒ X

1 A ⇔ B B ⇔ B CCR ⇔ B
TMP3L ⇒ B

$FF:B ⇒ TMP3
B ⇒ B

$FF ⇒ A
XL ⇒ B

$FF:B ⇒ X

2 A ⇔ CCR B ⇔ CCR CCR ⇔ CCR
TMP3L ⇒ CCR

$FF:CCR ⇒ TMP3
B ⇒ CCR

$FF:CCR ⇒ D
XL ⇒ CCR

$FF:CCR ⇒

3
$00:A ⇒ TMP2

TMP2L ⇒ A
$00:B ⇒ TMP2

TMP2L ⇒ B
$00:CCR ⇒ TMP2

TMP2L ⇒ CCR
TMP3 ⇔ TMP2 D ⇔ TMP2 X ⇔ TMP

4 $00:A ⇒ D $00:B ⇒ D
$00:CCR ⇒ D

B ⇒ CCR
TMP3 ⇔ D D ⇔ D X ⇔ D

5
$00:A ⇒ X

XL ⇒ A
$00:B ⇒ X

XL ⇒ B
$00:CCR ⇒ X

XL ⇒ CCR
TMP3 ⇔ X D ⇔ X X ⇔ X

6
$00:A ⇒ Y

YL ⇒ A
$00:B ⇒ Y

YL ⇒ B
$00:CCR ⇒ Y

YL ⇒ CCR
TMP3 ⇔ Y D ⇔ Y X ⇔ Y

7
$00:A ⇒ SP

SPL ⇒ A
$00:B ⇒ SP

SPL ⇒ B
$00:CCR ⇒ SP

SPL ⇒ CCR
TMP3 ⇔ SP D ⇔ SP X ⇔ SP

TMP2 and TMP3 registers are for factory use only.

Instruction Reference
Table A-6. Loop Primitive Postbyte Encoding (lb)
00 A

DBEQ
(+)

10 A
DBEQ

(–)

20 A
DBNE

(+)

30 A
DBNE

(–)

40 A
TBEQ

(+)

50 A
TBEQ

(–)

60 A
TBNE

(+)

70 A
TBNE

(–)

80 A
IBEQ

(+)

90 A
IBEQ

(–)

A0 A
IBNE

(+)

B0 A
IBNE

(–)
01 B

DBEQ
(+)

11 B
DBEQ

(–)

21 B
DBNE

(+)

31 B
DBNE

(–)

41 B
TBEQ

(+)

51 B
TBEQ

(–)

61 B
TBNE

(+)

71 B
TBNE

(–)

81 B
IBEQ

(+)

91 B
IBEQ

(–)

A1 B
IBNE

(+)

B1 B
IBNE

(–)
02

—
12

—
22

—
32

—
42

—
52

—
62

—
72

—
82

—
92

—
A2

—
B2

—

03
—

13
—

23
—

33
—

43
—

53
—

63
—

73
—

83
—

93
—

A3
—

B3
—

04 D
DBEQ

(+)

14 D
DBEQ

(–)

24 D
DBNE

(+)

34 D
DBNE

(–)

44 D
TBEQ

(+)

54 D
TBEQ

(–)

64 D
TBNE

(+)

74 D
TBNE

(–)

84 D
IBEQ

(+)

94 D
IBEQ

(–)

A4 D
IBNE

(+)

B4 D
IBNE

(–)
05 X

DBEQ
(+)

15 X
DBEQ

(–)

25 X
DBNE

(+)

35 X
DBNE

(–)

45 X
TBEQ

(+)

55 X
TBEQ

(–)

65 X
TBNE

(+)

75 X
TBNE

(–)

85 X
IBEQ

(+)

95 X
IBEQ

(–)

A5 X
IBNE

(+)

B5 X
IBNE

(–)
06 Y

DBEQ
(+)

16 Y
DBEQ

(–)

26 Y
DBNE

(+)

36 Y
DBNE

(–)

46 Y
TBEQ

(+)

56 Y
TBEQ

(–)

66 Y
TBNE

(+)

76 Y
TBNE

(–)

86 Y
IBEQ

(+)

96 Y
IBEQ

(–)

A6 Y
IBNE

(+)

B6 Y
IBNE

(–)
07 SP

DBEQ
(+)

17 SP
DBEQ

(–)

27 SP
DBNE

(+)

37 SP
DBNE

(–)

47 SP
TBEQ

(+)

57 SP
TBEQ

(–)

67 SP
TBNE

(+)

77 SP
TBNE

(–)

87 SP
IBEQ

(+)

97 SP
IBEQ

(–)

A7 SP
IBNE

(+)

B7 SP
IBNE

(–)

postbyte (hex)
B0 A
_BEQ

(–)

counter used

sign of 9-bit relative branch offset
(lower eight bits are an extension byte
following postbyte)

branch condition

Key to Table A-6

(bit 3 is don’t care)

Table A-7. Branch/Complementary Branch

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

For 16-bit offset long branches precede opcode with a $18 page prebyte.
Reference Manual S12CPUV2

406 Instruction Reference MOTOROLA

Instruction Reference
Table A-8. Hexadecimal to ASCII Conversion

Hex ASCII Hex ASCII Hex ASCII Hex ASCII

$00 NUL $20 SP space $40 @ $60 ` grave

$01 SOH $21 ! $41 A $61 a

$02 STX $22 “ quote $42 B $62 b

$03 ETX $23 # $43 C $63 c

$04 EOT $24 $ $44 D $64 d

$05 ENQ $25 % $45 E $65 e

$06 ACK $26 & $46 F $66 f

$07 BEL beep $27 ‘ apost. $47 G $67 g

$08
BS back

sp
$28 ($48 H $68 h

$09 HT tab $29) $49 I $69 i

$0A
LF

linefeed
$2A * $4A J $6A j

$0B VT $2B + $4B K $6B k

$0C FF $2C , comma $4C L $6C l

$0D CR return $2D - dash $4D M $6D m

$0E SO $2E . period $4E N $6E n

$0F SI $2F / $4F O $6F o

$10 DLE $30 0 $50 P $70 p

$11 DC1 $31 1 $51 Q $71 q

$12 DC2 $32 2 $52 R $72 r

$13 DC3 $33 3 $53 S $73 s

$14 DC4 $34 4 $54 T $74 t

$15 NAK $35 5 $55 U $75 u

$16 SYN $36 6 $56 V $76 v

$17 ETB $37 7 $57 W $77 w

$18 CAN $38 8 $58 X $78 x

$19 EM $39 9 $59 Y $79 y

$1A SUB $3A : $5A Z $7A z

$1B ESCAPE $3B ; $5B [$7B {

$1C FS $3C < $5C \ $7C |

$1D GS $3D = $5D] $7D }

$1E RS $3E > $5E ^ $7E ~

$1F US $3F ? $5F _ under $7F
DEL

delete
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 407

Instruction Reference
A.5 Hexadecimal to Decimal Conversion

To convert a hexadecimal number (up to four hexadecimal digits) to
decimal, look up the decimal equivalent of each hexadecimal digit in
Table A-9 . The decimal equivalent of the original hexadecimal number
is the sum of the weights found in the table for all hexadecimal digits.

A.6 Decimal to Hexadecimal Conversion

To convert a decimal number (up to 65,53510) to hexadecimal, find the
largest decimal number in Table A-9 that is less than or equal to the
number you are converting. The corresponding hexadecimal digit is the
most significant hexadecimal digit of the result. Subtract the decimal
number found from the original decimal number to get the remaining
decimal value. Repeat the procedure using the remaining decimal value
for each subsequent hexadecimal digit.

Table A-9. Hexadecimal to/from Decimal Conversion
15 Bit 8 7 Bit 0

15 12 11 8 7 4 3 0

4th Hex Digit 3rd Hex Digit 2nd Hex Digit 1st Hex Digit

Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0 0

1 4,096 1 256 1 16 1 1

2 8,192 2 512 2 32 2 2

3 12,288 3 768 3 48 3 3

4 16,384 4 1,024 4 64 4 4

5 20,480 5 1,280 5 80 5 5

6 24,576 6 1,536 6 96 6 6

7 28,672 7 1,792 7 112 7 7

8 32,768 8 2,048 8 128 8 8

9 36,864 9 2,304 9 144 9 9

A 40,960 A 2,560 A 160 A 10

B 45,056 B 2,816 B 176 B 11

C 49,152 C 3,072 C 192 C 12

D 53,248 D 3,328 D 208 D 13

E 57,344 E 3,484 E 224 E 14

F 61,440 F 3,840 F 240 F 15
Reference Manual S12CPUV2

408 Instruction Reference MOTOROLA

Reference Manual — S12CPUV2

Appendix B. M68HC11 to CPU12 Upgrade Path
B.1 Introduction

This appendix discusses similarities and differences between the
CPU12 and the M68HC11 CPU. In general, the CPU12 is a proper
superset of the M68HC11. Significant changes have been made to
improve the efficiency and capabilities of the CPU12 without eliminating
compatibility and familiarity for the large community of M68HC11
programmers.

B.2 CPU12 Design Goals

The primary goals of the CPU12 design were:

• Absolute source code compatibility with the M68HC11

• Same programming model

• Same stacking operations

• Upgrade to 16-bit architecture

• Eliminate extra byte/extra cycle penalty for using index register Y

• Improve performance

• Improve compatibility with high-level languages
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 409

M68HC11 to CPU12 Upgrade Path
B.3 Source Code Compatibility

Every M68HC11 instruction mnemonic and source code statement can
be assembled directly with a CPU12 assembler with no modifications.

The CPU12 supports all M68HC11 addressing modes and includes
several new variations of indexed addressing mode. CPU12 instructions
affect condition code bits in the same way as M68HC11 instructions.

CPU12 object code is similar to but not identical to M68HC11 object
code. Some primary objectives, such as the elimination of the penalty for
using Y, could not be achieved without object code differences. While
the object code has been changed, the majority of the opcodes are
identical to those of the M6800, which was developed more than 20
years earlier.

The CPU12 assembler automatically translates a few M68HC11
instruction mnemonics into functionally equivalent CPU12 instructions.
For example, the CPU12 does not have an increment stack pointer (INS)
instruction, so the INS mnemonic is translated to LEAS 1,S. The CPU12
does provide single-byte DEX, DEY, INX, and INY instructions because
the LEAX and LEAY instructions do not affect the condition codes, while
the M68HC11 instructions update the Z bit according to the result of the
decrement or increment.

Table B-1 shows M68HC11 instruction mnemonics that are
automatically translated into equivalent CPU12 instructions. This
translation is performed by the assembler so there is no need to modify
an old M68HC11 program to assemble it for the CPU12. In fact, the
M68HC11 mnemonics can be used in new CPU12 programs.

Table B-1. Translated M68HC11 Mnemonics

M68HC11
Mnemonic

Equivalent
CPU12 Instruction

Comments

ABX
ABY

LEAX B,X
LEAY B,Y

Since CPU12 has accumulator offset indexing,
ABX and ABY are rarely used in new CPU12
programs. ABX is one byte on M68HC11 but
ABY is two bytes. The LEA substitutes are two
bytes.

Continued on next page
Reference Manual S12CPUV2

410 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
All of the translations produce the same amount of or slightly more object
code than the original M68HC11 instructions. However, there are
offsetting savings in other instructions. Y-indexed instructions in
particular assemble into one byte less object code than the same
M68HC11 instruction.

The CPU12 has a 2-page opcode map, rather than the 4-page
M68HC11 map. This is largely due to redesign of the indexed
addressing modes. Most of pages 2, 3, and 4 of the M68HC11 opcode
map are required because Y-indexed instructions use different opcodes
than X-indexed instructions. Approximately two-thirds of the M68HC11
page 1 opcodes are unchanged in CPU12, and some M68HC11
opcodes have been moved to page 1 of the CPU12 opcode map. Object
code for each of the moved instructions is one byte smaller than object
code for the equivalent M68HC11 instruction. Table B-2 shows
instructions that assemble to one byte less object code on the CPU12.

CLC
CLI
CLV
SEC
SEI
SEV

ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
ORCC #$01
ORCC #$10
ORCC #$02

ANDCC and ORCC now allow more control
over the CCR, including the ability to set or
clear multiple bits in a single instruction. These
instructions take one byte each on M68HC11
while the ANDCC and ORCC equivalents take
two bytes each.

DES
INS

LEAS –1,S
LEAS 1,S

Unlike DEX and INX, DES and INS did not
affect CCR bits in the M68HC11, so the LEAS
equivalents in CPU12 duplicate the function of
DES and INS. These instructions are one byte
on M68HC11 and two bytes on CPU12.

TAP
TPA
TSX
TSY
TXS
TYS

XGDX
XGDY

TFR A,CCR
TFR CCR,A

TFR S,X
TFR S,Y
TFR X,S
TFR Y,S
EXG D,X
EXG D,Y

The M68HC11 has a small collection of specific
transfer and exchange instructions. CPU12
expanded this to allow transfer or exchange
between any two CPU registers. For all but TSY
and TYS (which take two bytes on either CPU),
the CPU12 transfer/exchange costs one extra
byte compared to the M68HC11. The substitute
instructions execute in one cycle rather than
two.

Table B-1. Translated M68HC11 Mnemonics (Continued)

M68HC11
Mnemonic

Equivalent
CPU12 Instruction

Comments
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 411

M68HC11 to CPU12 Upgrade Path
Instruction set changes offset each other to a certain extent.
Programming style also affects the rate at which instructions appear. As
a test, the BUFFALO monitor, an 8-Kbyte M68HC11 assembly code
program, was reassembled for the CPU12. The resulting object code is
six bytes smaller than the M68HC11 code. It is fair to conclude that
M68HC11 code can be reassembled with very little change in size.

The relative size of code for M68HC11 vs. code for CPU12 has also
been tested by rewriting several smaller programs from scratch. In these
cases, the CPU12 code is typically about 30 percent smaller. These
savings are mostly due to improved indexed addressing.

It seems useful to mention the results of size comparisons done on C
programs. A C program compiled for the CPU12 is about 30 percent
smaller than the same program compiled for the M68HC11. The savings
are largely due to better indexing.

Table B-2. Instructions with Smaller Object Code

Instruction Comments

DEY
INY

Page 2 opcodes in M68HC11 but page 1 in CPU12

INST n,Y

For values of n less than 16 (the majority of cases). Were on page 2,
now are on page 1. Applies to BSET, BCLR, BRSET, BRCLR, NEG,
COM, LSR, ROR, ASR, ASL, ROL, DEC, INC, TST, JMP, CLR,
SUB, CMP, SBC, SUBD, ADDD, AND, BIT, LDA, STA, EOR, ADC,
ORA, ADD, JSR, LDS, and STS. If X is the index reference and the
offset is greater than 15 (much less frequent than offsets of 0, 1, and
2), the CPU12 instruction assembles to one byte more of object code
than the equivalent M68HC11 instruction.

PSHY
PULY

 Were on page 2, now are on page 1

LDY
STY
CPY

 Were on page 2, now are on page 1

CPY n,Y
LDY n,Y
STY n,Y

For values of n less than 16 (the majority of cases); were on page 3,
now are on page 1

CPD
Was on page 2, 3, or 4, now on page 1. In the case of indexed with
offset greater than 15, CPU12 and M68HC11 object code are the
same size.
Reference Manual S12CPUV2

412 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.4 Programmer’s Model and Stacking

The CPU12 programming model and stacking order are identical to
those of the M68HC11.

B.5 True 16-Bit Architecture

The M68HC11 is a direct descendant of the M6800, one of the first
microprocessors, which was introduced in 1974. The M6800 was strictly
an 8-bit machine, with 8-bit data buses and 8-bit instructions. As
Motorola devices evolved from the M6800 to the M68HC11, a number of
16-bit instructions were added, but the data buses remained eight bits
wide, so these instructions were performed as sequences of 8-bit
operations. The CPU12 is a true 16-bit implementation, but it retains the
ability to work with the mostly 8-bit M68HC11 instruction set. The larger
arithmetic logic unit (ALU) of the CPU12 (it can perform some 20-bit
operations) is used to calculate 16-bit pointers and to speed up math
operations.

B.5.1 Bus Structures

The CPU12 is a 16-bit processor with 16-bit data paths. Typical HCS12
and M68HC12 devices have internal and external 16-bit data paths, but
some derivatives incorporate operating modes that allow for an 8-bit
data bus, so that a system can be built with low-cost 8-bit program
memory. HCS12 and M68HC12 MCUs include an on-chip integration
module that manages the external bus interface. When the CPU makes
a 16-bit access to a resource that is served by an 8-bit bus, the
integration module performs two 8-bit accesses, freezes the CPU clocks
for part of the sequence, and assembles the data into a 16-bit word. As
far as the CPU is concerned, there is no difference between this access
and a 16-bit access to an internal resource via the 16-bit data bus. This
is similar to the way an M68HC11 can stretch clock cycles to
accommodate slow peripherals.
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 413

M68HC11 to CPU12 Upgrade Path
B.5.2 Instruction Queue

The CPU12 has a 2-word instruction queue and a 16-bit holding buffer,
which sometimes acts as a third word for queueing program information.
All program information is fetched from memory as aligned 16-bit words,
even though there is no requirement for instructions to begin or end on
even word boundaries. There is no penalty for misaligned instructions. If
a program begins on an odd boundary (if the reset vector is an odd
address), program information is fetched to fill the instruction queue,
beginning with the aligned word at the next address below the
misaligned reset vector. The instruction queue logic starts execution with
the opcode in the low-order half of this word.

The instruction queue causes three bytes of program information
(starting with the instruction opcode) to be directly available to the CPU
at the beginning of every instruction. As it executes, each instruction
performs enough additional program fetches to refill the space it took up
in the queue. Alignment information is maintained by the logic in the
instruction queue. The CPU provides signals that tell the queue logic
when to advance a word of program information and when to toggle the
alignment status.

The CPU is not aware of instruction alignment. The queue logic includes
a multiplexer that sorts out the information in the queue to present the
opcode and the next two bytes of information as CPU inputs. The
multiplexer determines whether the opcode is in the even or odd half of
the word at the head of the queue. Alignment status is also available to
the ALU for address calculations. The execution sequence for all
instructions is independent of the alignment of the instruction.

The only situation where alignment can affect the number of cycles an
instruction takes occurs in devices that have a narrow (8-bit) external
data bus and is related to optional program fetch cycles (O type cycles).
O cycles are always performed, but serve different purposes determined
by instruction size and alignment.

Each instruction includes one program fetch cycle for every two bytes of
object code. Instructions with an odd number of bytes can use an O
cycle to fetch an extra word of object code. If the queue is aligned at the
start of an instruction with an odd byte count, the last byte of object code
shares a queue word with the opcode of the next instruction. Since this
word holds part of the next instruction, the queue cannot advance after
Reference Manual S12CPUV2

414 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
the odd byte executes because the first byte of the next instruction would
be lost. In this case, the O cycle appears as a free cycle since the queue
is not ready to accept the next word of program information. If this same
instruction had been misaligned, the queue would be ready to advance
and the O cycle would be used to perform a program word fetch.

In a single-chip system or in a system with the program in 16-bit memory,
both the free cycle and the program fetch cycle take one bus cycle. In a
system with the program in an external 8-bit memory, the O cycle takes
one bus cycle when it appears as a free cycle, but it takes two bus cycles
when used to perform a program fetch. In this case, the on-chip
integration module freezes the CPU clocks long enough to perform the
cycle as two smaller accesses. The CPU handles only 16-bit data, and
is not aware that the 16-bit program access is split into two 8-bit
accesses.

To allow development systems to track events in the CPU12 instruction
queue, two status signals (IPIPE[1:0]) provide information about data
movement in the queue and about the start of instruction execution. A
development system can use this information along with address and
data information to externally reconstruct the queue. This representation
of the queue can also track both the data and address buses.

B.5.3 Stack Function

Both the M68HC11 and the CPU12 stack nine bytes for interrupts. Since
this is an odd number of bytes, there is no practical way to ensure that
the stack will stay aligned. To ensure that instructions take a fixed
number of cycles regardless of stack alignment, the internal RAM in
M68HC12 MCUs is designed to allow single cycle 16-bit accesses to
misaligned addresses. As long as the stack is located in this special
RAM, stacking and unstacking operations take the same amount of
execution time, regardless of stack alignment. If the stack is located in
an external 16-bit RAM, a PSHX instruction can take two or three cycles
depending on the alignment of the stack. This extra access time is
transparent to the CPU because the integration module freezes the CPU
clocks while it performs the extra 8-bit bus cycle required for a
misaligned stack operation.

The CPU12 has a “last-used” stack rather than a “next-available” stack
like the M68HC11 CPU. That is, the stack pointer points to the last 16-bit
stack address used, rather than to the address of the next available
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 415

M68HC11 to CPU12 Upgrade Path
stack location. This generally has very little effect, because it is very
unusual to access stacked information using absolute addressing. The
change allows a 16-bit word of data to be removed from the stack
without changing the value of the SP twice.

To illustrate, consider the operation of a PULX instruction. With the
next-available M68HC11 stack, if the SP = $01F0 when execution
begins, the sequence of operations is: SP = SP + 1; load X from
$01F1:01F2; SP = SP + 1; and the SP ends up at $01F2. With the
last-used CPU12 stack, if the SP = $01F0 when execution begins, the
sequence is: load X from $01F0:01F1; SP = SP + 2; and the SP again
ends up at $01F2. The second sequence requires one less stack pointer
adjustment.

The stack pointer change also affects operation of the TSX and TXS
instructions. In the M68HC11, TSX increments the SP by one during the
transfer. This adjustment causes the X index to point to the last stack
location used. The TXS instruction operates similarly, except that it
decrements the SP by one during the transfer. CPU12 TSX and TXS
instructions are ordinary transfers — the CPU12 stack requires no
adjustment.

For ordinary use of the stack, such as pushes, pulls, and even
manipulations involving TSX and TXS, there are no differences in the
way the M68HC11 and the CPU12 stacks look to a programmer.
However, the stack change can affect a program algorithm in two subtle
ways.

The LDS #$xxxx instruction is normally used to initialize the stack pointer
at the start of a program. In the M68HC11, the address specified in the
LDS instruction is the first stack location used. In the CPU12, however,
the first stack location used is one address lower than the address
specified in the LDS instruction. Since the stack builds downward,
M68HC11 programs reassembled for the CPU12 operate normally, but
the program stack is one physical address lower in memory.

In very uncommon situations, such as test programs used to verify CPU
operation, a program could initialize the SP, stack data, and then read
the stack via an extended mode read (it is normally improper to read
stack data from an absolute extended address). To make an M68HC11
source program that contains such a sequence work on the CPU12,
change either the initial LDS #$xxxx or the absolute extended address
used to read the stack.
Reference Manual S12CPUV2

416 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.6 Improved Indexing

The CPU12 has significantly improved indexed addressing capability,
yet retains compatibility with the M68HC11. The one cycle and one byte
cost of doing Y-related indexing in the M68HC11 has been eliminated.
In addition, high-level language requirements, including stack relative
indexing and the ability to perform pointer arithmetic directly in the index
registers, have been accommodated.

The M68HC11 has one variation of indexed addressing that works from
X or Y as the reference pointer. For X indexed addressing, an 8-bit
unsigned offset in the instruction is added to the index pointer to arrive
at the address of the operand for the instruction. A load accumulator
instruction assembles into two bytes of object code, the opcode and a
1-byte offset. Using Y as the reference, the same instruction assembles
into three bytes (a page prebyte, the opcode, and a 1-byte offset.)
Analysis of M68HC11 source code indicates that the offset is most
frequently zero and seldom greater than four.

The CPU12 indexed addressing scheme uses a postbyte plus 0, 1, or 2
extension bytes after the instruction opcode. These bytes specify which
index register is used, determine whether an accumulator is used as the
offset, implement automatic pre/post increment/decrement of indices,
and allow a choice of 5-, 9-, or 16-bit signed offsets. This approach
eliminates the differences between X and Y register use and
dramatically enhances indexed addressing capabilities.

Major improvements that result from this new approach are:

• Stack pointer can be used as an index register in all indexed
operations (very important for C compilers)

• Program counter can be used as index register in all but auto
inc/dec modes

• Accumulator offsets allowed using A, B, or D accumulators

• Automatic pre- or post- increment or decrement by –8 to +8

• 5-bit, 9-bit, or 16-bit signed constant offsets (M68HC11 only
supported positive unsigned 8-bit offsets)

• 16-bit offset indexed-indirect and accumulator D offset
indexed-indirect
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 417

M68HC11 to CPU12 Upgrade Path
The change completely eliminates pages three and four of the M68HC11
opcode map and eliminates almost all instructions from page two of the
opcode map. For offsets of 0 to +15 from the X index register, the object
code is the same size as it was for the M68HC11. For offsets of 0 to +15
from the Y index register, the object code is one byte smaller than it was
for the M68HC11.

Table A-3 and Table A-4 summarize CPU12 indexed addressing mode
capabilities. Table A-6 shows how the postbyte is encoded.

B.6.1 Constant Offset Indexing

The CPU12 offers three variations of constant offset indexing to optimize
the efficiency of object code generation.

The most common constant offset is 0. Offsets of 1, 2, 3, 4 are used fairly
often, but with less frequency than 0.

The 5-bit constant offset variation covers the most frequent indexing
requirements by including the offset in the postbyte. This reduces a load
accumulator indexed instruction to two bytes of object code, and
matches the object code size of the smallest M68HC11 indexed
instructions, which can only use X as the index register. The CPU12 can
use X, Y, SP, or PC as the index reference with no additional object code
size cost.

The signed 9-bit constant offset indexing mode covers the same positive
range as the M68HC11 8-bit unsigned offset. The size was increased to
nine bits with the sign bit (ninth bit) included in the postbyte, and the
remaining 8 bits of the offset in a single extension byte.

The 16-bit constant offset indexing mode allows indexed access to the
entire normal 64-Kbyte address space. Since the address consists of 16
bits, the 16-bit offset can be regarded as a signed (–32,768 to +32,767)
or unsigned (0 to 65,535) value. In 16-bit constant offset mode, the offset
is supplied in two extension bytes after the opcode and postbyte.
Reference Manual S12CPUV2

418 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.6.2 Auto-Increment Indexing

The CPU12 provides greatly enhanced auto increment and decrement
modes of indexed addressing. In the CPU12, the index modification may
be specified for before the index is used (pre-), or after the index is used
(post-), and the index can be incremented or decremented by any
amount from one to eight, independent of the size of the operand that
was accessed. X, Y, and SP can be used as the index reference, but this
mode does not allow PC to be the index reference (this would interfere
with proper program execution).

This addressing mode can be used to implement a software stack
structure or to manipulate data structures in lists or tables, rather than
manipulating bytes or words of data. Anywhere an M68HC11 program
has an increment or decrement index register operation near an indexed
mode instruction, the increment or decrement operation can be
combined with the indexed instruction with no cost in object code size,
as shown in the following code comparison.

The M68HC11 object code requires seven bytes, while the CPU12
requires only two bytes to accomplish the same functions. Three bytes
of M68HC11 code were due to the page prebyte for each Y-related
instruction ($18). CPU12 post-increment indexing capability allowed the
two INY instructions to be absorbed into the LDAA indexed instruction.
The replacement code is not identical to the original 3-instruction
sequence because the Z condition code bit is affected by the M68HC11
INY instructions, while the Z bit in the CPU12 would be determined by
the value loaded into A.

18 A6 00
18 08
18 08

 LDAA 0,Y
 INY
 INY

A6 71 LDAA 2,Y+
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 419

M68HC11 to CPU12 Upgrade Path
B.6.3 Accumulator Offset Indexing

This indexed addressing variation allows the programmer to use either
an 8-bit accumulator (A or B) or the 16-bit D accumulator as the offset
for indexed addressing. This allows for a program-generated offset,
which is more difficult to achieve in the M68HC11. The following code
compares the M68HC11 and CPU12 operations.

The CPU12 object code is only one byte smaller, but the LDX #
instruction is outside the loop. It is not necessary to reload the base
address in the index register on each pass through the loop because the
LDAA B,X instruction does not alter the index register. This reduces the
loop execution time from 15 cycles to six cycles. This reduction,
combined with the 25-MHz bus speed of the HCS12 (M68HC12) Family,
can have significant effects.

B.6.4 Indirect Indexing

The CPU12 allows some forms of indexed indirect addressing where the
instruction points to a location in memory where the address of the
operand is stored. This is an extra level of indirection compared to
ordinary indexed addressing. The two forms of indexed indirect
addressing are 16-bit constant offset indexed indirect and D
accumulator indexed indirect. The reference index register can be X, Y,
SP, or PC as in other CPU12 indexed addressing modes. PC-relative
indirect addressing is one of the more common uses of indexed indirect
addressing. The indirect variations of indexed addressing help in the
implementation of pointers. D accumulator indexed indirect addressing
can be used to implement a runtime computed GOTO function. Indirect
addressing is also useful in high-level language compilers. For instance,
PC-relative indirect indexing can be used to efficiently implement some
C case statements.

C6 05
CE 10 00
3A
A6 00

5A
26 F7

 LDAB #$5 [2]
 LOOP LDX #$1000 [3]
 ABX [3]
 LDAA 0,X [4]
 |
 DECB [2]
 BNE LOOP [3]

C6 05
CE 10 00
A6 E5

04 31 FB

LDAB #$5 [1]
LDX #$1000 [2]
LOOP LDAA B,X [3]

 |
DBNE B,LOOP [3]
Reference Manual S12CPUV2

420 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.7 Improved Performance

The HCS12 uses a system-on-a-chip (SoC) design methodology and is
normally implemented in a 0.25µ FLASH process. HCS12 devices can
operate at up to 25 MHz and are designed to be migrated easily to faster,
smaller silicon process technologies as they are developed.

The M68HC12 improves on M68HC11 performance in several ways.
M68HC12 devices are designed using sub-micron design rules and
fabricated using advanced semiconductor processing, the same
methods used to manufacture the M68HC16 and M68300 Families of
modular microcontrollers. M68HC12 devices have a base bus speed of
8 MHz and are designed to operate over a wide range of supply
voltages.

The 16-bit wide architecture of the CPU12 also increases performance.
Beyond these obvious improvements, the CPU12 uses a reduced
number of cycles for many of its instructions, and a 20-bit ALU makes
certain CPU12 math operations much faster.

B.7.1 Reduced Cycle Counts

No M68HC11 instruction takes less than two cycles, but the CPU12 has
more than 50 opcodes that take only one cycle. Some of the reduction
comes from the instruction queue, which ensures that several program
bytes are available at the start of each instruction. Other cycle reductions
occur because the CPU12 can fetch 16 bits of information at a time,
rather than eight bits at a time.

B.7.2 Fast Math

The CPU12 has some of the fastest math ever designed into a Motorola
general-purpose MCU. Much of the speed is due to a 20-bit ALU that can
perform two smaller operations simultaneously. The ALU can also
perform two operations in a single bus cycle in certain cases.

Table B-3 compares the speed of CPU12 and M68HC11 math
instructions. The CPU12 requires fewer cycles to perform an operation,
and the cycle time is considerably faster than that of the M68HC11.
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 421

M68HC11 to CPU12 Upgrade Path
The IDIVS instruction is included specifically for C compilers, where
word-sized operands are divided to produce a word-sized result (unlike
the 32 ÷ 16 = 16 EDIV). The EMUL and EMULS instructions place the
result in registers so a C compiler can choose to use only 16 bits of the
32-bit result.

B.7.3 Code Size Reduction

CPU12 assembly language programs written from scratch tend to be
30 percent smaller than equivalent programs written for the M68HC11.
This figure has been independently qualified by Motorola programmers
and an independent C compiler vendor. The major contributors to the
reduction appear to be improved indexed addressing and the universal
transfer/exchange instruction.

Table B-3. Comparison of Math Instruction Speeds

Instruction
Mnemonic

Math
Operation

M68HC11
1 Cycle = 250 ns

M68HC11
With Coprocessor
1 Cycle = 250 ns

CPU12
1 Cycle = 40 ns

(125 ns in M68HC12)

MUL
8 × 8 = 16
(signed)

10 cycles — 3 cycles

EMUL
16 × 16 = 32
(unsigned)

— 20 cycles 3 cycles

EMULS
16 × 16 = 32

(signed)
— 20 cycles 3 cycles

IDIV
16 ÷ 16 = 16
(unsigned)

41 cycles — 12 cycles

FDIV
16 ÷ 16 = 16
(fractional)

41 cycles — 12 cycles

EDIV
32 ÷ 16 = 16
(unsigned)

— 33 cycles 11 cycles

EDIVS
32 ÷ 16 = 16

(signed)
— 37 cycles 12 cycles

IDIVS
16 ÷ 16 = 16

(signed)
— — 12 cycles

EMACS
32 × (16 × 16) ⇒ 32

(signed MAC)
— 20 cycles 12 cycles
Reference Manual S12CPUV2

422 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
In some specialized areas, the reduction is much greater. A fuzzy logic
inference kernel requires about 250 bytes in the M68HC11, and the
same program for the CPU12 requires about 50 bytes. The CPU12 fuzzy
logic instructions replace whole subroutines in the M68HC11 version.
Table lookup instructions also greatly reduce code space.

Other CPU12 code space reductions are more subtle. Memory-to-
memory moves are one example. The CPU12 move instruction requires
almost as many bytes as an equivalent sequence of M68HC11
instructions, but the move operations themselves do not require the use
of an accumulator. This means that the accumulator often need not be
saved and restored, which saves instructions.

Arithmetic operations on index pointers are another example. The
M68HC11 usually requires that the content of the index register be
moved into accumulator D, where calculations are performed, then back
to the index register before indexing can take place. In the CPU12, the
LEAS, LEAX, and LEAY instructions perform arithmetic operations
directly on the index pointers. The pre-/post-increment/decrement
variations of indexed addressing also allow index modification to be
incorporated into an existing indexed instruction rather than performing
the index modification as a separate operation.

Transfer and exchange operations often allow register contents to be
temporarily saved in another register rather than having to save the
contents in memory. Some CPU12 instructions such as MIN and MAX
combine the actions of several M68HC11 instructions into a single
operation.

B.8 Additional Functions

The CPU12 incorporates a number of new instructions that provide
added functionality and code efficiency. Among other capabilities, these
new instructions allow efficient processing for fuzzy logic applications
and support subroutine processing in extended memory beyond the
standard 64-Kbyte address map for M68HC12 devices incorporating this
feature. Table B-4 is a summary of these new instructions. Subsequent
paragraphs discuss significant enhancements.
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 423

M68HC11 to CPU12 Upgrade Path
Table B-4. New M68HC12 Instructions (Sheet 1 of 2)

Mnemonic Addressing Modes Brief Functional Description

ANDCC Immediate AND CCR with mask (replaces CLC, CLI, and CLV)

BCLR Extended Bit(s) clear (added extended mode)

BGND Inherent Enter background debug mode, if enabled

BRCLR Extended Branch if bit(s) clear (added extended mode)

BRSET Extended Branch if bit(s) set (added extended mode)

BSET Extended Bit(s) set (added extended mode)

CALL Extended, indexed
Similar to JSR except also stacks PPAGE value; with RTC
instruction, allows easy access to >64-Kbyte space

CPS
Immediate, direct,

extended, and indexed
Compare stack pointer

DBNE Relative Decrement and branch if equal to zero (looping primitive)

DBEQ Relative Decrement and branch if not equal to zero (looping primitive)

EDIV Inherent Extended divide Y:D/X = Y(Q) and D(R) (unsigned)

EDIVS Inherent Extended divide Y:D/X = Y(Q) and D(R) (signed)

EMACS Special Multiply and accumulate 16 × 16 ⇒ 32 (signed)

EMAXD Indexed Maximum of two unsigned 16-bit values

EMAXM Indexed Maximum of two unsigned 16-bit values

EMIND Indexed Minimum of two unsigned 16-bit values

EMINM Indexed Minimum of two unsigned 16-bit values

EMUL Special Extended multiply 16 × 16 ⇒ 32; M(idx) ∗ D ⇒ Y:D

EMULS Special Extended multiply 16 × 16 ⇒ 32 (signed); M(idx) ∗ D ⇒ Y:D

ETBL Special Table lookup and interpolate (16-bit entries)

EXG Inherent Exchange register contents

IBEQ Relative Increment and branch if equal to zero (looping primitive)

IBNE Relative Increment and branch if not equal to zero (looping primitive)

IDIVS Inherent Signed integer divide D/X ⇒ X(Q) and D(R) (signed)

LBCC Relative Long branch if carry clear (same as LBHS)

LBCS Relative Long branch if carry set (same as LBLO)

LBEQ Relative Long branch if equal (Z=1)

LBGE Relative Long branch if greater than or equal to zero

LBGT Relative Long branch if greater than zero

LBHI Relative Long branch if higher

LBHS Relative Long branch if higher or same (same as LBCC)

LBLE Relative Long branch if less than or equal to zero

LBLO Relative Long branch if lower (same as LBCS)
Reference Manual S12CPUV2

424 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
LBLS Relative Long branch if lower or same

LBLT Relative Long branch if less than zero

LBMI Relative Long branch if minus

LBNE Relative Long branch if not equal to zero

LBPL Relative Long branch if plus

LBRA Relative Long branch always

LBRN Relative Long branch never

LBVC Relative Long branch if overflow clear

LBVS Relative Long branch if overflow set

LEAS Indexed Load stack pointer with effective address

LEAX Indexed Load X index register with effective address

LEAY Indexed Load Y index register with effective address

MAXA Indexed Maximum of two unsigned 8-bit values

MAXM Indexed Maximum of two unsigned 8-bit values

MEM Special Determine grade of fuzzy membership

MINA Indexed Minimum of two unsigned 8-bit values

MINM Indexed Minimum of two unsigned 8-bit values

MOVB(W)
Combinations of

immediate, extended,
and indexed

Move data from one memory location to another

ORCC Immediate OR CCR with mask (replaces SEC, SEI, and SEV)

PSHC Inherent Push CCR onto stack

PSHD Inherent Push double accumulator onto stack

PULC Inherent Pull CCR contents from stack

PULD Inherent Pull double accumulator from stack

REV Special Fuzzy logic rule evaluation

REVW Special Fuzzy logic rule evaluation with weights

RTC Inherent
Restore program page and return address from stack
used with CALL instruction, allows easy access to >64-Kbyte space

SEX Inherent Sign extend 8-bit register into 16-bit register

TBEQ Relative Test and branch if equal to zero (looping primitive)

TBL Inherent Table lookup and interpolate (8-bit entries)

TBNE Relative Test register and branch if not equal to zero (looping primitive)

TFR Inherent Transfer register contents to another register

WAV Special Weighted average (fuzzy logic support)

Table B-4. New M68HC12 Instructions (Sheet 2 of 2)

Mnemonic Addressing Modes Brief Functional Description
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 425

M68HC11 to CPU12 Upgrade Path
B.8.1 Memory-to-Memory Moves

The CPU12 has both 8- and 16-bit variations of memory-to-memory
move instructions. The source address can be specified with immediate,
extended, or indexed addressing modes. The destination address can
be specified by extended or indexed addressing mode. The indexed
addressing mode for move instructions is limited to modes that require
no extension bytes (9- and 16-bit constant offsets are not allowed), and
indirect indexing is not allowed for moves. This leaves 5-bit signed
constant offsets, accumulator offsets, and the automatic
increment/decrement modes. The following simple loop is a block move
routine capable of moving up to 256 words of information from one
memory area to another.

LOOP MOVW 2,X+ , 2,Y+ ;move a word and update pointers
DBNE B,LOOP ;repeat B times

The move immediate to extended is a convenient way to initialize a
register without using an accumulator or affecting condition codes.

B.8.2 Universal Transfer and Exchange

The M68HC11 has only eight transfer instructions and two exchange
instructions. The CPU12 has a universal transfer/exchange instruction
that can be used to transfer or exchange data between any two CPU
registers. The operation is obvious when the two registers are the same
size, but some of the other combinations provide very useful results. For
example when an 8-bit register is transferred to a 16-bit register, a
sign-extend operation is performed. Other combinations can be used to
perform a zero-extend operation.

These instructions are used often in CPU12 assembly language
programs. Transfers can be used to make extra copies of data in another
register, and exchanges can be used to temporarily save data during a
call to a routine that expects data in a specific register. This is sometimes
faster and produces more compact object code than saving data to
memory with pushes or stores.
Reference Manual S12CPUV2

426 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.8.3 Loop Construct

The CPU12 instruction set includes a new family of six loop primitive
instructions. These instructions decrement, increment, or test a loop
count in a CPU register and then branch based on a zero or non-zero
test result. The CPU registers that can be used for the loop count are A,
B, D, X, Y, or SP. The branch range is a 9-bit signed value (–512 to
+511) which gives these instructions twice the range of a short branch
instruction.

B.8.4 Long Branches

All of the branch instructions from the M68HC11 are also available with
16-bit offsets which allows them to reach any location in the 64-Kbyte
address space.

B.8.5 Minimum and Maximum Instructions

Control programs often need to restrict data values within upper and
lower limits. The CPU12 facilitates this function with 8- and 16-bit
versions of MIN and MAX instructions. Each of these instructions has a
version that stores the result in either the accumulator or in memory.

For example, in a fuzzy logic inference program, rule evaluation consists
of a series of MIN and MAX operations. The min operation is used to
determine the smallest rule input (the running result is held in an
accumulator), and the max operation is used to store the largest rule
truth value (in an accumulator) or the previous fuzzy output value (in a
RAM location) to the fuzzy output in RAM. The following code
demonstrates how MIN and MAX instructions can be used to evaluate a
rule with four inputs and two outputs.

LDY #OUT1 ;Point at first output
LDX #IN1 ;Point at first input value
LDAA #$FF ;start with largest 8-bit number in A
MINA 1,X+ ;A=MIN(A,IN1)
MINA 1,X+ ;A=MIN(A,IN2)
MINA 1,X+ ;A=MIN(A,IN3)
MINA 1,X+ ;A=MIN(A,IN4) so A holds smallest input
MAXM 1,Y+ ;OUT1=MAX(A,OUT1) and A is unchanged
MAXM 1,Y+ ;OUT1=MAX(A,OUT2) A still has min input

Before this sequence is executed, the fuzzy outputs must be cleared to
zeros (not shown). M68HC11 MIN or MAX operations are performed by
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 427

M68HC11 to CPU12 Upgrade Path
executing a compare followed by a conditional branch around a load or
store operation.

These instructions can also be used to limit a data value prior to using it
as an input to a table lookup or other routine. Suppose a table is valid for
input values between $20 and $7F. An arbitrary input value can be
tested against these limits and be replaced by the largest legal value if it
is too big, or the smallest legal value if too small using the following two
CPU12 instructions.

HILIMIT FCB $7F ;comparison value needs to be in mem
LOWLIMIT FCB $20 ;so it can be referenced via indexed

MINA HILIMIT,PCR ;A=MIN(A,$7F)
MAXA LOWLIMIT,PCR ;A=MAX(A,$20)

;A now within the legal range $20 to $7F

The “,PCR” notation is also new for the CPU12. This notation indicates
the programmer wants an appropriate offset from the PC reference to
the memory location (HILIMIT or LOWLIMIT in this example), and then
to assemble this instruction into a PC-relative indexed MIN or MAX
instruction.

B.8.6 Fuzzy Logic Support

The CPU12 includes four instructions (MEM, REV, REVW, and WAV)
specifically designed to support fuzzy logic programs. These instructions
have a very small impact on the size of the CPU and even less impact
on the cost of a complete MCU. At the same time, these instructions
dramatically reduce the object code size and execution time for a fuzzy
logic inference program. A kernel written for the M68HC11 required
about 250 bytes and executed in about 750 milliseconds. The CPU12
kernel uses about 50 bytes and executes in about 16 microseconds (in
a 25-MHz HCS12).

B.8.7 Table Lookup and Interpolation

The CPU12 instruction set includes two instructions (TBL and ETBL) for
lookup and interpolation of compressed tables. Consecutive table
values are assumed to be the x coordinates of the endpoints of a line
segment. The TBL instruction uses 8-bit table entries (y-values) and
returns an 8-bit result. The ETBL instruction uses 16-bit table entries
(y-values) and returns a 16-bit result.
Reference Manual S12CPUV2

428 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
An indexed addressing mode is used to identify the effective address of
the data point at the beginning of the line segment, and the data value
for the end point of the line segment is the next consecutive memory
location (byte for TBL and word for ETBL). In both cases, the B
accumulator represents the ratio of (the x-distance from the beginning of
the line segment to the lookup point) to (the x-distance from the
beginning of the line segment to the end of the line segment). B is treated
as an 8-bit binary fraction with radix point left of the MSB, so each line
segment is effectively divided into 256 pieces. During execution of the
TBL or ETBL instruction, the difference between the end point y-value
and the beginning point y-value (a signed byte for TBL or a signed word
for ETBL) is multiplied by the B accumulator to get an intermediate
delta-y term. The result is the y-value of the beginning point, plus this
signed intermediate delta-y value.

B.8.8 Extended Bit Manipulation

The M68HC11 CPU allows only direct or indexed addressing. This
typically causes the programmer to dedicate an index register to point at
some memory area such as the on-chip registers. The CPU12 allows all
bit manipulation instructions to work with direct, extended, or indexed
addressing modes.

B.8.9 Push and Pull D and CCR

The CPU12 includes instructions to push and pull the D accumulator and
the CCR. It is interesting to note that the order in which 8-bit
accumulators A and B are stacked for interrupts is the opposite of what
would be expected for the upper and lower bytes of the 16-bit D
accumulator. The order used originated in the M6800, an 8-bit
microprocessor developed long before anyone thought 16-bit
single-chip devices would be made. The interrupt stacking order for
accumulators A and B is retained for code compatibility.

B.8.10 Compare SP

This instruction was added to the CPU12 instruction set to improve
orthogonality and high-level language support. One of the most
important requirements for C high-level language support is the ability to
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 429

M68HC11 to CPU12 Upgrade Path
do arithmetic on the stack pointer for such things as allocating local
variable space on the stack. The LEAS –5,SP instruction is an example
of how the compiler could easily allocate five bytes on the stack for local
variables. LDX 5,SP+ loads X with the value on the bottom of the stack
and deallocates five bytes from the stack in a single operation that takes
only two bytes of object code.

B.8.11 Support for Memory Expansion

Bank switching is a common method of expanding memory beyond the
64-Kbyte limit of a CPU with a 64-Kbyte address space, but there are
some known difficulties associated with bank switching. One problem is
that interrupts cannot take place during the bank switching operation.
This increases worst case interrupt latency and requires extra
programming space and execution time.

Some HCS12 and M68HC12 variants include a built-in bank switching
scheme that eliminates many of the problems associated with external
switching logic. The CPU12 includes CALL and return-from-call (RTC)
instructions that manage the interface to the bank-switching system.
These instructions are analogous to the JSR and RTS instructions,
except that the bank page number is saved and restored automatically
during execution. Since the page change operation is part of an
uninterruptable instruction, many of the difficulties associated with bank
switching are eliminated. On HCS12 and M68HC12 derivatives with
expanded memory capability, bank numbers are specified by on-chip
control registers. Since the addresses of these control registers may not
be the same in all derivatives, the CPU12 has a dedicated control line to
the on-chip integration module that indicates when a memory-expansion
register is being read or written. This allows the CPU to access the
PPAGE register without knowing the register address.

The indexed indirect versions of the CALL instruction access the
address of the called routine and the destination page value indirectly.
For other addressing mode variations of the CALL instruction, the
destination page value is provided as immediate data in the instruction
object code. CALL and RTC execute correctly in the normal 64-Kbyte
address space, thus providing for portable code.
Reference Manual S12CPUV2

430 M68HC11 to CPU12 Upgrade Path MOTOROLA

Reference Manual — S12CPUV2

Appendix C. High-Level Language Support
C.1 Introduction

Many programmers are turning to high-level languages such as C as an
alternative to coding in native assembly languages. High-level language
(HLL) programming can improve productivity and produce code that is
more easily maintained than assembly language programs. The most
serious drawback to the use of HLL in MCUs has been the relatively
large size of programs written in HLL. Larger program ROM size
requirements translate into increased system costs.

Motorola solicited the cooperation of third-party software developers to
assure that the CPU12 instruction set would meet the needs of a more
efficient generation of compilers. Several features of the CPU12 were
specifically designed to improve the efficiency of compiled HLL, and thus
minimize cost.

This appendix identifies CPU12 instructions and addressing modes that
provide improved support for high-level language. C language examples
are provided to demonstrate how these features support efficient HLL
structures and concepts. Since the CPU12 instruction set is a superset
of the M68HC11 instruction set, some of the discussions use the
M68HC11 as a basis for comparison.

C.2 Data Types

The CPU12 supports the bit-sized data type with bit manipulation
instructions which are available in extended, direct, and indexed
variations. The char data type is a simple 8-bit value that is commonly
used to specify variables in a small microcontroller system because it
requires less memory space than a 16-bit integer (provided the variable
has a range small enough to fit into eight bits). The 16-bit CPU12 can
easily handle 16-bit integer types and the available set of conditional
branches (including long branches) allow branching based on signed or
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 431

High-Level Language Support
unsigned arithmetic results. Some of the higher math functions allow for
division and multiplication involving 32-bit values, although it is
somewhat less common to use such long values in a microcontroller
system.

The CPU12 has special sign extension instructions to allow easy
type-casting from smaller data types to larger ones, such as from char
to integer. This sign extension is automatically performed when an 8-bit
value is transferred to a 16-bit register.

C.3 Parameters and Variables

High-level languages make extensive use of the stack, both to pass
variables and for temporary and local storage. It follows that there should
be easy ways to push and pull each CPU register, stack pointer based
indexing should be allowed, and that direct arithmetic manipulation of
the stack pointer value should be allowed. The CPU12 instruction set
provided for all of these needs with improved indexed addressing, the
addition of an LEAS instruction, and the addition of push and pull
instructions for the D accumulator and the CCR.

C.3.1 Register Pushes and Pulls

The M68HC11 has push and pull instructions for A, B, X, and Y, but
requires separate 8-bit pushes and pulls of accumulators A and B to
stack or unstack the 16-bit D accumulator (the concatenated
combination of A:B). The PSHD and PULD instructions allow directly
stacking the D accumulator in the expected 16-bit order.

Adding PSHC and PULC improved orthogonality by completing the set
of stacking instructions so that any of the CPU registers can be pushed
or pulled. These instructions are also useful for preserving the CCR
value during a function call subroutine.
Reference Manual S12CPUV2

432 High-Level Language Support MOTOROLA

High-Level Language Support
C.3.2 Allocating and Deallocating Stack Space

The LEAS instruction can be used to allocate or deallocate space on the
stack for temporary variables:

LEAS –10,S ;Allocate space for 5 16-bit integers
LEAS 10,S ;Deallocate space for 5 16-bit ints

The (de)allocation can even be combined with a register push or pull as
in this example:

LDX 8,S+ ;Load return value and deallocate

X is loaded with the 16-bit integer value at the top of the stack, and the
stack pointer is adjusted up by eight to deallocate space for eight bytes
worth of temporary storage. Post-increment indexed addressing is
used in this example, but all four combinations of pre/post
increment/decrement are available (offsets from –8 to +8 inclusive, from
X, Y, or SP). This form of indexing can often be used to get an index
(or stack pointer) adjustment for free during an indexed operation (the
instruction requires no more code space or cycles than a zero-offset
indexed instruction).

C.3.3 Frame Pointer

In the C language, it is common to have a frame pointer in addition to the
CPU stack pointer. The frame is an area of memory within the system
stack which is used for parameters and local storage of variables used
within a function subroutine. The following is a description of how a
frame pointer can be set up and used.

First, parameters (typically values in CPU registers) are pushed onto the
system stack prior to using a JSR or CALL to get to the function
subroutine. At the beginning of the called subroutine, the frame pointer
of the calling program is pushed onto the stack. Typically, an index
register, such as X, is used as the frame pointer, so a PSHX instruction
would save the frame pointer from the calling program.

Next, the called subroutine establishes a new frame pointer by executing
a TFR S,X. Space is allocated for local variables by executing an
LEAS –n,S, where n is the number of bytes needed for local variables.

Notice that parameters are at positive offsets from the frame pointer
while locals are at negative offsets. In the M68HC11, the indexed
addressing mode uses only positive offsets, so the frame pointer always
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 433

High-Level Language Support
points to the lowest address of any parameter or local. After the function
subroutine finishes, calculations are required to restore the stack pointer
to the mid-frame position between the locals and the parameters before
returning to the calling program. The CPU12 only requires execution of
TFR X,S to deallocate the local storage and return.

The concept of a frame pointer is supported in the CPU12 through a
combination of improved indexed addressing, universal
transfer/exchange, and the LEA instruction. These instructions work
together to achieve more efficient handling of frame pointers. It is
important to consider the complete instruction set as a complex system
with subtle interrelationships rather than simply examining individual
instructions when trying to improve an instruction set. Adding or
removing a single instruction can have unexpected consequences.

C.4 Increment and Decrement Operators

In C, the notation + + i or i – – is often used to form loop counters. Within
limited constraints, the CPU12 loop primitives can be used to speed up
the loop count and branch function.

The CPU12 includes a set of six basic loop control instructions which
decrement, increment, or test a loop count register, and then branch if it
is either equal to zero or not equal to zero. The loop count register can
be A, B, D, X, Y, or SP. A or B could be used if the loop count fits in an
8-bit char variable; the other choices are all 16-bit registers. The relative
offset for the loop branch is a 9-bit signed value, so these instructions
can be used with loops as long as 256 bytes.

In some cases, the pre- or post-increment operation can be combined
with an indexed instruction to eliminate the cost of the increment
operation. This is typically done by post-compile optimization because
the indexed instruction that could absorb the increment/decrement
operation may not be apparent at compile time.

C.5 Higher Math Functions

In the CPU12, subtle characteristics of higher math operations such as
IDIVS and EMUL are arranged so a compiler can handle inputs and
outputs more efficiently.
Reference Manual S12CPUV2

434 High-Level Language Support MOTOROLA

High-Level Language Support
The most apparent case is the IDIVS instruction, which divides two
16-bit signed numbers to produce a 16-bit result. While the same
function can be accomplished with the EDIVS instruction (a 32 by 16
divide), doing so is much less efficient because extra steps are required
to prepare inputs to the EDIVS, and because EDIVS uses the Y index
register. EDIVS uses a 32-bit signed numerator and the C compiler
would typically want to use a 16-bit value (the size of an integer data
type). The 16-bit C value would need to be sign-extended into the upper
16 bits of the 32-bit EDIVS numerator before the divide operation.

Operand size is also a potential problem in the extended multiply
operations but the difficulty can be minimized by putting the results in
CPU registers. Having higher precision math instructions is not
necessarily a requirement for supporting high-level language because
these functions can be performed as library functions. However, if an
application requires these functions, the code is much more efficient if
the MCU can use native instructions instead of relatively large, slow
routines.

C.6 Conditional If Constructs

In the CPU12 instruction set, most arithmetic and data manipulation
instructions automatically update the condition code register, unlike
other architectures that only change condition codes during a few
specific compare instructions. The CPU12 includes branch instructions
that perform conditional branching based on the state of the indicators in
the condition codes register. Short branches use a single byte relative
offset that allows branching to a destination within about ±128 locations
from the branch. Long branches use a 16-bit relative offset that allows
conditional branching to any location in the 64-Kbyte map.

C.7 Case and Switch Statements

Case and switch statements (and computed GOTOs) can use
PC-relative indirect addressing to determine which path to take.
Depending upon the situation, cases can use either the constant offset
variation or the accumulator D offset variation of indirect indexed
addressing.
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 435

High-Level Language Support
C.8 Pointers

The CPU12 supports pointers by allowing direct arithmetic operations on
the 16-bit index registers (LEAS, LEAX, and LEAY instructions) and by
allowing indexed indirect addressing modes.

C.9 Function Calls

Bank switching is a fairly common way of adapting a CPU with a 16-bit
address bus to accommodate more than 64 Kbytes of program memory
space. One of the most significant drawbacks of this technique has been
the requirement to mask (disable) interrupts while the bank page value
was being changed. Another problem is that the physical location of the
bank page register can change from one MCU derivative to another (or
even due to a change to mapping controls by a user program). In these
situations, an operating system program has to keep track of the
physical location of the page register. The CPU12 addresses both of
these problems with the uninterruptible CALL and return-from-call (RTC)
instructions.

The CALL instruction is similar to a JSR instruction, except that the
programmer supplies a destination page value as part of the instruction.
When CALL executes, the old page value is saved on the stack and the
new page value is written to the bank page register. Since the CALL
instruction is uninterruptible, this eliminates the need to separately mask
off interrupts during the context switch.

The CPU12 has dedicated signal lines that allow the CPU to access the
bank page register without having to use an address in the normal
64-Kbyte address space. This eliminates the need for the program to
know where the page register is physically located.

The RTC instruction is similar to the RTS instruction, except that RTC
uses the byte of information that was saved on the stack by the
corresponding CALL instruction to restore the bank page register to its
old value. Although a CALL/RTC pair can be used to access any function
subroutine regardless of the location of the called routine (on the current
bank page or a different page), it is most efficient to access some
subroutines with JSR/RTS instructions when the called subroutine is on
the current page or in an area of memory that is always visible in the
64-Kbyte map regardless of the bank page selection.
Reference Manual S12CPUV2

436 High-Level Language Support MOTOROLA

High-Level Language Support
Push and pull instructions can be used to stack some or all the CPU
registers during a function call. The CPU12 can push and pull any of the
CPU registers A, B, CCR, D, X, Y, or SP.

C.10 Instruction Set Orthogonality

One helpful aspect of the CPU12 instruction set, orthogonality, is difficult
to quantify in terms of direct benefit to an HLL compiler. Orthogonality
refers to the regularity of the instruction set. A completely orthogonal
instruction set would allow any instruction to operate in any addressing
mode, would have identical code sizes and execution times for similar
operations on different registers, and would include both signed and
unsigned versions of all mathematical instructions. Greater regularity of
the instruction set makes it possible to implement compilers more
efficiently, because operation is more consistent, and fewer special
cases must be handled.
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 437

High-Level Language Support
Reference Manual S12CPUV2

438 High-Level Language Support MOTOROLA

Reference Manual — S12CPUV2

Index
104
0
105
106

 . 26
5
5
5
107
108
109
110
111
. 63
. 23
. 33
. . 36
 . 37
 . 35

 . 35
 . 37
112
113
114
119
115
116
117
118
119
A

ABA instruction .
Abbreviations for system resources . 2
ABX instruction .
ABY instruction .
Access details . 98–103, 385
Accumulator offset indexed addressing mode . 45
Accumulator offset indexed indirect addressing mode 44
Accumulators .

A . 2, 39
B . 2, 39
D . 2, 39

ADCA instruction .
ADCB instruction .
ADDA instruction .
ADDB instruction .
ADDD instruction .
Addition instructions.
ADDR mnemonic .
Addressing modes .

Direct .
Extended .
Immediate .
Indexed . 26, 38
Inherent .
Relative .

ANDA instruction .
ANDB instruction .
ANDCC instruction .
Arithmetic shift .
ASL instruction .
ASLA instruction .
ASLB instruction .
ASLD instruction. .
ASR instruction .
S12CPUV2 Reference Manual

MOTOROLA Index 439

Index

120
121
. . 23
 . 43

90

122

123
124
125
126

128
129
130

47

131
132

133
134
135
136
137
138
67

139
140
ASRA instruction .
ASRB instruction .
Asserted.
Auto increment .

B

Background debug mode .
Instruction . 90, 127

Base index register . 41–45
BCC instruction. .
BCD instructions. 64, 165
BCLR instruction .
BCS instruction .
BEQ instruction. .
BGE instruction. .
BGND instruction . 90, 127
BGT instruction .
BHI instruction .
BHS instruction .
Binary-coded decimal instructions. 64, 165
Bit manipulation instructions.70, 123, 144, 429, 431

Mask operand .47, 123, 141, 143, 144
Multiple addressing modes .

Bit test instructions . 70, 80, 131, 132, 141, 143
BITA instruction .
BITB instruction .
Bit-condition branches . 80, 141, 143
BLE instruction .
BLO instruction .
BLS instruction .
BLT instruction .
BMI instruction .
BNE instruction .
Boolean logic instructions .

AND . 112, 113, 114
Complement . 158, 159, 160
Exclusive OR . 183, 184
Inclusive OR . 247, 248, 249
Negate . 243, 244, 245

BPL instruction .
BRA instruction .
Branch instructions .37, 55–57, 77, 435
Reference Manual S12CPUV2

440 Index MOTOROLA

Index

. . 38

141
142
143
144

 . 98
413
146
147

. 32
57

 . 115

435
149

150
. 68
152
. . 23
151
319
152
Bit-condition .57, 80, 141, 143
Long .56, 57, 79, 427
Loop primitive . 57, 81, 406
Offset values .78, 79, 80, 81
Offsets .
Short . 56, 57, 78
Signed . 77–79
Simple . 77–79
Subroutine . 82, 145
Summary of complementary branches 122, 200
Taken/not-taken cases . 56, 103
Unary . 77–79
Unsigned . 77–79

Branch offset . 37–38
BRCLR instruction .
BRN instruction. .
BRSET instruction .
BSET instruction. .
BSR instruction . 54, 145
Bus cycles .
Bus structure .
BVC instruction .
BVS instruction .
Byte moves . 62, 240
Byte order in memory .
Byte-sized instructions .

C

C .
C status bit .31, 71, 122, 124
CALL instruction . 48–??, 54, 82, 148, 430, 436
Case statements .
CBA instruction .
CCR (see Condition codes register)
Changes in execution flow . 53–58
CLC instruction .
Clear instructions .
Clear memory .
Cleared .
CLI instruction .
Clock monitor reset .
CLR instruction .
S12CPUV2 Reference Manual

MOTOROLA Index 441

Index

153
154
155
156
157
. 422
158
159
160
. 66
68

 . 30

 . 31

2

. 319
161
162
163
164

421

165
. 23
CLRA instruction .
CLRB instruction .
CLV instruction .
CMPA instruction .
CMPB instruction .
Code size.
COM instruction .
COMA instruction .
COMB instruction .
Compare instructions.
Complement instructions .
Computer operating properly (COP) watchdog 319
Condition codes instructions . . 88, 114, 249, 252, 258, 295, 301, 411, 429
Condition codes register . 25, 27–31

C status bit .31, 71, 122, 124
H status bit . 29, 165
I mask bit . 30, 114, 151, 280, 310, 317, 320
Manipulation .88, 114, 249, 280
N status bit .
S control bit . 28, 286
V status bit. .
X mask bit 29, 186, 258, 274, 286, 295, 300, 310, 317, 319, 320
Z status bit . 30, 125, 138

Conditional 16-bit read cycle . 102, 385
Conditional 8-bit read cycle . 102, 385
Conditional 8-bit write cycle . 102, 385
Conserving power . 89, 286, 310
Constant indirect indexed addressing mode . 4
Constant offset indexed addressing mode. 41, 42
COP reset .
CPD instruction. .
CPS instruction .
CPX instruction .
CPY instruction .
Cycle code letters. 98, 385
Cycle counts .
Cycle-by-cycle operation. 98, 385

D

DAA instruction .
DATA mnemonic .
Data types . 31, 431
Reference Manual S12CPUV2

442 Index MOTOROLA

Index

168
169
170
65

171
172
173
36

187

174
175

177

180
181
182

183
184

 . 32

319

19
. 316
323
DBEQ instruction . 166, 406
DBNE instruction . 167, 406
DEC instruction. .
DECA instruction .
DECB instruction .
Decrement instructions .
Defuzzification . 348, 368–371
DES instruction .
DEX instruction .
DEY instruction .
Direct addressing mode .
Division instructions . 69, 434

16-bit fractional .
16-bit integer . 190, 191
32-bit extended . 174, 175

Double accumulator . 25, 26

E

EDIV instruction .
EDIVS instruction .
Effective address 33, 39, 87, 224, 225, 226, 423, 432–434
EMACS instruction . 76, 176
EMAXD instruction .
EMAXM instruction . 178, 342
EMIND instruction . 179, 341
EMINM instruction .
EMUL instruction .
EMULS instruction .
Enabling maskable interrupts . 30, 151
EORA instruction .
EORB instruction .
ETBL instruction . 76, 185, 342
Even bytes. .
Exceptions . 54, 315

Interrupts .
Maskable interrupts . 320, 321
Non-maskable interrupts . 3
Priority .
Processing flow .
Resets . 315, 318–319
Software interrupts . 83, 293, 322
Unimplemented opcode trap . 315, 317, 322
S12CPUV2 Reference Manual

MOTOROLA Index 443

Index

05
. 98
 . 98
186

. 48

. 48

37
. 69
 . 39
321
27
32
4
29
5
7
29
318

. 421

74

. 377
Vectors . 315, 323
Exchange instructions .61, 186, 423, 426

Postbyte encoding . 4
Execution cycles.
Execution time .
EXG instruction. .
Expanded memory .48, 54, 430, 436

Bank switching .
Instructions .48, 82, 148, 273
Page registers.
Subroutines . 82, 436

Extended addressing mode .
Extended division .
Extension byte .
External interrupts .
External queue reconstruction . 3

HCS12 queue reconstruction . 3
HCS12 reconstruction algorithm . 33
HCS12 timing detail . 3
M68HC12 queue reconstruction . 33
M68HC12 reconstruction algorithm. 33
M68HC12 timing detail . 3

External reset .

F

Fast math.
f-cycle (free cycle) . 98, 385
FDIV instruction . 69, 187
Fractional division . 69, 187
Frame pointer . 433, 434
Free cycle . 98, 385
Fuzzy logic . 341–379

Antecedents . 346, 377
Consequents . 347, 377
Custom programming . 3
Defuzzification .73, 348, 368–373
Fuzzification . 72, 344, 374
Inference kernel . 343, 349
Inputs .
Instructions 72, 73, 237, 262–266, 311, 341, 351–373, 428
Interrupts . 365, 369–371
Knowledge base . 343, 347, 377
Reference Manual S12CPUV2

444 Index MOTOROLA

Index

. 343

25

17

35
36
431
434

190

35
192
193
194
65

85
Membership functions 72, 237, 342, 343, 344, 351–356, 374–376
Outputs . 73, 377
Rule evaluation 72, 262–266, 346, 357–368, 377
Rules . 344, 346, 377
Sets .
Tabular membership functions. 76, 374
Weighted average . 73, 311, 341, 348, 368–373

G

g-cycle (read PPAGE) . 99, 385
General purpose accumulators .
Global interrupt mask . 30, 317

H

H status bit . 29, 165
Highest priority interrupt . 3
High-level language . 431–437

Addressing modes . 431, 433, 435
Condition codes register . 4
Expanded memory . 4
Instructions .
Loop primitives .
Stack . 432, 433

I

I mask bit .30, 114, 151, 280, 317
IBEQ instruction . 188, 406
IBNE instruction . 189, 406
I-cycle (16-bit read indirect) . 99, 385
i-cycle (8-bit read indirect) . 99, 385
IDIV instruction .
IDIVS instruction. 191, 434
Immediate addressing mode .
INC instruction .
INCA instruction .
INCB instruction .
Increment instructions .
Index calculation instructions . 87, 423
Index manipulation instructions .
Index registers .25, 85, 87, 433
S12CPUV2 Reference Manual

MOTOROLA Index 445

Index

42
42
41
41
45
44
3

. 39

 . 40

49
35
195

. . 52

. 52
327

. 83

321

320

321
PC (as an index register) .27, 40, 41, 98
SP (as an index register) .26, 40, 41, 98
X . 26, 40, 98
Y . 26, 40, 98

Indexed addressing modes 26, 38–47, 403, 417–420
16-bit constant indirect .
16-bit constant offset .
5-bit constant offset .
9-bit constant offset .
Accumulator direct .
Accumulator offset .
Auto increment/decrement indexing . 4
Base index register . 41–45
Extension byte .
Limitations for BIT and MOV instructions 123, 141, 143, 144, 240, 241
Postbyte .
Postbyte encoding . 39, 403

Inference kernel, fuzzy logic . 3
Inherent addressing mode .
INS instruction .
Instruction pipe, see Instruction queue
Instruction queue .32, 51, 327, 414

Buffer .
Data movement .
Debugging .
Reconstruction . 327–338
Stages . 52, 327
Status registers. 333, 334, 336
Status signals . 52, 328–338

Instruction set . 59, 91, 387
Integer division . 69, 190–191
Interrupt instructions .
Interrupts . 319–324

Enabling and disabling .29, 30, 151, 280, 320
External .
I mask bit .30, 151, 280, 321
Instructions . 83, 84, 151, 274, 280, 293, 302
Low-power stop . 89, 286
Maskable . 30, 320
Non-maskable. .29, 315–317, 319, 320
Recognition .
Return .29, 30, 84, 274, 321
Service routines .
Reference Manual S12CPUV2

446 Index MOTOROLA

Index

196
197

343

. . 95
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
Software. 83, 293, 322
Stacking order. 321, 382
Vectors . 315, 322, 323
Wait instruction . 89, 310
X mask bit .29, 286, 310, 321

INX instruction .
INY instruction .

J

JMP instruction . 58, 198
JSR instruction . 54, 199
Jump instructions . 58, 82

K

Knowledge base .

L

Label.
LBCC instruction .
LBCS instruction. .
LBEQ instruction .
LBGE instruction .
LBGT instruction. .
LBHI instruction .
LBHS instruction. .
LBLE instruction .
LBLO instruction .
LBLS instruction .
LBLT instruction .
LBMI instruction .
LBNE instruction. .
LBPL instruction .
LBRA instruction. .
LBRN instruction .
LBVC instruction. .
LBVS instruction .
LDAA instruction. .
LDAB instruction. .
LDD instruction .
LDS instruction .
S12CPUV2 Reference Manual

MOTOROLA Index 447

Index

222
223

. 23

. 23

 . 95
. 95
. 60
 . 23
 . 23

. 81
06

228
229
230
231
232
233
234

0

235

1

239
LDX instruction .
LDY instruction .
LEAS instruction . 224, 433, 436
Least significant byte .
Least significant word .
LEAX instruction . 225, 436
LEAY instruction . 226, 436
Legal label .
Literal expression .
Load instructions .
Logic level one .
Logic level zero. .
Loop primitive instructions .57, 81, 406, 427, 434

Offset values .
Postbyte encoding . 4

Low-power stop . 89, 286
LSL instruction . 71, 227
LSLA instruction .
LSLB instruction .
LSLD instruction .
LSR instruction .
LSRA instruction. .
LSRB instruction. .
LSRD instruction .

M

M68HC11 compatibility . 33, 409–430
M68HC11 instruction mnemonics . 41
Maskable interrupts . 30, 320
MAXA instruction .
Maximum instructions . 75, 427

16-bit . 177, 178
8-bit. 235, 236

MAXM instruction . 236, 341
MEM instruction .72, 237, 341, 351–356
Membership functions . 343, 351–356
Memory and addressing symbols . 2
MINA instruction . 238, 341
Minimum instructions . 75, 427

16-bit . 179, 180
8-bit. 238, 239

MINM instruction .
Reference Manual S12CPUV2

448 Index MOTOROLA

Index

. . 92

. 23

. 23
240

 . 45
45
45
45
. . 45
241
242

47
. 45
69

. 242

 . 30

243
244
. 68
. . 23
. 31
245

93
98
21
 . 94

. 95
. 20
Misaligned instructions . 56, 57
Mnemonic .
Most significant byte .
Most significant word .
MOVB instruction .
Move instructions .62, 240, 241, 423, 426

Destination .
Multiple addressing modes .
PC relative addressing .
Reference index register .
Source .

MOVW instruction .
MUL instruction. .
Multiple addressing modes

Bit manipulation instructions. .
Move instructions .

Multiplication instructions .
16-bit . 181, 182
8-bit.

Multiply and accumulate instructions 76, 176, 311, 378

N

N status bit .
n-cycle (write PPAGE). 99, 385
NEG instruction .
NEGA instruction .
Negate instructions .
Negated .
Negative integers .
NEGB instruction .
Non-maskable interrupts . 29, 317, 319
NOP instruction . 90, 246
Notation

Branch taken/not taken . 103, 385
Changes in CCR bits .
Cycle-by-cycle operation. .
Memory and addressing .
Object code .
Operators. 22, 383
Source forms.
System resources .

Null operation instruction . 90, 246
S12CPUV2 Reference Manual

MOTOROLA Index 449

Index

. 94

. . 32

8

247
248
249
437

. . 32

. 436

0

06

3
3

318

3
3
316

17
Numeric range of branch offsets . 38, 78–81

O

Object code notation .
O-cycle (optional program word fetch) 56, 100, 385
Odd bytes .
Offset

Branch . 37–38
Index. 3–42

Opcode map . 401–402
Operators. 22, 383
Optional cycles .56, 57, 100, 385
ORAA instruction .
ORAB instruction .
ORCC instruction .
Orthogonality. .

P

Page 2 prebyte . 56, 100, 402
P-cycle (program word fetch) . 100, 385
Pipeline .
Pointer calculation instructions .87, 224, 225, 226
Pointers .
Postbyte encoding

Exchange instructions . 186, 405
Indexed addressing instructions . 4
Indexed addressing modes . 40, 403
Loop primitive instructions . 4
Transfer instructions . 282, 300, 405

Post-decrement indexed addressing mode . 4
Post-increment indexed addressing mode. 4
Power conservation . 89, 286, 310
Power-on reset .
Prebyte. 56, 100, 402
Pre-decrement indexed addressing mode . 4
Pre-increment indexed addressing mode . 4
Priority, exception. .
Program counter. .25, 27, 39, 127
Program word access cycle . 100, 385
Programming model . 19, 25, 413
Pseudo-non-maskable interrupt. 3
Reference Manual S12CPUV2

450 Index MOTOROLA

Index

250
251
252

254
255
256
257

437
260
261
437

27
32
4
29
5
7
29

. 95
37
 . 37

319
. 319
318
318
273
PSHA instruction .
PSHB instruction .
PSHC instruction .
PSHD instruction . 253, 432
PSHX instruction .
PSHY instruction .
PULA instruction. .
PULB instruction. .
PULC instruction . 258, 432
PULD instruction . 259, 432
Pull instructions .
PULX instruction. .
PULY instruction. .
Push instructions .

Q

Queue reconstruction . 3
HCS12 queue reconstruction . 3
HCS12 reconstruction algorithm . 33
HCS12 timing detail . 3
M68HC12 queue reconstruction . 33
M68HC12 reconstruction algorithm. 33
M68HC12 timing detail . 3

R

R-cycle (16-bit data read) . 101, 385
r-cycle (8-bit data read) . 100, 385
Read 16-bit data cycle. 101, 385
Read 8-bit data cycle . 100, 385
Read indirect pointer cycle . 99, 385
Read indirect PPAGE value cycle . 99, 385
Read PPAGE cycle . 99, 385
Register designators .
Relative addressing mode .
Relative offset .
Resets . 315, 318

Clock monitor .
COP .
External .
Power-on .

Return from call .
S12CPUV2 Reference Manual

MOTOROLA Index 451

Index

274
75

267
268
269
270
271
272
. 71

276
277
278

279
280
315
 . . 23
144
281

. 71
119

 . 31
. 69

293

. 95
283
284
Return from interrupt .
Return from subroutine . 2
REV instruction 72, 262–263, 341, 346, 357–362, 377
REVW instruction 72, 264–266, 341, 346, 363–368, 377
ROL instruction .
ROLA instruction .
ROLB instruction .
ROR instruction .
RORA instruction .
RORB instruction .
Rotate instructions .
RTC instruction . 48, 54, 82, 273, 430, 436
RTI instruction. .30, 84, 274, 321
RTS instruction . 55, 275

S

S control bit . 28, 286
SBA instruction .
SBCA instruction .
SBCB instruction .
S-cycle (16-bit stack write) . 101, 385
s-cycle (8-bit stack write) . 101, 385
SEC instruction .
SEI instruction. .
Service routine .
Set .
Setting memory bits .
SEV instruction .
SEX instruction . 61, 282
Shift instructions .

Arithmetic. .
Sign extension instruction . 61, 282, 432
Signed branches . 77–79
Signed integers. .
Signed multiplication .
Simple branches. 77–79
Software interrupts .
Source code compatibility . 19, 410
Source form notation .
STAA instruction. .
STAB instruction. .
Stack . 26, 415, 416
Reference Manual S12CPUV2

452 Index MOTOROLA

Index

86

 . 86

32
285
286

. 60
287
288
289
290
291
292
82

63

435

294

295
296
Stack 16-bit data cycle . 101, 385
Stack 8-bit data cycle . 101, 385
Stack operation instructions .
Stack pointer .25, 26, 39, 432

Compatibility with HC11 . 415–416
Initialization . 26, 416
Manipulation .
Stacking order. 321, 382

Stack pointer instructions . 86, 429, 432
Standard CPU12 address space .
STD instruction .
STOP continue .
STOP disable . 28, 286
STOP instruction . 28, 89, 286
Store instructions .
STS instruction .
STX instruction .
STY instruction .
SUBA instruction .
SUBB instruction .
SUBD instruction .
Subroutine instructions .
Subroutines . 54, 436

Expanded memory .54, 82, 148, 273, 436
Instructions .82, 145, 148, 199, 436
Return . 273, 275

Subtraction instructions .
SWI instruction . 83, 293, 322
Switch statements .
Symbols and notation . 20, 383

T

TAB instruction .
Table interpolation instructions .76, 185, 298, 428
Tabular membership functions. 374–376
TAP instruction .
TBA instruction .
TBEQ instruction . 297, 406
TBL instruction .76, 298, 342, 374–375
TBNE instruction . 299, 406
T-cycle (16-bit conditional read) . 102, 385
t-cycle (8-bit conditional read) . 102, 385
S12CPUV2 Reference Manual

MOTOROLA Index 453

Index

. 66
300
301

05

303
304
305
306
307
31
308

63
90
64
70
. 67
. . 77
8

. 66
. 88
65
 . 72
85

82
. 60
. 81
75
. . 62
69
76
87
. 71
. 61
 . 86
. 89
. 76
61
Termination of interrupt service routines 84, 274, 321
Termination of subroutines . 273, 275
Test instructions .
TFR instruction .
TPA instruction .
Transfer instructions . 61, 423, 426

Postbyte encoding . 4
TRAP instruction .84, 302, 322, 402
TST instruction .
TSTA instruction .
TSTB instruction .
TSX instruction .
TSY instruction .
Twos-complement form. .
TXS instruction .
Types of instructions

Addition and Subtraction .
Background and null .
Binary-coded decimal .
Bit test and manipulation. .
Boolean logic .
Branch .
Clear, complement, and negate. 6
Compare and test.
Condition code .
Decrement and increment .
Fuzzy logic .
Index manipulation .
Interrupt . 83–84
Jump and subroutine .
Load and store .
Loop primitives .
Maximum and minimum .
Move.
Multiplication and division .
Multiply and accumulate .
Pointer and index calculation .
Shift and rotate .
Sign extension .
Stacking .
Stop and wait .
Table interpolation .
Transfer and exchange .
Reference Manual S12CPUV2

454 Index MOTOROLA

Index

309

69

. 319

. 372
373

. 372
373

311
TYS instruction .

U

U-cycle (16-bit stack read) . 102, 385
u-cycle (8-bit stack read). 101, 385
Unary branches . 77–79
Unimplemented opcode trap 84, 302, 315, 317, 402
Unsigned branches . 77–79
Unsigned multiplication .
Unstack 16-bit data cycle . 102, 385
Unstack 8-bit data cycle . 101, 385
Unweighted rule evaluation 262–263, 346, 357–362, 377

V

V status bit. 31, 88
V-cycle (vector fetch) . 102, 385
Vector fetch cycle . 102, 385
Vectors, exception . 315, 323

W

WAI instruction . 89, 310
Wait instruction . 89, 310
Watchdog .
WAV instruction . 73, 311, 341, 348, 368–371

HCS12 .
M68HC12 .

wavr pseudo-instruction . 369–371
HCS12 .
M68HC12 .

W-cycle (16-bit data write) . 101, 385
w-cycle (8-bit data write) . 101, 385
Weighted average .
Weighted rule evaluation 264–266, 346, 357–359, 363–368, 377
Word moves . 62, 241
Write 16-bit data cycle . 101, 385
Write 8-bit data cycle . 101, 385
Write PPAGE cycle . 99, 385
S12CPUV2 Reference Manual

MOTOROLA Index 455

Index

312
313

36
X

X mask bit . 29, 186, 258, 274, 286, 295, 300, 310
x-cycle (8-bit conditional write). 102, 385
XGDX instruction .
XGDY instruction .

Z

Z status bit . 30, 125, 138
Zero-page addressing .
Reference Manual S12CPUV2

456 Index MOTOROLA

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

S12CPUV2/D
Rev. 0
7/2003

Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

	Revision History
	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. Introduction
	1.1 Introduction
	1.2 Features
	1.3 Symbols and Notation
	1.3.1 Abbreviations for System Resources
	1.3.2 Memory and Addressing
	1.3.3 Operators
	1.3.4 Definitions

	Section 2. Overview
	2.1 Introduction
	2.2 Programming Model
	2.2.1 Accumulators
	2.2.2 Index Registers
	2.2.3 Stack Pointer
	2.2.4 Program Counter
	2.2.5 Condition Code Register
	2.2.5.1 S Control Bit
	2.2.5.2 X Mask Bit
	2.2.5.3 H Status Bit
	2.2.5.4 I Mask Bit
	2.2.5.5 N Status Bit
	2.2.5.6 Z Status Bit
	2.2.5.7 V Status Bit
	2.2.5.8 C Status Bit

	2.3 Data Types
	2.4 Memory Organization
	2.5 Instruction Queue

	Section 3. Addressing Modes
	3.1� Introduction
	3.2� Mode Summary
	3.3� Effective Address
	3.4� Inherent Addressing Mode
	3.5� Immediate Addressing Mode
	3.6� Direct Addressing Mode
	3.7� Extended Addressing Mode
	3.8� Relative Addressing Mode
	3.9� Indexed Addressing Modes
	3.9.1 5-Bit Constant Offset Indexed Addressing
	3.9.2 9-Bit Constant Offset Indexed Addressing
	3.9.3 16-Bit Constant Offset Indexed Addressing
	3.9.4 16-Bit Constant Indirect Indexed Addressing
	3.9.5 Auto Pre/Post Decrement/Increment Indexed Addressing
	3.9.6 Accumulator Offset Indexed Addressing
	3.9.7 Accumulator D Indirect Indexed Addressing

	3.10� Instructions Using Multiple Modes
	3.10.1 Move Instructions
	3.10.2 Bit Manipulation Instructions

	3.11� Addressing More than 64 Kbytes

	Section 4. Instruction Queue
	4.1 Introduction
	4.2 Queue Description
	4.2.1 Original M68HC12 Queue Implementation
	4.2.2 HCS12 Queue Implementation

	4.3 Data Movement in the Queue
	4.3.1 No Movement
	4.3.2 Latch Data from Bus (Applies Only to the M68HC12 Queue Implementation)
	4.3.3 Advance and Load from Data Bus
	4.3.4 Advance and Load from Buffer (Applies Only to M68HC12 Queue Implementation)

	4.4 Changes in Execution Flow
	4.4.1 Exceptions
	4.4.2 Subroutines
	4.4.3 Branches
	4.4.3.1 Short Branches
	4.4.3.2 Long Branches
	4.4.3.3 Bit Condition Branches
	4.4.3.4 Loop Primitives

	4.4.4 Jumps

	Section 5. Instruction Set Overview
	5.1 Introduction
	5.2 Instruction Set Description
	5.3 Load and Store Instructions
	5.4 Transfer and Exchange Instructions
	5.5 Move Instructions
	5.6 Addition and Subtraction Instructions
	5.7 Binary-Coded Decimal Instructions
	5.8 Decrement and Increment Instructions
	5.9 Compare and Test Instructions
	5.10 Boolean Logic Instructions
	5.11 Clear, Complement, and Negate Instructions
	5.12 Multiplication and Division Instructions
	5.13 Bit Test and Manipulation Instructions
	5.14 Shift and Rotate Instructions
	5.15 Fuzzy Logic Instructions
	5.15.1 Fuzzy Logic Membership Instruction
	5.15.2 Fuzzy Logic Rule Evaluation Instructions
	5.15.3 Fuzzy Logic Weighted Average Instruction

	5.16 Maximum and Minimum Instructions
	5.17 Multiply and Accumulate Instruction
	5.18 Table Interpolation Instructions
	5.19 Branch Instructions
	5.19.1 Short Branch Instructions
	5.19.2 Long Branch Instructions
	5.19.3 Bit Condition Branch Instructions

	5.20 Loop Primitive Instructions
	5.21 Jump and Subroutine Instructions
	5.22 Interrupt Instructions
	5.23 Index Manipulation Instructions
	5.24 Stacking Instructions
	5.25 Pointer and Index Calculation Instructions
	5.26 Condition Code Instructions
	5.27 Stop and Wait Instructions
	5.28 Background Mode and Null Operations

	Section 6. Instruction Glossary
	6.1 Introduction
	6.2 Glossary Information
	6.3 Condition Code Changes
	6.4 Object Code Notation
	6.5 Source Forms
	6.6 Cycle-by-Cycle Execution
	6.7 Glossary

	Section 7. Exception Processing
	7.1 Introduction
	7.2 Types of Exceptions
	7.3 Exception Priority
	7.4 Resets
	7.4.1 Power-On Reset
	7.4.2 External Reset
	7.4.3 COP Reset
	7.4.4 Clock Monitor Reset

	7.5 Interrupts
	7.5.1 Non-Maskable Interrupt Request (XIRQ)
	7.5.2 Maskable Interrupts
	7.5.3 Interrupt Recognition
	7.5.4 External Interrupts
	7.5.5 Return-from-Interrupt Instruction (RTI)

	7.6 Unimplemented Opcode Trap
	7.7 Software Interrupt Instruction (SWI)
	7.8 Exception Processing Flow
	7.8.1 Vector Fetch
	7.8.2 Reset Exception Processing
	7.8.3 Interrupt and Unimplemented Opcode Trap Exception Processing

	Section 8. Instruction Queue
	8.1� Introduction
	8.2� External Reconstruction of the Queue
	8.3� Instruction Queue Status Signals
	8.3.1� HCS12 Timing Detail
	8.3.2� M68HC12 Timing Detail
	8.3.3� Null (Code 0:0)
	8.3.4� LAT — Latch Data from Bus (Code 0:1)
	8.3.5� ALD — Advance and Load from Data Bus (Code 1:0)
	8.3.6� ALL — Advance and Load from Latch (Code 1:1)
	8.3.7� INT — Interrupt Sequence Start (Code 0:1)
	8.3.8� SEV — Start Instruction on Even Address (Code 1:0)
	8.3.9� SOD — Start Instruction on Odd Address (Code 1:1)

	8.4� Queue Reconstruction (for HCS12)
	8.4.1� Queue Reconstruction Registers (for HCS12)
	8.4.1.1 fetch_add Register
	8.4.1.2 st1_add, st1_dat Registers
	8.4.1.3 st2_add, st2_dat Registers
	8.4.1.4 st3_add, st3_dat Registers

	8.4.2� Reconstruction Algorithm (for HCS12)

	8.5� Queue Reconstruction (for M68HC12)
	8.5.1� Queue Reconstruction Registers (for M68HC12)
	8.5.1.1 in_add, in_dat Registers
	8.5.1.2 fetch_add, fetch_dat Registers
	8.5.1.3 st1_add, st1_dat Registers
	8.5.1.4 st2_add, st2_dat Registers

	8.5.2� Reconstruction Algorithm (for M68HC12)
	8.5.2.1 LAT Decoding
	8.5.2.2 ALD Decoding
	8.5.2.3 ALL Decoding

	8.6� Instruction Tagging

	Section 9. Fuzzy Logic Support
	9.1 Introduction
	9.2 Fuzzy Logic Basics
	9.2.1 Fuzzification (MEM)
	9.2.2 Rule Evaluation (REV and REVW)
	9.2.3 Defuzzification (WAV)

	9.3 Example Inference Kernel
	9.4 MEM Instruction Details
	9.4.1 Membership Function Definitions
	9.4.2 Abnormal Membership Function Definitions
	9.4.2.1 Abnormal Membership Function Case 1
	9.4.2.2 Abnormal Membership Function Case 2
	9.4.2.3 Abnormal Membership Function Case 3

	9.5 REV and REVW Instruction Details
	9.5.1 Unweighted Rule Evaluation (REV)
	9.5.1.1 Set Up Prior to Executing REV
	9.5.1.2 Interrupt Details
	9.5.1.3 Cycle-by-Cycle Details for REV

	9.5.2 Weighted Rule Evaluation (REVW)
	9.5.2.1 Set Up Prior to Executing REVW
	9.5.2.2 Interrupt Details
	9.5.2.3 Cycle-by-Cycle Details for REVW

	9.6 WAV Instruction Details
	9.6.1 Set Up Prior to Executing WAV
	9.6.2 WAV Interrupt Details
	9.6.3 Cycle-by-Cycle Details for WAV and wavr

	9.7 Custom Fuzzy Logic Programming
	9.7.1 Fuzzification Variations
	9.7.2 Rule Evaluation Variations
	9.7.3 Defuzzification Variations

	Appendix A. Instruction Reference
	A.1 Introduction
	A.2 Stack and Memory Layout
	A.3 Interrupt Vector Locations
	A.4 Notation Used in Instruction Set Summary
	A.5 Hexadecimal to Decimal Conversion
	A.6 Decimal to Hexadecimal Conversion

	Appendix B. M68HC11 to CPU12 Upgrade Path
	B.1 Introduction
	B.2 CPU12 Design Goals
	B.3 Source Code Compatibility
	B.4 Programmer’s Model and Stacking
	B.5 True 16-Bit Architecture
	B.5.1 Bus Structures
	B.5.2 Instruction Queue
	B.5.3 Stack Function

	B.6 Improved Indexing
	B.6.1 Constant Offset Indexing
	B.6.2 Auto-Increment Indexing
	B.6.3 Accumulator Offset Indexing
	B.6.4 Indirect Indexing

	B.7 Improved Performance
	B.7.1 Reduced Cycle Counts
	B.7.2 Fast Math
	B.7.3 Code Size Reduction

	B.8 Additional Functions
	B.8.1 Memory-to-Memory Moves
	B.8.2 Universal Transfer and Exchange
	B.8.3 Loop Construct
	B.8.4 Long Branches
	B.8.5 Minimum and Maximum Instructions
	B.8.6 Fuzzy Logic Support
	B.8.7 Table Lookup and Interpolation
	B.8.8 Extended Bit Manipulation
	B.8.9 Push and Pull D and CCR
	B.8.10 Compare SP
	B.8.11 Support for Memory Expansion

	Appendix C. High-Level Language Support
	C.1 Introduction
	C.2 Data Types
	C.3 Parameters and Variables
	C.3.1 Register Pushes and Pulls
	C.3.2 Allocating and Deallocating Stack Space
	C.3.3 Frame Pointer

	C.4 Increment and Decrement Operators
	C.5 Higher Math Functions
	C.6 Conditional If Constructs
	C.7 Case and Switch Statements
	C.8 Pointers
	C.9 Function Calls
	C.10 Instruction Set Orthogonality

	Index

