
Into the Infinite - Theory Exploration for
Coinduction

Sólrún Halla Einarsdóttir1, Moa Johansson1, Johannes Åman Pohjola2

1 Chalmers University of Technology, Gothenburg, Sweden.
{slrn, moa.johansson}@chalmers.se

2 Data61 / CSIRO, Sydney, Australia. johannes.amanpohjola@data61.csiro.au

Abstract. Theory exploration is a technique for automating the discov-
ery of lemmas in formalizations of mathematical theories, using testing
and automated proof techniques. Automated theory exploration has previ-
ously been successfully applied to discover lemmas for inductive theories,
about recursive datatypes and functions. We present an extension of
theory exploration to coinductive theories, allowing us to explore the dual
notions of corecursive datatypes and functions. This required development
of new methods for testing infinite values, and for proof automation. Our
work has been implemented in the Hipster system, a theory exploration
tool for the proof assistant Isabelle/HOL.

1 Introduction

Coinduction and corecursion are dual notions to induction and recursion that
admit the specification of potentially infinite structures and functions that operate
on them. Their many applications in theoretical computer science include, to
name a few: defining and verifying behavioral equivalence of processes [21], Hoare
logic for non-terminating programs [23], total functional programming in the
presence of non-termination [29], and accounting for lazy data in functional
languages like Haskell. Recently, support for coinduction in proof assistants has
matured significantly, with powerful definitional packages and reasoning tools [5,
6, 1].

In this paper, we extend a technique, called theory exploration [7], and present
a tool that automatically discovers and proves equational properties about
corecursive functions in the proof assistant Isabelle/HOL [24], a widely used
interactive theorem proving system featuring both automated and interactive
proof techniques. The purpose of theory exploration is to automate the discovery
of basic lemmas when, for instance, developing a new theory. The human user
can then focus on inventing and proving more complex conjectures, using the
automatically generated background lemmas. As an appetizer, consider this
simple example of an Isabelle theory:

codatatype (sset: ’a) Stream = SCons (shd: ’a) (stl: "’a Stream")

primcorec smap :: "(’a ⇒ ’b) ⇒ ’a Stream ⇒ ’b Stream" where
"smap f xs = SCons (f (shd xs)) (smap f (stl xs))"

primcorec siterate :: "(’a ⇒ ’a) ⇒ ’a ⇒ ’a Stream" where
"siterate f a = SCons a (siterate f (f a))"

cohipster smap siterate — tell Hipster to explore these functions

The theory above defines the codatatype Stream of infinite sequences, the function
smap that maps a function onto every element of a stream, and the function
siterate that given a function f and an initial element x generates the sequence
f(x), f(f(x)), f(f(f(x))), The verbatim output of our tool, Hipster, is as
follows:

lemma lemma_a [thy_expl]: "smap y (siterate y z) = siterate y (y z)"

by(coinduction arbitrary: y z rule: Stream.coinduct_strong)

auto

lemma lemma_aa [thy_expl]: "SCons (y z) (smap y x2) = smap y (SCons

z x2)"

by(coinduction arbitrary: x2 y z rule: Stream.coinduct_strong)

simp

lemma lemma_ab [thy_expl]: "smap z (SCons y (siterate z x2)) = SCons

(z y) (siterate z (z x2))"

by(coinduction arbitrary: x2 y z rule: Stream.coinduct_strong)

(simp add: lemma_a)

This Isabelle snippet, when pasted into the theory (simply by a mouse-click),
proves the discovered laws about smap and siterate by coinduction. The first
lemma, lemma a, may appear familiar as it describes the map-iterate property [3].
The whole process of generation and proof took Hipster less than 10 seconds on
a regular laptop computer. Moreover, the generated proofs are formal proofs,
machine-checked down to the axioms of higher-order logic.

Note that at no point did the user need to supply the conjectures or proofs.
Hipster uses a specialized conjecture discovery subsystem, called QuickSpec [28],
which heuristically generates type-correct terms and uses automated testing to
invent interesting candidate lemmas. We give a brief introduction to QuickSpec
in Section 2, along with a lightweight introduction to coinduction.

Earlier versions of Hipster [16, 14] supported only induction and recursive
datatypes. The main difference when we also treat codatatypes is in the testing
phase, when conjectures are generated. Naively testing and evaluating terms
for equivalence cannot be done in the same way as for regular datatypes, since
instances of a codatatype like Stream are infinite, so testing would not terminate.
Our solution to this conundrum is that for testing purposes, we generate step-
indexed observer functions for the codatatypes under consideration. These operate

on a copy of the codatatype with an extra nullary constructor, that we return
when the step-index reaches 0. The step-indexing guarantees that testing will
terminate. Section 3 describes this in more detail, along with our approach to
coinductive proof exploration.

We evaluate our tool by testing it on several examples of codatatypes and
corecursive functions in Section 5. Results are encouraging: we can discover and
prove many well-known and useful properties. Similar theory exploration systems
can be found in the literature [20, 15, 22, 9], but ours is the first system capable of
discovering and proving properties of coinductive types and corecursive functions.
We integrate inductive and coinductive reasoning, so that in a theory featuring
both recursion and corecursion, both inductive and coinductive proofs can be
discovered even when one depends on the other. The source code and examples
are available online.3

2 Background

We give a brief introduction of coinduction for readers unfamiliar with the concept,
followed by an introduction to the proof assistant Isabelle/HOL and the Hipster
theory exploration system.

Coinduction. Coinduction is the mathematical dual of structural induction,
relying on deconstructing structures top-down instead of constructing them
bottom-up as induction does. Consider lists with elements of type a, defined by:
List a = Nil | Cons a (List a).
The inductive reading of this declaration is that it specifies everything that can
be constructed from the empty list Nil in a finite number of steps, by using the
Cons constructor to add elements. The coinductive reading is that it specifies
everything that is either Nil or can be decomposed (“destructed”) into a head
and a tail, where the tail is either Nil or something that can be destructed
into another head and tail, and so on. The latter reading encompasses not only
Nil-terminated lists, but also infinite lists built from Cons only. We say that the
first reading defines a datatype while the second defines a codatatype.

Since codata need not bottom out in a base case, proof by induction does not
apply; instead we resort to the dual notion of coinduction, which allows us to
prove equalities between elements x, y of a codatatype by exhibiting a candidate
relation R such that x R y and R is closed under destruction. For example, here
is the coinduction principle for the Stream type introduced in Section 1:

R s s′
∀s1, s2

R s1 s2

shd s1 = shd s2 ∧ R (stl s1) (stl s2)

s = s′

In words: to show that s = s′, we must prove that for all pairs s1, s2 related by
R, s1 and s2 have the same heads and R-related tails. Interested readers can find
a more detailed introduction to coinduction in [27] or [13].

3 https://github.com/moajohansson/IsaHipster

Isabelle/HOL. Isabelle/HOL is an interactive proof assistant for higher-order
logic [24]. Users write definitions and proofs in theory files, which are checked
by running them through Isabelle’s small trusted logical kernel to ensure each
step in a proof is correct. More complex proof techniques, called tactics, can
be built up using combinations of basic inference rules from the trusted kernel.
Isabelle is an interactive system, meaning that there are both automated and
semi-automated tactics available. An example of the former is the simplifier,
which performs equational reasoning automatically. An example of the latter is
Isabelle’s (co)induction tactics, which applies a (maybe user given) induction
rule to a subgoal while leaving it to the user how to prove the resulting subgoals.
Sledgehammer is a useful tool in Isabelle which allows outsourcing proofs to
fully automated external first-order (FO) or SMT-solvers [25]. When the external
provers report back, the proof is reconstructed inside Isabelle’s trusted kernel. In
our work on Hipster, we combine Isabelle’s interactive tactics with Sledgehammer
to provide automation for (co)inductive proofs.

Routine
ReasoningHard Reasoning

Isabelle Theory:
(co)datatypes, (co)functions,

theorems, lemmas

Conjectures

QuickSpec
(discovery)

Trivial -
discard

Fail - retry

Proved
- keep

QuickCheck
(testing)

Fig. 1. The architecture of the Hipster system.

Hipster. The architecture of the Hipster system is shown in Figure 1. Hipster
outsources conjecture generation to the external tool QuickSpec. QuickSpec
generates type-correct terms in order of size, up to a given limit. At each step, it
evaluates the terms on randomly generated test data, using the property-based
testing tool QuickCheck [8]. Based on the results of testing, terms are divided
into equivalence classes from which equational conjectures are extracted. For a
full description of QuickSpec’s conjecture generation algorithm and its heuristics
we refer the reader to [28]. The conjectures produced by QuickSpec are then read
back into the Isabelle/HOL environment for proof. The conjectures have been
thoroughly tested at this point, so we have quite good reasons to believe they
may actually be true. However, not all of them might be considered interesting

by a human. In particular, statements that have trivial proofs are rarely exciting.
Hipster therefore takes two reasoning strategies as parameters: routine reasoning
(often just rewriting), and hard reasoning (for instance coinduction). Depending
on the exact configuration of the routine and hard reasoning strategies, we can
tweak Hipster to produce slightly different output: the conjectures that follow
from using only routine reasoning are discarded, while those proved by the hard
reasoning strategy are reported back to the user. Whenever Hipster proves a
lemma, it may use it in subsequent proofs. This means that during exploration,
its automated proof strategies become more powerful as more lemmas are found.
Should some conjecture fail to be proved by either of the proof strategies, it is
also presented to the user, who can try a manual proof.

3 Testing Infinite Structures

Recall from Section 2 that Hipster’s conjecture generation subsystem, Quick-
Spec, relies on being able to test terms on randomly generated values. When a
codatatype has no finite instances, as in the case of streams, QuickSpec cannot
directly check the equality of any of the generated terms, since that would take
an infinite amount of time due to their infinite size. Thus testing will not work.

When an Isabelle user invokes Hipster on a coinductive theory, an observer
type and observer function are generated for every type under consideration.
These types and functions ensure that QuickSpec only tests a (randomly chosen)
finite prefix of any infinite values, using support for observational equivalence. This
allows Hipster to discover lemmas about codatatypes without finite instances.

Observational Equivalence in QuickSpec. When used interactively through its
Haskell interface, QuickSpec supports observational equivalence to deal with
types that for instance have no finite instances, and thus cannot be directly
compared [28]. Note that in this case, the user must define a function for observing
such a type and state that two values of the type are equivalent if all such
observations make them equal. We have extended this functionality by developing
a method to automatically generate observer functions for the codatatypes being
explored and added it to the interface between Hipster and QuickSpec.

More specifically, observer functions are used as follows: For any type T ,
QuickSpec can be given an observer function of type Obs→ T → Res, where Obs
can be any type that QuickSpec can generate random data for, and Res any type
that can be compared for equality. QuickSpec will then include a random value of
type Obs as part of each test case, and will compare values of type T by applying
this observer function using the random value of type Obs and comparing the
resulting values of type Res. For instance, we can define an observer function for
streams:

obsStream :: Int→ Stream→ List,

where obsStream n s returns a list containing the first n elements of the stream
s. If we supply this observer function to QuickSpec it will generate a random
integer n for each test case where streams are to be observed, and assume that
two streams are equal if their first n elements are equal in every case.

Generating Observer Functions. For Hipster, we want to relieve the user of having
to define the observer function by hand, and instead generate it automatically.
Our method of generating observer functions is inspired by the Approximation
Lemma [2, 12]. Here, a so called approximation function, approx, is defined in the
same way as the recursive identity function for a given type, except that it has
an additional numeric argument which is decremented at each recursive call. The
lemma states that a = b if approx n a = approx n b for all values of n. For the
Stream type introduced in Section 1, the approximation function is defined as:

approx (n + 1) xs = SCons (shd xs) (approx n (stl xs))

The function is undefined for n = 0 and therefore returns a partial structure, for
instance, if zeroes is a stream of zeroes then approx 1 zeroes evaluates to the
partial stream SCons 0 ⊥, where ⊥ represents an undefined value.

To make our solution practical we, instead of using the undefined value ⊥,
generate a new type that has the same structure as the type being observed, but
with an additional nullary constructor. For example, the generated observation
type for a stream is:

OStream a = OSCons a (OStream a) | NullConsStream

We then generate an observer function for a given type T with an observer type
ObsT in the following manner:

obsFunT :: Nat→ T → ObsT

obsFunT 0 = NullConsT

obsFunT n t = approx′ n t

where approx′ is like the recursive identity function for T except that it replaces
each constructor occurring in t with the equivalent constructor for ObsT , and
the fuel parameter n is decremented at every recursive call, ensuring we will
only attempt to observe a finite prefix. As an example, an observer function for
streams using the observer type from above is shown below:

obsFunStream :: Nat→ Stream a→ OStream a

obsFunStream 0 = NullConsStream

obsFunStream n (SCons x xs) = OSCons x (obsFunStream (n− 1) xs)

Some care needs to be taken when decrementing the numeric fuel argument which
determines how much more of the structure should be observed, as using n− 1 in
every step results in testing being too slow for structures with larger branching
factors, such as trees. For now, we use a heuristic measure which decrements n
to n/#constructors -1 in each recursive call. For OStream, this is simply (n− 1),
while for e.g. binary trees, defined:

Tree a = TNode a (Tree a) (Tree a)

with an observer type defined:

OTree a = OTNode a (OTree a) (OTree a) | NullConsTree

the fuel counter is decremented to n/2−1 for each branch, as seen in the observer
function definition below:

obsFunTree :: Nat→ Tree a→ OTree a

obsFunTree 0 = NullConsTree

obsFunStream n (TNode x l r) =

OTNode x (obsFunTree (n/2− 1) l) (obsFunTree (n/2− 1) r)

4 Automating Proofs of Coinductive Lemmas

Isabelle/HOL features a built-in coinduction tactic that applies a coinduction
principle to a goal, with the candidate relation instantiated to be the singleton
relation containing the equation in the conclusion. After applying this tactic the
user must decide how to finish the proof after the coinductive step. However,
the ability to automatically prove lemmas without user involvement is crucial in
lemma discovery by automated theory exploration. Therefore we have extended
Hipster with an automated tactic for proving coinductive lemmas. In order
to do this, we must automatically determine the parameters for our call to
Isabelle/HOL’s coinduction tactic, and then automate the subgoal proofs.

Automatically Determining Parameters. Isabelle/HOL’s coinduction tactic has
parameters to set which variables are arbitrary, meaning that they appear uni-
versally quantified in the candidate relation (and hence existentially quantified
in the conclusion of the resulting subgoal). It also has an optional parameter to
specify which coinduction rule to use.

Our default setting is to set all free variables in the current goal as arbitrary.
This yields weaker proof obligations, at the expense of introducing existential
quantifiers in the goal, which is sometimes less automation-friendly since it may
require guessing an instantiation to discharge the goal. Our experience is that
setting at least some variables to arbitrary is necessary for all but the most trivial
of proofs; for the rest, the goal statements are simple enough that the extra
existentials do not cause any difficulty in practice.

The built-in coinduction tactic also has an optional parameter to specify
what coinduction rule should be used for the proof. We must again make a
tradeoff between one that can be applied to prove as wide a range of lemmas as
possible, such as coinduction up-to the codatatype’s companion function [26];
and one that yields simple and automation-friendly subgoals, such as the (weak)
coinduction principle associated with the datatype.

For reasoning about functions defined with primitive corecursion, we find that
the strong coinduction principle generated by the datatype package works well in
practice. It allows one to close the proof by proving either equality or membership

in the candidate relation. For example, here is the strong coinduction principle
for the Stream type defined in Section 1:

R s s′
∀s1, s2

R s1 s2

shd s1 = shd s2 ∧ (R (stl s1) (stl s2) ∨ stl s1 = stl s2)))

s = s′

Note that the (weak) coinduction principle shown in Section 2 differs by
omitting the right-hand side stl s1 = stl s2 of the disjunction. The extra
disjunction is lightweight enough not to confuse the simplifier, and the equality
has very important consequences: it allows equations that have previously been
proven by coinduction to be re-used in the proof, without having to include
them in the candidate relation. This allows us to automatically prove, e.g., the
associativity of append on lazy lists as seen in Section 5.1.

The recent AmiCo definitional package by Blanchette et al. [4] allows a
form of non-primitive corecursion where corecursive calls may be guarded by
friends in addition to constructors. A friend is a function that consumes at
most one constructor to produce a constructor. For functions with friend-guarded
corecursive calls, the strong coinduction rule often results in an unsuccessful proof
attempt: terms on the shape required by the candidate relation tend to occur as
arguments to friends rather than at top-level. Fortunately, the AmiCo package
generates a coinduction principle up-to friendly contexts covering precisely this use
case. Hence we prioritize such coinduction principles over the strong coinduction
principle whenever they are relevant, i.e., whenever the goal state mentions a
function symbol defined using non-primitive corecursion.

Proving Subgoals. After applying coinduction, Hipster’s simp_or_sledgehammer

tactic is applied to the current proof state in an attempt to prove the remaining
subgoals and conclude the proof of the lemma. This tactic first attempts to
complete the proof using Isabelle’s automatic simplification procedure simp.
If this does not suffice it uses Isabelle’s automated proof construction tool
Sledgehammer [25] to attempt to construct a proof. Since Sledgehammer is quite
powerful, this tactic is sufficient to conclude the proofs of a wide range of lemmas.

Mixed Induction and Coinduction In practice, theories are neither purely inductive
nor purely coinductive — coinductive definitions of datatypes and functions may
use auxiliary inductive definitions, and vice versa. In order to cope with such
theories, it is important that we integrate Hipster’s inductive and coinductive
functionality. For conjecture discovery, this integration comes for free since
Isabelle’s code generator maps both data and codata to identical Haskell code.

For proof search, we must decide whether to tackle our conjectures using
induction, coinduction or both. For this, we use a simple heuristic that appears
to work well in practice: if the conjecture contains a free variable whose type has
an induction principle, we invoke the inductive proof search procedure; if the
left- and right-hand sides of the conjecture are of a type that has a coinduction

principle, we invoke the coinductive proof search; if both, we try both and keep
the first successful proof attempt. This architecture allows us to find proofs of
inductive lemmas that require coinductive auxiliary lemmas, such as the fact
that append distributes over the to_llist function on finite lists (see Section 5).

5 Evaluation and Results

We apply Hipster to several theories of common codatatypes found in the liter-
ature: lazy lists, extended natural numbers, streams, and two kinds of infinite
trees. Our goal is to demonstrate how a user can invoke Hipster to discover useful
lemmas in their coinductive theory development, showing that our method for
testing infinite structures, as described in Section 3, is effective in discovering
coinductive properties and that our automated coinduction tactic, described in
Section 4, is effective in proving those properties.

We restrict each Hipster call to a small number of functions, to explore how
those functions relate to each other, rather than exploring all the functions in a
theory at once. This is how we envision typical users will interact with the tool,
since in practice it tends to yield quicker and more relevant results.

The evaluation was performed with Isabelle 2017 using Isabelle/jEdit, on a
ThinkPad X260 laptop with a 2.5GHz Intel i7-6500U processor and 16GB of
RAM running 64-bit Linux. The Isabelle theory files used to attain these results
are available online4.

5.1 Case Study: Lazy Lists and Extended Natural Numbers

In this section we demonstrate the results attained when using Hipster to explore
a theory of lazy lists (lists of potentially infinite length). We define some common
functions for this type: lappend to append two lazy lists, a map function lmap,
iterates which generates a lazy list by iteratively applying a function to an
element, llist of which maps a standard Isabelle/HOL list to a lazy list, llength
which returns the length, and ltake which takes a given number of elements. We
also define a codatatype ENat for extended natural numbers (natural numbers
of potentially infinite size) and an addition function eplus on ENats.

We check which of the lemmas we discover are stated and proved in the
Coinductive library [18] in the archive of formal proofs5, which is a collection of
formalizations about coinductive types and functions. For the extended naturals
we refer to the Extended Nat theory from the Isabelle/HOL library 6. Since
the lemmas in these libraries have been collected and hand-proved by Isabelle
experts, we conclude that they must be interesting and/or useful for Isabelle
theory development.

Table 1 shows the results of exploration on this theory. The column args
shows the names of the functions explored in the particular Hipster call, Expl is

4 https://github.com/moajohansson/IsaHipster/tree/master/benchmark/AISC18
5 https://www.isa-afp.org/
6 http://isabelle.in.tum.de/library/HOL/HOL-Library/Extended Nat.html

the amount of time (in seconds) spent in exploration and testing, Expl+Proof is
the amount of time (in seconds) spent in exploration, testing, and proving, #
properties shows the number of properties Hipster discovers, # library lemmas
shows how many of those properties are lemmas stated and proved in the libraries
mentioned above. For these experiments, Hipster’s routine tactic was configured
to only do simplification, and the hard tactic was our automated coinduction
and induction tactic as described in Section 4.

In our 13 calls to Hipster, we discover 33 coinductive or inductive properties.
Of these 33 properties, 13 are stated and proved as lemmas in Isabelle libraries,
leading us to believe that they are of interest to Isabelle users. Of the other
20, most are rather trivial consequences of function definitions and/or other
discovered lemmas, which our routine tactic does not suffice to prove. Some of the
discovered properties may however be interesting to users despite not appearing in
the libraries, for instance that llength(lappend xs ys) = llength(lappend ys xs).

The discovered properties include the associativity of append,
lappend (lappend x y) z = lappend x (lappend y z), and that mapping preserves
length, llength (lmap f x) = llength x . The exploration involving llist of , which
maps a standard list to a lazy list, results in lemmas showing the correspondence
between our lazy list functions and Isabelle/HOL’s built-in list functions, for
example lmap f (llist ofx) = llist of (map fx). The previous lemma is proved
by induction, demonstrating Hipster’s capabilities in exploring mixed inductive
and coinductive theories.

cohipster args Expl Expl+Proof # properties # library lemmas

lappend 2.5s. 25s. 4 2
lmap 3.2s. 7s. 3 0
lappend lmap 4.1s. 17s. 1 1
llist of lappend append 4.9s. 28s. 1 1
llist of lmap map 4.9s. 21s. 1 1
llength 2.1s. 2s. 1 0
llength lmap 4.0s. 11s. 1 1
eplus 2.9s. 39s. 4 3
llength lappend eplus 5.2s. 87s. 5 1
ltake 4.1s. 76s. 7 0
ltake lmap 5.7s. 23s. 2 1
lmap iterates 4.2s. 18s. 2 1
lappend iterates 4.6s. 15s. 1 1
Table 1. An overview of the results of exploring our lazy list theory.

All of the discovered properties are proved by our automated proof tactic,
except for the commutativity of eplus. This was due to our rather short timeout
for Sledgehammer, which was just set to 10s. in this experiment. If we allow a
30s. timeout (which is the standard when Sledgehammer is used interactively),
a proof is found. As can be seen from Table 1, the time it takes for Hipster to
discover and prove properties varies between 2-90 seconds. As all calls took less

than 90 seconds to complete, and most took less than a minute, we can see that
the user does not have to wait very long for Hipster to come up with lemmas for
their functions. We believe that for most Isabelle users, making a call to Hipster
would be much faster than writing down and proving the same lemmas manually,
not to mention coming up with them. In Table 1 we also compare the runtime of
the calls: most of the time is spent trying to prove properties (we give each call
to Sledgehammer a timeout limit of 10 seconds), while the time to discover and
test the properties is just a few seconds. There is however a configuration option
in Hipster for very impatient users to only do exploration, leaving the proofs to
the user altogether.

5.2 Case Study: Stream Laws

We already saw in Section 1 that Hipster can discover and prove the map-iterate
property for streams. In this section, our aim is to quantify the degree to which
Hipster discovers stream equations that a human would find interesting. That
is of course subjective, but for the purposes of this section we operationalize
“interesting” as being any of the 18 laws of Hinze’s Stream Calculus [11], which
according the the author “provides an account of the most important properties of
streams”. Of the 18 laws given by Hinze, three are beyond the scope of Hipster’s
current capabilities: lambda-expressions are not supported, nor are conditional
statements with term depth > 1 in the antecedent. The remaining 15 are all
equational statements. With respect to these 15 laws, we analyze Hipster’s
precision (percentage of the lemmas we find that are among Hinze’s laws) and
recall (percentage of Hinze’s laws that we find).

First, we will briefly recapitulate the relevant notation. pure x denotes a stream
where every element is x. � is lifted function application, defined by the observa-
tions hd(f�x) = (hd f) (hd x) and tl(f�x) = (tl f)�(tl x). The interleaving of two
streams x, y is written xg y. Tabulation, written tabulate f , is the stream whose
n:th element is f(n). Lookup, written lookup s n, is the n:th element of stream
s. zip x y merges two streams into a stream of pairs. recurse is defined by the
observations hd(recurse f a) = a and tl(recurse f a) = map f (recurse f a). Un-
folding satisfies hd(unfold g f a) = g a and tl(unfold g f a) = unfold g f (f a).

The results are shown in Table 2. The lemmas’ precision, recall and time have
been explored together by invoking Hipster with every function mentioned in
each lemma; e.g., to search for laws 7-9 we invoke cohipster map zip fst snd.
We also report total precision and recall over all such invocations at the bottom.
For these experiments, Hipster has been configured to use a Sledgehammer
timeout of 10s, a routine tactic that does only simplification, and a hard tactic
that tries coinduction and induction, in each case followed by simplification or
sledgehammer, as described in Section 4.

We see that in total, Hipster discovers 9 out of the 15 properties in scope,
i.e. 60% recall. Note in particular property 13, where Hipster discovers a proof by
induction, and property 14, where Hipster discovers a proof by coinduction up-to
friendly contexts. The 21% overall precision can be improved by using a more
powerful routine tactic, such as simplification interleaved with stream expansion.

Property Found Precision Recall Time

1 pure id � u = u X
22% 67% 44s.2 pure(◦) � u � v � w � u = u –

3 pure f � pure x = pure (f x) X

4 u � pure x = pure (λf. f x) � u
5 map id x = x X

50% 100% 29s.
6 map (f ◦ g) x = map f (map g x) X

7 map fst (zip s t) = s –
0% 0% 255s.8 map snd (zip s t) = t –

9 zip (map fst p) (map snd p) = p –

10 pure a g pure a = pure a X
25% 50% 18s.

11 (s1 � s2) g (t1 � t2) = (s1 g t1) � (s2 g t2) –

12 map f (tabulate g) = tabulate (f ◦ g) X 100% 100% 87s.

13 f(lookup t x) = lookup (map f t) x X 33% 100% 57s.

14 recurse f a = iterate f a X 33% 100% 73s.

15 map h ◦ iterate f1 = iterate f2 ◦ h⇐= h ◦ f1 = f2 ◦ h
16 unfold hd tl x = x – 0% 0% 21s.

17 unfold g f ◦ h = unfold g′ f ′ ⇐= g ◦ h = g′ ∧ f ◦ h = h ◦ f ′

18 map h (unfold g f x) = unfold (h ◦ g) f x X 50% 100% 18s.

21% 60% 602s.
Table 2. An overview of the stream properties discovered and proved by Hipster.
Lemmas in gray are not in scope.

The properties that are in scope, but not discovered, are all attributable
to QuickSpec’s heuristics for restricting the search space. Properties involving
variables denoting streams of functions such as Property 2 cannot be tested,
and instantiation of type variables is restricted in ways that rule out, e.g.,
conjectures where fst occurs as an argument to map. It seems difficult to lift
these restrictions in ways that do not make the search space intractable — this
would be an interesting direction for future work.

5.3 Case Study: Infinite Trees

We have experimented with two different kinds of corecursive trees: A codatatype
representing an infinitely deep binary tree, and another representing an infinitely
deep rose tree, with arbitrary branching at each node. The purpose here is
to demonstrate Hipster on a different kind of codatatype than the previous
case-studies. Hipster was configured to use simplification as the routine tactic,
and as the hard tactic, either just Sledgehammer or coinduction followed by
Sledgehammer.

Infinite Binary Trees. We define an infinite depth binary tree as follows:

codatatype ’a Tree = Node (lt: "’a Tree") (lab: ’a) (rt: "’a Tree")

We defined three functions over this codatatype: mirror (which switches the left
and right branches of each node), tmap which applies a function to each label in

the tree and tsum which sums the labels of a tree of natural numbers. A summary
of the results is given in Table 3. Hipster discovers the expected properties about
the given functions (associativity, distributivity etc.) as well as a few additional
properties which perhaps are of less interest. We note that these are presented
to the user as Isabelle’s simplifier is a rather weak tactic in this context, while
another choice for the routine tactic would have pruned out more properties.

cohipster args Expl Expl+Proof Properties Discovered Proved

mirror 3.4s. 39s. mirror (mirror y) = y coinduction+simp
+ 3 more proved by Sledgehammer

mirror tmap 4.3s. 35s. tmap z (mirror x) = mirror (tmap z x) coinduction+smt

mirror tsum 6.1s. 112s.

tsum y x = tsum x y coinduction+smt
tsum (tsum x y) z = tsum x (tsum y z) coinduction+smt
mirror (tsum y (mirror x)) = tsum x (mirror y) coinduction+smt
tsum (mirror x) (mirror y) = mirror (tsum x y) Sledgehammer

(using above lemmas)
+ 2 more proved by Sledgehammer

Table 3. Overview of properties discovered about infinite depth binary trees. Due to
space restrictions mainly properties proved by coinduction are listed, full results are
available online.

Rose Trees: a Nested Codatatype. We also conducted an experiment with a nested
codatatype representing arbitrarily branching rose trees:

codatatype ’a RoseTree = Node (lab: ’a) (sub: "’a RoseTree list")

We defined functions mirror (reversing the list of subtrees), tmap (mapping a
function over the labels of each node) and tsum (summing the labels of a tree
of natural numbers). Note that unlike for the infinite binary trees, mirror and
tmap are not corecursive.

For this theory, we noticed that the runtimes varied a great deal from run
to run of the same command. For example, in a series of runs of Hipster on
the function mirror only, the runtime varied from as little as 21 seconds to
as much as 125 seconds. This is due to how our observer function interacts
with the random length lists being generated for the branches at each node. It
decreases its fuel linearly in this case, so if the list is long observing each child
tree recursively is time-consuming. Implementing smarter observer functions, for
instance taking length of the list of a node’s child trees into account to only
observe an appropriately small subtree of each child, is future work.

As can be seen in Table 4, only a few properties are proved automatically
(by Sledgehammer, no coinduction needed). This is because our automated
coinduction tactic is not flexible enough to deal with nested datatypes. We
believe a customized tactic, also able to perform some form of nested induction
over the list of branches, would do a better job, but such domain specific tactics
are left as further work at this stage.

cohipster args Expl+Proof Properties Discovered Proved

mirror 29s. mirror (mirror y) = y Sledgehammer

mirror tmap 102s. tmap z (mirror x) = mirror (tmap z x) Sledgehammer

mirror tsum 597s.

tsum (mirror x) (mirror x) = mirror (tsum x x) Sledgehammer
tsum y x = tsum x y no
tsum (tsum x y) z = tsum x (tsum y z) no

+ 4 more unproved about tsum/mirror
Table 4. Overview of properties discovered about rose trees. Note that timings here
are from one sample run, and can vary quite a lot due to randomness in testing.

6 Related Work

There is substantial recent work on making Isabelle/HOL more expressive for
working with codatatypes and corecursive functions [5, 4]. Our extension to
Hipster can help Isabelle/HOL users who want to program with these new
methods discover and prove new properties about their theories.

There has been prior work on automating coinductive proofs and reasoning. In
[17] Leino and Moskal present a method for automated reasoning about coinduc-
tive properties in the Dafny verifier. CIRC [19] is a tool for automated inductive
and coinductive theorem proving which uses circular coinductive reasoning. It
has been successfully used to prove many properties of infinite structures such as
streams and infinite binary trees. However, none of the other systems has the
theory exploration capabilities of Hipster.

In the setting of resolution for Horn clause logic with coinductive entailment,
Fu et al. [10] present a method for automatically generating appropriate candidate
lemmas for proving such entailments. The application is to devise a method for
e.g. type class resolution in Haskell that is stronger than cycle detection. Whereas
Hipster uses testing to generate candidate lemmas, Fu et al. uses the structure of
partial proof attempts. Given a partially unfolded resolution tree, the candidate
lemma that gets generated states that the root of the tree is entailed by the
conjunction of all leaves that mention fewer symbols than the root. This is also
unlike Hipster in that Hipster strives for lemmas that will be generally useful for
any further theory development using the types and functions under consideration,
whereas Fu et al. are interested in finding which lemmas, were they true, could
be used to prove a particular sequent.

IsaCoSy [15] and IsaScheme [22] are other theory exploration systems for
Isabelle/HOL, both of which focus on the discovery and proof of inductive
properties. MATHsAiD [20] is a tool for automated theorem discovery, aimed at
aiding mathematicians in exploring mathematical theories. It can discover and
prove theorems whose proofs consist of logical and transitive reasoning as well as
induction. Hipster is the first theory exploration system capable of discovering
and proving coinductive properties. Furthermore, it is considerably faster than
IsaCoSy and IsaScheme thanks to using QuickSpec as a backend [9].

7 Conclusion

We have extended the theory exploration system Hipster with the capabilities to
discover and prove not only inductive lemmas, but also lemmas in coinductive
theories involving potentially infinite types such as streams, lazy lists and trees.
We have shown that the system can discover and prove many standard lemmas
about these codatatypes. This goes beyond the capabilities of previous theory
exploration systems, that do not consider coinduction at all.

In the long term, we envision that invoking a theory exploration system such as
Hipster will be a natural first step for the working proof engineer when developing
a new theory. This nicely complements tools like Isabelle’s Sledgehammer. In a
new theory, Sledgehammer is unlikely to be of much help until we have proven at
least some basic lemmas, which is exactly what theory exploration can automate.

There are many interesting directions for further work. As seen in the case
study on rose trees, we would benefit from specialized observation functions and
proof methods for nested (co-)datatypes. The case studies in this paper are mostly
in the domain of lazy data in the style of functional programming. It would be
interesting to explore if we can extend our work to other uses of coinduction.
For example, discovering algebraic laws about coinductively defined behavioral
equivalences, or discovering Hoare triples about non-terminating programs. This
would require developing a technique to test relations as opposed to functions.

Acknowledgements. The authors would like to thank Nicholas Smallbone for
technical assistance with QuickSpec. The first author was partially supported by
the GRACeFUL project, grant agreement No 640954, which has received funding
from the European Union’s Horizon 2020 research and innovation program.

References

1. A. Abel and B. Pientka. Well-founded recursion with copatterns and sized types.
J. Funct. Program., 26:e2, 2016.

2. R. Bird. Introduction to Functional Programming. Pearson Education, 2nd edition,
1998.

3. R. Bird and P. Wadler. An Introduction to Functional Programming. Prentice Hall
International (UK) Ltd., Hertfordshire, UK, UK, 1988.

4. J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu, and D. Traytel. Friends
with benefits. In Proceedings of ESOP 2017, pages 111–140. Springer, 2017.

5. J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel.
Truly modular (co)datatypes for Isabelle/HOL. In G. Klein and R. Gamboa, editors,
Proceedings of ITP, pages 93–110. Springer International Publishing, 2014.

6. J. C. Blanchette, F. Meier, A. Popescu, and D. Traytel. Foundational nonuniform
(co)datatypes for higher-order logic. In 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–12, June 2017.

7. B. Buchberger. Theory exploration with Theorema. Analele Universitatii Din
Timisoara, ser. Matematica-Informatica, 38(2):9–32, 2000.

8. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In Proceedings of ICFP, pages 268–279, 2000.

9. K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive
proofs using theory exploration. In Proceedings of CADE, volume 7898 of LNCS,
pages 392–406. Springer, 2013.

10. P. Fu, E. Komendantskaya, T. Schrijvers, and A. Pond. Proof relevant corecursive
resolution. In Proceedings of FLOPS 2016, pages 126–143, 2016.

11. R. Hinze. Concrete stream calculus: An extended study. J. Funct. Program.,
20(5-6):463–535, Nov. 2010.

12. G. Hutton and J. Gibbons. The generic approximation lemma. Information
Processing Letters, 79:2001, 2001.

13. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–259, 1997.

14. M. Johansson. Automated theory exploration for interactive theorem proving: An
introduction to the Hipster system. In Proceedings of ITP, volume 10499 of LNCS,
pages 1–11. Springer, 2017.

15. M. Johansson, L. Dixon, and A. Bundy. Conjecture synthesis for inductive theories.
Journal of Automated Reasoning, 47(3):251–289, Oct 2011.

16. M. Johansson, D. Rosén, N. Smallbone, and K. Claessen. Hipster: Integrating
theory exploration in a proof assistant. In Proceedings of CICM, pages 108–122.
Springer, 2014.

17. R. Leino and M. Moskal. Co-induction simply: Automatic co-inductive proofs in a
program verifier. Technical report, Microsoft Research, July 2013.

18. A. Lochbihler. Coinductive. Archive of Formal Proofs, Feb. 2010. http://isa-
afp.org/entries/Coinductive.html, Formal proof development.

19. D. Lucanu, E.-I. Goriac, G. Caltais, and G. Roşu. CIRC: A behavioral verification
tool based on circular coinduction. In Proceedings of CALCO 2009, pages 433–442.
Springer, 2009.

20. R. L. McCasland, A. Bundy, and P. F. Smith. MATHsAiD: Automated mathematical
theory exploration. Applied Intelligence, Jun 2017.

21. R. Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.
22. O. Montano-Rivas, R. McCasland, L. Dixon, and A. Bundy. Scheme-based theorem

discovery and concept invention. Expert systems with applications, 39(2):1637–1646,
2012.

23. K. Nakata and T. Uustalu. A Hoare logic for the coinductive trace-based big-
step semantics of While. In Programming Languages and Systems, pages 488–506.
Springer, 2010.

24. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL. Springer, 2002. Latest
online version http://isabelle.in.tum.de/dist/Isabelle2017/doc/tutorial.pdf.

25. L. C. Paulson and J. C. Blanchette. Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In Proceedings
of IWIL-2010, 2010.

26. D. Pous. Coinduction all the way up. In Proceedings of LICS, pages 307–316, New
York, NY, USA, 2016. ACM.

27. D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, New York, NY, USA, 2011.

28. N. Smallbone, M. Johansson, K. Claessen, and M. Algehed. Quick specifications
for the busy programmer. Journal of Functional Programming, 27, 2017.

29. D. A. Turner. Total functional programming. J. UCS, 10(7):751–768, 2004.

