Type Theory and Programming *

Thierry Coquand Bengt Nordstrom Jan M. Smith
Bjorn von Sydow

June 3, 1994

This paper gives an introduction to type theory, focusing on its recent use
as a logical framework for proofs and programs. The first two sections
give a background to type theory intended for the reader who is new to
the subject. The following presents Martin-L6f’s monomorphic type theory
and an implementation, ALF, of this theory. Finally, a few small tutorial
examples in ALF are given.

Introduction

Programming is the activity of constructing a program that meets some,
often vaguely expressed, user needs. The solution process involves under-
standing the problem, finding the relevant properties that the program must
satisfy and deriving the program itself. The process is typically iterative and
design decisions have to be changed as the problem is better understood.
However, in successful cases, finally a useful program results. As in any
problem-solving situation, the programmer’s task is not completed only by
exhibiting the solution, i.e., the program. In addition, the final understand-
ing of the problem must be properly expressed and some form of argument
must be supplied to make it evident that the problem has actually been
solved. In trivial cases, the correctness of the program may be self-evident
but, as all programmers know by experience, it is all too easy to make “sim-
ple” mistakes with serious consequences. Therefore, current practice is to

*This work has been done within the ESPRIT Basic Research Action “Types for proofs
and programs.” It has been funded by NUTEK and Chalmers. An earlier version was
published in the EATCS bulletin no 52, February 1994.

Authors’ address: Department of Computer Sciences, Chalmers University of Technology
and University of Goteborg, S-412 96 Goteborg, Sweden.
FEmail: coquand,bengt,smith,sydow@cs.chalmers.se.

increase confidence in programs by testing them on sample input data, with
obvious shortcomings. In search of more convincing methodology, the natu-
ral alternative is to look to mathematical practice, where proposed solutions
must be justified through proofs. Several challenges must be addressed in
transferring this practice to the discipline of programming:

e Programs must not only be executable on machines but also be math-
ematically well-behaved to make reasoning about them tractable.

e Problems (or, to use another word, specifications) must be expressed
in a precise language and the meaning of the assertion that program
p solves problem P must be made precise.

e A proper mathematical framework (a programming logic) must be
developed for reasoning formally with machine assistance about pro-
grams.

In addition to these basic requirements, many pragmatic considerations must
be taken into account. For example, programs must execute with reasonable
efficiency, specifications must be easy to comprehend, and the programming
logic must be natural to use for practicing programmers.

It is clear that to achieve these goals the programming language, the
specification language and the programming logic should be designed to-
gether. To choose a suitable mathematical foundation we may note the
specific character of the programming task, that of constructing an object
with certain properties. This indicates that it might be useful to consider
languages developed to express constructive mathematics. But we should
also build on insights gained during forty years of programming language
design. Among such insights, we emphasize

e the concept of typing, which has proved its usefulness in practical
programming,

e the conceptual convenience of the ability for the user to define new
data types adapted to the problem at hand,

e the semantical simplicity and expressive power of programming lan-
guages which avoid the notion of state, such as functional languages.

In this paper we give an introduction to the intuitionistic type theory de-
veloped by Per Martin-1.6f [35, 38]. This theory provides a typed functional
programming language with inductive types and a specification language

encompassing first order predicate logic together with a simple but powerful
logical framework for reasoning about programs. The theory was developed
to serve as a foundation for constructive mathematics but, as we hope to
show here, this makes it equally suitable as a foundation for programming.
We should mention here that other closely related theories with similar aims
exist, notably Coquand’s and Huet’s Calculus of Constructions [11].

The notion of types in programming languages goes back to FORTRAN
in the fifties where a rudimentary notion of type was introduced to enable
the compiler to distinguish between variables ranging over integers and those
ranging over floating point numbers. Subsequent languages, in particular in
the Algol/Pascal tradition, introduced richer type systems and put more
emphasis on typing. Strong typing turns out in practice to be very helpful
in finding program errors at an early stage and user-defined types assist
in structuring programs. The seventies saw the development of modular
languages where module interfaces provide typings of exported entities of a
module. These interfaces can be thought of as a weak form of specification
for the module. However, the type systems of these languages are too weak
to serve as real specifications. The type of a program expresses only some
simple properties, which must be supplemented by comments explaining in
natural language the full semantics of the program. The type theory to be
explained here provides a much richer type system, where any property in
predicate logic can be interpreted as a type. Thus the full specification of a
program can be expressed by its type and a type-correct program is totally
correct.

To see how a type can be understood as a proposition we consider the
type system of the polymorphic functional language Standard ML. More
precisely, we consider the fragment of ML’s type system with only type vari-
ables and the binary type formers => and *, for function types and cartesian
products, respectively. Examples of type expressions in this language are
’a => (°’b => ’a),’a * ’b -> ’aand ’a -> ’b. Now it is instructive to
read these expressions as propositions by interpreting -> as implication, *
as conjunction and type variables as propositional variables. Then the first
two examples are tautologies, but not the third. Interestingly, it is also easy
to see that only two first types are inhabited by total functions in ML. A
function of the first type is the K combinator, or in ML notation fn a => fn
b => a, and one of the second is the function fst, defined as fn (a,b) =>
a. Obviously, no total function can be assigned the third type, since there
is no way to use an argument of an arbitrary type ’a to produce an output
of another arbitrary type ’b. This is not just a formal coincidence; it turns

out that one can explain the constructive meaning of the logical operations
in propositional logic so that provability of an expression read as a propo-
sition is the same as inhabitance of the expression read as a type. This is
Heyting’s explanation, which we will give in detail in the next section. As
we will see, this explanation can be extended to full predicate logic, thus
providing types that can be read as propositions involving quantifiers. The
crucial extension of ML’s type system that will make this possible is the
provision of dependent types.

A pioneering work on proof checking is de Bruijn’s AUTOMATH [13, 14].
This is a computer system for checking ordinary mathematical proofs and,
for this purpose, de Bruijn was not satisfied with a traditional formalization
of mathematics in set theory expressed in predicate logic; instead he was led
to a type theoretic way of expressing proofs, that is, as objects of types. So
AUTOMATH can be seen as an early formulation of the kind of type theory
we will discuss here.

The first implementation of Martin-L6f’s type theory was made in Gote-
borg [41]; this system was based on the Edinburgh LCF proof assistant [21,
40]. Soon after this a more advanced system, NuPRL, was developed at
Cornell [7].

Recently several interactive proof systems based on type theory have
been implemented which have the important property that they can serve
as logical frameworks: rules and axiom of various theories can easily be
expressed in them. The systems Coq [16] and LEGO [31] are both based on
the Calculus of Constructions; in this paper we will describe ALF [2, 32],
which is based on Martin-Lof’s type theory. These computer systems have
now been in use for about three years and among the examples carried out in
them we just mention the following. The correctness of a data link protocol
developed and used by Philips, modeled using I/O automata theory, has
been checked with the Coq system [22]. A proof of strong normalization for
Girard system F has been developed in LEGO [1]. A nontrivial example
of extracting an algorithm from a constructive proof, using ALF, is given
in [18] where a type theoretic analysis of Ramsey’s theorem is presented.
Most of the examples done in these systems have been developed in a truly
interactive way, that is, the user has not started out with a detailed proof
on paper which then has been transferred to the computer; on the contrary
the systems are often of real help when making the proofs. In fact, there
are even results which probably would be very difficult to obtain without
computer assistance: in [8] a complete set of computation rules for simply
typed A-calculus with explicit substitution is derived from the semantics of

the language; this proof involves a detailed syntactical analysis for which
computer assistance is essential.

There is, of course, no possibility for us to present any bigger examples
here, but at the end of this paper we will illustrate ALF by some smaller
examples.

Propositions as sets

In Martin-L6f’s type theory there are two basic levels: types and sets. We
will later explain what we mean by a type and by a set, but we should point
out already now that a set is inductively defined and would, in the usual
programming terminology, be called a type.

The basic idea behind using type theory for developing proofs and pro-
grams is the Curry-Howard isomorphism between propositions and sets; but
before explaining this, a few words about constructive mathematics.

Constructive mathematics arose as an independent branch of mathe-
matics out of the foundational crisis in the beginning of this century, mainly
developed by Brouwer under the name intuitionism. It did not get much
support because of the general belief that important parts of mathematics
were impossible to develop constructively. During the last decades, however,
this belief has been shown to be wrong, in particular by the work of Bishop.
In his book Foundations of Constructive Analysis [4], Bishop rebuilds con-
structively central parts of classical analysis; and he does it in a way that
demonstrates that constructive mathematics can be as elegant as classical
mathematics. Of more recent work, we could mention the use of point
free topology [27, 34, 44], which often makes it possible to replace highly
non-constructive reasoning involving the axiom of choice by constructive
proofs [37, 9]. For a presentation of the fundamental ideas of constructive
mathematics we refer to Bishop’s book, in particular the first chapter “A
constructivist manifesto,” Dummet [17], Heyting [23], and Troelstra and van
Dalen [47, 48].

The debate whether mathematics should be built up constructively or
not need not concern us here. It is sufficient to notice that constructive
mathematics has some fundamental notions in common with computer sci-
ence, above all the notion of computation. So, constructive mathematics
could be an important source of inspiration for computer science; this was
realized already by Bishop [5]. In principle, an implementation of type
theory like the system ALF can also be used to express proofs by contra-

diction; in fact AUTOMATH was used to check classical mathematics. For
applications in programming, however, we don’t know of any example where
non-constructive reasoning is essential.

In order to explain how a proposition can be expressed as a set we will
explain the intuitionistic meaning of the logical constants, specifically in the
way of Heyting [23]. In classical mathematics, a proposition is thought of
as being true or false independently of whether we can prove or disprove it.
On the other hand, a proposition is constructively true only if we have a
method of proving it. For example, classically the law of excluded middle,
AV A, is true since a proposition is either true or false. Constructively,
however, a disjunction is true only if we can prove one of the disjuncts. Since
we have no method of proving or disproving an arbitrary proposition A, we
have no proof of AV —A and therefore the law of excluded middle is not
intuitionistically valid.

So, the constructive explanations of propositions are spelled out in terms
of proofs and not in terms of a world of mathematical objects existing inde-
pendently of us. Let us first consider implication and conjunction.

A proof of A D Bis a function (method, program) which to each
proof of A gives a proof of B.

The notion of function or method is primitive in constructive mathematics
and a function from a set A to a set B can be viewed as a program which
when applied to an element in A gives an element in B as output. For
example, in order to prove A D A we have to give a method which to each
proof of A gives a proof of A; the obvious choice is the method which returns
its input as result. This is the identity function Az.z, using the A-notation.

A proof of A& B is a pair whose first component is a proof of A
and whose second component is a proof of B.

If we denote the left projection by fst, that is fst({a,b)) = a where (a,b) is
the pair of @ and b, then Az.fst(z) is a proof of (A& B) D A, since Az.fst(x)
is a function which to each proof of A & B gives a proof of A.

The idea behind propositions as sets is to identify a proposition with the
set of its proofs. That a proposition is true then means that the correspond-
ing set is nonempty. For implication and conjunction we get, in view of the
explanations above,

A D B is identified with A — B, the set of functions from A to B

and
A & B is identified with A x B, the cartesian product of A and B.

The elements in A — B are of the form Az.b, where b € B and b may depend
on z € A, and the elements in set A X B are of the form (a, b) where a € A
and b € B.

Let us now see what set forming operations are needed for the remaining
logical constants.

A disjunction is constructively true if and only if we can prove one of the
disjuncts. So a proof of AV B is either a proof of A or a proof of B together
with the information of which of A or B we have a proof. Hence,

AV B is identified with A + B, the disjoint union of A and B.

The elements in A + B are of the form inl(a) and inr(b), where a € A and
be B.
The negation of a proposition A can be defined by:

-A = ADL

where L stands for absurdity, that is a proposition which has no proof. If
we let () denote the empty set, we have

—A is identified with the set A — ()

using the interpretation of implication.

For expressing propositional logic, we have only used sets (types) that
are available in many programming languages. In order to deal with the
quantifiers, we also need operations defined on families of sets, i.e. sets
B depending on elements z in some set A. Heyting’s explanation of the
existential quantifier is the following.

A proof of (32 € A)B consists of a construction of an element «
in the set A together with a proof of B[z := a].

B[z := a] denotes the result of substituting a for all free occurrences of
the variable z. So, a proof of (32 € A)B is a pair whose first component
a is an element in the set A and whose second component is a proof of
B[z := a]. The set corresponding to this is the disjoint union of a family
of sets, denoted by (X2 € A)B. The elements in this set are pairs (a,b)
where a € A and b € B[z := a]. We get the following interpretation of the
existential quantifier.

(3z € A)B is identified with the set (X2 € A)B.
Finally, we have the universal quantifier.

A proof of (Vz € A)B is a function (method, program) which to
each element @ in the set A gives a proof of B[z := a].

The set corresponding to the universal quantifier is the cartesian product
of a family of sets, denoted by (ITz € A)B. The elements in this set are
functions which, when applied to an element @ in the set A gives an element
in the set B[z := a]. Hence,

(Vz € A)B is identified with the set (ITz € A)B.

The elements in (ITz € A)B are of the form Az.b where b € B and both b
and B may depend on z € A. Note that if B does not depend on z then
(ITz € A) B is the same as A — B, so — is not needed as a primitive when we
have cartesian products over families of sets. In the same way, (X2 € A)B is
nothing but A x B when B does not depend on z.

Except the empty set, we have not yet introduced any sets that cor-
respond to atomic propositions. One such set is the equality set a =4 b,
which expresses that @ and b are equal elements in the set A. Recalling that
a proposition is identified with the set of its proofs, we see that this set is
nonempty if and only if @ and b are equal. If @ and b are equal elements
in the set A, we postulate that the constant id(a) is an element in the set
a =4 b. This is similar to recursive realizability interpretations of arithmetic
where one usually lets the natural number 0 realize a true atomic formula.

If we express the rules for the logical connectives in Gentzen’s natural
deduction [19] then the introduction rules correspond to the introduction of
the constructors of the set-former interpreting the connective. For instance,
the introduction rule for conjunction

A B
A& B

corresponds to the introduction of a pair in the cartesian product

acA beB
(a,b)y € Ax B

The elimination rules correspond to the rules for the selectors. So, in case
of conjunction, the elimination rules

A& B A& B

A B

correspond to the rules for the projections

ceEAXB ce Ax B

fst(c) € A snd(c) € B

Also the computation rules for the selectors, that is in the case of the pro-
jections,

Jst({a, b)) =
snd({a,b)) = b

where ¢ € A and a € B, have a correspondence in the proofs, namely
Prawitz’ contraction rules [43], which for conjunction are

A%B B A
A
and
A B _ :
A& B B
B

Similar rules holds for the other logical constants. From this we can see that
normalizing a proof in natural deduction is closely related to computing the
corresponding proof object to normal form.

Martin-Lof’s type theory has enough sets to express all the logical con-
stants: cartesian products and disjoint unions over family of sets as well
as the empty set. These sets are only examples of the general method of
introducing sets in type theory, which is that sets are inductively formed by
introduction rules. So we also have sets like the natural numbers and lists
over a given set.

The notation we have used above for elements of sets is polymorphic in
the sense that an expression may be element in several sets, e.g. the identity
function Az.z is a member in all sets of the form A — A. The set theory

we will describe is monomorphic, so e.g. a A-term of the set A — B will
be of the form A(A, B,b); this is important if we want type checking to be
decidable.

The Calculus of Constructions also uses the interpretation of proposi-
tions as sets but not by interpreting predicate logic but rather higher order
logic. This means that only implication and the universal quantifier need to
be represented since, in higher order logic, the other logical constants can
be interpreted by these two. However, both Coq and LEGO are based on
an extension of the Calculus of Constructions which allows the introduction
of inductively defined sets.

Historically, the interpretation of propositions as sets starts with Curry [12]
who noticed that the axioms for positive implicational calculus, formulated
in the Hilbert style,

ADBDA

(ADBDC)D(ADB)DADC

correspond to the types of the basic combinators K and S
Kea—f—oa

Se(la=f—=vy)=(a=p) >a—y

Modus ponens then corresponds to application of a function. Curry did not
give any explanation of this similarity. Tait [46] noticed, when analyzing
Godel’s [20] theory of computable functionals of finite types, the further
analogy that if the combinators are expressed as A-terms, then normalizing
a proof of a proposition by removing cuts corresponds to computing the
associated A-term to normal form. Curry and Tait’s observations were ex-
tended to first order intuitionistic arithmetic by Howard [25]. Independently,
similar ideas also occur in de Bruijn’s AUTOMATH. Scott [45], inspired by
AUTOMATH, was the first one to suggest a theory of constructions in which
propositions are introduced by types. The idea of using constructions to
represent proofs is also related to recursive realizability interpretations, first
developed by Kleene [29] for intuitionistic arithmetic and extensively used
in metamathematical investigations of constructive mathematics.

Overview of Martin-Lof’s Type Theory

There are basically two ways of introducing types in Martin-Lo6f’s type the-
ory: function types and inductively defined sets. The function types make

10

it possible to express rules in a natural deduction style and logic can then
be introduced by the idea of propositions as sets. Because of the possibility
of introducing sets by induction, type theory is an open theory; it is in this
sense that the theory may serve as a logical framework.

There are four judgement forms in type theory:

e A type, Ais a type,

e A= B, Aand B are equal types,

e a € A, ais an object in the type A,

e a=0b¢€ A, aand b are equal objects in the type A.

In general, a judgement may depend on a context, i.e. a list of assumptions.
For instance, the general form of the third judgement is therefore:

a€A [t1€A,...,x,EA,]

where a and A may depend on zy,...,z, and for j < n, A; may depend on
Z1,...,2;—1. Notice that the order of the assumptions is in general impor-
tant, since the type of one assumption may depend on earlier assumptions.

We will not go into the details of the meaning of these judgements, but
the general character of the semantics can be seen from the explanation of
what it means to be a type: to know that A is a type is to know what it
means to be an object in A and to know when two objects in A are identical.
An important requirement is that the judgements must be decidable; in
particular, the equality is understood as definitional equality.

How to form types

The type structure is very simple: there are two ways of forming ground
types, the type Set and the type of elements of A if A € Set, and one way
of forming function types. Formally, we declare that Set is a type:

Set type

If A € Set, i.e. if Ais aset, then EI(A) is a type; the objects of this type
are the elements of the set A.

A € Set
FI(A) type

11

We will often write A instead of EI(A), since it will always be clear from the
context whether we mean A as a set (i.e. as an object in Set) or as a type.

If Ais atype and B is a family of types for 2 € A, then (z € A)B is the
type which contains functions from A to B as objects. All free occurrences
of z in B become bound in (z € A)B.

A type B type [z € A]
(x€ A)B type

To know that an object ¢ is in the type (z € A)B means that we know that
when we apply it to an object a in A we get an object c(a) in B[z := a]
and that we get identical objects in B[z := a1] when we apply it to identical
objects ay and ay in A.

How to form objects in a type

Objects in a type are formed from constants and variables using application
and abstraction. We already mentioned how to apply a function to an object:

ce(zeA)B ac A
c(a) € Blz := d]

Functions can be formed by abstraction, if b € B under the assumption
that @ € A then [2]bis an object in (z € A)B. All free occurrences of 2 in b
become bound in [z]b.

be B [z € A

[z]b € (x€ A)B
The abstraction is explained by the ordinary (-rule which defines what it
means to apply an abstraction to an object in A.

ac A be B [z € A
([]0)(a) = b[z := a] € Bz = d]

The n-, a- and &-rules from the A-calculus can be justified. We will some-
times use the notation (A)B when B does not contain any free occurrences of
x. We will write (21 € Ay;...;2,€ A,)B instead of (z1€ A1) ...(2,€A,)B
and b(ay,...,a,) instead of b(ay) ...(a,) in order to increase the readability.
Similarly, we will write [z1]...[z,]e as [z1,...,2,]e.

An object is saturated if it is not a function, i.e. if its type is Set or
FI(A), for A € Set. The arity of an object is the number of arguments it

12

can be applied to in order for the result to be saturated. It is an important
property that a well-typed object has a unique arity.

Most of the generality and usefulness of the language comes from the
possibilities of introducing new constants. It is in this way that we can
introduce the usual mathematical objects like natural numbers, integers,
functions, tuples etc. It is also possible to introduce more complicated in-
ductive sets like sets for proof objects.

An object in the type Set is an inductively defined set. A set is defined
by its introduction rules, i.e. by giving a collection of primitive constants
with appropriate types. For example, the set of natural numbers is defined
by declaring the constants

N € Set
succ € (N)N
0 € N

Since a set is built up inductively, we know exactly in what ways we can
build up the elements in the set. For any expression of type N, we know
that it computes either to 0 or succ(n) for a natural number n. It is not
permitted to extend N with new constructors.

In the examples below, more sets will be introduced.

Definitions

A distinction is made between primitive and defined constants. The value
of a primitive constant is the constant itself. So the constant has only a
type, it doesn’t have a definition. A defined constant, on the other hand,
is defined in terms of other objects. When we apply a defined constant to
all its arguments in an empty context, e.g. c(eq,...,e,), then we get an
expression which is a definiendum, i.e. an expression which computes in one
step to its definiens (which is a well-typed object).

A defined constant can either be explicitly or implicitly defined. We
declare an explicitly defined constant ¢ by giving a definition of it:

c=acA
For instance we can make the following explicit definitions:
1 = succ(0) €N
Iy [z]z € (N)N
I = [Az]z e (AeSet; A)A

13

The last example is the monomorphic identity function which when applied
to an arbitrary set A yields the identity function on A. It is easy to check
if an explicit definition is correct: you just check that the definiens is an
object in the correct type.

We declare an implicitly defined constant by showing what definiens it has
when we apply it to its arguments. An implicit definition may be recursive
and there is no syntactical restriction that guarantees that it is correct.
Whether this kind of definition is meaningful can in general only be checked
outside the theory. We must be sure that every well-typed expression of the
form c(ey, ..., e,) is a definiendum with a unique well-typed definiens. Here
are some examples:

+ € (N;N)N
—I_(Ovy) = Yy
+(succ(z),y) = succ(+(z,y))

m

natrec (N; (N; N)N; N)N
natrec(d,e,0) = d

e(a, natrec(d, e, a))

natrec(d, e, succ(a))

The last example is a specialized version of the operator for primitive recur-
sion.

An example: definition of conjunction

We are representing proofs as mathematical objects. The type of a proof
object represents the proposition which is the conclusion of the proof. Vari-
ables are used as names of assumptions and constants are used as rules. To
apply a rule to a number of subproofs is done by applying a constant to the
corresponding subproof objects.

A theory is presented by a list of typings and definitions of constants.
When we read the constant as a name of a rule, then a primitive constant
is usually a formation or introduction rule, an implicitly defined constant
is an elimination rule (with the contraction rule expressed as the step from
the definiendum to the definiens) and finally, an explicitly defined constant
is a lemma or derived rule. As an example of this, consider the definition of
conjunction.

The formation rule for conjunction expresses that A & B is a proposition
if A and B are propositions:

14

A prop B prop
A& B prop

We express this by introducing the primitive constant & by the following
typing:

& € (Set; Set)Set
We use the type of sets to represent the type of propositions. A canonical
proof of the proposition A & B consists of a proof of A and a proof of B.
This is expressed in natural deduction as

A B
A& B

This is the introduction rule for conjunction. In type theory we express it
by introducing a primitive constant &I:

&I € (A€Set; BeSet; A; B)A& B

Notice that &I has an arity which is greater than the number of premises of
the corresponding rule. This is because we have to declare explicitly that A
and B are ranging over sets, a fact which is not made explicit in the natural
deduction rule.

The elimination rules for conjunction

A& B A& B
A B

are expressed by introducing the implicitly defined constants &E; and &E,
by the following declarations and definitions:
&E; € (A€Set; BeSet; A& B)A
&E, € (A€Set;BeSet; A& B)B
&E(A, B, &I(A, Bya, b)) = a
&E, (A, B,&I(A, B,a,b)) = b

The two last rules are the contraction rules for & and these are essential for
the correctness of the elimination rule. Since all proofs of A& B are equal
to a proof of the form &I(A, B, a,b), where a is a proof of A and b a proof of
B, we know from the contraction rule that we get a proof of B if we apply
&E, to an arbitrary proof of A & B, and similarly for &E;.

15

ALF, an interactive editor for type theory

A basic idea in ALF is to use a proof object as a true representative of
a proof. The process of proving the proposition A is represented by the
process of building a proof object of A. There is a close connection between
the individual steps in proving A and the steps to build a proof object of A.
For instance the act of applying a rule is done by building an application of
a constant, to assume that a proposition A holds is to make an abstraction
of a variable of the type A and to refer to an assumption is to use the
corresponding variable.

We want to have an impression that the objects which are built (and
changed) are directly manipulated on the screen using the keyboard and the
mouse. It is as if we have a hand (represented by the cursor) on the screen
to select parts and to grasp for different tools which can manipulate the
object. A change of the object is immediately shown on the screen.

When we are proving a proposition A in a theory then we are building a
proof object of type A in an environment consisting of a list of declaration of
constants. This is presented on the screen by having two windows: a theory
window containing declarations of constants and a scratch area containing
objects being edited. The scratch area contains different kinds of buffers to
build types and objects. A type buffer is used to build a type. The objects
which are being built in the scratch area are always correct relative to the
current theory.

When we build a top-down proof of a proposition A, then we try to

reduce the problem A to some subproblems By,..., B, by using a rule ¢
which takes proofs of By,...,B, to a proof of A. Then we continue by
proving By, ..., B,. For instance, we can reduce the problem A to the two

problems C' D A and C' by using modus ponens. In this way we can continue
until we have only axioms and assumptions left. This process corresponds
exactly to how we can build a mathematical object from the outside and in.
Then we are constructing an object of type A by using a function ¢ which
takes objects in By,..., B, to an object in A. Then we continue by finding
objects in By,..., B,.

If we represent the proof process by the process of building a proof object
it must be possible to deal with incomplete proof objects, i.e. proof objects
which represents incomplete proofs. We are using placeholders 7¢,...,7, for
parts of the objects which are to be filled in. The expression

7¢ A

16

expresses a state of an ongoing process of finding an object in the type A.
We say that the expected type of 7 is A. Objects are built up from variables
and constants using application and abstraction. Therefore there are four
ways of refining a placeholder:

e The placeholder is replaced by a constant ¢. This is correct if the type
of ¢ is equal to A.

e The placeholder is replaced by a variable . The type of x must be
equal to A. But we cannot replace a placeholder with any variable
of the correct type, the variable must be in the local scope of the
placeholder.

e The placeholder is replaced by an abstraction [2]?7;. We must have
that
[$]?1 €A

which holds if A is equal to a functional type (y € B)C. The type
of the variable # must be B and we must remember that ?; may be
substituted by an expression which may depend on the variable . This
corresponds to making a new assumption, when we are constructing
a proof. We reduce the general problem (y € B)C' to the problem
Cly := x] under the assumption that 2 € B. The assumed object = can
be used to construct a solution to C', i.e. we may use the knowledge
that we have a solution to the problem B when we are constructing a
solution to the problem C'.

e Finally, the placeholder can be replaced by an application ¢(?y,...7,)
where ¢ is a constant, or z(?y,...,7,), where z is a variable.

In the case of application, we consider a simple case. We start with ? € A
where A is not a function type. If we apply the constant ¢ of type (2 € B)C,
then the new term will be

C(?l) €A

where the new placeholder ?; must have the type B (since all arguments to
¢ must have that type) and furthermore the type of ¢(?1) must be equal to
A, i.e. the following equality must hold:

Clz =] = A.

So, the editing step from ? € A to ¢(?y) € A is correct if 7; € B and
C[z :=71] = A. This operation corresponds to applying a rule when we are
constructing a proof. The rule ¢ reduces the problem A to the problem B.

17

An example in ALF

As a first small example of a proof we prove one half of the distributivity
of conjunction over disjunction in propositional logic. A variant of this ex-
ample was used already by Gentzen [19] to motivate natural deduction. We
have already defined the constants for conjunction; we repeat them here to-
gether with the corresponding definitions for disjunction as given to ALF. At
present, ALF does not support infix operators, so we will write propositions
with the logical operations in prefix form as in And(A, Or(B, ().

And . e..(4,.5 = Set) Set
Andl e.(|4,|5 € Set; 4; 5) Andi4,5)

AndE;. e..(|4,|5 = Set; Andid, 51 A
AndE(Andl(A:, A2)). .= Az

andE, e..(|4,|5 = Set; Andid, 5N 5
AndE.(Andl(#k;, A2))..= A

Or.e..14,.5 = Set) Set
Crl;. . e..(]A,.]l5 = Set; A) Or(4,5)
Orl,..=..(JA,. |5 e Set; B) Or(4d,5)

OrE. e (J4,|5,1C € Set; (AT (B)C; Cr(d, 80 T
QrE(h, Ay, Crly(hs)). = Alks)
QrE(h, Ay, OrL(A2)). = A (ks)

This picture and the ones to follow in this section are screen dumps from a
session with ALF. The vertical arrows in front of some arguments indicate
that these arguments should be suppressed, as is done in the contraction
rules. These arguments can typically be inferred by the system, so the user
may completely ignore them.

The theorem we want to prove is

(A, B,C'€Set; And(A, Or(B,()))0r(And(A, B),And(A, C))

This is a function type. An object of this type expects four arguments: three
sets A, B and C and a proof of And(A,Or(B,(C)). Given this input, the
function must produce an element of (a proof of) the set (the proposition)

Or(And(A, B),And(A, C')). We shall do this in two different ways:

1. By defining a function distri as an abbreviation, or in ALF terminol-
ogy, an explicit constant. This will be done by using the elimination

18

rules to analyze the last argument and then the introduction rules to
build up the result.

2. By defining a function distr2 as an implicit constant, where the ar-
gument is analyzed directly by pattern matching and the elimination
rules are not needed.

Using the first method, we instruct the system that we intend to define an
explicit constant with the name distri. The system responds with a template
for the definition:

distrl. = Ygiste. = TdistelT

The definition has two placeholders, one for the definiens and one for its
type. We proceed by filling in the type:

distl = Tau1. €. (A,5,C € Set; And{d, Or(B, C))) Or(And(d,B), And(4, C)) |

The definiens is built top-down. The first step is to form an abstraction

distrl.=.[A,5B,C.A]%. €.(4,5.C € Set; And(A, Or(B, C))) Or{And(4,5), And(A, C7)

where the 7, should have type Or(And(A, B), And(A,C')). To construct an
element in this type we must analyze the second projection of h using the
OrFE rule:

|distr1._z..[f-1,.5, € ATOCE (1, Tz ﬁndEr[&jj.l

The three first arguments are inferred by the system and not displayed.
We have to fill in the remaining two arguments, where the first has type
(B)Or(And(A, B),And(A,C)). An object in this type is again a function,
which gets a proof of B as input. Using this input, it is easy to construct
the result using the left introduction rule for Or. Similarly, the second
argument can be completed using the right Or-introduction rule, giving the
complete proof

19

I

distrl. = .[4,5, C,4]0rE([#,]0rh(Andl{ AndEy(A), 7)),
[2:10rL{ Andl{ AndEy (#), 2;)),
AndE, ()

The omitted steps in this proof all consist of simple direct manipulations
with the mouse; nothing is typed on the keyboard (except the name distri).

In the second method, using pattern matching instead of elimination
rules, the initial situation in building the proof is the following:

disw2 .= (A,5,C < Set; AndA, Or(B, 1)) Or(And(A, B), Andid, O))
distr2(A,. 5, O A) = sz 0 E

Here we can now ask the system to analyze the possible forms of an argu-
ment. We perform this pattern matching on the last argument, giving

disw2. e..(A,5,C € Set; And(4, Or(F, 1) Or{Andid, B), Andid, C))
diswr2(A, B, O, Andl(%, 220, = Tisuz 0.0 E

There is only one constructor for And, so h must evaluate to Andl(hy, h3),
where hy € A and hy € Or(B,). We proceed by analyzing hy, which must
reduce to one of two possible forms:

Gisw2 € (4,B,C < Set; And(A, Or(B, C))) Or(And(d, B), Andid, 0))
distr2(A,5,.C, AndliA;,. Orhi(A))). = Tgisuz.000E
distr2(A, 5, O, Andli&;, OrL(A1)). = Taisuz 001 E

So, the pattern matching separates the task of defining distr2 into two
mutually exhaustive cases. In both cases it is immediate to construct the
right hand side using constructors and the variables on the left hand side:

disw2.<. [A,5.C € Set; &nd(A, Or(B, C))) Or(&And(4,5), And(d, C7)
distr2(A, B, ¢, Andl{A;, Orly(A11)..=.. Ol Andl{A;, 4))
distr2(d, B, ¢, Andl{A;, OrL (A1), .=, Orly Andl{A;, 4))

The proof is complete.
The pattern matching approach is the outcome of experiments with the

20

ALF system [10] and is not present in type theory proper as presented by
Martin-Lof. In fact, the two proofs presented here are just instances of two
different disciplines. In the first, one defines for each set once and for all
an elimination rule, capturing proof by structural induction over elements
of the set.! These elimination rules are defined as implicit constants and
are justified by reflection on the definition of the set. Having done this, all
proofs involving elements of this set are defined as explicit constants. In the
second discipline, only the set with its introduction rules is defined at the
outset and later proofs are done by pattern-matching, involving a reflection
on the arguments specially adapted to the particular proposition one wants
to prove. Interestingly, the two disciplines are not proof-theoretically equiv-
alent. One can exhibit propositions that can be proved by pattern-matching
but are false in certain models of type theory with the standard elimination
rules [24]. Tt is presently a research topic to gain a better understanding of
this phenomenon.

A programming example

To indicate how type theory can be used as a programming logic, we give
a simple example of the derivation of a program. The problem we consider
is that of finding the minimal element in a non-empty sequence of natural
numbers. We have already defined the set of natural numbers; the set of
sequences is defined as

INSeq. . Set
single. ..(7 € N) NSeq
cons. . =..(7 € N; a5 € NSeq) NSeq

To define the notion of minimality we need an order relation on the natural
numbers. This can be inductively defined as

Leg..=..(m, 2 = N Set
leg_0.=..(n € N} Leq(0,.x)
leg_succ..e..im, 2 € N; Leqgim,r)) Legisucc(m), succiz))

'"The elimination rules for And and Or given here can be slightly generalized, using
dependent sets. In this generalization, the two And-elimination rules are replaced by just
one rule.

21

Of course, these definitions are standard and can be expected to exist in
a library of useful sets in the environment of a system like ALF. The same
goes for simple properties of these sets, such as the fact that Leq is total, i.e.
Or(Leq(m,n), Leq(n, m)) for all m and n, which is easily proved by pattern
matching. Below we shall use a proof object leg_total(m,n) of this without
giving the proof here. We note also that this is the only property of Leq
that we need.

We can now define the relation Minimal between a natural number and
a sequence. The idea is that Minimal(n, ns) should express that n is the
minimal element in ns. This relation is inductively defined by the following
rules:

neN Minimal(n, ns) m<n Minimal(n, ns) n<m

Minimal(n, single(n)) Minimal(m, cons(m, ns)) Minimal(n, cons(m, ns))

We express this in type theory as the definitions

Winimal £..(7 € N; ns € NEeq) Set
m0 e ({7 € N Winimal(#z, single(z])
ml. e . .(m.a e N; #z € Nieq; Minimal(z,zs); Leqiz, 7)) Minimal(z, cons(z, 25))
m2 . (m.n e N; 2z € NEeq; Minimal(», 22); Legiz,) Minimal(z, cons(z, 22])

We now have enough notions to specify a program that given a sequence
produces its minimal element. Using the existential quantifier the type of
this program is (ns € NSeq)3(N, [#]Minimal(n, ns)). We prove this by pattern
matching, defining an implicit constant min:

min..=. (75 € NEeq) (W, [#]Winimal{z, 2:7)
min(singleiz)). = 3_inwa(z, mO{z))
minf cons(z, 45;:1). =..
caseminixs;) € (N, [# | Minimaliz’, #s;1) of
d_infro(z,). =..caseleq total{z,z) = Or(Leqix,z), Leg(z,x)) of
CrlylA:) = d_intole, m2ix,a,. 857, 8, 2:))
Qrl(hz). = d intro(n, mlin, a, 85, 8, 8]
end
end

The proof uses case expressions, a further extension of the pattern matching

22

discipline, which should be easy to understand. We note the recursive call
in the cons equation; it is necessary for termination that the recursive call is,
as here, to a structurally smaller argument, i.e. to a variable which is a sub-
pattern of the corresponding pattern in the left hand side. With this proviso,
the recursive call is guaranteed to reduce to canonical form J_intro(a, h) and
we can use the lemma leq_total to decide which of a and n is the minimum.
If we compute min(ns) for a given ns we get a pair, consisting of the
minimal element and a proof of the minimality. The latter component is
useful for building the proof smoothly, but from a computational point of
view it is redundant. Once we have completed the proof we would like to
strip it off before we use the program. We can here only indicate the ideas
behind such program extraction [39, 3]. If we are only interested in the first
component of min(ns), we would like to erase the second component every-
where. In this particular case it easy to see that this is possible, since the
second component h of the recursive call is only used to build the second
component of the result in the cons case. In general, the analysis can be quite
involved, since proof components may play also a computational réle. Simi-
larly, leq_total(a, n) returns information on which of Leq(a,n) and Leq(n, a)
that is true, and also a proof of that fact. It is easy to see that the proof
components of leg_total(a,n) are only used in building the verification part
of min(ns) and thus the type Or(Leq(a,n),Leq(n,a)) can be simplified to
Bool, giving exactly the program one would write in a functional language.
It is currently an active field of research to find algorithms for the automatic
analysis of proofs to remove such computationally redundant parts.

A simple compiler

We give an example of a proof of correctness of a simple compiler for polyno-
mial expressions and its representation in type theory. The proof we present
has been mechanically checked in the implementation of type theory ALF
presented above. It illustrates that type theory provides a convenient nota-
tion for proofs that proceed by induction and case analysis on the form of
a possible derivation. This style of proof is common in natural semantics
[28, 15] and structural operational semantics [42].

This example illustrates the following points of a type theoretical repre-
sentation of a programming problem.

e The problem and its solution is completely formalized. It has been
represented on a computer and mechanically checked.

23

e Identification of types and propositions, and of programs and proofs.
The proofs are done by case analysis and structural induction on
derivations and they are represented by functional expressions (with
case expression and recursive definitions).

e Connected to the previous point, we can represent in this formalism
features that are usually considered to be purely semantical notion;
for instance, in this example we define internally the notion of value
of a polynomial expression.

e Type theory can be seen as a functional programming language, whose
main feature compared to other functional languages (like ML [36] and
Haskell [26]) is the use of dependent types.

e No use of domain theory. This is to be contrasted with the LCF
approach [21]. Either we represent directly a program as a term of type
theory, or if we want to consider a possibly non-terminating program,
we represent it as an inductively defined relation.

This example was suggested by Colin Runciman, who uses it as a LCF
exercise. The example gives a good illustration of the differences between the
LCF approach [21, 40] and the present “natural semantics” approach [28].
In the LCF approach, each function is considered a priori to be partial, and
one has to prove that a given function is total. In the present type theoretic
approach, a function represents always a total function (for instance, the
compiler itself will be represented by such a function). Functions that are
only “partially defined” are represented here by inductively defined relations.

One drawback of this approach is in dealing with the fact that such a
relation R is “functional”: one element is in relation with at most one other
element. For instance, it is more elegant to simply write ¢(f(x)), where f is
the partial function corresponding to the functional relation R, rather than
“for all element y, if R(z,y), then ¢(y)”. This difficulty does not appear in
the present example.

Presentation of the example

We want to compute a polynomial expression built out of multiplication,
addition, basic integers, and one variable on a simple stack machine. The
instructions for this machine are:

24

e duplication of the top of the stack: from the stack » :: .S we go to the
stack n ::n 2 S,

e reverse the two top items of the stack: from the stack ny :: ng 11 S we
go to the stack ny :: ny 22 S,

e replace the two top items of the stack by an item that is their sum
(resp. product): from the stack n; :: ny 1 S we go to the stack
(ny *ng) :: .S where % is 4+ or X,

e replace the top of the stack by a given item ng, the stack n :: S becomes

ng :: S.

The problem is to compile a given polynomial expression e(z) to a list [
of instructions such that if we execute [on a stack n :: 5, then the result of
this computation is the stack v :: .S, where v is the value of the expression
e(n).

We shall not analyze in detail the solution of this problem in type theory,
but only give some remarks that may help in reading this solution. The set
of expressions is inductively defined by the constructors

Sum € (Expr)(Expr)Expr
Pro € (Expr)(Expr)Expr
Num € (N)Expr
Arg € Expr
The set of stacks is defined by:
Null € Stack

Push € (N)(Stack)Stack

and the set of instructions has the constructors

Dup € Instr
Rev € Instr
Add € Instr
Mul € Instr

Lit € (N)Instr

25

As said before, usual “functions” are represented in two ways. The evalu-
ation function is represented as a type theoretic function Fval € (Expr)(N)N,
such that Fval(e,n) gives the value of the expression e when its unique vari-
able is set equal to the value n. This is a recursive function, which is defined
by case on the expression e.

The execution “function” which computes a final stack from an initial
stack and a list of instructions, however, is not a function in a type theoretic
sense. It is only a “partial” function, and it is not clear yet if it is needed
to extend type theory with such functions (see however the proposal [6]).
It is here represented as an inductively defined relation EXEC between a
list of instructions and two stacks (representing the initial and final stack).
For defining this relation, we need first to introduce an inductively defined
relation Exec between only one instruction and two stacks (representing the
initial and final stack). The relation EXEC will be the “transitive closure”
of this relation. The originality of the type theoretic approach is to consider
these inductively defined relations as inductively defined (dependent) sets.
The constructors of these sets represent then the defining introduction rules
of the corresponding relations. The relation Exec has the constructors:

ExecDup n € N; s € Stack)Exec(Dup, Push(n, s), Push(n, Push(n, s)))

ExecRev

ExecAdd

€ (
€ (

ExecLit € (n,m € N;s € Stack)Exec(Lit(n), Push(m, s), Push(n, s))
€ (

ExecMul € (

Let us write s; — sy for Exec(, s1, s2), and n :: s for Push(n,s). The
usual presentation of Exec [28] will be in term of the introduction rules:

Dup Rev
nLs — nuns Ny iiMg 8§ — Mg Nyl s
Lit(n Add
m s)n 18 nying:its — plus(nl,ng) S
Mul

n1,ny € Njs € Stack)Exec(Rev, Push(ny, Push(ng, s)), Push(ng, Push(nq, s)))

ni1,ny € Njs € Stack)Exec(Add, Push(nq, Push(ng, s)), Push(plus(ni, ns), s))
n1,ny € Njs € Stack)Exec(Mul, Push(ny, Push(ng, s)), Push(mult(nq, n3), s))

We introduce the defined set
Prog = List(Instr)

The relation EXEC can then be defined as a transitive closure of Exec by the
constructors:

EXEC € (Prog;Stack; Stack)Set
EXECnil € (s :Stack)EXEC(nil, s, s)
EXECcons € (Exec(i, sy, s2); EXEC(p, s2, s3))EXEC(cons(i, p), s1, S3)

Let us write s; —— sy for EXEC(p, s1, s2), and i.p for cons(i,p). The
usual presentation of such a relation is given by two introduction rules

7 P
S1 — SS9 So +—— 83

s bLI s S1 = 53
The compiler itself is represented by a type theoretic function Comp €

(Expr) Prog because it should represent a deterministic total program. The
main theorem to be proved can then be formulated as

C
n:S 0»%(6) Fval(e,n) :: S

for all polynomial expressions e.

The next two figures contain the complete proof as represented in ALF.
The first figure describes the data types (stack, expression, instruction) and
the evaluation and compilation functions. The second figure contains a proof
of correctness of the compilation function.

27

STACK : Set
null : STACK push : (n:N;s:STACK)STACK

EXPR : Set
SUM : (el:EXPR;e2:EXPR)EXPR
PRO : (f1:EXPR;f2:EXPR)EXPR
NUM : (n:N)EXPR
ARG : EXPR

Eval : (e:EXPR;n:N)N
Eval(SUM(el,e2),n) = plus(Eval(el,n),Eval(e2,n))
Eval(PRO(f1,f2),n) = mult(Eval(f1i,n),Eval(f2,n))
Eval(NUM(n1),n) = ni
Eval(ARG,n) = n

INSTR : Set
DUP : INSTR REV : INSTR ADD : INSTR MUL : INSTR LIT : (n:N)INSTR

Exec : (i:INSTR;s1:STACK;s2:STACK)Set
Exec_Dup : (n:N;s:STACK)Exec(DUP,push(n,s),push(n,push(n,s)))
Exec_Rev : (n1,n2:N;s:STACK)Exec(REV,push(ni,push(n2,s)),push(n2,push(ni,s)))
Exec_Add : (n1,n2:N;s:STACK)Exec(ADD,push(ni,push(n2,s)),push(plus(ni,n2),s))
Exec_Mul : (n1,n2:N;s:STACK)Exec(MUL,push(ni,push(n2,s)),push(mult(ni,n2),s))
Exec_Lit : (n,m:N;s:STACK)Exec(LIT(n),push(m,s),push(n,s))

PROGRAM = List(INSTR)

EXEC : (p:PROGRAM;s:STACK;s’:STACK)Set
exec_nil : (s:STACK)EXEC(nil,s,s)
exec_seq : (Exec(i,s1,s2);EXEC(p,s2,s3))EXEC(cons(i,p),s1,s3)

Comp : (e:EXPR)PROGRAM
Comp(SUM(el,e2)) = cons(DUP,append(Comp(e2),append(cons(REV,nil),
append (Comp(el),cons(ADD,nil)))))
Comp(PRO(f1,£f2)) = cons(DUP,append(Comp(£f2),append(cons(REV,nil),
append (Comp(£f1),cons(MUL,nil)))))
Comp(NUM(n)) = cons(LIT(n),nil)
Comp(ARG) = nil

Figure 1: Description of the compiler

28

lemma : (EXEC(pl,si,s2);EXEC(p2,s2,s3))EXEC(append(pl,p2),s1,s3)
lemma(exec_seq(h2,h3),hl) = exec_seq(h2,lemma(h3,hl))

lemma(exec_nil(_),h1) = hi

thm : (e:EXPR;s:STACK;n:N)EXEC(Comp(e),push(n,s),push(Eval(e,n),s))

thm(SUM(el,e2),s1,n) = lemma(
exec_seq(Exec_Dup(n,si1),thm(e2,push(n,sl),n)),
exec_seq(Exec_Rev(Eval(e2,n),n,sl),
lemma(thm(el,push(Eval(e2,n),s1),n),
exec_seq(Exec_Add(Eval(el,n),Eval(e2,n),sl),
exec_nil(push(Eval(SUM(el,e2),n),s1))))))

thm(PRO(f1,£f2),s1,n) = lemma(
exec_seq(Exec_Dup(n,si1),thm(e2,push(n,sl),n)),
exec_seq(Exec_Rev(Eval(e2,n),n,sl),
lemma(thm(el,push(Eval(e2,n),s1),n),
exec_seq(Exec_Mul(Eval(el,n),Eval(e2,n),sl),
exec_nil(push(Eval(PRO(el,e2),n),s1))))))

thm(NUM(n1),s1,n) = exec_seq(Exec_Lit(nl,n,s1),exec_nil(push(ni,si)))

thm(ARG,s1,n) = exec_nil(push(n,sl))

Figure 2: Proof of correctness

29

Acknowledgements

The major implementation work was done by Lena Magnusson who im-
plemented the proof engine. We want to thank her for many insightful
comments. Johan Nordlander implemented the window interface, we also
want to thank him for many discussions.

References

[1]

Thorsten Altenkirch. A formalization of the strong normalization proof
for System F in LEGO. In J.F. Groote M. Bezem, editor, Typed Lambda
Caleuli and Applications, LNCS 664, 1993.

L. Augustsson, T. Coquand, and B. Nordstréom. A short description of
Another Logical Framework. In Proceedings of the First Workshop on
Logical Frameworks, Antibes, pages 39-42, 1990.

S. Berardi. An optimization algorithm for simply typed lambda-
calculus. Technical report, Turin University, 1993.

Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill,
New York, 1967.

Errett Bishop. Mathematics as a numerical language. In Myhill, Kino,
and Vesley, editors, Intuitionism and Proof Theory, pages 53-71, Ams-
terdam, 1970. North Holland.

Robert L. Constable and Scott F. Smith. Computational foundations of
basic recursive function theory. Theoretical Computer Science, 121:89—
112, 1993.

R. L. Constable et al. Implementing Mathematics with the NuPRL
Proof Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

Catarina Coquand. From Semantics to Rules, A Machine Assisted
Analysis. Technical report, Dept. of Comp. Science, Chalmers Univ. of
Technology, September 1993.

Thierry Coquand. Constructive topology and combinatorics. In proceed-

ing of the conference Constructivity in Computer Science, San Antonio,
LNCS 613, pages 28-32, 1992.

30

[10] Thierry Coquand. Pattern matching with dependent types. In Proceed-
ing from the logical framework workshop at Bdstad, June 1992.

[11] Thierry Coquand and Gérard Huet. The Calculus of Constructions.
Information and Computation, 76(2/3):95-120, 1988.

[12] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland,
1958.

[13] N. G. de Bruijn. The Mathematical Language AUTOMATH, its usage
and some of its extensions. In Symposium on Automatic Demonstration,
volume 125 of Lecture Notes in Mathematics, pages 29-61, Versailles,
France, 1968. IRTA, Springer-Verlag.

[14] N. G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: FEssays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 589-606, New York,
1980. Academic Press.

[15] J. Despeyroux. Proof of Translation in Natural Semantics. In Proceed-
ings of the First ACM Conference on Logic in Computer Science, pages
193-205, 1986.

[16] G. Dowek, A. Felty, H. Herbelin, H. Huet, G. P. Murthy, C. Parent,
C. Paulin-Mohring, and B. Werner. The coq proof assistant user’s
guide version 5.6. Technical report, Rapport Technique 134, INRIA,
December 1991.

[17] M. Dummett. Flements of intuitionism. Clarendon Press, Oxford, 1977.

[18] Daniel Fridlender. Ramsey’s theorem in type theory. Licentiate Thesis,
Chalmers University of Technology and University of Géteborg, Swe-
den, October 1993.

[19] Gerhard Gentzen. Investigations into Logical Deduction. In E. Sz-
abo, editor, The Collected Papers of Gerhard Gentzen. North-Holland
Publishing Company, 1969.

[20] Kurt Gédel. Uber eine bisher noch nicht benutze erweitrung des finiten
standpunktes. Dialectica, 12, 1958.

[21] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer-Verlag, 1979.

31

[22]

[23]

[24]

[32]

[33]

L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link
protocol. In Herman Geuvers, editor, Informal Proceedings of the 1993
Workshop on Types for Proofs and Programs, pages 173-212. Esprit
Basic Research Action 6453, May 1993.

Arend Heyting. Intuitionism: An Introduction. North-Holland, Ams-
terdam, 1956.

Martin Hofmann. A model of intensional martin-16f type theory in
which unicity of identity proofs does not hold. Technical report, Dept.
of Computer Science, University of Edinburgh, June 1993. Draft.

W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H.B. Curry: Fssays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479-490. Academic
Press, London, 1980.

Paul Hudak et al. Report on the Programming Language Haskell: A
Non-Strict, Purely Functional Language, March 1992. Version 1.2. Also
in Sigplan Notices, May 1992.

P. T. Johnstone. The point of pointless topology. Bull. Amer. Math.
Soc, (8):41-53, 1983.

G. Kahn. Natural Semantics. Technical Report 123, INRIA, Salt Lake
City, 1987.

S. C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10:109-124, 1945.

G. Kahn. L. Thery, Y. Bertot. Real Theorem Provers Deserve Real
User-Interfaces. Technical report, INRIA, Rocquencourt, 1992.

7. Luo and R. Pollack. LEGO Proof Development System: User’s
Manual. Technical report, LFCS Technical Report ECS-LFCS-92-211,
1992.

Lena Magnusson. The new Implementation of ALF. In The informal
proceeding from the logical framework workshop at Bdstad, June 1992,
1992.

Lena Magnusson and Bengt Nordstrom. The ALF proof editor and its
proof engine. In The Formal Proceeding of the 1993 Workshop on Types
for Proofs and Programs, Nijmegen, 1994.

32

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[43]

[44]

[45]

[46]

[47]

Per Martin-Lof. Notes on Constructive Mathematics. Almqvist & Wik-
sell, 1968.

Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

R. Milner. Standard ML Proposal. Polymorphism: The ML/LCF/Hope
Newsletter, 1(3), January 1984.

Christopher J. Mulvey and Joan Wick Pelletier. A Globalization of the
Hahn-Banach Theorem. Advances in Mathematics, 89(1), 1991.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in
Martin-Léf’s Type Theory. An Introduction. Oxford University Press,
1990.

Christine Paulin-Mohring. Fatraction de Programmes dans le Calcul
des Constructions. PhD thesis, [.’Universite Paris VII, 1989.

Lawrence C. Paulson. Logic and Computation. Cambridge University
Press, 1987.

Kent Petersson. A Programming System for Type Theory. PMG re-
port 9, Chalmers University of Technology, S-412 96 Goteborg, 1982,
1984.

Gordon Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, Aarhus University, September 1981.

D. Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

Giovanni Sambin. Intuitionistic Formal Spaces - A First Communica-
tion. In The Proceedings of Conference on Logic and its Applications,
Bulgaria. Plenum Press, 1986.

Dana Scott. Constructive validity. In Symposium on Automatic Demon-
stration, volume 125 of Lecture Notes in Mathematics, pages 237-275.
Springer-Verlag, Berlin, 1970.

W. Tait. Infinitely long terms of transfinite type. In Formal systems and
recursive functions, pages 176—185, Amsterdam, 1965. North-Holland.

A. S. Troelstra and D. van Dalen. Constructivism in Mathematics. An
Introduction, volume 1. North-Holland, 1988.

33

[48] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. An
Introduction, volume II. North-Holland, 1988.

34

