DOCUMENT NUMBER
S12BDLC_BG

BDLC
Block Guide
V01.03

Original Release Date:19 JAN 2001
Revised: July 19, 2001

Motorola, Inc

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Revision History

Version | Revision Effective -
Number Date Date Author Description of Changes
V01.00 | 04/20/2001 | 01/19/2001 Original Release

Corrected formal issues w/paragraph formats, cross

V01.01 | 06/12/2001 | 06/13/2001
references and master pages.

Removed references to internal signals

Moved initialization chap. in 'RESETS’ to functional descrip
V01.02 | 06/13/2001 | 06/14/2001 Removed redundant references in the Interrupts section
Updated the Interrupts table

Changed some explanations to bullets

Document names have been added

VO01.03 | 07/19/2001 Names and Variable defenitions have been hidden

2 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Table of Contents

Section 1 Introduction

L. OV eIVIBW. . ot e 11
1.2 FeaAlUIES . . . e 11
1.3 Modes of Operation . ... .. 11
1.4 BlocK Diagram . .. ... 16

Section 2 Signal Description

2.1 OVEIVIEW. . oottt e e e 19
2.2 Detailed Signal DesCriptions. . . . .. ... o 19
2.2.1 TXB-BDLC Transmit Pin . ... ... e 19
2.2.2 RXB -BDLC Receive Pin. . . ... e e e 19

Section 3 Memory Map and Registers

3.l OVEIVIBW. . oot ettt e e 21
3.2 Module MemMoOry Map . ... oot 21
3.3  Register DesCriplioNS . . . . .ot 21
3.3.1 BDLC Control Register 1L (DLCBCRL) . . ... .. i e e 21
3.3.2 BDLC State Vector Register (DLCBSVR) . ... .. e 23
3.3.3 BDLC Control Register 2 (DLCBCR2) . . .. ... it e e 25
3.34 BDLC Data Register (DLCBDR) .. ... .. e 31
3.35 BDLC Analog Round Trip Delay Register (DLCBARD) . ...................... 32
3.3.6 BDLC Rate Select Register (DLCBRSR). . . ... .. e 33
3.3.7 BDLC Control Register (DLCSCR) . ... . e e e 35
3.3.8 BDLC Status Register (DLCBSTAT) ... ..ot e e 35

Section 4 Functional Description

A1 General. .. ... e 37
4.1.1 J1850 Frame Format . . . ... ... 37
4.1.2 J1850 VPW Symbols . . . . ... 39
4.1.3 J1850 VPW Valid/Invalid Bits & Symbols. . . ........ ... ... ... ... .. . .. 41
4.1.4 J1850 BUS EITOrS . . . .o 50
4.2 MuxInterface . ... ... 53
42.1 Mux Interface - Rx Digital Filter . . .. ... . . . . 53

@ MOTOROLA 3



Block Guide — S12BDLC_BG V01.03

4.3  Protocol Handler. . ... ... 55
431 Protocol Architecture . ... ... . 55
4.4  Transmitting A MESSAgE . . . . . vttt ittt 58
44.1 BDLC Transmission Control BitS . . . . .. .. ... 58
4.4.2 Transmitting EXCEPLIONS. . . . . . oottt 60
4.4.3 Aborting a TranSMISSION . . . . ...ttt e 61
45 ReCeiVINg A MESSATE . . ..ttt 62
45.1 BDLC Reception Control BitS. . . ... ..o 63
45.2 Receiving a Message withthe BDLC module . ............. ... ... ... ........ 63
45.3 Filtering Received MeSSages. . . . ...ttt e 64
45.4 Receiving EXCeptioNS. . . . ... 64
4.6  Transmitting An In-Frame Response (IFR) . ... e 67
4.6.1 IFR Types Supported by the BDLC module. . ......... ... ... .. ... 67
4.6.2 BDLC IFR Transmit Control BitS . . . ... .. e 68
4.6.3 Transmit Single Byte IFR . . . . ... 69
4.6.4 Transmit Multi-Byte IFR 1 . . . ... 69
4.6.5 Transmit Multi-Byte IFR O . . .. ... 70
4.6.6 Transmitting An IFR withthe BDLC module .. ......... ... ... ... .. ... ...... 70
4.6.7 Transmitting IFR EXCEpPtions . . . . ... 76
4.7 Receiving An In-Frame Response (IFR) . ... ... e 78
4.7.1 Receiving an IFR withthe BDLC module. . .. ........... ... .. . . 78
4.7.2 Receiving IFR EXCEPLIONS . . . . ... e 79
4.8 Special BDLC Module Operations . . . ... ..o e 80
48.1 Transmitting Or Receiving A Block Mode Message. .. .......... ... ... 80
4.8.2 Receiving AMessage IN4X Mode. . ... i 80
4.9 BDLC Module Initialization . ....... ... e 81
49.1 Initialization SEqUENCE . . . . . .. 82
4.9.2 Initializing the Configuration BitS . . . ... ... . . 82
4.9.3 Exiting Loopback Mode and Enabling the BDLC module ..................... 83
49.4 Enabling BDLC INTEITUPLS . . . ..t e e e e 83

Section 5 Resets
51 GENeral. . . . 87

Section 6 Interrupts
6.1  General. . ... .. 89



Block Guide — S12BDLC_BG V01.03

Appendix A Electrical Specifications

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

6 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

List of Tables

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 6-1

@ MOTOROLA

Module Memory Map . . . ... 21
INterrupt SUMMATY . . . ... 23
Transmit In-Frame Response Control Bit Priority Encoding . ................ 27
BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment . ... .. 33
BDLC Rate Selection for Binary Frequencies [CLKS =1]................... 34
BDLC Rate Selection for Integer Frequencies [CLKS=0] .................. 35
BDLC Transmitter VPW Symbol Timing for Integer Frequencies .. ........... 42
BDLC Transmitter VPW Symbol Timing for Binary Frequencies. .. ........... 43
BDLC Receiver VPW Symbol Timing for Integer Frequencies .. ............. 43
BDLC Receiver VPW Symbol Timing for Binary Frequencies. .. ............. 44
BDLC Receiver VPW 4X Symbol Timing for Integer Frequencies. . . .......... 44
BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies . . . .......... 44
BDLC module J1850 Error SUMmary . ..........iin i 52
IFR Control Bit Priority Encoding . . . . ... ..o 69
INterrupt SUMMATY . . . ... 89



Block Guide — S12BDLC_BG V01.03

8 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

List of Figures

Figure 1-1
Figure 1-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17

@ MOTOROLA

BDLC Operating Modes State Diagram. . . . ...t 12
BDLC Block Diagram. . . . ... 16
BDLC Control Register L. . ... .. e 21
BDLC State Vector Register . ... 23
BDLC Control Register 2. . . ... .. 25
Types of In-Frame Response . . ... e 28
BDLC Data Register . . ... 31
BDLC Analog Round Trip Delay Register . . ......... ... ... 32
BDLC Rate Select Register. . ... 34
BDLC Control RegiSter . . ... ..o 35
BDLC Status Register . . . ... 36
J1850 Bus Message Format (VPW) . ... . 37
J1850 VPW Symbols. . . . ..o 40
J1850 VPW Passive Symbols . .. ....... ... 46
J1850 VPW EOF and IFS Symbols. . . ... ... 47
J1850 VPW Active SymbolS . . ... ... 48
J1850 VPW BREAK Symbol . . ... ... . 49
J1850 VPW Bitwise Arbitrations . . .......... 50
BDLC Module Rx Digital Filter Block Diagram. . ... ...................... 54
BDLC Protocol Handler Outline. . .. ... ... . 56
Basic BDLC Transmit Flowchart . . ... ... ... . . .. 62
Basic BDLC Receive Flowchart. . . ... ... i 66
Transmitting AType LIFR. . . .. 72
Transmitting AType 2 IFR. . . .. 74
Transmitting AType S IFR. . . ... 77
Receiving An IFR Withthe BDLC module. . . ........ ... ... ... 79
Basic BDLC Module Transmit Flowchart. . ........... ... ... ... .. ..... 81
Basic BDLC Module Initialization Flowchart . ........................... 85

9



Block Guide — S12BDLC_BG V01.03

10 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Section 1 Introduction

1.1 Overview

The BDLC module is a serial communication module which allows the user to send and receive mgssages
across a Society of Automotive Engineers (SAE) J1850 serial communication néth®ikser’s

software handles each transmitted or received message on a byte-by-byte basis, while the BDLC performs
all of the network access, arbitration, message framing and error detection duties.

It is recommended that the reader be familiar with the operation and requirements of the SAE J1850
protocol as described in the document “SAE Standard J1850 Class B Data Communications Network
Interface” prior to proceeding with this specification.

of the IP Bus signals and bus control is assumed in the writing of this document. For details, refef to the

The BDLC module is designed in a modular structure for use as an IP block. A general working knowledge
SRS IP Bus specifications.

1.2 Features

Features of the BDLC module include the following: |

* SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for
Low-Speed £ 125 Kbps) Serial Data Communications in Automotive Applications

* 10.4 Kbps Variable Pulse Width (VPW) Bit Format

» Digital Noise Filter

* Digital Loopback Mode

» 4X Receive Mode, 41.6 Kbps, Supported

* Block Mode Receive and Transmit Supported

» Collision Detection

» Hardware Cyclical Redundancy Check (CRC) Generation and Checking

» Dedicated Register for Symbol Timing Adjustments

» IP Bus Interface |
* In-Frame Response (IFR) Types 0, 1, 2, and 3 Supported

* Power-Saving Stop and Wait Modes with Automatic Wakeup on Network Activity
» Polling and CPU Interrupt Generation with Vector Lookup Available

1.3 Modes of Operation

« The BDLC module has 6 main modes of operation which interact with the power supplies, ping, and
the rest of the MCU as shown below.

@ MOTOROLA 11



Block Guide — S12BDLC_BG V01.03

Power Off

Vad > Vga(Min.) and

Vug < Vgg(Min.) Any MCU reset source asserted

Any MCU reset source asserted
(from any mode)

No MCU reset source asserted

BDLC
Disabled

BDLCE cleared in DLCSCR registgr BDLCE set in DLCSCR register

Network activity or
other MCU wake-up

BDLC Wait

Network activity or
other MCU wake-up

BDLC Stop

Figure 1-1 BDLC Operating Modes State Diagram

STOP instruction or (WAIT instruction and WCM=0)
(WAIT instruction and WCM=1)

* Power Off

This mode is entered from the Reset mode whenever the BDLC module supply voljadep's
below its minimum specified value for the BDLC module to guarantee operation. The BDL
module will be placed in the Reset mode by a system Low Voltage Reset (LVR) before beihg
powered down. In this mode, the pin input and output specifications are not guaranteed.

* Reset

This mode is entered from the Power Off mode whenever the BDLC module supply vqjtag¢ V
rises above its minimum specified valug§in)) and some MCU reset source is asserted. To
prevent the BDLC from entering an unknown state, the internal MCU reset is asserted while

12 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

powering up the BDLC module. BDLC Reset mode is also entered from any other mode as spon as
one of the MCU's possible reset sources (e.g. LVR, POR, COP watchdog, Reset pin etc.) is
asserted.

In this mode, the internal BDLC module voltage references are operajyes supplied to the
internal circuits, which are held in their reset state and the internal BDLC module system clock is
running. Registers will assume their reset condition. Outputs are held in their programmed Reset
state, inputs and network activity are ignored.

« BDLC Disabled

This mode is entered from the Reset mode after all MCU reset sources are no longer asserted. It is
entered from the Run mode whenever the BDLCE bit in the DLCSCR register is cleared.

module to be configured for proper operation on the J1850 bus. The IP bus interface clocks

In this mode the mux interface clockdf) is stopped to conserve power and allow the BDLC
re left
running in this mode to allow access to all BDLC module registers for initialization.

e Run

This mode is entered from the BDLC Disabled mode when the BDLCE bitin the DLCSCR register
is set. Itis entered from the BDLC Wait mode whenever activity is sensed on the J1850 bus or some
other MCU source wakes the CPU out of Wait mode.

It is entered from the BDLC Stop mode whenever network activity is sensed or some other MCU
source wakes the CPU out of Stop mode. Messages will not be received properly until the clocks
have stabilized and the CPU is also in the Run mode.

 BDLC Wait (Core Specific)

This power conserving mode is automatically entered from the Run mode whenever the CPU
executes a WAIT instruction and if the WCM bit in the DLCBCR1 register is previously cleared.
In this mode, the BDLC module internal clocks continue to run. Any activity on the J1850 netyvork
will cause the BDLC module to exit BDLC Wait mode and generate an unmaskable interrupt pf the
CPU. This wakeup interrupt state is reflected in the DLCBSVR, encoded as the highest priority
interrupt. This interrupt can be cleared by the CPU with a read of the DLCBSVR.

— Wakeup from BDLC Wait with CPU in WAIT

If the CPU executes the WAIT instruction and the BDLC module enters the WAIT mod
(WCM = 0), the clocks to the BDLC module as well as the clocks in the MCU continue to fun.
Therefore, the message which wakes up the BDLC module from WAIT and the CPU frgm
WAIT mode will also be received correctly by the BDLC module. This is because all of the
required clocks continue to run in the BDLC module in WAIT mode.The wakeup behavipr of
the BDLC module applies regardless of whether the BDLC module is in normal or 4X mode
when the WAIT instruction is executed.

 BDLC Stop (Core Specific)

This power conserving mode is automatically entered from the Run mode whenever the CPU
executes a STOP instruction, or if the CPU executes a WAIT instruction and the WCM bit in the
DLCBCRU1 register is previously set. In this mode, the BDLC internal clocks are stopped. Any
activity on the network will cause the BDLC module to exit BDLC Stop mode and generatejan

@ MOTOROLA 13



Block Guide — S12BDLC_BG V01.03

unmaskable interrupt of the CPU. This wakeup interrupt state is reflected in the DLCBSVR,
encoded as the highest priority interrupt. This interrupt can be cleared by the CPU with a read of
the DLCBSVR. Depending upon which low-power mode instruction the CPU executes to cause the
BDLC module to enter BDLC Stop, the message which wakes up the BDLC module (and the CPU)
may or may not be received. There are two different possibilities, both of which is described below.
These descriptions apply regardless of whether the BDLC module is in normal or 4X modejwhen
the STOP or WAIT instruction is executed.

— Wakeup from BDLC Stop with CPU in STOP

When the CPU executes the STOP instruction, all clocks in the MCU, including clocks to the
BDLC module, are turned off. Therefore, the message which wakes up the BDLC modulf and
the CPU from STOP mode will not be received. This is due primarily to the amount of time
required for the MCU's oscillator to stabilize before the clocks can be applied internally to the
other MCU modules, including the BDLC module. |

— Wakeup from BDLC Stop with CPU in WAIT

If the CPU executes the WAIT instruction and the BDLC module enters the Stop mode (WCM
=1), the clocks to the BDLC module are turned off, but the clocks in the MCU continue tojrun.
Therefore, the message which wakes up the BDLC module from Stop and the CPU from WAIT
mode will be received correctly by the BDLC module. This is because very little time is reqyired
for the CPU to turn the clocks to the BDLC module back on once the wakeup interrupt ogcurs.

NOTE: While the BDLC module will correctly receive a message which arrives when the
BDLC module is in Stop mode or Wait mode and the MCU is in WAIT mode, if the
user enters this mode while a message is being received, the data in the message
will become corrupted. This is due to the steps required for the BDLC module to |
resume operation upon exiting Stop mode or Wait mode, and its subsequent
resynchronization with the SAE J1850 bus.

» Digital Loopback

When a bus fault has been detected, the digital loopback mode is used to determine if the fault
condition is caused by failure in the node’s internal circuits or elsewhere in the network, including
the node’s analog physical interface. In this mode, the input to the digital filter is disconnected from
the receive pin input (RXB). The input to the digital filter is then connected to the transmitter output
to form the loopback connection. The transmit pin (TXB) is negated and will always drive a passive
state onto the bus. Digital loopback mode is entered by setting the DLOOP bit in Section 3.3.3
BDLC Control Register 2 (DLCBCR2).

* Normal and Emulation Mode Operation (Core Specific)

The BDLC module operates in the same manner in all Normal and Emulation Modes. All BPLC
module registers can be read and written except those that are reserved, unimplemented, pr write
once. The user must be careful not to unintentionally write a register when using 16-bit writes in
order to avoid unexpected BDLC module behavior. |

» Special Mode Operation (Core Specific)

14 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Some aspects of BDLC module operation can be modified in special test mode. This modg is
reserved for internal use only.

* Low Power Options (Core Specific)

The BDLC module can save power in Disabled, Wait, and Stop modes. A complete descripfon of
what the BDLC module does while in a low power mode can be fouBddtion 1.3 Modes of
Operation.

@ MOTOROLA 15



Block Guide — S12BDLC_BG V01.03

1.4 Block Diagram

‘ To CPU A
bus clock———» +
CPU INTERFACE
CPU Interface [ BCR1 [ BSVR |[BCR2 |BDR [BARD ]
// 8 TX Data ¢Control/ Status 8/ /' RX Data
bus clock > | TX Shadow Register | | RX Shadow Register |
8
TX Data 8// RX Data
Protocol Handler | TX Shift Register | | RX Shift Register |
Protocol State Machine
TX Data Control/ Status RX Data
bus clock ——p» '
Symbol Encoder/Decoder
A Rx Data
TX Data RX Digital
MUX Interface Filter
RX Data
Loopback
Multiplexer
T TRX Data

Yxs To Physical Interface |RXB

Figure 1-2 BDLC Block Diagram

16 @ MOTOROLA




Block Guide — S12BDLC_BG V01.03

Figure 1-2 shows the organization of the BDLC module. The Buffers provide storage for data redeived
and data to be transmitted onto the J1850 bus. The Protocol Handler is responsible for the encoding and
decoding of data bits and special message symbols during transmission and reception. The MUX Interface
provides the link between the BDLC digital section and the analog Physical Interface. The wave shaping,
driving and digitizing of data is performed by the Physical Interface.

NOTE: The Physical Interface is not implemented in the BDLC module and must be |
provided externally.

The main functional blocks of the BDLC module are explained in greater detail in |
the following sections.

Use of the BDLC module in message networking fully implements the “SAE |
Standard J1850 Class B Data Communication Network Interface” specification.

@ MOTOROLA 17



Block Guide — S12BDLC_BG V01.03

18 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Section 2 Signal Description

2.1 Overview
The BDLC module has a total of 2 external pins.
2.2 Detailed Signal Descriptions

2.2.1 TXB - BDLC Transmit Pin

The TXB pin serves as the transmit output channel for the BDLC module.

2.2.2 RXB - BDLC Receive Pin

The RXB pin serves as the receive input channel for the BDLC module.

@ MOTOROLA

19



Block Guide — S12BDLC_BG V01.03

20 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Section 3 Memory Map and Registers

3.1 Overview

This section provides a detailed description of all memory and registers accessible to the end user.

3.2 Module Memory Map

Table 3-1 Module Memory Map

Address Use Access

Base +$ 00 BDLC Control Register 1 (DLCBCR1) R/W |
Base +$ 01 BDLC State Vector Register (DLCBSVR) R/W |
Base +$ 02 BDLC Control Register 2 (DLCBCR2) R/W |
Base +$_03 BDLC Data Register (DLCBDR) R/W |
Base +$ 04 | BDLC Analog RoundTrip Delay Register (DLCBARD) R/W |
Base +$_05 BDLC Rate Select Register (DLCBRSR) R/W |
Base +$ 06 BDLC Control Register (DLCSCR) R/W |
Base +$_07 BDLC Status Register (DLCBSTAT) R/W |

3.3 Register Descriptions

3.3.1 BDLC Control Register 1 (DLCBCR1)

This register is used to configure and control the BDLC module.

Register Offset: $ 00 |
7 6 5 4 3 2 1 0
VF:/ IMSG CLKS 0 0 0 0 IE WCM
RESET: 1 1 0 0 0 0 0 0

[ ] =Unimplemented or Reserved

Figure 3-1 BDLC Control Register 1

READ: any time

WRITE: IMSG, IE, and WCM any time.
CLKS write once in normal and emulation modes.
CLKS bit has modified functionality in special test mode.
Writes to unimplemented bits 5-2 are ignored.

@ MOTOROLA 21



Block Guide — S12BDLC_BG V01.03

IMSG — Ignore Message (Bit 7)

This bit allows the CPU to ignore messages by disabling updates of the DLCBSVR register until a new
Start of Frame (SOF) or a BREAK symbol is detected. BDLC module transmitter and receivel|
operation are unaffected by the state of the IMSG bit.

1 = Disable DLCBSVR Updates. When set, all BDLC interrupt sources (exceptions are degcribed
below) will be prevented from updating DLCBSVR status bits. Setting IMSG does not clear
pending interrupt flags, the behavior of which will still be as described in Section BDLC State
Vector Register (DLCBSVR). If this bit is set while the BDLC is receiving or transmitting a
message, state vector register updates will be inhibited for the rest of the message.

0 = Enable DLCBSVR Updates. This bit is automatically cleared by the reception of a SOF symbol
or a BREAK symbol. It will then allow updates of the state vector register to occur.

There are two situations in which interrupts will not be masked by the IMSG bit: when a wakeup
interrupt occurs; and when a receiver error occurs which causes a byte pending transmission to be
flushed from the transmit shadow register. See Section 3.3.4 BDLC Data Register (DLCBDR) for a
description of the conditions which cause a pending transmission to be flushed.

CLKS — Clock Select (Bit 6)

The nominal BDLC operating frequency (mux interface clock frequengy.) must always be

1.048576 MHz or 1 MHz in order for J1850 bus communications to take place properly. The CLKS
register bit is provided to allow the user to indicate to the BDLC module which frequency (1.04p576
MHz or 1 MHz) is used so that each symbol time can be automatically adjusted.

The CLKS bit is a write once bit. All writes to this bit will be ignored after the first one.
1 = Binary frequency (1.048576 MHz) is used fgjid

0 = Integer frequency (1 MHz) is used. fggf

Section 4.1.3 J1850 VPW Valid/Invalid Bits & Symbols on page 41 describes the transmitter and
receiver VPW symbol timing for integer and binary frequencies.

IE — Interrupt Enable (Bit 1)

This bit determines whether the BDLC module will generate CPU interrupt requests. halcfect
CPU interrupt requests when exiting the BDLC module Stop or Wait modes. Interrupt requests \l/ill be
maintained until all of the interrupt request sources are cleared, by performing the specified actions
upon the BDLC module’s registers. Interrupts that were pending at the time that this bit is clearepl may
be lost.

1 = Enable interrupt requests from BDLC module

0 = Disable interrupt requests from BDLC module

If the programmer does not wish to use the interrupt capability of the BDLC module, the BDLC ptate
Vector Register (DLCBSVR) can be polled periodically by the programmer to determine BDL
module states. Refer to Section 3.3.2 BDLC State Vector Register (DLCBSVR) on page 23 fgr a
description of DLCBSVR register and how to clear interrupt requests.

22 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

WCM — Wait Clock Mode (Bit OYProvided CPU has Low Power Mode Options)

This bit determines how the BDLC module responds when the CPU enters WAIT mode. As desgribed
in Section 1.3 Modes of Operation on page 11, the BDLC module can respond by either entefing
BDLC_STOP mode, where all internal clocks are stopped, or entering BDLC_WAIT mode where
internal clocks are allowed to run.

1 = Stop BDLC internal clocks during CPU wait mode (BDLC_STOP)

0 = Run BDLC internal clocks during CPU wait mode (BDLC_WAIT)

3.3.2 BDLC State Vector Register (DLCBSVR)

This register is provided to substantially decrease the CPU overhead associated with servicing interrupts
while under operation of a MUX protocol. It provides a index offset that is directly related to the BDLC
module’s current state, which can be used with a user supplied jump table to rapidly enter an intﬂ?rupt

service routine. This eliminates the need for the user to maintain a duplicate state machine in software.

Register Offset: $ 01 |

7 6 5 4 3 2 1 0
R 0 0 13 12 11 10 0 0

w
RESET: 0 0 0 0 0 0 0 0

[ ] =unimplemented or Reserved

Figure 3-2 BDLC State Vector Register

READ: any time
WRITE: ignored

I[3:0] — Interrupt State Vector (Bits 5- 2)
These bits indicate the source of the interrupt request that is currently pending.

Table 3-2 Interrupt Summary

BSVR 13 12 11 10 Interrupt Source Priority
$00 0 0 0 0 No Interrupts Pending 0 (Lowest)
$04 0 0 0 1 Received EOF 1
$08 0 0 1 0 Received IFR byte 2
$0C 0 0 1 1 Rx data register full 3
$10 0 1 0 0 Tx data register empty 4
$14 0 1 0 1 Loss of arbitration 5
$18 0 1 1 0 CRC error 6
$1C 0 1 1 1 Symbol invalid or out of range 7
$20 1 0 0 0 Wakeup 8 (Highest)

@ MOTOROLA 23



Block Guide — S12BDLC_BG V01.03

The state encoding of the interrupt sources mean that only one interrupt source is dealt with at a time. Once
the highest priority interrupt source is dealt with, if another interrupt event of a lower priority has also
occurred, the value corresponding to that interrupt source appears in the BSVR. This continues until all
BDLC interrupt sources have been dealt with and all bits in the BSVR are cleared.

24

Wakeup

The BDLC has two different power-conserving modes, stop and wait. Wakeup from these modes
is described below.

Wakeup from BDLC Wait with CPU in Wait

If the CPU executes a WAIT instruction and the BDLC enters the BDLC wait mode, the clocks to
the BDLC as well as the clocks in the MCU continue to run. The message which generates a
Wake-up interrupt of the BDLC and the CPU will be received correctly.

Wakeup from BDLC Stop with CPU in Wait

If the CPU executes a WAIT instruction and the BDLC enters the BDLC stop mode, the clocks to
the BDLC are turned off, but the clocks in the MCU continue to run. The message which generates
a Wake-up interrupt of the BDLC and the CPU will be received correctly. To ensure this, the EOF
following the last message appearing on the bus must be received; otherwise, the message will not
be received correctly.

Wakeup from BDLC Stop with CPU in Stop

If the CPU executes a STOP all clocks to the BDLC as well as the clocks in the MCU are turned
off including clocks to the BDLC. The message which generates a Wake-up interrupt of the BDLC
and the CPU will not be received correctly.

Symbol Invalid or Out of Range
CRC Error

The Cyclical Redundancy Check Byte is used by the receiver(s) of each message to determine if
any errors have occurred during the transmission of the message. If the message is not error free,
the CRC error status is shown in the BSVR.

Loss of Arbitration

The Loss of Arbitration status is entered when a loss of arbitration occurs while the BDLC is
transmitting onto the bus.

Tx Data Register Empty

The Tx Data Register Empty (TDRE) Byte is used to tell when data has been unloaded from the
BDLC Data Register (BDR).

Rx Data Register Full

The Rx Data Register Full (RDRF) Byte is used to tell when data has been loaded in the BDLC Data
Register (BDR).

Received IFR Byte

The BDLC can transmit and receive all four types of in-frame responses. As each byte of an IFR is
received, the BSVR indicates this by setting this state.

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

* Received EOF

When a 280us passive period on the bus is received, it signifies an EOF. Whenever this occurs, the
EOF flag is set.

* No Interrupts Pending

This interrupt cannot generate an interrupt of the CPU.

3.3.3 BDLC Control Register 2 (DLCBCR2)

This register controls transmitter operations of the BDLC module.

Register Offset: $ 02 |

7 6 5 4 3 2 1 0
VIT/ SMRST DLOOP RX4XE NBFS TEOD TSIFR TMIFR1 TMIFRO
RESET: 0 1 0 0 0 0 0 0

Figure 3-3 BDLC Control Register 2

READ: any time
WRITE: any time

SMRST— State Machine Reset (Bit 7)

The programmer can use this bit to reset the BDLC state machines to an initial state after the user put
the off-chip analog transceiver in loop back mode.

1 = Setting SMRST arms the state machine reset generation logic. Setting SMRST does not affect
BDLC module behavior in any way.

0 = Clearing SMRST after it has been set will cause the generation of a state machine reset. After
SMRST is cleared, the BDLC requires the bus to be idle for a minimum of an End of Ffame
symbol (EOF) time before allowing the reception of a message. The BDLC requires the :ﬁjs to
be idle for a minimum of an Inter-Frame Separator symbol (IFS) time before allowing any
message to be transmitted.

DLOOP— Digital Loopback Mode (Bit 6)

This bit determines the source to which the input of the digital filter is connected and can be used to
isolate bus fault conditions. If a fault condition has been detected on the bus, this control bit allows the
programmer to disconnect the digital filter from input from the receive pin (RXB) and connect it to the
transmit output to the pin (TXB). In this configuration, data sent from the transmit buffer should be
reflected back into the receive buffer. If no faults exist in the digital block, the fault is in the physical
interface block or elsewhere on the J1850 bus.

@ MOTOROLA 25



Block Guide — S12BDLC_BG V01.03

1 = When set, digital filter input is connected to the transmitter output. The BDLC module ishow
in Digital Loopback Mode of operation. The transmit pin (TXB) is driven low and not driven
by the transmitter output.

0 = When cleared, digital filter input is connected to receive pin (RXB) and the transmitter output
is connected to the transmit pin (TXB). The BDLC module is taken out of Digital Loopbjack
Mode and can now drive and receive from the J1850 bus normally. After writing DLOOP to
zero, the BDLC module requires the bus to be idle for a minimum of an End of Frame symbol
time before allowing a reception of a message. The BDLC module requires the bus to pe idle
for a minimum of an Inter-Frame Separator symbol time before allowing any message to be
transmitted.

NOTE: The DLOORP bit is a fault condition aid and should never be altered after the
DLCBDR is loaded for transmission. Changing DLOOP during a transmission may
cause corrupted data to be transmitted onto the J1850 network.

RX4XE — Receive 4X Enable (Bit 5)

This bit determines if the BDLC operates at normal transmit and receive speed (10.4 kbps) or rpceive
only at 41.6 kbps. This feature is useful for fast download of data into a J1850 node for diagnostic or
factory programming of the node.
1 = When set, the BDLC module is put in 4X (41.6 kbps) receive only operation.
0 = When cleared, the BDLC module transmits and receives at 10.4 kbps. Reception of a BIIREAK
symbol automatically clears this bit and sets the symbol invalid or out of range flag
(DLCBSVR = $1C).

The effect of 4X receive operation on receive symbol timing boundaries is described in Transmit and
Receive Symbol Timing Specifications. The RX4XE bit is not affected by entry or exit from BDLL.C
stop or wait modes.

NBFS— Normalization Bit Format Select (Bit 4)

This bit controls the format of the Normalization Bit (NB). SAE J1850 strongly encourages the use of
an active long: ‘0’ for In-Frame Responses containing CRC and active short, ‘1’ for In-Frame
Responses without CRC.

1 =NBthatis received or transmitted is a ‘0’ when the response part of an In-Frame Response (IFR)
ends with a CRC byte. NB that is received or transmitted is a ‘1’ when the response part of an
In-Frame Response (IFR) does not end with a CRC byte.

0 =NB thatis received or transmitted is a ‘1’ when the response part of an In-Frame Response (IFR)
ends with a CRC byte. NB that is received or transmitted is a ‘0’ when the response part of an
In-Frame Response (IFR) does not end with a CRC byte.

TEOD— Transmit End of Data (Bit 3)

This bit is set by the programmer to indicate the end of a message being sent by the BDLC. I will
append an 8-bit CRC after completing transmission of the current byte in the Tx Shift Register
followed by the EOD symbol. If the transmit shadow register (refer to Rx & Tx Shadow Registers for

a description of the transmit shadow register) is full when TEOD is set, the CRC byte and EOD wiill
be transmitted after the current byte in the Tx Shift Register and the byte in the Tx Shadow Register
have been transmitted. Once TEOD is set, the transmit data register empty flag (TDRE) in the BDLC

26 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

State Vector Register (DLCBSVR) is cleared to allow lower priority interrupts to occur. This bitis also
used to end an IFR. Bits TSIFR, TMIFR1, and TMIFRO determine whether a CRC byte is appended
before EOD transmission for IFRs.

1 = Transmit EOD symbol.

0 = The TEOD bit will be automatically cleared after the first CRC bit is sent, or if an error or loss
of arbitration is detected on the bus. When TEOD is used to end an IFR transmission, TEOD
is cleared when the BDLC receives back a valid EOD symbol, or an error condition or loss of
arbitration occurs.

TSIFR, TMIFR1, TMIFRO— Transmit In-Frame Response Control (Bits 2-0)

These three bits control the type of In-Frame Response being sent. The programmer should not set
more than one of these control bits to a one at any given time. However, if more than one of these three
control bits are set to one, the priority encoding logic will force the internal register bits to a known
value as shown in the following table. But, when these bits are read, they will be the same as written
earlier. For instance, if “011” is written to TSIFR, TMIFR1, TMIFRO, then internally, they’ll be
encoded as “010”. However, when these bits are later read back, it'll still be “011”.

Table 3-3 Transmit In-Frame Response Control Bit Priority Encoding

WRITE READ ACTUAL (internal register)
TSIFR | TMIFR1 | TMIFROJ TSIFR | TMIFR1 | TMIFROJ TSIFR | TMIFR1 | TMIFRO
0 0 0 0 0 0 0 0 0
1 X X 1 X X 1 0 0
0 1 X 0 1 X 0 1 0
0 0 1 0 0 1 0 0 1

The BDLC supports the In-frame Response (IFR) feature of J1850 by setting these bits correctly. The
four types of J1850 IFR are shown in Figure 3-4. The purpose of the in-frame response modes is to
allow single or multiple nodes to acknowledge receipt of the data by responding to a received message
after they have seen the EOD symbol. For VPW modulation, the first bit of the IFR is always passive;
therefore, an active normalization bit must be generated by the responder and sent prior to its
ID/address byte. When there are multiple responders on the J1850 bus, only one normalization bit is
sent which assists all other transmitting nodes to sync their responses.

@ MOTOROLA 27



Block Guide — S12BDLC_BG V01.03

8 Header Data Field CRC 8 8
[y B n |
Type 0 - No IFR
8 Header Data Field CRC 5 NB| ID 8 8
Type 1 - Single Byte From a Single Responder (without CRC)
8 Head Data Field crc| © [NB | |88
O Header ata Fie o ID1 - - bn |8 2
Type 2 - Single Byte From Multiple Responders (without CRC)
4 Header ' Al i 50
a Data Field CRC| o |[NB IFR Data Field CRC 8 %
(w )

Type 3 - Multiple Bytes From a Single Responder (with or without CRC)

Figure 3-4 Types of In-Frame Response

TSIFR— Transmit Single Byte IFR with no CRC (Type 1 or 2)

This bit is used to request the BDLC to transmit the byte in the BDLC Data Register (DLCBDR)jas a
single byte IFR with no CRC. Typically, the byte transmitted is a unique identifier or address of the
transmitting (responding) node.

1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol
has been received the BDLC module will attempt to transmit the appropriate normalizatign bit
followed by the byte in the DLCBDR.

0 = The TSIFR bit will be automatically cleared once the EOD following one or more IFR bytes
has been received or an error is detected on the bus.

The user must set the TSIFR bit before the EOF following the main part of the message frame is
received, or no IFR transmit attempts will be made for the current message. If another node transmits
an IFR to this message, the user must set the TSIFR bit before the normalization bit is received or no
IFR transmit attempts will be made for the message. If another node does transmit a successful IFR or
areception error occurs, the TSIFR bit will be cleared. If not, the IFR will be transmitted after the EOD
of the next received message.

If a loss of arbitration occurs when the BDLC module attempts transmission, after the IFR byt
winning arbitration completes transmission, the BDLC module will again attempt to transmit thg byte
in the DLCBDR (with no normalization bit). The BDLC module will continue transmission attemnfpts
until an error is detected on the bus, or TEOD is set by the CPU, or the BDLC transmission is
successful.

NOTE: Setting the TEOD bit before transmission of the IFR byte will direct the BDLC to |
make only one attempt at transmitting the byte.

28 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

If loss of arbitration occurs in the last bit of the IFR byte, two additional ‘1\Waltsiot be sent out
because the BDLC will attempt to retransmit the byte in the transmit shift register after the IFR byte
winning arbitration completes transmission.

TMIFR1 — Transmit Multiple Byte IFR with CRC (Type 3)

This bit requests the BDLC module to transmit the byte in the BDLC Data Register (DLCBDR) gs the
first byte of a multiple byte IFR with CRC or as a single byte IFR with CRC.Response IFR bytes are
still subject to J1850 message length maximums.

1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol
has been received, the BDLC module will attempt to transmit the appropriate normalizatipn bit
followed by IFR bytes.The programmer should set TEOD after the last IFR byte has been
written into DLCBDR register. After TEOD has been set and the last IFR byte has been
transmitted, the CRC byte is transmitted.

0 = The TMIFR1 bit will be automatically cleared once the BDLC module has successfully |
transmitted the CRC byte and EOD symbol, by the detection of an error on the multiplex bus,
a transmitter underrun, or loss of arbitration.

After the byte in the DLCBDR has been loaded into the transmit shift register, the TDRE flag will be
set in the DLCBSVR register, similar to the main message transmit sequence. If the interrupt enable
bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module is generated.The prograjnmer
should then load the next byte of the IFR into the DLCBDR for transmission. When the last byte of the
IFR has been loaded into the DLCBDR, the programmer should set the TEOD bit in the BDLC control
register 2 (DLCBCR?2). This will instruct the BDLC module to transmit a CRC byte once the byte in
the DLCBDR is transmitted, and then transmit an EOD symbol, indicating the end of the IFR portion
of the message frame.

However, if the programmer wishes to transmit a single byte followed by a CRC byte, the programmer
should load the byte into the DLCBDR and then set the TMIFR1 bit before the EOD symbol has been
received. Once the TDRE flag is set and interrupt occurs (if enabled), the programmer should then set
the TEOD bit in DLCBCR2. This will result in the byte in the DLCBDR being the only byte
transmitted before the IFR CRC byte.

The user must set the TMIFR1 bit before the EOF following the main part of the message frame is
received, or no IFR transmit attempts will be made for the current message. If another node transmits
an IFR to this message, the user must set the TMIFR1 bit before the normalization bit is received or
no IFR transmit attempts will be made for the message. If another node does transmit a successful IFR
or a reception error occurs, the TMIFR1 bit will be cleared. If not, the IFR will be transmitted after the
EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by the programmer not writing
another byte to the DLCBDR following the TDRE flag being set) the BDLC module will automatichlly
disable the transmitter after the byte currently in the shifter plus two extra 1-bits have been transmitted.
The receiver will pick this up as an framing error and relay it in the State Vector Register as an invalid
symbol error. The TMIFRL1 bit will also be cleared.

@ MOTOROLA 29



Block Guide — S12BDLC_BG V01.03

If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR with §RC,
the BDLC module will go to the loss of arbitration state, set the appropriate flag and cease T
transmission. The TMIFRL1 bit will be cleared and no attempt will be made to retransmit the byte in
the DLCBDR. If loss of arbitration occurs in the last bit of the IFR byte, two additional one bits (a
passive long followed by an active shavi)l be sent out.

NOTE: The extra logic 1s are an enhancement to the J1850 protocol which forces a byte
boundary condition fault. This is helpful in preventing noise on the J1850 bus from
corrupting a message.

TMIFRO — Transmit Multiple Byte IFR with no CRC (Type 3)

This bit is used to request the BDLC module to transmit the byte in the BDLC Data Register |
(DLCBDR) as the first byte of a multiple byte IFR without CRC. Response IFR bytes are still subject
to J1850 message length maximums.

1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol
has been received the BDLC module will attempt to transmit the appropriate normalizatign bit
followed by IFR bytes. The programmer should set TEOD after the last IFR byte has been
written into DLCBDR register. After TEOD has been set, the last IFR byte to be transmitted
will be the last byte which was written into the DLCBDR register.

0 = The TMIFRO bit will be automatically cleared once the BDLC module has successfully |
transmitted the EOD symbol, by the detection of an error on the multiplex bus, a transmitter
underrun, or loss of arbitration.

After the byte in the DLCBDR has been loaded into the transmit shift register, the TDRE flag will be
set in the DLCBSVR register, similar to the main message transmit sequence. If the interrupt enable
bit (IEin DLCBCR1) is set, an interrupt request from the BDLC module is generated. The prograjnmer
should then load the next byte of the IFR into the DLCBDR for transmission. When the last byte of the
IFR has been loaded into the DLCBDR, the programmer should set the TEOD bit in the DLCBCR2
register. This will instruct the BDLC to transmit an EOD symbol, indicating the end of the IFR portion

of the message frame. The BDLC module will not append a CRC. |

However, if the programmer wishes to transmit a single byte, the programmer should load the byte into
the DLCBDR and then set the TMIFRO bit before the EOD symbol has been received. Once the TDRE
flag is set and interrupt occurs (if enabled), the programmer should then set the TEOD bit in
DLCBCRZ2. This will result in the byte in the DLCBDR being the only byte transmitted.

The user must set the TMIFRO bit before the EOF following the main part of the message frame is
received, or no IFR transmit attempts will be made for the current message. If another node transmits
an IFR to this message, the user must set the TMIFRO bit before the normalization bit is received or
no IFR transmit attempts will be made for the message. If another node does transmit a successful IFR
or a reception error occurs, the TMIFRO bit will be cleared. If not, the IFR will be transmitted after the
EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by the programmer not writing
another byte to the DLCBDR following the TDRE flag being set) the BDLC module will automatichlly
disable the transmitter after the byte currently in the shifter plus two extra 1-bits have been transmitted.
The receiver will pick this up as an framing error and relay it in the State Vector Register as an invalid
symbol error. The TMIFRO bit will also be cleared.

30 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR without JRC,
the BDLC module will go to the loss of arbitration state, set the appropriate flag and cease CI
transmission. The TMIFRO bit will be cleared and no attempt will be made to retransmit the byte in
the DLCBDR. If loss of arbitration occurs in the last bit of the IFR byte, two additional one bits (a
passive long followed by an active shavi)l be sent out.

NOTE: The extra logic 1s are an enhancement to the J1850 protocol which forces a byte
boundary condition fault. This is helpful in preventing noise on the J1850 bus from
corrupting a message.

3.3.4 BDLC Data Register (DLCBDR)

This register is used to pass the data to be transmitted to the J1850 bus from the CPU to the BDLC ihodule.
It is also used to pass data received from the J1850 bus to the CPU.

Register Offset: $ 03 |

7 6 5 4 3 2 1 0
" D7 D6 D5 D4 D3 D2 D1 DO
RESET: 0 0 0 0 0 0 0 0

Figure 3-5 BDLC Data Register

READ: any time
WRITE: any time

D7:D0— Receive/Transmit Data (Bits 7 - 0)

While transmitting, each data byte (after the first one) should be written only after a “Tx Data Rejister
Empty” (TDRE) interrupt has occurred, or the DLCBSVR register has been polled indicating this
condition.

Data read from this register will be the last data byte received from the J1850 bus. This received data
should only be read after a “Rx Data Register Full” (RDRF) or “Received IFR byte” (RXIFR) interrupt
has occurred or the DLCBSVR register has been polled indicating either of these two conditions.

The DLCBDR register is double buffered via a transmit shadow register and a receive shadow register.
After the byte in the transmit shift register has been transmitted, the byte currently stored in the
transmit shadow register is loaded into the transmit shift register. Once the transmit shift register has
shifted the first bit out, the TDRE flag is set, and the shadow register is ready to accept the next byte
of data.

The receive shadow register works similarly. Once a complete byte has been received, the receive shift
register stores the newly received byte into the receive shadow register. The RDRF flag (or RXIFR
flag if the received byte is part of an IFR) is set to indicate that a new byte of data has been received.
The programmer has one BDLC module byte reception time to read the shadow register and clear the
RDRF or RXIFR flag before the shadow register is overwritten by the newly received byte.

@ MOTOROLA 31



Block Guide — S12BDLC_BG V01.03

If the user writes the first byte of a message to be transmitted to the DLCBDR and then determines that
a different message should be transmitted, the user can write a new byte to the DLCBDR up until the
transmission begins.This new byte will replace the original byte in the DLCBDR.

From the time a byte is written to the DLCBDR until it is transferred to the transmit shift register, the
transmit shadow register is considered full and the byte pending transmission. If one of the IFR
transmission control bits (TSIFR, TMIFR1, or TMIFRO in DLCBCR?2) is also set, the byte is pending
transmission as an IFR. A byte pending transmission will be flushed from the transmit shadow register
and the transmission canceled if one of the following occurs: a loss of arbitration or transmitter error
on the byte currently being transmitted; a symbol error, framing error, bus fault, or BREAK symbol is
received. If the byte pending transmission is an IFR byte, the reception of a message with a CRC error
will also cause the byte in the transmit shadow register to be flushed.

To abort an in-progress transmission, the programmer should simply stop loading more data into the
BDR. This will cause a transmitter underrun error and the BDLC module will automatically dispble
the transmitter on the next non-byte boundary. This means that the earliest a transmission can be halted
is after at least one byte (plus two extra 1-bits) has been transmitted. The receiver will pick this up as
an error and relay it in the State Vector Register as an invalid symbol error.

3.3.5 BDLC Analog Round Trip Delay Register (DLCBARD)

This register is used to program the BDLC module so that it compensates for the round trip delpys of
different external transceivers. Also the polarity of the receive pin (RXB) is set in this register.

Register Offset: $ 04 |

7 6 5 4 3 2 1 0
\T/ 0 RXPOL 0 0 BO3 BO2 BOL BOO
RESET: 0 1 0 0 0 1 1 1 I

[ ]=Unimplemented

Figure 3-6 BDLC Analog Round Trip Delay Register

READ: any time

WRITE: write once in normal and emulation modes.
Register functionality modified in special test mode.
Writes to unimplemented bits 7, 5, 4 are ignored.

RXPOL — Receive Pin Polarity (Bit 6)

The Receive pin Polarity bit is used to select the polarity of incoming signal on the receive pin. Some
external analog transceiver inverts the receive signal from the J1850 bus before feeding back to the
digital receive pin.

32 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

1 = Select normal/true polarity; true non-inverted signal from J1850 bus, i.e., the external

transceiver does not invert the receive signal.
0 = Select inverted polarity, where external transceiver inverts the receive signal.

BO3-BO0— BDLC Analog Roundtrip Delay Offset Field (Bits 3-0)

BOJ[3:0] adjust the transmitted symbol timings to account for the differing roundtrip delays found in

different SAE J1850 analog transceivers. The allowable delay range is flienid®24ms, with a

nominal target of 18ns (reset value). Refer to Table 3-4 for the BO[3:0] values corresponding to the
expected transceiver delays and the resultant transmitter timing adjustment (in mux interface clock
periods (§q0))- Refer to the analog transceiver device specification for the expected roundtrip delay

through both the transmitter and the receiver. The sum of these two delays makes up the total roundtrip

delay value.

Table 3-4 BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment

BARD Offset Bits Corresponding Expected Transmitter Symbol Timing
(BO3,B02,B01,B00) Transceiver's delays ( Ms) Adjustment ( tpq)c )
0000 9 9
0001 10 10
0010 11 11
0011 12 12
0100 13 13
0101 14 14
0110 15 15
0111 16 16
1000 17 17
1001 18 18
1010 19 19
1011 20 20
1100 21 21
1101 22 22
1110 23 23
1111 24 24
NOTE:
1. The transmitter symbol timing adjustment is the same for binary and integer bus frequencies.

3.3.6 BDLC Rate Select Register (DLCBRSR)

This register determines the divider prescaler value for the mux interface glgok (f

@ MOTOROLA

33



Block Guide — S12BDLC_BG V01.03

Register Offset: $_05

7 6 5 4 3 2 1 0
R 0 | 0
w Unimplemented RS R4 R3 R? RL RO
RESET: 0 0 0 0 0 0 0 0

[ ]=Unimplemented

Figure 3-7 BDLC Rate Select Register

READ: any time

WRITE: write once in normal and emulation modes.
Register functionality modified in special test mode.
Writes to unimplemented bits 7, 6 are ignored.

NOTE: Afterwriting to the divide rate register, the divide counter will start counting ONLY
after the next access to the BDLC register space. E.g. write the module enable bit

after writing to the divide rate register.

R5-R0— Rate Select (Bits 5-0)

These bits determine the amount by which the frequency of the system clock signal is divided to
generate the MUX Interface clock,f. which defines the basic timing resolution of the MUX

Interface. The value programmed into these bits is dependent on the chosen system clock frequency.
See Table 3-5 and Table 3-6 for example rate selects for different bus frequencies. All divisor values

from divide by 1 to divide by 64 are possible, but are not shown in the tables.

NOTE: Although the maximum divider is 64, a divider which will generate a 1 MHz or
1.048576 MH1,,4. must be selected in order for 31850 communications to occur.

Table 3-5 BDLC Rate Selection for Binary Frequencies [CLKS = 1]

IP bus clock frequency R[5:0] division fodic
fcLock=1.048576 MHz $00 1 1.048576 MHz
fcLock=2.09715 MHz $01 2 1.048576 MHz
fcLock=3.14573 MHz $02 3 1.048576 MHz
focLock=4.19430 MHz $03 4 1.048576 MHz
fcLock=8.38861 MHz $07 8 1.048576 MHz
fcLock=10.48576 MHz $09 10 1.048576 MHz
fcLock=67.10886 MHz $3F 64 1.048576 MHz

34

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Table 3-6 BDLC Rate Selection for Integer Frequencies [CLKS = 0] |

IP bus clock frequency R[5:0] division fodic
fcLock=1.00000 MHz $00 1 1.000000 MHz
fcLock=2.00000 MHz $01 2 1.000000 MHz
fcLock=3.00000 MHz $02 3 1.000000 MHz
fcLock=4.00000 MHz $03 4 1.000000 MHz
fcLock=8.00000 MHz $07 8 1.000000 MHz
fcLock=10.00000 MHz $09 10 1.000000 MHz
fcLock=64.00000 MHz $3F 64 1.000000 MHz

3.3.7 BDLC Control Register (DLCSCR)

The following register enables the BLDC module.

Register Offset: $_06 |

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0

W BDLCE
RESET: 0 0 0 0 0 0 0 0

[ ]=Unimplemented

Figure 3-8 BDLC Control Register

READ: any time
WRITE: any time

BDLCE — BDLC Enable (Bit 4)

This bit serves as a mux interface cloglgd enable/disable for power savings.
1 =The mux interface clockf;) and BDLC module are enabled to allow J1850 communicatipns

to take place.
0 = The mux interface clockfj o) is disabled, shutting down the BDLC module for power savirjg.
Bus clocks are still running allowing registers to be accessed.

3.3.8 BDLC Status Register (DLCBSTAT)

This register Indicates the status of the BLDC module.

@ MOTOROLA 35



Block Guide — S12BDLC_BG V01.03

Register Offset: $_07

7 6 5 4 3 2 1 0

R o [ o [ 0o T 0o T 0 0 0 [ DLE
w Unimplemented Reserved Unimplemented
RESET: 0 0 0 0 0 0 0 0

[ ]=Unimplemented

Figure 3-9 BDLC Status Register

READ: any time

WRITE: ignored in normal and emulation modes
Register functionality is modified in special test mode.

IDLE Idle (Bit 0)

This bit indicates when the BDLC module is idle.
1 = BDLC module has received IFS and no data is being transmitted or received.
0 = BDLC module is either transmitting or receiving data.

NOTE: BDLC module is only idle after receiving IFS. The IDLE bit is O during reset since
the BDLC module needs to wait for an IFS before becoming idle. Noise on the bus
will be filtered and the IDLE bit will remain unchanged.

36 @ MOTOROLA




Block Guide — S12BDLC_BG V01.03

Section 4 Functional Description

4.1 General

The BDLC module is a serial communication module which allows the user to send and receive mgssages
across a Society of Automotive Engineers (SAE) J1850 serial communication néftheikser’s

software handles each transmitted or received message on a byte-by-byte basis, while the BDLC performs
all of the network access, arbitration, message framing and error detection duties.

4.1.1 J1850 Frame Format

As noted above and iBection 1.2 Features on page 1ihe BDLC module communicates across an SAE
J1850 network. As such, all messages transmitted on the J1850 bus are structured using the format below.
The following sections describe this format and it's meanings.

Optional |

Priority |Message

Idle | SOF | patag) |ID (Datal)

oom

IFR | EOF ‘ g ‘ Idle

Data, CRC

Figure 4-1 J1850 Bus Message Format (VPW)

SAE J1850 states that each message has a maximum length of 101 bit times or 12 bytes (excluding SOF,
EOD, NB and EOF).

e SOF - Start of Frame Symbol

All messages transmitted onto the J1850 bus must begin with an long active SOF symbol. This
indicates to any listeners on the J1850 bus the start of a new message transmission. The SOF symbol
is not used in the CRC calculation.

« Data - In Message Data Bytes

The data bytes contained in the message include the message priority/type, message 1.D. byte, and
any actual data being transmitted to the receiving node. See SAE J1850 - Class B Data
Communications Network Interface, for more information about 1 and 3 Byte Headers.

Messages transmitted by the BDLC module onto the J1850 bus must contain at least one dafa byte,
and therefore can be as short as one data byte and one CRC byte. Each data byte in the message is
8 bits in length, transmitted MSB to LSB.

* CRC - Cyclical Redundancy Check Byte

@ MOTOROLA 37



Block Guide — S12BDLC_BG V01.03

38

This byte is used by the receiver(s) of each message to determine if any errors have occurred during
the transmission of the message. The BDLC calculates the CRC byte and appends it onto any
messages transmitted onto the J1850 bus, and also performs CRC detection on any messages it
receives from the J1850 bus.

CRC generation uses the divisor polynomi&tX*+X3+X2+1. The remainder polynomial is

initially set to all ones, and then each byte in the message after the SOF symbol is serially processed
through the CRC generation circuitry. The one’s complement of the remainder then becomes the
8-bit CRC byte, which is appended to the message after the data bytes, in MSB to LSB order.

When receiving a message, the BDLC uses the same divisor polynomial. All data bytes, excluding
the SOF and EOD symbols, butincluding the CRC byte, are used to check the CRC. If the message
is error free, the remainder polynomial will equdkX®+X? ($C4), regardless of the data

contained in the message. If the calculated CRC does not equal $C4, the BDLC will recognize this
as a CRC error and set the CRC error flag in the BSVR register.

EOD - End of Data Symbol

The EOD symbol is a long passive period on the J1850 bus used to signify to any recipients of a
message that the transmission by the originator has completed. No flag is set upon reception of the
EOD symbol.

IFR - In Frame Response Bytes

The IFR section of the J1850 message format is optional. Users desiring further definition of
in-frame response should review the “SAE J1850 Class B Data Communications Network
Interface” specification.

EOF - End of Frame Symbol

This symbol is a passive period on the J1850 bus, longer than an EOD symbol, which signifies the
end of a message. Since an EOF symbol is longer than an EOD symbol, if no response is transmitted
after an EOD symbol, it becomes an EOF, and the message is assumed to be completed. The EOF
flag is set upon receiving the EOF symbol.

IFS - Inter-Frame Separation Symbol

The IFS symbol is a passive period on the J1850 bus which allows proper synchronization between
nodes during continuous message transmission. The IFS symbol is transmitted by a node following
the completion of the EOF period.

When the last byte of a message has been transmitted onto the J1850 bus, and the EOF symbol time
has expired, all nodes must then wait for the IFS symbol time to expire before transmitting an SOF,
marking the beginning of another message.

However, if the BDLC module is waiting for the IFS period to expire before beginninga |
transmission and a rising edge is detected before the IFS time has expired, it will internally
synchronize to that edge.

A rising edge may occur during the IFS period because of varying clock tolerances and loading of
the J1850 bus, causing different nodes to observe the completion of the IFS period at different
times. Receivers must synchronize to any SOF occurring during an IFS period to allow for
individual clock tolerances.

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

e Break

If the BDLC module is transmitting at the time a BREAK is detected, it treats the BREAK a$ if a
transmission error had occurred, and halts transmission.The BDLC module cannot transmif a
BREAK symbol. If while receiving a message the BDLC module detects a BREAK symbol, it tfeats
the BREAK as a reception error and sets the invalid symbol flag. If while receiving a message in
4X mode, the BDLC module detects a BREAK symbol, it treats the BREAK as a reception frror,
sets BSVR register to $1C, and exits 4X mode.The RX4XE bit in BCR2 is automatically cleared
upon reception of the BREAK symbol.

* |dle Bus

An idle condition exists on the bus during any passive period after expiration of the IFS period. Any
node sensing an idle bus condition can begin transmission immediately.

4.1.2 J1850 VPW Symbols

Variable Pulse Width modulation (VPW) is an encoding technique in which each bit is defined by the time
between successive transitions, and by the level of the bus between transitions, active or passive. Active
and passive bits are used alternately. This encoding technique is used to reduced the number of bus
transitions for a given bit rate. S8ection 1.2 Features on page 11.

The symbol values shown below are nominal values. Refer to the electrical specification for a more
complete description of symbol values. Each logic one or logic zero contains a single transition, and can
be at either the active or passive level and one of two lengths, eifiee064281s (Tyom at 10.4kbps

baud rate), depending upon the encoding of the previous bit. The SOF, EOD, EOF and IFS symbols will
always be encoded at an assigned level and length. See Figure 4-2.

@ MOTOROLA 39



Block Guide — S12BDLC_BG V01.03

Active i | g ’
1 128pus J OR 64s
Passive - ' : :
Logic “0”
(@)
Active —_— : : :
l 128us 1 OR 64us
Passive 5 ! T !
Logic “1”
(b)
Active : ' - '
[ 200us L \ 200us ‘
Passive -- , ' |
Start of Frame End of Data
(c)
Active ‘ | - >
\ 280us ! ‘ > 240us
Passive --- P
End of Frame Break
(e) (f)
Active ' ; . 20us
l EOD ' EOF a5

Passive ---} - . : 300ps

Inter-Frame Seperator (IFS)

(9)

Figure 4-2 J1850 VPW Symbols

Each message will begin with an SOF symbolaative symbol, and therefore each data byte (including
the CRC byte) will begin with @assive bit, regardless of whether itis a logic one or a logic zero. All VPW
bit lengths stated in the following descriptions are typical values at a 10.4kbps bit rate.

* Logic “0”

40 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Alogic zero is defined as either an active to passive transition followed by a passive pargih 64
length, or a passive to active transition followed by an active periqesi@8ength Figure
4-2(a)).

* Logic “1”

A logic one is defined as either an active to passive transition followed by a passive pgu®d 128
in length, or a passive to active transition followed by an active perjosliG4ength Figure
4-2(b)).

* NB - Normalization Bit

The NB symbol has the same property as a logic “1” or a logic “0”.1t is only used in IFR message
responses. This bit is defined as an active bit.

e SOF - Start of Frame Symbol

The SOF symbol is defined as passive to active transition followed by an active pefsdr200
length Eigure 4-2 (c)). This allows the data bytes which follow the SOF symbol to begin with a
passive bit, regardless of whether it is a logic one or a logic zero.

« EOD - End of Data Symbol

The EOD symbol is defined as an active to passive transition followed by a passive pauod 200
in length Eigure 4-2 (d)).

 EOF - End of Frame Symbol

The EOF symbol is defined as an active to passive transition followed by a passive pefisdr280
length Figure 4-2 (e)). If there is no IFR byte transmitted after an EOD symbol is transmitted, after
another 8(s the EOD becomes an EOF, indicating the completion of the message.

* |IFS - Inter-Frame Separation Symbol

The IFS symbol is defined as a passive perioqu8d length. The IFS symbol contains no
transition, since when used it always follows an EOF synthgl(e 4-2 (g))

*» BREAK - Break Signal

The BREAK signal is defined as a passive to active transition followed by an active period of at
least 24Qis (Figure 4-2 (f)).

* IDLE
An IDLE is defined as a passive period greater thau8d®dlength.

4.1.3 J1850 VPW Valid/Invalid Bits & Symbols

The timing tolerances for receiving data bits and symbols from the J1850 bus have been defined to allow
for variations in oscillator frequencies. In many cases the maximum time allowed to define a data bit or
symbol is equal to the minimum time allowed to define another data bit or symbol.

Since the minimum resolution of the BDLC module for determining what symbol is being received is
equal to a single period of the MUX Interface clockg(d). i.e. the receiver symbol timing boundaries are
subject to an uncertainty of J4i. due to sampling considerations.

@ MOTOROLA 41



Block Guide — S12BDLC_BG V01.03

This clock resolution of 1,4 allows the BDLC module to properly differentiate between the different
bits and symbols, without reducing the valid window for receiving bits and symbols from transmitters onto
the J1850 bus having varying oscillator frequencies.

* Transmit and Receive Symbol Timing Specifications

Tables 4-1 through 4-6 contain the SAE J1850 transmit and receive symbol timing specifications
for the BDLC module. The units used in these tables are mux interface clock peggjilsTtte

mux interface clock is a divided down version of the bus clock input to the module (see Se(ltion
3.3.6 BDLC Rate Select Register (DLCBRSR)). The mux interface clock drives the transmit and
receive counters which control symbol generation and identification. The symbol timing in effect
during J1850 operations is dependent the state of two control bits: the CLKS bit DLCBCR1, which
indicates whether the bus clock is an integer frequency or a binary frequency; the RX4XE pit in
DLCBCRZ2, which is used to select 4X receiver operation.

Tables 4-1 and 4-3 indicate the transmit and receive timing for integer bus frequencies (CLKS =|0) and
4X receive operation disabled (RX4XE = 0). It is assumed that for integer bus frequencies the divided
down mux interface clock frequency will be IMHgg{t= 1 ms).

Tables 4-2 and 4-4 indicated the transmit and receive timing for binary bus frequencies (CLKS = }) and
4X receive operation disabled (RX4XE =0). Itis assumed that for binary bus frequencies the divided down
mux interface clock frequency will be 1.048576 MHg4t= 0.953674 ms). The symbol timing values are
adjusted to compensate for the shortening of the mux interface clock period.

Tables 4-5 and 4-6 show how the receive symbol timing values are adjusted when 4X receive operation
is enabled (RX4XE = 1) for both integer bus frequencies (CLKS = 0) and binary bus frequencies (CLKS
= 1), respectively.

The values specified in the tables are for the symbols appearing on the SAE J1850 bus. These values
assume the BDLC module is communicating on the SAE J1850 bus using an external analog trangceiver,
and that the BDLC module analog roundtrip delay value programed into the DLCBARD register iI the
appropriate value for the transceiver being used. If these conditions are not met, the symbol timings being
measured on the SAE J1850 bus will be significantly affected. For a detailed description of how symbol
timings are measured on the SAE J1850 bus, refer to the appropriate SAE documents.

Table 4-1 BDLC Transmitter VPW Symbol Timing for Integer Frequencies |
Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Tivp1 62 64 66 thdlc

2 Passive Logic 1 Tivp2 126 128 130 thdic

3 Active Logic 0 Tial 126 128 130 thdlc

4 Active Logic 1 Tiva2 62 64 66 thdlc

5 Start of Frame (SOF) Twa3 198 200 202 thdic

6 End of Data (EOD)* Tip3 162 164 166 thdic

7 End of Frame (EOF)! Tiva 238 240 242 todic

8 Inter-Frame Separator (IFS)* Tws 298 300 302 thdic

42 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Table 4-1 BDLC Transmitter VPW Symbol Timing for Integer Frequencies

Number | Characteristic Symbol | Min | Typ | Max | Unit
NOTE:
1. The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the
receiver.

Table 4-2 BDLC Transmitter VPW Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit
1 Passive Logic 0 Tivp1 65 67 69 thdlc
2 Passive Logic 1 Tivp2 132 134 136 thdlc
3 Active Logic 0 Twal 132 134 136 thdlc
4 Active Logic 1 Twaz 65 67 69 thdlc
5 Start of Frame (SOF) Twa3 208 210 212 thdlc
6 End of Data (EOD)* Tvp3 170 172 174 thdic
7 End of Frame (EOF)! Tiva 250 252 254 todic
8 Inter-Frame Separator (IFS)1 Tiys 313 315 317 thdlc
NOTE:
1. The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the
receiver.

Table 4-3 BDLC Receiver VPW Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit
1 Passive Logic 0 Trvp1 32 64 95 thdlc
2 Passive Logic 1 Trvp2 96 128 163 thdlc
3 Active Logic 0 Trval 96 128 163 thdlc
4 Active Logic 1 Trvaz 32 64 95 thdic
5 Start of Frame (SOF) Trvaz 164 200 239 thdic
6 End of Data (EOD) Trvp3 164 200 239 thdlc
7 End of Frame (EOF) Trva 240 280 299 thdlc
8 Inter-Frame Separator (IFS) Tis 300 thdic
9 Break Signal (BREAK) Trve 240 --- thdlc
NOTE:

The receiver symbol timing boundaries are subject to an uncertainty of 1 t,q,c due to sampling
considerations.

@ MOTOROLA

43



Block Guide — S12BDLC_BG V01.03

Table 4-4 BDLC Receiver VPW Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit
1 Passive Logic 0 Trp1 34 67 100 thalc
2 Passive Logic 1 Trvp2 101 134 171 todic
3 Active Logic 0 Trval 101 134 171 thdic
4 Active Logic 1 Trvaz 34 67 100 thdic
5 Start of Frame (SOF) Trva3 172 210 251 thdlc
6 End of Data (EOD) Trvps 172 210 251 thdlc
7 End of Frame (EOF) Trva 252 293 314 thdic
8 Inter-Frame Separator (IFS) Tvs 315 thdic
9 Break Signal (BREAK) Tve 252 --- thdic
NOTE:

The receiver symbol timing boundaries are subject to an uncertainty of 1 t,q,c due to sampling
considerations.

Table 4-5 BDLC Receiver VPW 4X Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit
1 Passive Logic 0 Trvp1 8 16 23 thdic
2 Passive Logic 1 Trvp2 24 32 40 todic
3 Active Logic 0 Trval 24 32 40 thdlc
4 Active Logic 1 Trvaz 8 16 23 thdic
5 Start of Frame (SOF) Trvas 41 50 59 thdlc
6 End of Data (EOD) Trvps 41 50 59 thdic
7 End of Frame (EOF) Trva 60 70 74 thdlc
8 Inter-Frame Separator (IFS) Trvs 75 thdic
9 Break Signal (BREAK) Trve 60 thdic
NOTE:

The receiver symbol timing boundaries are subject to an uncertainty of 1 t,q,c due to sampling
considerations.

Table 4-6 BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit
1 Passive Logic 0 Trvp1 9 17 25 thdic
2 Passive Logic 1 Trvp2 26 34 42 thdic
3 Active Logic 0 Trval 26 34 42 thdic

44 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Table 4-6 BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit
4 Active Logic 1 Trva2 9 17 25 thdic
5 Start of Frame (SOF) Trvaz 43 53 62 thdic
6 End of Data (EOD) Trvp3 43 53 62 thdic
7 End of Frame (EOF) Tiva 63 74 78 thdic
8 Inter-Frame Separator (IFS) Trs 79 thdic
9 Break Signal (BREAK) Tve 63 thdic
NOTE:

The receiver symbol timing boundaries are subject to an uncertainty of 1 t,q,c due to sampling
considerations.

The min and max symbol limits shown in the following sections (Invalid Passive Bit - Valid BREAK
Symbol) and figures (Figure 4-3 - Figure 4-6) refer to the values listed in Tables 4-1 through 4-6.

* Invalid Passive Bit

If the passive to active transition beginning the next data bit or symbol occurs between the active to
passive transition beginning the current data bit or symbol apd [in). the current bit would be
invalid. SeeFigure 4-3 (1).

@ MOTOROLA 45



Block Guide — S12BDLC_BG V01.03

46

Active —

Passive

Active —

Passive

Active —

Passive

Active —

Passive

200ps

(1) Invalid Passive
Bit

(2) Valid Passive
Logic Zero

(3) Valid Passive
Logic One

(4) Valid EOD
Symbol

Figure 4-3 J1850 VPW Passive Symbols

Valid Passive Logic Zero

If the passive to active transition beginning the next data bit or symbol occurs betygaamn)
and Typ1(maxy the current bit would be considered a logic zero.Fégere 4-3 (2).

Valid Passive Logic One

If the passive to active transition beginning the next data bit or symbol occurs betygamn)
and Typ2(vaxy the current bit would be considered a logic one.Fsgare 4-3 (3).

Valid EOD Symbol

If the passive to active transition beginning the next data bit or symbol occurs betygamn)
and Typ3(maxy the current symbol would be considered a valid EOD symbol-i§eee 4-3 (4).

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

300ps |
280us ‘
| |
| |
Lo |
Active | : () Valid EOF
I 1
i ! ! Symbol
Passiye V¥—¢&F 9 —mM8W - S !
. | Trvaviny ! Trva(Max)
Actve (2) Valid EOF+
. | IFS Symbol
Passive ]
! ' Trvs(Min)

Figure 4-4 J1850 VPW EOF and IFS Symbols

* Valid EOF & IFS Symbol

In Figure 4-4 (1), if the passive to active transition beginning the SOF symbol of the next message
occurs between Javin) and Tryagvax) the current symbol will be considered a valid EOF symbol.

If the passive to active transition beginning the SOF symbol of the next message occurs after
Trvs(min), the current symbol will be considered a valid EOF symbol followed by a valid IFS
symbol. Sed-igure 4-4 (2). All nodes must wait until a valid IFS symbol time has expired before
beginning transmission. However, due to variations in clock frequencies and bus loading, some
nodes may recognize a valid IFS symbol before others, and immediately begin transmitting.
Therefore, anytime a node waiting to transmit detects a passive to active transition once a valid EOF
has been detected, it should immediately begin transmission, initiating the arbitration process.

e |dle Bus

If the passive to active transition beginning the SOF symbol of the next message does not occur
before Tys5(vin), the bus is considered to be idle, and any node wishing to transmit a message may
do so immediately.

@ MOTOROLA 47



Block Guide — S12BDLC_BG V01.03

Trva3(Min) | Trvaz(Max)

200ps |
128us |
<— 64ps —
Active | | (1) Invalid Active
Passive — A I : Bit
: TrvaZ(Min) : : :
Acti ‘ R ERURRTRCREECLRE ! ! . .
ctive | | : : (2) Valid Active
Passive — 3 i | Logic One
. | TrvaZ(Min) : rva2(Max) : '
Active e s greeseeey | : -
| | ! \ (3) Valid Active
, } | ' Logic Zero
Passive — | . :
Active } | Trval(Min) i Trval(Max) i
| : | (4) Valid SOF
Passive — 3 | ' Symbol

Figure 4-5 J1850 VPW Active Symbols

* |nvalid Active Bit

If the active to passive transition beginning the next data bit or symbol occurs between the passive
to active transition beginning the current data bit or symbol gpgbfyin) the current bit would be
invalid. Seerigure 4-5 (1).

» Valid Active Logic One

If the active to passive transition beginning the next data bit or symbol occurs betwegann)
and Tya2(vaxy the current bit would be considered a logic one.Fégere 4-5 (2).

» Valid Active Logic Zero

If the active to passive transition beginning the next data bit or symbol occurs betwgamn)
and Tya1(vaxy the current bit would be considered a logic zero.Fsgere 4-5 (3).

* Valid SOF Symbol

If the active to passive transition beginning the next data bit or symbol occurs betygann)
and Tyaz(vaxy the current symbol would be considered a valid SOF symboFi§eee 4-5 (4).

48 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Active

”(2) Valid BREAK
Symbol

Passive-

Trve(Min)
Figure 4-6 J1850 VPW BREAK Symbol

* Valid BREAK Symbol

If the next active to passive transition does not occur until aftgivln), the current symbol will
be considered a valid BREAK symbol. A BREAK symbol should be followed by a SOF symbol
beginning the next message to be transmitted onto the J1850 b&syBeet-6 .

* Message Arbitration

Message arbitration on the J1850 bus is accomplished in a non-destructive manner, allowing the
message with the highest priority to be transmitted, while any transmitters which lose arbitration
simply stop transmitting and wait for an idle bus to begin transmitting again.

If the BDLC module wishes to transmit onto the J1850 bus, but detects that another messgge is in
progress, it automatically waits until the bus is idle. However, if multiple nodes begin to transmit

in the same synchronization window, message arbitration will occur beginning with the first bit
after the SOF symbol and continue with each bit thereafter.

The VPW symbols and J1850 bus electrical characteristics are carefully chosen so that a logic zero
(active or passive type) will always dominate over a logic one (active or passive type)
simultaneously transmitted. Hence logic zeroes are said to be ‘dominant’ and logic ones are said to
be ‘recessive’.

Whenever a node transmits a recessive bit and detects a dominant bit, it loses arbitration, and
immediately stops transmitting. This is known as ‘bitwise arbitration’.The loss of arbitration flag
(in DLCBSVR) is set when arbitration is lost. If the interrupt enable bit (IE in DLCBCR1) is set, an
interrupt request from the BDLC module is generated. Reading the DLCBSVR register will clear
this flag.

@ MOTOROLA 49



Block Guide — S12BDLC_BG V01.03

i EOPELTPE— 1 D Transmitter A detects
. : : : : i i an active state on
Active / the bus, and stops
. transmittin
Transmitter A 9
Passive

oD T e O b0

Active H H H H H H L

Transmitter B
Passive

Transmitter B wins
arbitration and

0PI D — “1” —Pi— 0" — PO continues
i i i i i i transmitting

Active : ; ; ; ; -
J1850 Bus 4—‘

Passive

Dat Dat Data Data Dat
' SOF NBut 12"B|t 2N Bit 3 " Bit 4 Blt%'

Figure 4-7 J1850 VPW Bitwise Arbitrations

During arbitration, or even throughout the transmitting message, when an opposite bit is detected,
transmission is immediately stopped unless it occurs on the 8th bit of a byte. In this case the BDLC
module will automatically append up to two extra 1 bits and then stop transmitting. These twolextra
bits will be arbitrated normally and thus will not interfere with another message. The second 1 bit
will not be sent if the first loses arbitration. If the BDLC module has lost arbitration to another Jalid
message then the two extra ones will not corrupt the current message. However, if the BDLC
module has lost arbitration due to noise on the bus, then the two extra ones will ensure thgt the
current message will be detected and ignored as a noise-corrupted message.

Since a “0” dominates a “1”, the message with the lowest value will have the highest priority, and
will always win arbitration, i.e. a message with priority 000 will win arbitration over a message with
priority 011. This method of arbitration will work no matter how many bits of priority encoding are
contained in the message.

4.1.4 J1850 Bus Errors

The BDLC module detects several types of transmit and receive errors which can occur during tHe
transmission of a message onto the J1850 bus.

50

Transmission Error

If the BDLC module is transmitting a message and the message received contains a symbpl error,
a framing error, a bus fault, a BREAK symbol, or a logic ‘1’ symbol when a logic “0” is being
transmitted, this constitutes a transmission error. Receiving a logic ‘0’ symbol when transmitting a
logic ‘1’ is considered a loss of arbitration condition (See Message Arbitration) and not a
transmission error. When a transmission error is detected, the BDLC module will immediatply
cease transmitting. Further transmission or reception will be disabled until a valid EOF symbol is

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

detected on the J1850 bus. The error condition is reflected by setting the symbol invalid or out of
range flag in the DLCBSVR register. If the interrupt enable bit (IE in DLCBCR1) is set, an interrupt
request from the BDLC module is generated. Reading the DLCBSVR register will clear thid flag.

e CRC Error

A cyclical redundancy check (CRC) error is detected when the data bytes and CRC byte of a
received message are processed, and the CRC calculation result is not equal to $C4.The CRC code
should detect any single and 2 bit errors, as well as all 8 bit burst errors, and almost all other types
of errors. The CRC error flag (in DLCBSVR) is set when a CRC error is detected. If the interrupt
enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module is generatedl.
Reading the DLCBSVR register will clear this flag.

e Symbol Error

A symbol error is detected when an abnormal (invalid) symbol is detected in a message being
received from the J1850 bus. See sections Invalid Passive Bit and Invalid Active Bit which define
invalid symbols.The symbol invalid or out of range flag (in DLCBSVR) is set when a symbol error
is detected. If the interrupt enable bit (IE in DLCBCR1) is set, an interrupt request from the BPLC
module is generated. Reading the DLCBSVR register will clear this flag. F

e Framing Error

A framing error is detected when a received symbol occurs in an inappropriate location in the
message frame. The following situations result in framing errors: |

— An active logic “0” or logic “1” received as the first symbol of the frame.

— An SOF symbol received in any location other than the first symbol of a frame. Erroneous
locations include: Within the data portion of a message or IFR; Immediately following the EOD
in a message or IFR.

— An EOD symbol received on a non-byte boundary in a message or IFR.
— An active logic “0” or logic “1” received immediately following the EOD at the end of an IFR.

The symbol invalid or out of range flag (in DLCBSVR) is set when a framing error is detected. If
the interrupt enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC modulq is
generated. Reading the DLCBSVR register will clear this flag.

e Bus Fault
If a bus fault occurs, the response of the BDLC module will depend upon the type of bus fTIt.

If the bus is shorted to yp, the BDLC module will wait for the bus to fall to a passive state befgre
it will attempt to transmit a message. As long as the short remains, the BDLC will never attempt to
transmit a message onto the J1850 bus.

If the bus is shorted to ground, the BDLC module will see anidle bus, begin to transmit the me$sage,
and then detect a transmission error, since the short to ground would not allow the bus to be driven
to the active (dominant) state. The BDLC module will wait for assertion of the receive pin fof (64

- analog round trip delay)§ . cycles, after assertion of the transmit pin, before detecting the error.

If the transmission is an IFR, the BDLC module will wait for (280 - analog round trip dglay) |
cycles before detecting an error. The “analog round trip delay” is determined by the value stored in
the DLCBARD register. The BDLC module will set the symbol invalid or out of range flag (ip

@ MOTOROLA o1



Block Guide — S12BDLC_BG V01.03

DLCBSVR), abort that transmission and wait for the next CPU command to transmit. In this fase,
the transmitter does not have to wait for an EOF symbol to be received to be enabled. If the interrupt
enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module is generatedl.
Reading the DLCBSVR register will clear this flag.

In any case, if the bus fault is temporary, as soon as the fault is cleared, the BDLC module]will
resume normal operation. If the bus fault is permanent, it may result in permanent loss of
communication on the J1850 bus.

* BREAK - Break

Any BDLC transmitting at the time a BREAK is detected will treat the BREAK as if a transmission
error had occurred, and halt transmission.

If while receiving a message the BDLC module detects a BREAK symbol, it will treat the BREAK
as a reception error.

If a BREAK symbol is received while the BDLC module is transmitting or receiving, the synjbol
invalid or out of range flag (in DLCBSVR) is set. Further transmission/reception will be disabled
until the J1850 bus returns to the passive state and a valid EOF symbol is detected on the J1850 bus.
If the interrupt enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC modyle is
generated. Reading the DLCBSVR register will clear this flag.

The BDLC module cannot transmit a BREAK symbol. It can only receive a BREAK symbol fjom
the J1850 bus.

e Bus Error Summary

The possible J1850 bus errors and the actions taken by the BDLC module are summarized i Table
4-7.

Table 4-7 BDLC module J1850 Error Summary |

Error Condition BDLC Module Function |

BDLC module will immediately cease transmitting. Further |
transmission and reception will be disabled until a valid
EOF symbol is detected. The symbol invalid or out of
range flag will be set and interrupt generated if enabled.

Transmission Error

Cyclical Redundancy Check

(CRC) Error CRC error flag set and interrupt generated if enabled.

The symbol invalid or out of range flag will be set and
interrupt generated if enabled. Transmission and
reception will be disabled until a valid EOF symbol is
detected.

Symbol Error

The symbol invalid or out of range flag will be set and
interrupt generated if enabled. Transmission and
reception will be disabled until a valid EOF symbol is
detected.

Framing Error

52 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Table 4-7 BDLC module J1850 Error Summary

Error Condition BDLC Module Function
The BDLC module will not transmit until short is corrected |
and a valid EOF is detected. Depending upon when short
Bus short to Vpp. occurs and is corrected, this error condition may set the

symbol invalid or out of range, crc error, or loss of
arbitration flags.

Short will be seen as an idle bus by BDLC module. If a |

transmission attempt is made before short is corrected,
Bus short to GND. the symbol invalid or out of range flag will be set and
interrupt generated if enabled. Another transmission can
be initiated as soon as short is corrected.

If doing so, the BDLC module will immediately cease |
transmitting. Symbol invalid or out of range flag set and
interrupt generated if enabled. Transmission and reception
will be disabled until a valid EOF symbol is detected.

BREAK symbol reception

4.2 Mux Interface

The MUX Interface is responsible for bit encoding/decoding and digital noise filtering between the
Protocol Handler and the Physical Interface. Reféigare 1-2 BDLC Block Diagram on page 16

4.2.1 Mux Interface - Rx Digital Filter

The Receiver section of the BDLC module includes a digital low pass filter to remove narrow noise pulses
from the incoming message. An outline of the digital filter is shown in Figure 4-8.

@ MOTOROLA 53



Block Guide — S12BDLC_BG V01.03

Input Filtered
Sync 4-Bit Up/Down Counter Rx Data Out
Rx Data 4 Edge &
from ———»1d q [#| up/down out + Count —1d g -
RXB pad Comparator
A
A

54

MUX Interface Clock

Figure 4-8 BDLC Module Rx Digital Filter Block Diagram |

Operation

The clock for the digital filter is provided by the MUX Interface clock.At each positive edge of the
clock signal, the current state of the Receiver input signal from the RXB pad is sampled.The RXB
signal state is used to determine whether the counter should increment or decrement at the next
positive edge of the clock signal. |

The counter will increment if the input data sample is high but decrement if the input sample is
low.The counter will thus progress up towards ‘15’ if, on average, the RXB signal remains high or
progress down towards ‘0’ if, on average, the RXB signal remains low.

When the counter eventually reaches the value ‘15’, the digital filter decides that the condition of
the RXB signal is at a stable logic level one and the Data Latch is set, causing the Filtered Rx Data
signal to become a logic level one. Furthermore, the counter is prevented from overflowing and can
only be decremented from this state.

Alternatively, should the counter eventually reach the value ‘0’, the digital filter decides that the
condition of the RXB signal is at a stable logic level zero and the Data Latch is reset, causing the
Filtered Rx Data signal to become a logic level zero. Furthermore, the counter is prevented from
underflowing and can only be incremented from this state.

The Data Latch will retain its value until the counter next reaches the opposite end point, signifying
a definite transition of the RXB signal.

Performance

The performance of the digital filter is best described in the time domain rather than the frequency
domain.

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

If the signal on the RXB signal transitions, then there will be a delay before that transition appears
atthe Filtered Rx Data output signal. This delay will be between 15 and 16 clock periods, depending
on where the transition occurs with respect to the sampling points. This filter delay’ must be taken

into account when performing message arbitration.

For example, if the frequency of the MUX Interface cloglggf is 1.0486MHz, then the period
(thgio) is 954ns and the maximum filter delay in the absence of noise will be 15.259us.

The effect of random noise on the RXB signal depends on the characteristics of the noise itself.
Narrow noise pulses on the RXB signal will be completely ignored if they are shorter than the filter
delay. This provides a degree of low pass filtering.

If noise occurs during a symbol transition, the detection of that transition may be delayed by an
amount equal to the length of the noise burst. This is just a reflection of the uncertainty of where
the transition is truly occurring within the noise.

Noise pulses that are wider than the filter delay, but narrower than the shortest allowable symbol
length will be detected by the next stage of the BDLC module’s receiver as an invalid symiol.

Noise pulses that are longer than the shortest allowable symbol length will normally be detected as
an invalid symbol or as invalid data when the frame’s CRC is checked.

4.3 Protocol Handler

The Protocol Handler is responsible for framing, collision detection, arbitration, CRC
generation/checking, and error detection. The Protocol Handler conforms to SAE J1850 - Class B Data
Communications Network Interface. RefefRigure 1-2 BDLC Block Diagram on page 16

4.3.1 Protocol Architecture

The Protocol Handler contains the State Machine, Rx Shadow Register, Tx Shadow Register, Rx Shift
Register, Tx Shift Register, and Loopback Multiplexer as shown in Figure 4-9 BDLC Protocol Handler
Outline. Each block will now be described in more detail.

@ MOTOROLA 55



Block Guide — S12BDLC_BG V01.03

56

To Pad Drivers

RXB TXB
BDLC
DLOOP from BCR2 Loopback
—_— = .

loopback control Multiplexer

z

o

Ll

i

LL

—

<

E _

Y} 0 %

[a)] ﬁ 8

State Machine

) T
| Rx Shift Register | | Tx Shift Register |
| Rx Shadow Register ||| Tx Shadow Register |
< N8 o o N8
g g s
8 S z

To IP Bus Interface & Rx/Tx Buffer's

Figure 4-9 BDLC Protocol Handler Outline |

Rx & Tx Shift Registers

The Rx Shift Register gathers received serial data bits from the J1850 bus and makes them available
in parallel form to the Rx Shadow Register. The Tx Shift Register takes data, in parallel form, from
the Tx Shadow Register and presents it serially to the State Machine so that it can be transmitted
onto the J1850 bus.

Rx & Tx Shadow Registers

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Immediately after the Rx Shift Register has completed shifting in a byte of data, this data is
transferred to the Rx Shadow Register and RDRF or RXIFR is set and interrupt is generated if the
interrupt enable bit (IE) in BCR1 is set. After the transfer takes place, this new data byte in the Rx
Shadow Register is available to the CPU, and the Rx Shift Register is ready to shift in the nejt byte
of data. Data in Rx Shadow Register must be retrieved by the CPU before it is overwritten by new
data from the Rx Shift Register.

Once the Tx Shift Register has completed its shifting operation for the current byte, the data byte
in the Tx Shadow Register is loaded into the Tx Shift Register. After this transfer takes place, the
Tx Shadow Register is ready to accept new data from the CPU. |

» Digital Loopback Multiplexer

The Digital Loopback Multiplexer connects the input of the receive digital filter (See Figure 4-9)
to either the transmit signal out to the pad (TXB) or the receive signal from the pad (RXB),
depending on the state of the DLOOP bit in DLCBCR?2 register.

* State Machine

All of the functions associated with performing the protocol are executed or controlled by the State
Machine. The State Machine is responsible for framing, collision detection, arbitration, CRC
generation/checking, and error detection. The following sections describe the BDLC module’s
actions in a variety of situations.

e 4X Mode

The BDLC module can exist on the same J1850 bus as modules which use a special 4X (41.p kbps)
mode of J1850 VPW operation. The BDLC module cannot transmit in 4X mode, but can regeive
messages in 4X mode, if the RX4X bitis setin BCR2 register. If the RX4X bitis not setin the BCR2
register, any 4X message on the J1850 bus is treated as noise by the BDLC module and is i§nored.
Likewise, 4X messages transmitted on the SAE J1850 bus when the BDLC module is in n¢grmal
mode will be interpreted as noise on the network by the BDLC module.

* Receiving a Message in Block Mode

Although not a part of the SAE J1850 protocol, the BDLC module does allow for a special “Bjock
Mode” of operation of the receiver. As far as the BDLC module is concerned, a Block Modsg
message is simply a long J1850 frame that contains an indefinite number of data bytes. All of the
other features of the frame remain the same, including the SOF, CRC, and EOD symbols.

Another node wishing to send a Block Mode transmission must first inform all other nodes on the
network that this is about to happen. This is usually accomplished by sending a special predefined
message.

* Transmitting a Message in Block Mode

A Block mode message is transmitted inherently by simply loading the bytes one by one into the
BDR register until the message is complete. The programmer should wait until the TDRE flag is set
prior to writing a new byte of data into the BDR register. The BDLC module does not contairj any
predefined maximum J1850 message length requirement.

@ MOTOROLA S7



Block Guide — S12BDLC_BG V01.03
4.4 Transmitting A Message

The design of the BDLC module enables the user to easily handle message reception and messfge
transmission separately. This can greatly simplify the communication software, as all received messages
can be handled virtually the same, regardless of their origin.

This chapter will therefore describe only the steps necessary for transmitting a message, and will not
address the resulting reception of that message by the BDLC module. Message reception is des¢ribed in
Section 4.5 Receiving A Message. Later sections will deal with transmitting and receiving In-Frame
Responses on the SAE J1850 bus.

4.4.1 BDLC Transmission Control Bits

There is only one BDLC module control bit which is used when transmitting a message onto the pAE
J1850 bus. This bit, the Transmit End of Data (TEOD) bit, is set by the user to indicate to the BDLC
module that the last byte of that part of the message frame has been loaded into the DLCBDR. ThggTEOD
bit, located in DLCBCRZ2, is also used when transmitting an In-Frame Response (IFR), but that usage is
described in Section 4.6 Transmitting An In-Frame Response (IFR) on page 67. Setting the TEOD bit
indicates to the BDLC module that the last byte written to the BDLC Data Register is the final byte]to be
transmitted, and that following this byte a CRC byte and EOD symbol should be transmitted automatically.
Setting the TEOD bit will also inhibit any further TDRE interrupts until TEOD is cleared. The TEOD bit

will be cleared on the rising edge of the first bit of the transmitted CRC byte, or if an error or loss of
arbitration is detected on the bus.

 BDLC Data Register

The BDLC Data Register is a double-buffered register which is used for handling the transinitted
and received message bytes.Bytes to be transmitted onto the SAE J1850 bus are written to the
DLCBDR, and bytes received from the bus by the BDLC module are read from the DLCBDR.
Since this register is double buffered, bytes written into it cannot be read by the CPU. If this is
attempted, the byte which is read will be the last byte placed in the DLCBDR by the BDLC mofule,
not the last byte written to the DLCBDR by the CPU. For an illustration of the DLCBDR, refer to
Section 3.3.4 BDLC Data Register (DLCBDR) on page 31.

» Transmitting a Message with the BDLC

To transmit a message using the BDLC module, the user just writes the first byte of the mesJage to
be transmitted into the DLCBDR, initiating the transmission process. When the TDRE status
appears in the DLCBSVR, the user writes the next byte into the DLCBDR. Once all of the bytes
have been loaded into the DLCBDR, the user sets the TEOD bit, and the BDLC module completes
the message transmission. What follows is an overview of the basic steps required to transmit a
message onto an SAE J1850 network using the BDLC module. For an illustration of this seqjience,
refer to Figure 4-10 Basic BDLC Transmit Flowchart on page 62.

NOTE: Due to the byte-level architecture of the BDLC module, the 12-byte limit on |
message length as defined in SAE J1850 must be enforced by the user’s software.
The number of bytes in a message (transmitted or received) has no meaning to the
BDLC module. |

58 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

— Step 1: Write the First Byte into the DLCBDR

To initiate a message transmission, the CPU simply loads the first byte of the message to be
transmitted into the DLCBDR. The BDLC module will then perform the necessary bus |
acquisition duties to determine when the message transmission can begin.

Once the BDLC module determines that the SAE J1850 bus is free, a Start of Frame (§OF)
symbol will be transmitted, followed by the byte written to the DLCBDR. Once the BDL
module readies this byte for transmission, the DLCBSVR will reflect that the next byte cgn be
written to the DLCBDR (TDRE interrupt).

NOTE: |If the user writes the first byte of a message to be transmitted to the DLCBDR and
then determines that a different message should be transmitted, the user can write
a new byte to the DLCBDR up until the transmission begins. This new byte will
replace the original byte in the DLCBDR.

— Step 2: When TDRE is Indicated, Write the Next Byte into the DLCBDR

When a TDRE state is reflected in the BSVR, the CPU writes the next byte to be transmitted
into the BDR. This step is repeated until the last byte to be transmitted is written to the
DLCBDR.

NOTE: Due tothe design and operation of the BDLC module, when transmitting a message |
the user may write two, or possibly even three of the bytes to be transmitted into the
DLCBDR before the first RDRF interrupt occurs. For this reason, the user should
never use receive interrupts to control the sequencing of bytes to be transmitted.

— Step 3: Write the Last Byte to the DLCBDR and Set TEOD

Once the user has written the last byte to be transmitted into the DLCBDR, the user then sets
the TEOD bitin DLCBCR2. When the TEOD bit is set, once the byte written to the DLCBDR

is transmitted onto the bus, the BDLC module will begin transmitting the 8-bit CRC bytdq, as
specified in SAE J1850. Following the CRC byte, the BDLC module will transmit an EC()EID
symbol onto the SAE J1850 bus, indicating that this part of the message has been completed. If
no IFR bytes are transmitted following the EOD, an EOF will be recognized and the message
will be complete.

Setting the TEOD bit is the last step the CPU needs to take to complete the message
transmission, and no further transmission-related interrupts will occur. Once the message has
been completely received by the BDLC module, an EOF interrupt will be generated. Howjever,
this is technically a receive function which can be handled by the message reception routine.

NOTE: While the TEOD bit is typically set immediately following the write of the last byte
to the BDR, itis also acceptable to wait until a TDRE interrupt is generated before
setting the TEOD bit. While the example flowchart in Figure 4-10 shows the TEOD
bit being set after the write to the BDR, either method is correct. If a TDRE interrupt
is pending, it will be cleared when the TEOD bit is set.

@ MOTOROLA 39



Block Guide — S12BDLC_BG V01.03

4.4.2 Transmitting Exceptions

While this is the basic transmit flow, at times the message transmit process will be interrupted. This can
be due to a loss of arbitration to a higher priority message or due to an error being detected on the network.
For the transmit routine, either of these events can be dealt with in a similar manner.

60

Loss of Arbitration

If a loss of arbitration (LOA) occurs while the BDLC module is transmitting onto the SAE JJ850
bus, the BDLC module will immediately stop transmitting, and a LOA status will be reflecteJIj in
the DLCBSVR. If the loss of arbitration has occurred on a byte boundary, an RDRF interrupt may
also be pending once the LOA interrupt is cleared.

When a loss of arbitration occurs, the J1850 message handling software should immediately switch
into the receive mode. If the TEOD bit was set, it will be cleared automatidbipother attempt

is to be made to transmit the same message, the user must start the transmit sequence over
from the beginning of the message.

Error Detection

Similar to a loss of arbitration, if any error (except a CRC error) is detected on the SAE J1850 bus
during a transmission, the BDLC module will stop transmitting immediately. The byte whichwas
being transmitted will be discarded, and the “Symbol Invalid or Out of Range” status will be
reflected in the DLCBSVR. As with the loss of arbitration, if the TEOD bit was set, it will be cleared
automatically, and any attempt to transmit the same message will have to start from the beginning.

If a CRC error occurs following a transmission, this will also be reflected in the DLCBSVR.
However, since the CRC error is really a receive error based on the received CRC byte, at this point
all bytes of the message will have been transmitted. It is therefore up to the user’s software to
determine if another attempt should be made to transmit the message in which the error occurred.

Transmitter Underrun

A transmitter underrun can occur when a TDRE interrupt is not serviced in a timely fashion. If the
last byte loaded into the DLCBDR is completely transmitted onto the network before the next byte
is loaded into the BDR, a transmitter underrun will occur. If this does happen, the BDLC mé¢dule
will transmit two additional logic ones to ensure that the partial message which was transrr¥tted
onto the bus does not end on a byte boundary. This will be followed by an EOD and EOF symbol.
The only indication to the CPU that an underrun occurred is the Symbol Invalid or Out of Range
error which will be indicated in the DLCBSVR. As with the other errors, it is up to the user’'s
software to determine if another transmission attempt should be made.

In-Frame Response to a Transmitted Message

If an In-Frame Response (IFR) is received following the transmission of a message, the status
indicating that an IFR byte has been received will be indicated in the DLCBSVR before an EOF is
indicated. Refer to Section 4.7 Receiving An In-Frame Response (IFR) on page 78 for a description
of how to handle the reception of IFR bytes.

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03
4.4.3 Aborting a Transmission

The BDLC module does not have a mechanism designed specifically for aborting a transmission| Since
the module transmits each message on a byte-by-byte basis, there is little need to implement an abort
mechanism. If the user has loaded a byte into the DLCBDR to initiate a message transmission and decides
to send a different message, the byte in the DLCBDR can be replaced, right up to the point that the message
transmission begins.

If the user has loaded a byte into the DLCBDR and then decides not to send any message at all, the user
can let the byte transmit, and when the TDRE interrupt occurs let the transmitter underrun. This will cause
two extra logic ones followed by an EOF to be transmitted. While this method may require a small amount

of bus bandwidth, the need to do this should be very rare. Replacing the byte originally written to the BDR
with $FF will also increase the probability of the transmitter losing arbitration if another node begins
transmitting at the same time, also reducing the bus bandwidth needed.

@ MOTOROLA 61



Block Guide — S12BDLC_BG V01.03

Enter BDLC module Transmit
Routine

Write first message
byte to be transmitted
into DLCBDR

No

Is this the last
byte?

>

Yes

) ) Is DLCBSVR = $00?
For interrupt driven systems,

this marks the beginning of the

transmit section of the BDLC
module interrupt service

routine

Set TEOD bit
in DLCBCR2

Go to BDLC module
BREAK/Error Handling
Routine

S DLCBSVR = $1C?
(Invalid Symbol)

Jump to Receive IFR
Handling Routine

IFR Received?

Jump to BDLC module
Receive Routine

Dnce BDLC module detects
EOF, transmit
attempt is complete

|s DLCBSVR = $147
(LOA)

Attempt another

s DLCBSVR = $107 transmission?

(TDRE)

Exit BDLC module Transmit
Routine

Load next byte to be
transmitted into BDR
(clears TDRE)

NOTE: The EOF and CRC Error interrupts
are handled in the BDLC module Receive |
Routine

Figure 4-10 Basic BDLC Transmit Flowchart

4.5 Receiving A Message

The design of the BDLC module makes it especially easy to use for receiving messages off of th¢ SAE
J1850 bus. When the first byte of a message comes in, the DLCBSVR will indicate to the CPU that a byte

62 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

has been received. As each successive byte is received, that will in turn be reflected in the DLCBSVR.
When the message is complete and the EOF has been detected on the bus, the DLCBSVR wiill reflect this,
indicating that the message is complete.

The basic steps required for receiving a message from the SAE J1850 bus are outlined below. For more
information on receiving IFR bytes, refer to Section 4.7 Receiving An In-Frame Response (IFR) on page
78.

4.5.1 BDLC Reception Control Bits |

The only control bit which is used for message reception, the IMSG bit, is actually used to prevent message
reception. When the IMSG bit is set BDLC module interrupts of the CPU are inhibited until the next|]SOF

symbol is received. This allows the BDLC module to ignore the remainder of a message once the CPU has
determined that it is of no interest. This helps reduce the amount of CPU overhead used to service
messages received from the SAE J1850 network, since otherwise the BDLC module would requife
attention from the CPU for each byte broadcast on the network. The IMSG bit is cleared when the BDLC
module receives an SOF symbol, or it can also be cleared by the CPU.

NOTE: While the IMSG bit can be used to prevent the CPU from having to service the
BDLC module for every byte transmitted on the SAE J185aH®uBYISG bit
should never be used to ignore the BDLC module’s own transmissBectause
setting the IMSG bit prevents all DLCBSVR bits from being updated until an SOF
is received, the user would not receive any further transmit-related interrupts until
another SOF was received, making it very difficult for the CPU to complete the
transmission correctly.

4.5.2 Receiving a Message with the BDLC module

Receiving a message using the BDLC module is extremely straight-forward. As each byte of a megsage is
received and placed into the DLCBDR, the BDLC module will indicate this to the CPU with an Rx Data
Register Full (RDRF) status in the DLCBSVR. When an EOF symbol is received, indicating to the CPU
that the message is complete, this too will be reflected in the DLCBSVR.

Outlined below are the basic steps to be followed for receiving a message from the SAE J1850 bus with
the BDLC module. For an illustration of this sequence, refer to Basic BDLC Receive Flowchart o page
66.

* Step 1: When RDREF Interrupt Occurs, Retrieve Data Byte

When the first byte of a message following a valid SOF symbol is received that byte is placed in the
DLCBDR, and an RDRF state is reflected in the DLCBSVR. No indication of the SOF reception is
made, since the end of the previous message is marked by an EOF indication. The first RDRF state
following this EOF indication should allow the user to determine when a new message begins.

The RDRF interrupt is cleared when the received byte is read from the DLCBDR. Once thisis done,
no further CPU intervention is necessary until the next byte is received, and this step is repeated.

All bytes of the message, including the CRC byte, will be placed into the DLCBDR as they are
received for the CPU to retrieve.

@ MOTOROLA 63



Block Guide — S12BDLC_BG V01.03

* Step 2: When an EOF is Received, the Message is Complete

Once all bytes (including the CRC byte) have been received from the bus, the bus will be idle for a
time period equal to an EOD symbol. Once the EOD symbol is received, the BDLC modulg will
verify that the CRC byte is correct. If the CRC byte is not correct, this will be reflected in the
DLCBSVR.

If no In-Frame Response bytes are transmitted following the EOD symbol, the EOD will transition
into an EOF symbol. When the EOF is received it will be reflected in the DLCBSVR, indicating to
the user that the message is complete. If IFR bytes do follow the first EOD symbol, once they are
complete another EOD will be transmitted, followed by an EOF.

Once the EOF state is reflected in the DLCBSVR, this indicates to the user that the message is
complete, and that when another byte is received it is the first byte of a new message.

4.5.3 Filtering Received Messages

No message filtering hardware is included on the BDLC module, so all message filtering functionp must
be performed in software. Because the BDLC module handles each message on a byte-by-byte Easis,
message filtering can be done as each byte is received, rather than after the entire message is complete.
This enables the CPU to decide while a message is still in progress whether or not that message is of any
interest.

At any point during a message, if the CPU determines that the message is of no interest the IMSG bit can
be set. Setting the IMSG bit commands the BDLC module not to update the DLCBSVR until the nex{valid
SOF is received. This prevents the CPU from having to service the BDLC module for each byte offevery
message sent over the network.

4.5.4 Receiving Exceptions

As with a message transmission, this basic message reception flow can be interrupted if errors are detected
by the BDLC module. This can occur if an incorrect CRC is detected or if an invalid or out of range syjmbol
appears on the SAE J1850 bus. A problem can also arise if the CPU fails to service the DLCBDR in a
timely manner during a message reception.

* Receiver Overrun

Once a message byte has been received, the CPU must service the DLCBDR before the next byte
is received, or the first byte will be lost. If the DLCBDR is not serviced quickly enough, the next
byte received will be written over the previous byte in the DLCBDR. No receiver overrun indication

is made to the CPU. If the CPU fails to service the BDLC module during the reception of an ¢ntire
message, the byte remaining in the DLCBDR will be last byte received (usually a CRC byte).

Once areceiver overrun occurs, there is no way for the CPU to recover the lost byte(s), so the entire
message should be discarded. To prevent receiver overrun, the user should ensure that a BDLC
RDRF interrupt will be serviced before the next byte can be received. When polling the DLCB§VR,
the user should select a polling interval which will provide timely monitoring of the BDLC module.

e CRC Error

64 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

If a CRC error is detected during a message reception, this will be reflected in the BSVR once an
EOD time is recognized by the BDLC module. Since all bytes of the message will have begn
received when this error is detected, it is up to the user to ensure that all the received message bytes
are discarded.

e Invalid or Out of Range Symbol

If an invalid or out of range symbol, a framing error or a BREAK symbol is detected on the SAE
J1850 bus during the reception of a message, the BDLC module will immediately stop recgiving
the message and discard any partially received byte. The “Symbol Invalid or Out of Range” status
will immediately be reflected in the DLCBSVR. Following this the BDLC module will wait urjtil

the bus has been idle for a time period equal to an EOF symbol before receiving another message.
As with the CRC error, the user should discard any partially received message if this occurs.

* In-Frame Response to a Received Message

As mentioned above, if one or more IFR bytes are received following the reception of a message,
the status indicating the reception of the IFR byte(s) will be indicated in the DLCBSVR before the
EOF is indicated. Refer to Receiving An In-Frame Response (IFR) on page 78 for a description of
how to deal with the reception of IFR bytes.

@ MOTOROLA 65



Block Guide — S12BDLC_BG V01.03

nter BDLC module Receive
Routine

= $1C/$18?
(Error Detected)

Go to BDLC module
BREAK/Error Handling
Routine

Read byte in DLCBDR

Is this a transmit

reflection Filter received byte

Jump to Receive IFR

Handling Routine Is this an IFR

reception?

Store received byte
(in case of LOA)

nce BDLC module Detec

EOF, message
reception is complete

Yes

Is this message
of any interest?

xit BDLC module Receive
Routine

Store received byte Set IMSG bit in DLCBCR1

Is an IFR to
be transmitted?

Jump to Transmit IFR
Handling Routine

Figure 4-11 Basic BDLC Receive Flowchart

66 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03
4.6 Transmitting An In-Frame Response (IFR)

The BDLC module can be used to transmit all four types of In-Frame Response (IFR) which are §lefined
in SAE J1850. A very brief definition of each IFR type is given below. For a more detailed description of
each, refer the SAE J1850 document.

The explanation regarding IFR support by the BDLC module which assumes the user is familiar wjth the
use of IFRs as defined in SAE J1850, and understands the message header bit encoding and normalization
bit formats which are used with the different types of IFRs. For more information on this, refer to the SAE
J1850 document.

4.6.1 IFR Types Supported by the BDLC module |

SAE J1850 defines four distinct types of IFR. The first (and most basic) IFR is Type 0, or no IFR. IFR
types 1 2 & 3 areeach made up of one or more bytes and, depending upon the type used, may be followed
by a CRC byte. The BDLC module is designed to allow the user to transmit and receive all types of SAE
J1850 IFRs, but only the network framing/error checking/bus acquisition duties are performed by the
BDLC module. The user is responsible for determining the type of IFR to be transmitted, the nunjber of
retries to be made (if allowed), and the allowable number of bytes to be transmitted.

+ IFR Type 0: No Response

The most basic type of IFR is no IFR. The Type 0 IFR, as defined in SAE J1850, is no response.
The EOD and EOF symbols follow directly after the CRC byte at the end of the message frame
being transmitted. This type of IFR is, of course, inherently supported by the BDLC modulg with
no additional user intervention required.

* IFR Type 1: Single Byte from a Single Responder

SAE J1850 defines the Type 1 IFR as a single byte from a single receiver. This type of IFR is used
to acknowledge to the transmitter that the message frame was transmitted successfully on the
network, and that at least one receiver received it correctly. A Type 1 IFR generally consists of the
physical node ID of the receiver responding to the message, with no CRC byte appended. This type
of response is used for Broadcast-type messages, where there may be several intended receivers for
a message but the transmitter only wants to know that at least one node received it. In this case, all
receivers will begin transmitting their node ID following the EOD. Since all nodes on an SAE J1850
network have a unique node ID, if multiple nodes begin transmitting their node ID simultaneously,
arbitration takes place. The node with the highest priority (lowest value) ID wins this arbitration
process, and that node’s ID makes up the IFR. No retries are attempted by the nodes which lose
arbitration during a Type 1 IFR transmission.

A Type 1 IFR can also be used as a response to a physically addressed message, where the only
intended receiver is the one which responds. In this case, no arbitration would take place during the
IFR transmission, but the resulting IFR would still consist of a single byte.

* IFR Type 2: Single Byte from Multiple Responders

@ MOTOROLA 67



Block Guide — S12BDLC_BG V01.03

The Type 2 IFR, as defined in SAE J1850, is a series of single bytes, each transmitted by a different
responder. This IFR type not only acknowledges to the transmitter that the message was transmitted
successfully, but also reveals which receivers actually received the message. As with the Type 1
IFR, no CRC byte is appended to the end of a Type 2 IFR.

This IFR type is typically used with Function-type messages, where the original transmitter may
need to know which nodes actually received the message. The basic difference between this type of
IFR and the Type 1 IFR is that the nodes which lose arbitration while attempting to transmit their
node ID during a Type 2 IFR wait until the byte which wins arbitration is transmitted and then again
attempt to transmit their node ID onto the bus. The result is a series of node IDs, one from each
receiver of the original message.

* |IFR Type 3: Multiple Bytes from a Single Responder

The last type of IFR defined by SAE J1850 is the Type 3 IFR. This IFR type consists of one or more
bytes from a single responder. This type of IFR is used to return data to the original transmitter
within the original message frame. This type of IFR may or may not have a CRC byte appended to
it.

The Type 3 IFR is typically used with Function Read-type or Function Query-type messages, where
the original transmitter is requesting data from the intended receiver. The node requesting the data
transmits the initial portion of the message, and the intended receiver responds by transmitting the
desired data in an IFR. In most cases, the original message requiring a Type 3 IFR is addressed to
one particular node, so no arbitration should take place during the IFR portion of the message.

4.6.2 BDLC IFR Transmit Control Bits
onse.

The BDLC module has three bits which are used to control the transmission of an In-Frame Res
These bits, all located in DLCBCRZ2, are TSIFR, TMIFR1 and TMIFRO. Each is used in conjunction with
the TEOD bit to transmit one of three IFR types defined in SAE J1850. What follows is a brief description
of each bit.

Because each of the bits used for transmitting an IFR with the BDLC module is used to transmit §
particular type of IFR, only one bit should be set by the CPU at a time. However, should more than one of
these bits get set at one time, a priority encoding scheme is used to determine which type of IFR is sent.
This scheme prevents unpredictable operation caused by conflicting signals to the BDLC modulg. Table
4-8 illustrates which IFR bit will actually be acted upon by the BDLC module should multiple IFR bitj get
set at the same time.

NOTE: As with transmitted messages, IFRs transmitted by the BDLC module will also be
received by the BDLC module. For a description of how IFR bytes received by the
BDLC module should be handled, refer to Section 4.7 Receiving An In-Frame
Response (IFR) on page 78.

68 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Table 4-8 IFR Control Bit Priority Encoding

READ/WRITE ACTUAL
TSIFR TMIFR1 TMIFRO TSIFR TMIFR1 TMIFRO
0 0 0 0 0 0
1 X X 1 0 0
0 1 X 0 1 0
0 0 1 0 0 1

4.6.3 Transmit Single Byte IFR

The Transmit Single Byte IFR (TSIFR) bitin DLCBCR2 is used to transmit Type 1 and Type 2 IFRs onto
the SAE J1850 bus. If this bit is set after a byte is loaded into the BDR, the BDLC module will attenjpt to
send that byte, preceded by the appropriate Normalization Bit, as a single byte IFR without a CRC. If
arbitration is lost, the BDLC module will automatically attempt to transmit the byte again (without p
Normalization Bit) as soon as the byte winning arbitration completes transmission. Attempts to transmit
the byte will continue until either the byte is successfully transmitted, the TEOD bit is set by the user or
an error is detected on the bus.

The user must set the TSIFR bit before the EOD following the main part of the message frame is received,
or no IFR transmit attempts will be made for the current message. If another node does transmit an IFR to
this message or a reception error occurs, the TSIFR bit will be cleared. If not, the IFR will be transmitted
after the EOD of the next received message.

The TSIFR bit will be automatically cleared once the EOD following one or more IFR bytes has been
received or an error is detected on the bus.

4.6.4 Transmit Multi-Byte IFR 1

The Transmit Multi-Byte IFR 1 (TMIFR1) bit is used to transmit an SAE J1850 Type 3 IFR with a CRC
byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the
DLCBDR, the BDLC module will begin transmitting that byte, preceded by the appropriate Normalizption
Bit, onto the SAE J1850 bus. Once this happens a TDRE interrupt will occur, indicating to the user that
the next IFR byte should be loaded into the DLCBDR. When the last byte to be transmitted is written to
the DLCBDR, the user sets the TEOD bit. This will cause a CRC byte and an EOD symbol to be
transmitted following the last IFR byte.

As with the TSIFR bit, the TMIFR1 bit must be set before the EOD symbol is received, or it will remain
cleared and no IFR transmit attempt will be made. The TMIFR1 bit will be cleared once the CRC byte and
EOD are transmitted, if an error is detected on the bus, if a loss of arbitration occurs during the IFR
transmission or if a transmitter underrun occurs when the user fails to service the TDRE interrupt in a
timely manner. If a loss of arbitration occurs while the Type 3 IFR is being transmitted, transmission will
halt immediately and the loss of arbitration will be indicated in the DLCBSVR.

@ MOTOROLA 69



Block Guide — S12BDLC_BG V01.03
4.6.5 Transmit Multi-Byte IFR 0

The Transmit Multi-Byte IFR 0 (TMIFRO) bit is used to transmit an SAE J1850 Type 3 IFR withouta CRC
byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the
DLCBDR, the BDLC module will begin transmitting that byte, preceded by the appropriate Normalizption
Bit, onto the SAE J1850 bus. Once this happens a TDRE interrupt will occur, indicating to the user that
the next IFR byte should be loaded into the DLCBDR. When the last byte to be transmitted is written to
the DLCBDR, the user sets the TEOD bit. This will cause an EOD symbol to be transmitted following the
last IFR byte.

As with the TSIFR and TMIFR1 bits, the TMIFRO bit must be set before the EOD symbol is received, or
it will remain cleared and no IFR transmit attempt will be made. The TMIFRO bit will be cleared once the
CRC byte and EOD are transmitted, if an error is detected on the bus, if a loss of arbitration occurs during
the IFR transmission or if a transmitter underrun occurs when the user fails to service the TDRE interrupt
in a timely manner. If a loss of arbitration occurs while the Type 3 IFR is being transmitted, transmission
will halt immediately and the loss of arbitration will be indicated in the DLCBSVR.

NOTE: The TMIFRO bit should not be used to transmit a Type 1 IFR. If a loss of arbitration
occurs on the last bit of a byte being transmitted using the TMIFRO bit, two extra
logic ones will be transmitted to ensure that the IFR will not end on a byte
boundary. This can cause an error in a Type 1 IFR.

4.6.6 Transmitting An IFR with the BDLC module
PsS

While the design of the BDLC module makes the transmission of each type of IFR similar, the st
necessary for sending each will be discussed. Again, a discussion of the bytes making up any particular
IFR is not within the scope of this document. For a more detailed description of the use of IFRs on an SAE
J1850 network, refer to the SAE J1850 document.

» Transmitting a Type 1 IFR

To transmit a Type 1 IFR, the user loads the byte to be transmitted into the DLCBDR and sets both
the TSIFR bit and the TEOD bit. This will direct the BDLC module to attempt transmitting the pyte
written to the DLCBDR one time, preceded by the appropriate Normalization Bit. If the
transmission is not successful, the byte will be discarded and no further transmission attempts will
be made. For anillustration of the steps described below, refer to Section 4-12 Transmitting A Type
1 IFR on page 72.

— Step 1: Load the IFR Byte into the BDR

The user begins initiation of a Type 1 IFR by loading the desired IFR byte into the DLCBDR.

If a byte has already been written into the DLCBDR for transmission as a new message, the user
can simply write the IFR byte to the DLCBDR, replacing the previously written byte. This must
be done before the first EOD symbol is received.

— Step 2: Set the TSIFR and TEOD Bits

70 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

TEOD bits in DLCBCR2. Setting both bits will direct the BDLC module to make one atte

at transmitting the byte in the DLCBDR as an IFR. If the byte is transmitted successfully, or if
an error or loss of arbitration occurs, TEOD and TSIFR will be cleared and no further transmit
attempts will be made.

The final step in transmitting a Type 1 IFR with the BDLC module is to set the TSIFR a:l:l
pt

* Transmitting a Type 2 IFR

To transmit a Type 2 IFR, the user loads the byte to be transmitted into the DLCBDR and sets the
TSIFR bit. Once this is done, the BDLC module will attempt to transmit the byte in the DLCHDR
as asingle byte IFR, preceded by the appropriate Normalization Bit. If the first BDLC moduleﬂoses
arbitration on the first attempt, it will make repeated attempts to transmit this byte until it is
successful, an error occurs or the user sets the TEOD bit.

@ MOTOROLA 71



Block Guide — S12BDLC_BG V01.03

Enter Type 1 IFR
Transmit Routine

Y

Load IFR byte
into DLCBDR

:

Set TSIFR and TEOD

Is DLCBSVR = $1C?
(Error Detected)

Is DLCBSVR = $14~
(LOA)

IFR byte is discarded

IFR byte is discarded

Jump to Receive IFR
>t Handling Routine
A

Once BDLC module detecT,

or EOF, IFR transmit
attempt is complete

Exit Type 1 IFR
Transmit Routine

Figure 4-12 Transmitting A Type 1 IFR

— Step 1: Load the IFR Byte into the BDR

As with the Type 1 IFR, the user begins initiation of a Type 2 IFR by loading the desired IFR
byte into the DLCBDR. If a byte has already been written into the DLCBDR for transmission
as a new message, the user can simply write the IFR byte to the DLCBDR, replacing the
previously written byte. This must be done before the first EOD symbol is received.

— Step 2: Set the TSIFR Bit

72 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

The second step necessary for transmitting a Type 2 IFR is to set the TSIFR bit in DLCBCR2.
Setting this bit will direct the BDLC module to attempt to transmit the byte in the DLCBDR as
an IFR until it is successful. If the byte is transmitted successfully, or if an error or loss of
arbitration occurs, TSIFR will be cleared and no further transmit attempts will be made.

— Step 3: If Necessary, Set the TEOD Bit

The third step in transmitting a Type 2 IFR is only necessary if the user wishes to halt the
transmission attempts. This may be necessary if the BDLC module’s attempt to transmi the
byte loaded into the DLCBDR continually loses arbitration, and the overall message length
approaches the 12-byte limit as defined in SAE J1850.

If it becomes necessary to halt the IFR transmission attempts, the user simply sets the TEOD bit
in BCR2. If the BDLC module is between transmission attempts, it will make one more attgmpt
to transmit the IFR byte. If it is transmitting the byte when TEOD is set, the BDLC moduletvill
continue the transmission until it is successful or it loses arbitration to another transmitter. At
this point it will then discard the byte and make no more transmit attempts.

NOTE: When transmitting a Type 2 IFR, the user should monitor the number of IFR bytes
received to ensure that the overall message length does not exceed the 12-byte limit
for the length of SAE J1850 messages. The user should set the TEOD bit when the
11th byte is received, which will prevent the 12-byte limit from being exceeded.

@ MOTOROLA 73



Block Guide — S12BDLC_BG V01.03

Enter Type 2 IFR
Transmit Routine

Load IFR byte
into DLCBDR

:

Set TSIFR in DLCBCR2

Jump to Receive IFR
Handling Routine

Was this the last
transmit attempt?

Is DLCBSVR = $1C*

Is DLCBSVR = $147
(Error Detected) (LOA)

IFR byte is discarded IFR byte is discarded

Jump to Receive IFR
> < Handling Routine

Once BDLC module detects,
or EOF, IFR transmit
attempt is complete

Exit Type 1 IFR
Transmit Routine

Figure 4-13 Transmitting A Type 2 IFR

e Transmitting a Type 3 IFR

74

Was the 11th
msg byte received?

Set TEOD in DLCBCR2

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Transmitting a Type 3 IFR, with or without a CRC byte, is done in a fashion similar to transmitting

a message frame. The user loads the first byte to be transmitted into the DLCBDR and then sets the
appropriate TMIFR bit, depending upon whether a CRC byte is desired. When the last byte is
written to the BDR, the TEOD bit is set, and a CRC byte (if desired) and an EOD are then
transmitted. Because the two versions of the Type 3 IFR are transmitted identically, the description
which follows will discuss both. For an illustration of the Type 3 IFR transmit sequence, refer to
Figure 4-14 Transmitting A Type 3 IFR on page 77.

— Step 1: Load the First IFR Byte into the DLCBDR

The user begins initiation of a Type 3 IFR, as with each of the other IFR types, by loading the
desired IFR byte into the DLCBDR. If a byte has already been written into the DLCBDR for
transmission as a new message, the user can simply write the first IFR byte to the DLCBDR,
replacing the previously written byte. This must be done before the first EOD symbol is
received.

— Step 2: Set the TMIFR Bit

The second step necessary for transmitting a Type 3 IFR is to set the desired TMIFR bit in
DLCBCRZ2, depending upon whether or not a CRC is desired. As previously described in
Section 4.6.2 BDLC IFR Transmit Control Bits on page 68, the TMIFR1 bit should be set if the
user requires a CRC byte to be appended following the last byte of the Type 3 IFR, and TMIFRO
if no CRC byte is required.

Setting the TMIFR1 or TMIFRO bit will direct the BDLC module to transmit the byte in the
BDR as the first byte of a single or multi-byte IFR preceded by the appropriate Normalization
Bit. Once this has occurred, the DLCBSVR will reflect that the next byte of the IFR can be
written to the DLCBDR (TDRE interrupt).

NOTE: The user must set the TMIFR1 or TMIFRO bit before the EOD following the main
part of the message frame is received, or no IFR transmit attempts will be made for
the current message. If another node does transmit an IFR to this message or a
reception error occurs, the TMIFR1 or TMIFRO bit will be cleared. If not, the IFR
will be transmitted after the EOD of the next received message.

— Step 3: When TDRE is Indicated, Write the Next IFR Byte into the DLCBDR

When a TDRE state is reflected in the DLCBSVR, the CPU writes the next IFR byte to be
transmitted into the DLCBDR, clearing the TDRE interrupt. This step is repeated until the last
IFR byte to be transmitted is written to the DLCBDR.

NOTE: Aswhentransmitting a message, when transmitting a Type 3 IFR the user may write
two, or possibly even three of the bytes to be transmitted into the DLCBDR before
the first RXIFR interrupt occurs. For this reason, the user should never use receive
IFR byte interrupts to control the sequencing of IFR bytes to be transmitted.

— Step 4: Write the Last IFR Byte into the DLCBDR and Set TEOD

Once the last IFR byte to be transmitted is written to the DLCBDR, the CPU then sets the TEOD
bit in DLCBCR2. Once the TEOD bit is set, after the last IFR byte written to the DLCBDR is
transmitted onto the bus, if the TMIFR1 bit has been set the BDLC module will begin |

@ MOTOROLA 75



Block Guide — S12BDLC_BG V01.03

transmitting the CRC byte, followed by an EOD. If the TMIFRO bit has been set, the last IFR
byte will immediately be followed by the transmission of an EOD. Following the EOD, and
EOF will be recognized and the message will be complete.

If at any time during the transmission of a Type 3 IFR a loss of arbitration occurs, the TMIFR
bit which is set and the TEOD bit (if set) will be cleared, any IFR byte being transmitted will be
discarded and the loss of arbitration state will be reflected in the DLCBSVR. Likewise, if an
error is detected during the transmission of a Type 3 IFR the IFR control bits will be cleared,
the byte being transmitted will be discarded and the DLCBSVR will reflect the detected error.

NOTE: If the Type 3 IFR being transmitted is made up of a single byte, the appropriate
TMIFR bit and the TEOD bit can be set at the same time. The BDLC module will |
then treat that byte as both the first and last IFR byte to be sent.

4.6.7 Transmitting IFR Exceptions

This basic IFR transmitting flow can be interrupted for the same reasons as a normal message
transmission. The IFR transmit process can be adversely affected due to a loss of arbitration, an Invalid or
Out of Range Symbol, or due to a transmitter underrun caused by the CPU failing to service a TDRE
interrupt in a timely fashion. For a description of how these exceptions can affect the IFR transmit process,
refer to Section 4.4.2 Transmitting Exceptions on page 60.

76 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Enter Type 3 IFR
Transmit Routine

Write first IFR
byte to be transmitted
into DLCBDR

Y

Set desired
TMIFR bit in DLCBCR2

Load next byte to be
transmitted into DLCBDR]
(clears TDRE)

Yes

Set TEOD bit in
DLCBCR2

v

Only one byte to
transmit?

No Is this the last

byte?

For interrupt driven systems, Is DLCBSVR = $00?

this marks the beginning of the
transmit Type 3 IFR section of

the BDLC module interrupt N

service routine

Set TEOD bit
in DLCBCR2

S DLCBSVR = $1C~

Abandon IFR
(Invalid Symbol)

transmit attempt

Once BDLC module detects
EOF, IFR transmit
attempt is complete

Jump to IFR
Receive Routine

Exit Type 3 IFR
Transmit Routine

Is DLCBSVR = $147
(LOA)

No

s DLCBSVR = $107
(TDRE)

NOTE: The EOF and CRC Error interrupts
are handled in the IFR Receive Routine

Figure 4-14 Transmitting A Type 3 IFR

@ MOTOROLA



Block Guide — S12BDLC_BG V01.03
4.7 Receiving An In-Frame Response (IFR)

Receiving an In-Frame Response with the BDLC module is very similar to receiving a message frage. As
each byte of an IFR is received, the DLCBSVR will indicate this to the CPU. An EOF indication in the
DLCBSVR indicates that the IFR (and message) is complete. Also, the IMSG bit can also be used to
command the BDLC module to mask any further network activity from the CPU, including IFR by}es
being received, until the next valid SOF is received.

NOTE: As with a message transmission, the IMSG bit should never be used to ignore the
BDLC module’s own IFR transmissions. This is again due to the DLCBSVR bits |
being inhibited from updating until IMSG is cleared, preventing the CPU from
detecting any IFR-related state changes which may be of interest.

4.7.1 Receiving an IFR with the BDLC module |

Receiving an IFR from the SAE J1850 bus requires the same procedure that receiving a message does,
except that as each byte is received the Received IFR Byte (RxIFR) state is indicated in the DLCBSVR.
All other actions are the same. For an illustration of the steps described below, refer to Figure 4-15
Receiving An IFR With the BDLC module on page 79.

» Step 1: When RxIFR Interrupt Occurs, Retrieve IFR Byte

When the first byte of an IFR following a valid EOD symbol is received that byte is placed in the
DLCBDR, and an RxIFR state is reflected in the DLCBSVR. No indication of the EOD reception

in made, since the RxIFR state will indicate that the main portion of the message has ended and the
IFR portion has begun.

The RxIFR interrupt is cleared when the received IFR byte is read from the DLCBDR. Once this is
done, no further CPU intervention is necessary until the next IFR byte is received, and this step is
repeated. As with a message reception, all bytes of the IFR, including the CRC byte, will be placed
into the DLCBDR as they are received for the CPU to retrieve.

 When an EOF is Received, the IFR (and Message) is Complete

Once all IFR bytes (including the possible CRC byte) have been received from the bus, the bus will
again be idle for a time period equal to an EOD symbol. Following this, the BDLC module Will
determine whether or not the last byte of the IFR is a CRC byte, and if so verify that the CRC byte
is correct. If the CRC byte is not correct, this will be reflected in the DLCBSVR.

After an additional period of time the EOD symbol will transition into an EOF symbol. When the
EOF is received it will be reflected in the DLCBSVR, indicating to the user that the IFR, and the
message, is complete.

78 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Enter IFR Receive
Routine

Is DLCBSVR = $1C/$187
(Error Detected)

Yes . )
Discard received
IFR bytes

Is DLCBSVR = $08%

Read byte in DLCBDR
(RXIFR)

No

Is this an IFR

it roflaction? Filter received IFR byte

Store received IFR byte
@ > (in case of LOA)

Once BDLC module Detec]
EOF, IFR
reception is complete

s DLCBSVR = $047
(EOF)

Is this IFR

Store received IFR byte h
of any interest?

Exit IFR Receive
Routine

Set IMSG bit in DLCBCRI

Figure 4-15 Receiving An IFR With the BDLC module |

4.7.2 Receiving IFR Exceptions

This basic IFR receiving flow can be interrupted for the same reasons as a normal message reception. The
IFR receiving process can be adversely affected due to a CRC error, an Invalid or Out of Range Symbol
or due to a receiver overrun caused by the CPU failing to service an RxIFR interrupt in a timely fashion.

@ MOTOROLA 79



Block Guide — S12BDLC_BG V01.03

For a description of how these exceptions can affect the IFR receiving process, refer to Section 4.5.4
Receiving Exceptions on page 64.

4.8 Special BDLC Module Operations

There are a few special operations which the BDLC module can perform. What follows is a brief
description of each of these functions and when they might be used.

4.8.1 Transmitting Or Receiving A Block Mode Message

The BDLC module, because it handles each message on a byte-by-byte basis, has the inherent cppability
of handling messages any number of bytes in length. While during normal operation this requires the user
to carefully monitor message lengths to ensure compliance with SAE J1850 message limits, often in a
production or diagnostic environment messages which exceed the SAE J1850 limits can be beneficial.
This is especially true when large amounts of configuration data need to be downloaded over the SAE
J1850 network.

Because of the BDLC module’s architecture, it can both transmit and receive messages of unlimifed
length. The CRC calculations, both for transmitting and receiving, are not limited to eight bytes, but will
instead be calculated and verified using all bytes in the message, regardless of the number. All control bits,
including TEOD and IMSG, also work in an identical manner, regardless of the length of the message.

To transmit or receive these “Block Mode” messages, no extra BDLC module control functions mjust be
performed. The user simply transmits or receives as many bytes as desired in one message frame, and the
BDLC module will operate just as if a message of normal length was being used. |

4.8.2 Receiving A Message In 4X Mode

In a diagnostic or production environment large amounts of data may need to be downloaded across the
network to a component or module. This data is often sent in a large “Block Mode” message (see above)
which violates the SAE J1850 limit for message length. In order to speed up the downloading of these large
blocks of data, they are sometimes transmitted at four times (4X) the normal bit rate for the Variable Pulse
Width modulation version of SAE J1850. This higher speed transmission, nominally 41.6kbps, allows
these large blocks to be transmitted much more quickly.

The BDLC module is designed to receive (but not transmit) messages transmitted at this higher spged. By
setting the RX4XE bit in DLCBCRZ2, the user can command the BDLC module to receive any mepsage
sent over the network at a 4X rate.

If the BDLC module is placed in this 4X mode, messages transmitted at the normal bit rate will n¢gt be
received correctly. Likewise, 4X messages transmitted on the SAE J1850 bus when the BDLC mogule is
in normal mode will be interpreted as noise on the network by the BDLC module. The RX4XE bit i§ not
affected by entry or exit from BDLC module stop or wait modes. For more information on the RX4XH bit,
refer to Section « 4X Mode on page 57.

80 @ MOTOROLA



Enter BDLC module Transmit
Routine

Write first message
byte to be transmitted
into DLCBDR

Block Guide — S12BDLC_BG V01.03

No Is this the last

, , Is DLCBSVR = $00?
For interrupt driven systems,

this marks the beginning of the
transmit section of the BDLC
module interrupt service
routine

Go to BDLC module
BREAK/Error Handling
Routine

S DLCBSVR = $1C?
(Invalid Symbol)

byte?

Set TEOD bit
in DLCBCR2

Jump to Receive IFR
Handling Routine

IFR Received?

Jump to BDLC module
Receive Routine

Is DLCBSVR = $147
(LOA)

S DLCBSVR = $107
(TDRE)

Load next byte to be
transmitted into BDR
(clears TDRE)

NOTE: The EOF and CRC Error interrupts
are handled in the BDLC module Receive |
Routine

Dnce BDLC module detects
EOF, transmit
attempt is complete

Attempt another
transmission?

Exit BDLC module Transmyit
Routine

Figure 4-16 Basic BDLC Module Transmit Flowchart

4.9 BDLC Module Initialization

This section includes sample flows for initializing the BDLC module and using it to transmit and re¢eive

messages.

@ MOTOROLA

81



Block Guide — S12BDLC_BG V01.03
4.9.1 Initialization Sequence

To initialize the BDLC module, the user should first write the desired data to the configuration bit§. The
BDLC module should then be taken out of digital and analog loopback mode and enabled. Exitingy from
loopback mode will entail change of state indications in the DLCBSVR which must be dealt with. Once
this is complete, CPU interrupts can be enabled (if desired), and then the BDLC module is capable pf SAE
J1850 serial network communication. For an illustration of the sequence necessary for initializing the
BDLC module, refer to Figure 4-17 Basic BDLC Module Initialization Flowchart on page 85. |

4.9.2 Initializing the Configuration Bits

The first step necessary for initializing the BDLC module following an MCU reset is to write the degired
values to each of the BDLC module control registers. This is best done by storing predetermined1
initialization values directly into these registers. The following description outlines a basic flow for
initializing the BDLC module. This basic flow does not detail more elaborate initialization routines, puch
as performing digital and analog loopback tests before enabling the BDLC module for SAE J185
communication. However, from the following descriptions and the BDLC module specification, thgquser
should be able to develop routines for performing various diagnostic procedures such as loopback tests.

* Step 1 - Initialize DLCBARD

Begin initialization of the configuration bits by writing the desired analog transceiver configuration
data into the DLCBARD register. Following this write to DLCBARD, all of these bits will become
read only.

e Step 2- Initialize DLCBRSR

The next step in BDLC module initialization is to write the desired bus clock divisor minus onginto
the DLCBRSR register. The divisor should be chosen to generate a 1 MHz or 1.048576 MHz mux
interface clocKf,q0). Following this write to DLCBRSR, all of these bits will become read only.

o Step 3- Initialize DLCBCR2

The next step in BDLC module initialization should be writing the configuration bits into the
DLCBCRZ2 register. This initialization description assumes that the BDLC module will be putfinto
normal mode (not 4X mode), and that the BDLC module should not yet exit either digital or agalog
loopback mode. Therefore, this step should write SMRST and DLOOP as logic ones, RX4XE as a
logic zero, write NBFS to the desired level, and write TEOD, TSIFR, TMIFR1 and TMIFRO as
logic zeros. These last four bits MUST be written as logic zeros in order to prevent undesired
operation of the BDLC module. I

» Step 4- Initialize DLCBCR1

The next step in BDLC module initialization is to write the configuration bits in DLCBCR1. The
CLKS bit should be written to its desired values at this time, following which it will become
read-only. The IE bit should be written as a logic zero at this time so BDLC module interrujts of
the CPU will remain masked for the time being. The IMSG bit should be written as a logic one to
prevent any receive events from setting the DLCBSVR until a valid SOF (or BREAK) symbol has
been received by the BDLC module. |

82 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

4.9.3 Exiting Loopback Mode and Enabling the BDLC module

Once the configuration bits have been written to the desired values, the BDLC module should be taken out
of loopback and connected to the SAE J1850 bus. This is done by clearing the DLOOP bit and then setting
the BDLCE bit in the DLCSCR.

4.9.4 Enabling BDLC Interrupts

Step 5- Perform Loopback Tests (optional)

Once the BDLC module is configured for desired operation, the user may wish to perform digital
and/or analog loopback tests to determine the integrity of the link to the SAE J1850 network. This
would involve leaving the DLOOP bit (DLCBCR?2) set, setting the BDLCE bit, preforming the
desired loopback tests and finally exiting digital loopback mode by clearing DLOOP in the
DLCBCR2.

Step 6- Exit Loopback Mode and enable the BDLC module

If loopback mode tests are not to be preformed the BDLC module can be removed from digital
loopback mode by clearing the DLOOP bit. The BDLC module can then be enabled by settifgg the
BDLCE bit in the DLCSCR.

Once DLOORP is cleared and BDLCE is set, the BDLC module is ready for SAE J1850
communication. However, to ensure that the BDLC module does not attempt to receive a mgssage
already in progress or to transmit a message while another device is transmitting, the BDLC nhodule
must first observe an EOF symbol on the bus before the receiver will be activated. To activgte the

transmitter, the BDLC module will need to observe an Inter-Frame Separator symbol.

The final step in readying the BDLC module for proper communication is to clear any pending intgrrupt

sources and then, if desired, enable BDLC module interrupts of the CPU.

Step 7- Clear Pending BDLC Interrupts

In order to ensure that the BDLC module does not immediately generate a CPU interrupt when
interrupts are enabled, the user should read the DLCBSVR to determine if any BDLC modile

interrupt sources are pending before setting the IE bit in the BCRL1. If the BSVR reads as
%00000000, no interrupts are pending and the user is free to enable BDLC interrupts, if dgsired.

If the DLCBSVR indicates that an interrupt is pending, the user should perform whatever actions
are necessary to clear the interrupt source before enabling the interrupts. Whether any interrupts are
pending will depend primarily upon how much time passes between the exit from loopback modes
and enabling the BDLC module and the enabling of interrupts. It is a good practice to alwayqclear
any source of interrupts before enabling interrupts on any MCU subsystem.

If any interrupts are pending (DLCBSVR not %00000000), then each interrupt source should be
dealt with accordingly. Once all of the interrupt sources have been dealt with, the DLCBSVR
should read %00000000, and the user is then free to enable BDLC interrupts.

Step 8- Enable BDLC Interrupts

@ MOTOROLA 83



Block Guide — S12BDLC_BG V01.03

The last step in initializing the BDLC module is to enable interrupts to the CPU, if so desired.|This
is done by simply setting the IE bit in the DLCBCRL1. Following this, the BDLC module is ready
for operating in interrupt mode. If the user chooses not to enable interrupts, the DLCBSVR must be
polled periodically to ensure that state changes in the BDLC module are detected and dealt with
appropriately.

84 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

BDLC module enters Run mode
from Reset mode

Y

Write desired config.
data into DLCBARD

!

Write desired divisor - 1
into DLCBRSR

Y

Write desired config.
data into DLCBCR2

Y

Write desired config.
data into DLCBCR1

Preform
Loopback Tests |[Enable BDLC module by

» setting BDLCE bit in
v DLCSCR
Exit Loopback mode
by clearing y
DLOOP

Perform Digital and
Analog Loopback mode

tests
Enable BDLC module by
setting BDLCE bit in
DLCSCR

Exit Loopback mode
by clearing
DLOOP

Read DLCBSVR

Process pending
BDLC interrupt

Is DLCBSVR = $00?

Set IE bit in DLCBCR1
to enable interrupts

Proceed to remaining
MCU initialization

| Figure 4-17 Basic BDLC Module Initialization Flowchart

@ MOTOROLA 85



Block Guide — S12BDLC_BG V01.03

86 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Section 5 Resets

5.1 General

The reset state of each individual bit is listed witBiection 3 Memory Map and Registersvhich details
the registers and their bit-fields.

@ MOTOROLA 87



Block Guide — S12BDLC_BG V01.03

88 @ MOTOROLA



Block Guide — S12BDLC_BG V01.03

Section 6 Interrupts

6.1 General

Each change in status of the BDLC is encoded into the BDLC state vector register, (BSVR). Each state
reflected in the BSVR can generate a CPU interrupt througbith®lic_intoutput, if the BDLC
interrupts are enabled (IE = 1 in BCR1 Control register)

Table 6-1 shows this interrupt information faui_bdlc_int
Table 6-1 Interrupt Summary

Interrupt Interrupt Source Priority
ipi_bdlc_int Refer to table below determined at chip-level

Refer t03.3.2 for a listing of the interrupt sources.

@ MOTOROLA 89



Block Guide — S12BDLC_BG V01.03

90 @ MOTOROLA



Appendix A Electrical Specifications

N/A

@ MOTOROLA

Block Guide — S12BDLC_BG V01.03

91



Block Guide — S12BDLC_BG V01.03

92 @ MOTOROLA



User Guide End Sheet

@ MOTOROLA

Block Guide — S12BDLC_BG V01.03

93



Block Guide — S12BDLC_BG V01.03

FINAL PAGE OF
94
PAGES

94 @ MOTOROLA



	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 TXB - BDLC Transmit Pin
	2.2.2 RXB �- BDLC Receive Pin


	Section 3 Memory Map and Registers
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 BDLC Control Register 1 (DLCBCR1)
	3.3.2 BDLC State Vector Register (DLCBSVR)
	3.3.3 BDLC Control Register 2 (DLCBCR2)
	3.3.4 BDLC Data Register (DLCBDR)
	3.3.5 BDLC Analog Round Trip Delay Register (DLCBARD)
	3.3.6 BDLC Rate Select Register (DLCBRSR)
	3.3.7 BDLC Control Register (DLCSCR)
	3.3.8 BDLC Status Register (DLCBSTAT)


	Section 4 Functional Description
	4.1 General
	4.1.1 J1850 Frame Format
	4.1.2 J1850 VPW Symbols
	4.1.3 J1850 VPW Valid/Invalid Bits & Symbols
	4.1.4 J1850 Bus Errors

	4.2 Mux Interface
	4.2.1 Mux Interface - Rx Digital Filter

	4.3 Protocol Handler
	4.3.1 Protocol Architecture

	4.4 Transmitting A Message
	4.4.1 BDLC Transmission Control Bits
	4.4.2 Transmitting Exceptions
	4.4.3 Aborting a Transmission

	4.5 Receiving A Message
	4.5.1 BDLC Reception Control Bits
	4.5.2 Receiving a Message with the BDLC module
	4.5.3 Filtering Received Messages
	4.5.4 Receiving Exceptions

	4.6 Transmitting An In-Frame Response (IFR)
	4.6.1 IFR Types Supported by the BDLC module
	4.6.2 BDLC IFR Transmit Control Bits
	4.6.3 Transmit Single Byte IFR
	4.6.4 Transmit Multi-Byte IFR 1
	4.6.5 Transmit Multi-Byte IFR 0
	4.6.6 Transmitting An IFR with the BDLC module
	4.6.7 Transmitting IFR Exceptions

	4.7 Receiving An In-Frame Response (IFR)
	4.7.1 Receiving an IFR with the BDLC module
	4.7.2 Receiving IFR Exceptions

	4.8 Special BDLC Module Operations
	4.8.1 Transmitting Or Receiving A Block Mode Message
	4.8.2 Receiving A Message In 4X Mode

	4.9 BDLC Module Initialization
	4.9.1 Initialization Sequence
	4.9.2 Initializing the Configuration Bits
	4.9.3 Exiting Loopback Mode and Enabling the BDLC module
	4.9.4 Enabling BDLC Interrupts


	Section 5 Resets
	5.1 General

	Section 6 Interrupts
	6.1 General

	Appendix A Electrical Specifications

