A constructive ∞-groupoid model of homotopy type theory

Christian Sattler

University of Gothenburg and Chalmers University of Technology

TYPES 2025 13 June 2025

Outline

Background: what are ∞ -groupoids?

Problem: interpret HoTT *effectively* in ∞ -groupoids.

Current state: no model does this!

A solution:

- intuition
- properties
- applications

What are ∞ -groupoids?

What are ∞ -groupoids?

If we are already in a univalent metatheory: An ∞ -groupoid is just a **type**.

This is a primitive notion.

What are ∞ -groupoids?

If we are already in a univalent metatheory: An ∞ -groupoid is just a **type**.

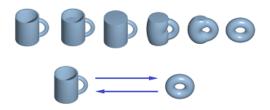
This is a primitive notion.

But if we have to start from sets?

∞ -groupoids from sets

Historically: homotopy types, i.e.,

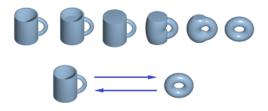
"spaces" up to "homotopy equivalence".



∞ -groupoids from sets

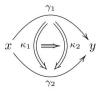
Historically: homotopy types, i.e.,

"spaces" up to "homotopy equivalence".

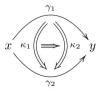


Brings point-set topology into the picture. :(

Better: sets with a higher-dimensional equivalence relation.



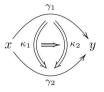
Better: sets with a higher-dimensional equivalence relation.



A higher setoid *X* consists of:

 \triangleright a set X_0 of points,

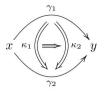
Better: sets with a higher-dimensional equivalence relation.



A higher setoid *X* consists of:

- ightharpoonup a set X_0 of points,
- ightharpoonup with a set-valued equivalence relation X_1 of equalities,

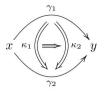
Better: sets with a higher-dimensional equivalence relation.



A higher setoid *X* consists of:

- ightharpoonup a set X_0 of points,
- \triangleright with a set-valued equivalence relation X_1 of equalities,
- neutral and associative up to set-valued equivalence relations X₂ of 2-equalities,

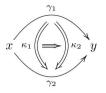
Better: sets with a higher-dimensional equivalence relation.



A higher setoid *X* consists of:

- ightharpoonup a set X_0 of points,
- ightharpoonup with a set-valued equivalence relation X_1 of equalities,
- neutral and associative up to set-valued equivalence relations
 X₂ of 2-equalities,
- **.**..

Better: sets with a higher-dimensional equivalence relation.



A higher setoid *X* consists of:

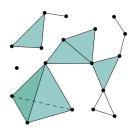
- ightharpoonup a set X_0 of points,
- ightharpoonup with a set-valued equivalence relation X_1 of equalities,
- neutral and associative up to set-valued equivalence relations
 X₂ of 2-equalities,
- **>** ...

The ∞ -exact completion of sets.

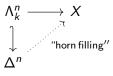
∞ -groupoids from sets: Kan semisimplicial sets

A precise definition:

Kan semisimplicial sets up to homotopy equivalence.



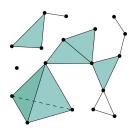
Kan operation:



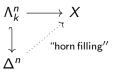
∞ -groupoids from sets: Kan semisimplicial sets

A precise definition:

Kan semisimplicial sets up to homotopy equivalence.



Kan operation:

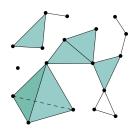


- ▶ Semisimplex category Δ_+ : inhabited finite linear orders.
- ▶ Kan semisimplicial sets: full subcategory of $\mathcal{P}(\Delta_+)$ of objects with Kan operation.

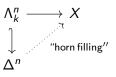
∞ -groupoids from sets: Kan semisimplicial sets

A precise definition:

Kan semisimplicial sets up to homotopy equivalence.



Kan operation:



- ▶ Semisimplex category Δ_+ : inhabited finite linear orders.
- ▶ Kan semisimplicial sets: full subcategory of $\mathcal{P}(\Delta_+)$ of objects with Kan operation.

Semisimplicial sets carry Kan weak model structure (Henry, 2020). Quillen equivalent to simplicial sets (Henry, 2020).

∞ -groupoids from sets: desired properties

A correct notion of ∞ -groupoids should satisfy:

- \blacktriangleright Restricting to 0-truncated ∞ -groupoids recovers setoids.
- A family over an ∞ -groupoid X is contractible exactly if the fiber over each point of X is contractible over each point of X.

∞ -groupoids from sets: desired properties

A correct notion of ∞ -groupoids should satisfy:

- ▶ Restricting to 0-truncated ∞-groupoids recovers setoids.
- A family over an ∞ -groupoid X is contractible exactly if the fiber over each point of X is contractible over each point of X.

In particular, the following **pointwise principle** should hold: A family of h-props is true exactly if it has a section on points. Propositional truncation should not touch the points.

∞ -groupoids from sets: desired properties

A correct notion of ∞ -groupoids should satisfy:

- ▶ Restricting to 0-truncated ∞-groupoids recovers setoids.
- A family over an ∞ -groupoid X is contractible exactly if the fiber over each point of X is contractible over each point of X.

In particular, the following **pointwise principle** should hold: A family of h-props is true exactly if it has a section on points. Propositional truncation should not touch the points.

Consequences:

- ► choice for discrete ∞-groupoids,
- ightharpoonup presentation: every ∞ -groupoid is covered by a projective one.

(Lumsdaine, 2010) and (van den Berg and Garner, 2011):

Martin-Löf identity types endow every type with the structure of an ∞-groupoid!

(Lumsdaine, 2010) and (van den Berg and Garner, 2011):

- Martin-Löf identity types endow every type with the structure of an ∞-groupoid!
- ▶ This result is constructive, giving effective ∞ -groupoid operations in terms of identification elimination (J).

(Lumsdaine, 2010) and (van den Berg and Garner, 2011):

- Martin-Löf identity types endow every type with the structure of an ∞-groupoid!
- ▶ This result is constructive, giving effective ∞ -groupoid operations in terms of identification elimination (J).

Conversely: can we interpret HoTT in ∞ -groupoids?

(Lumsdaine, 2010) and (van den Berg and Garner, 2011):

- Martin-Löf identity types endow every type with the structure of an ∞-groupoid!
- ▶ This result is constructive, giving effective ∞ -groupoid operations in terms of identification elimination (J).

Conversely: can we interpret HoTT in ∞ -groupoids?

Voevodsky (2010?): Yes, using the Kan simplicial set model!

Unfortunately, not constructive. :(

(Lumsdaine, 2010) and (van den Berg and Garner, 2011):

- Martin-Löf identity types endow every type with the structure of an ∞-groupoid!
- ▶ This result is constructive, giving effective ∞ -groupoid operations in terms of identification elimination (J).

Conversely: can we interpret HoTT in ∞ -groupoids?

Voevodsky (2010?): Yes, using the Kan simplicial set model!

Unfortunately, not constructive. :(

Open problem: can we interpret HoTT *effectively* in ∞ -groupoids?

(Lumsdaine, 2010) and (van den Berg and Garner, 2011):

- Martin-Löf identity types endow every type with the structure of an ∞-groupoid!
- ▶ This result is constructive, giving effective ∞ -groupoid operations in terms of identification elimination (J).

Conversely: can we interpret HoTT in ∞ -groupoids?

Voevodsky (2010?): Yes, using the Kan simplicial set model!

Unfortunately, not constructive. :(

Open problem: can we interpret HoTT *effectively* in ∞ -groupoids?

But wait, hasn't this problem been solved already?

State of the art: constructive models of HoTT

By HoTT, I mean "book HoTT": all type formers, fully split.

Ref	Setting	Model of HoTT?	Presents ∞-groupoids?
[KL21]	simplicial sets	non-constructive	✓
[BCH15]	semisimplicial sets	no	✓
[vdBF22]	effective Kan fibrations	not known	non-constructive
[GH22]	cofibrant simplicial sets	no	✓
[BCH14]	1st-generation cubical model	✓	no
[CCHM18]	2nd-generation cubical model	✓	no ^a or not known ^b
[ABC ⁺ 21]	3rd-generation cubical model	✓	no
[ACC ⁺ 24]	equivariant cubical model	✓	non-constructive
[CS22]	one-connection cubical sets	✓	non-constructive

^a with reversals

b without reversals

State of the art: constructive models of HoTT

By HoTT, I mean "book HoTT": all type formers, fully split.

Ref	Setting	Model of HoTT?	Presents ∞-groupoids?
[KL21]	simplicial sets	non-constructive	✓
[BCH15]	semisimplicial sets	no	\checkmark
[vdBF22]	effective Kan fibrations	not known	non-constructive
[GH22]	cofibrant simplicial sets	no	\checkmark
[BCH14]	1st-generation cubical model	✓	no
[CCHM18]	2nd-generation cubical model	✓	no ^a or not known ^b
[ABC ⁺ 21]	3rd-generation cubical model	✓	no
[ACC ⁺ 24]	equivariant cubical model	✓	non-constructive
[CS22]	one-connection cubical sets	✓	non-constructive

^a with reversals

No solution in sight. I was expecting a negative answer.

b without reversals

State of the art: constructive models of HoTT

By HoTT, I mean "book HoTT": all type formers, fully split.

Ref	Setting	Model of HoTT?	Presents ∞-groupoids?
[KL21]	simplicial sets	non-constructive	✓
[BCH15]	semisimplicial sets	no	✓
[vdBF22]	effective Kan fibrations	not known	non-constructive
[GH22]	cofibrant simplicial sets	no	\checkmark
[BCH14]	1st-generation cubical model	✓	no
[CCHM18]	2nd-generation cubical model	✓	no ^a or not known ^b
[ABC ⁺ 21]	3rd-generation cubical model	✓	no
[ACC ⁺ 24]	equivariant cubical model	✓	non-constructive
[CS22]	one-connection cubical sets	✓	non-constructive

a with reversals

No solution in sight. I was expecting a negative answer.

Core problem:

- Pushforward closure of fibrations requires uniformity.
- ▶ Hard to get uniformity from a higher setoid fibration.

b without reversals

Starting point.

Build a cubical model ([CCHM18] or [ABC⁺21]) in $\mathcal{P}(\Box)$ for:

- ▶ fully faithful extension $j: \Delta \to \Box$ of simplex category,
- ▶ induced interval object in □ has connections,
- ▶ cofibration classifier in $\mathcal{P}(\Box)$ classifies simplex boundaries.

Starting point.

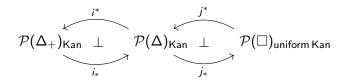
Build a cubical model ([CCHM18] or [ABC⁺21]) in $\mathcal{P}(\Box)$ for:

- ▶ fully faithful extension $j: \Delta \to \Box$ of simplex category,
- ▶ induced interval object in □ has connections,
- ▶ cofibration classifier in $\mathcal{P}(\Box)$ classifies simplex boundaries.

For example:

- presheaves over inhabited finite complete posets,
- presheaves over inhabited finite posets.

We obtain adjunctions:



Write *m* for the composite

$$\Delta_+ \stackrel{i}{\longrightarrow} \Delta \stackrel{j}{\longrightarrow} \Box.$$

Consider the adjunction

$$P(\Delta_{+})_{\mathsf{Kan}} \perp P(\square)_{\mathsf{uniform}\,\mathsf{Kan}}$$
 (1)

Consider the adjunction

$$\mathcal{P}(\Delta_+)_{\mathsf{Kan}} \stackrel{m^*}{\perp} \mathcal{P}(\Box)_{\mathsf{uniform}\,\mathsf{Kan}}$$
 (1)

We claim:

- (1) the functors m^* and m_* in (1) are (algebraic) right Quillen,
- (2) the Quillen adjunction (1) is a Quillen reflection,
- (3) the induced lex operation M on $\mathcal{P}(\Box)$ is a lex modality (Rijke, Spitters, Shulman; 2020).

Consider the adjunction

$$\mathcal{P}(\Delta_+)_{\mathsf{Kan}} \stackrel{m^*}{\perp} \mathcal{P}(\Box)_{\mathsf{uniform}\,\mathsf{Kan}}$$
 (1)

We claim:

- (1) the functors m^* and m_* in (1) are (algebraic) right Quillen,
- (2) the Quillen adjunction (1) is a Quillen reflection,
- (3) the induced lex operation M on $\mathcal{P}(\square)$ is a lex modality (Rijke, Spitters, Shulman; 2020).

Then the localization of $\mathcal{P}(\Box)$ at M is Quillen equivalent to $\mathcal{P}(\Delta_+)_{\mathsf{Kan}}$, hence presents ∞ -groupoids as desired.

Consider the adjunction

$$\mathcal{P}(\Delta_+)_{\operatorname{Kan}} \stackrel{m^*}{\perp} \mathcal{P}(\Box)_{\operatorname{uniform}\operatorname{Kan}}$$
 (1)

We claim:

- (1) the functors m^* and m_* in (1) are (algebraic) right Quillen,
- (2) the Quillen adjunction (1) is a Quillen reflection,
- (3) the induced lex operation M on $\mathcal{P}(\Box)$ is a lex modality (Rijke, Spitters, Shulman; 2020).

Then the localization of $\mathcal{P}(\Box)$ at M is Quillen equivalent to $\mathcal{P}(\Delta_+)_{\mathsf{Kan}}$, hence presents ∞ -groupoids as desired.

The surprising part is (1) (see next pages).

Preservation of trivial fibrations

Key: semisimplicial sets are a "garden of uniformity".

Terminology:

- ► TF_{Kan} is trivial Kan fibrations. These are maps with fillers for simplex boundaries.
- ► TF_{unif} is uniform trivial fibrations.

Preservation of fibrations

Terminology:

- F_{Kan} is Kan fibrations.
 These are maps with fillers for horn inclusions.
- ► F_{fill} is prism filling fibrations in semisimplicial sets. These are created from trivial Kan fibrations by pullback monoidal hom with interval endpoints.
- F_{unif fill} is uniform filling fibrations. These are created from uniform trivial fibrations by pullback monoidal hom with interval endpoints.
- ightharpoonup F_{unif comp} is uniform composition fibrations.

Axioms validated

Inherited from the homotopy theory of $\mathcal{P}(\Delta)_+$:

- pointwise principle,
- discrete choice,
- dependent choice,
- presentation.

Also:

higher inductive types (justified similar to [CRS21]).

Applications

With a homotopically correct base model, we finally have a road to constructive higher topos models of HoTT!

Idea: combine the model with the construction of [CRS21].

Ongoing project: constructive model of synthetic stone duality and better constructive models for synthetic algebraic geometry (joint work with Thierry Coquand and Jonas Höfer).

Another application:

 effective interpretation of simplicial type theory in higher categories (including the new variant of (Gratzer, Weinberger, Buchholtz; 2024)).

Applications

With a homotopically correct base model, we finally have a road to constructive higher topos models of HoTT!

Idea: combine the model with the construction of [CRS21].

Ongoing project: constructive model of synthetic stone duality and better constructive models for synthetic algebraic geometry (joint work with Thierry Coquand and Jonas Höfer).

Another application:

effective interpretation of simplicial type theory in higher categories (including the new variant of (Gratzer, Weinberger, Buchholtz; 2024)).

Also:

▶ higher realizability (Swan).

References I

Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Robert Harper, Kuen-Bang Hou (Favonia), and Daniel R. Licata.

Syntax and models of cartesian cubical type theory.

Mathematical Structures in Computer Science, 31(4):424-468, 2021. doi:10.1017/S0960129521000347.

Steve Awodey, Evan Cavallo, Thierry Coquand, Emily Riehl, and Christian Sattler.

The equivariant model structure on cartesian cubical sets.

preprint, 2024.

arXiv:2406.18497.

Marc Bezem, Thierry Coquand, and Simon Huber.

A model of type theory in cubical sets.

In *TYPES 2013*, volume 26 of *LIPIcs*, pages 107–128, 2014. doi:10.4230/LIPIcs.TYPES.2013.107.

References II

Bruno Barras, Thierry Coquand, and Simon Huber.

A generalization of the Takeuti-Gandy interpretation.

Mathematical structures in computer science, 25(5):1071-1099, 2015. doi:10.1017/S0960129514000504.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A constructive interpretation of the univalence

axiom.

In *TYPES 2015*, volume 69 of *LIPIcs*, pages 5:1–5:34, 2018. doi:10.4230/LIPIcs.TYPES.2015.5.

Thierry Coquand, Fabian Ruch, and Christian Sattler.

Constructive sheaf models of type theory.

Mathematical Structures in Computer Science, pages 1–24, 2021. doi:10.1017/S0960129521000359.

Evan Cavallo and Christian Sattler.

Relative elegance and cartesian cubes with one connection.

preprint, 2022.

arXiv:2211.14801

References III

Nicola Gambino and Simon Henry.

Towards a constructive simplicial model of univalent foundations.

 $\label{lower control of the London Mathematical Society, 105(2):1073-1109, 2022. \\ \\ \mbox{doi:10.1112/jlms.12532}.$

Krzysztof Kapulkin and Peter LeFanu Lumsdaine.

The simplicial model of univalent foundations (after Voevodsky).

Journal of the European Mathematical Society, 23(6):2071-2126, 2021. doi:10.4171/JEMS/1050.

Benno van den Berg and Eric Faber.

Effective Kan fibrations in simplicial sets, volume 2321.

Springer Nature, 2022.

doi:10.1007/978-3-031-18900-5.