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Outline

Background: what are ∞-groupoids?

Problem: interpret HoTT effectively in ∞-groupoids.

▶ Current state: no model does this!

A solution:

▶ intuition

▶ properties

▶ applications
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If we are already in a univalent metatheory:
An ∞-groupoid is just a type.

This is a primitive notion.
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∞-groupoids from sets: higher setoids

Better: sets with a higher-dimensional equivalence relation.

A higher setoid X consists of:

▶ a set X0 of points,

▶ with a set-valued equivalence relation X1 of equalities,

▶ neutral and associative up to set-valued equivalence relations
X2 of 2-equalities,

▶ . . .

The ∞-exact completion of sets.
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∞-groupoids from sets: Kan semisimplicial sets

A precise definition:
Kan semisimplicial sets up to homotopy equivalence.

Kan operation:

Λn
k X

∆n

“horn filling′′

▶ Semisimplex category ∆+: inhabited finite linear orders.

▶ Kan semisimplicial sets: full subcategory of P(∆+) of objects
with Kan operation.

Semisimplicial sets carry Kan weak model structure (Henry, 2020).
Quillen equivalent to simplicial sets (Henry, 2020).
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∞-groupoids from sets: desired properties

A correct notion of ∞-groupoids should satisfy:

▶ Restricting to 0-truncated ∞-groupoids recovers setoids.

▶ A family over an ∞-groupoid X is contractible exactly if the
fiber over each point of X is contractible over each point of X .

In particular, the following pointwise principle should hold:
A family of h-props is true exactly if it has a section on points.
Propositional truncation should not touch the points.

Consequences:

▶ choice for discrete ∞-groupoids,

▶ presentation: every ∞-groupoid is covered by a projective one.
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Types and ∞-groupoids

(Lumsdaine, 2010) and (van den Berg and Garner, 2011):

▶ Martin-Löf identity types endow every type with
the structure of an ∞-groupoid!

▶ This result is constructive, giving effective ∞-groupoid
operations in terms of identification elimination (J).

Conversely: can we interpret HoTT in ∞-groupoids?

Voevodsky (2010?): Yes, using the Kan simplicial set model!

▶ Unfortunately, not constructive. :(

Open problem: can we interpret HoTT effectively in ∞-groupoids?

But wait, hasn’t this problem been solved already?
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State of the art: constructive models of HoTT

By HoTT, I mean “book HoTT”: all type formers, fully split.

Ref Setting Model of HoTT? Presents ∞-groupoids?

[KL21] simplicial sets non-constructive ✓
[BCH15] semisimplicial sets no ✓
[vdBF22] effective Kan fibrations not known non-constructive
[GH22] cofibrant simplicial sets no ✓
[BCH14] 1st-generation cubical model ✓ no
[CCHM18] 2nd-generation cubical model ✓ noa or not knownb

[ABC+21] 3rd-generation cubical model ✓ no
[ACC+24] equivariant cubical model ✓ non-constructive
[CS22] one-connection cubical sets ✓ non-constructive
a with reversals
b without reversals

No solution in sight. I was expecting a negative answer.

Core problem:

▶ Pushforward closure of fibrations requires uniformity.

▶ Hard to get uniformity from a higher setoid fibration.
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Effective interpretation in ∞-groupoids

Starting point.

Build a cubical model ([CCHM18] or [ABC+21]) in P(□) for:

▶ fully faithful extension j : ∆ → □ of simplex category,

▶ induced interval object in □ has connections,

▶ cofibration classifier in P(□) classifies simplex boundaries.

For example:

▶ presheaves over inhabited finite complete posets,

▶ presheaves over inhabited finite posets.
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Effective interpretation in ∞-groupoids

We obtain adjunctions:

P(∆+)Kan P(∆)Kan P(□)uniformKan

i∗

⊥

i∗

j∗

⊥

j∗

Write m for the composite

∆+ ∆ □.i j



Effective interpretation in ∞-groupoids

Consider the adjunction

P(∆+)Kan P(□)uniformKan

m∗

⊥

m∗

(1)

We claim:

(1) the functors m∗ and m∗ in (1) are (algebraic) right Quillen,

(2) the Quillen adjunction (1) is a Quillen reflection,

(3) the induced lex operation M on P(□) is a lex modality (Rijke,
Spitters, Shulman; 2020).

Then the localization of P(□) at M is Quillen equivalent to P(∆+)Kan,
hence presents ∞-groupoids as desired.

The surprising part is (1) (see next pages).
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Preservation of trivial fibrations

Key: semisimplicial sets are a “garden of uniformity”.

P(□) TFunif TFKan TFunif

P(∆+) TFKan TFunif

m∗

⊤

m∗m∗

garden of uniformity

m∗

Terminology:

▶ TFKan is trivial Kan fibrations.
These are maps with fillers for simplex boundaries.

▶ TFunif is uniform trivial fibrations.



Preservation of fibrations

Funif FKan Funif

FKan Ffill Funif fill Funif comp

m∗

garden of uniformity

m∗

Terminology:

▶ FKan is Kan fibrations.
These are maps with fillers for horn inclusions.

▶ Ffill is prism filling fibrations in semisimplicial sets.
These are created from trivial Kan fibrations by pullback
monoidal hom with interval endpoints.

▶ Funif fill is uniform filling fibrations.
These are created from uniform trivial fibrations by pullback
monoidal hom with interval endpoints.

▶ Funif comp is uniform composition fibrations.



Axioms validated

Inherited from the homotopy theory of P(∆)+:

▶ pointwise principle,

▶ discrete choice,

▶ dependent choice,

▶ presentation.

Also:

▶ higher inductive types (justified similar to [CRS21]).



Applications

With a homotopically correct base model, we finally have a road to
constructive higher topos models of HoTT!

Idea: combine the model with the construction of [CRS21].

Ongoing project: constructive model of synthetic stone duality and
better constructive models for synthetic algebraic geometry (joint
work with Thierry Coquand and Jonas Höfer).

Another application:

▶ effective interpretation of simplicial type theory in higher
categories (including the new variant of (Gratzer, Weinberger,
Buchholtz; 2024)).

Also:

▶ higher realizability (Swan).
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