Mapping spaces of pushouts along fully faithful functors

11 March 2025

Extracted from joint work with David Wärn on the categorical zig-zag construction mapping spaces of pushouts of catgories.

Adjunctions and slices

We recall how adjunctions descend to slices.

Lemma 1. Consider a functor $F : \mathcal{C} \to \mathcal{D}$. If F has a right adjoint and \mathcal{C} has pullbacks, then F slicewise has right adjoints. That is, given $c \in \mathcal{C}$, the slice action

$$\mathcal{C} \downarrow c \xrightarrow{F_{\downarrow c}} \mathcal{D} \downarrow F(c)$$

has a right adjoint.

In detail, consider $(d, g: d \to F(c)) \in \mathcal{D} \downarrow F(c)$. Consider right adjoints of F at F(c), denoted $(RF(c), \varepsilon_{F(c)})$, and at d, denoted $(R(d), \varepsilon_d)$. Consider a pullback

$$\begin{array}{ccc} c' & \stackrel{h}{\longrightarrow} & R(d) \\ f & & & \downarrow_{Rg} \\ c & \stackrel{\eta_c}{\longrightarrow} & RF(c) \end{array}$$

Then $(c', f) \in \mathcal{C} \downarrow c$ together with the transposed square

$$\begin{array}{ccc} F(c') & \xrightarrow{\varepsilon_d \circ Fh} d \\ & \downarrow & & \downarrow F_J \\ F(c) & = & F(c) \end{array}$$

forms a right adjoint of $F_{\downarrow c}$ at (d, g).

Lemma 2. Assume that C has and $F: C \to D$ preserves pullbacks. If F has a fully faithful right adjoint, then F slicewise has fully faithful right adjoints.

In detail, consider right adjoints at F(c) and d as before. Assume that $\varepsilon_{F(c)}$ and ε_d are invertible and F preserves the pullback defining c'. Then the counit $F_{\downarrow c}: (c', f) \to (c, f)$ is invertible.

Proof. Since $\varepsilon_{F(c)}$ is invertible, so is $F\eta_c$ by 2-out-of-3. Then so is its pullback Fh, hence also the composite $\varepsilon_d \circ Fh$.

Pullbacks of adjunctions

Consider a pullback of categories

$$\begin{array}{ccc} \mathcal{D} & \xrightarrow{G} & \mathcal{C} \\ V & \stackrel{\neg}{} & \downarrow U \\ \mathcal{B} & \xrightarrow{F} & \mathcal{A}. \end{array}$$

We wish to describe right adjoints of G and V in terms of (slicewise) right adjoints of F and U. In general, this problem is solved by the zig-zag construction using a sequential colimit. The below statements are the special cases where the sequential colimit converges already after one and two steps, respectively.

We recall pullback stability of reflectors.

Lemma 3. If F has a fully faithful right adjoint, so does G and Beck–Chevalley holds.

In detail, consider $c \in C$. Assume a right adjoint of F at U(c) given by $b \in \mathcal{B}$ with invertible counit $\varepsilon_b \colon F(b) \to U(c)$. Then G has a right adjoint at c given by the induced object $d \in D$ with invertible counit $G(d) \simeq c$.

Proof. Recall that a functor $P: M \to N$ has a right adjoint at $n \in N$ with invertible counit exactly if there is m over n such P that the action

$$M(-,m) \xrightarrow{P} N(P(-),n)$$

is invertible (that is, P is fully faithful relative to mapping into m).

We have an induced pullback of presheaves:

By assumption, the bottom map is invertible. Therefore, so is the top map, which is the claim. \Box

Lemma 4. Assume U has a right adjoint and F slicewise has fully faithful right adjoints. Then V has a right adjoint and the Beck-Chevalley condition holds.

In detail, consider $b \in \mathcal{B}$. Assume a right adjoint of U at F(b) given by $c \in \mathcal{C}$ with $\varepsilon_c \colon U(c) \to F(b)$. Assume a right adjoint of $F_{\downarrow b}$ at $(U(c), \varepsilon_c)$ given by $(b', g \colon b' \to b) \in \mathcal{B} \downarrow b$ with invertible counit. Then V has a right adjoint at b given by the object $d \in \mathcal{D}$ induced by $b' \in \mathcal{B}$ and $c \in \mathcal{C}$ with $F(b') \simeq U(c)$ with counit $\varepsilon_d \colon V(d) \to b$ given by $g \colon b' \to b$.

Proof. We have an induced pullback of categories:

$$\begin{array}{cccc} V \downarrow b & \longrightarrow & U \downarrow F(b) & & (d, \varepsilon_d) \longmapsto & (c, \varepsilon_c) \\ \downarrow & \downarrow & & \downarrow & & \downarrow \\ \mathcal{B} \downarrow b & \xrightarrow{F_{\downarrow b}} & \mathcal{A} \downarrow F(b), & & (b', g) \longmapsto & (U(c), \varepsilon_c). \end{array}$$

By Lemma 3 applied to this pullback, $(d, \varepsilon_d) \in V \downarrow b$ is a right adjoint with invertible counit of the top functor at $(c, \varepsilon_c) \in U \downarrow F(b)$. It is terminal as right adjoints preserve terminal objects. \Box

Corollary 5. Consider a pullback of categories

$$\begin{array}{c} \mathcal{W} \xrightarrow{\bar{p}^*} \mathcal{Y} \\ \bar{q}^* \downarrow \xrightarrow{\square} \qquad \downarrow q^* \\ \mathcal{X} \xrightarrow{p^*} \mathcal{Z} \end{array}$$

with left adjoints $p_! \dashv p^*$ and $q_! \dashv q^*$. Assume that $p_!$ is fully faithful and that \mathcal{X} has and p^* preserves pushouts. Then we have a left adjoint $\bar{q}_! \dashv \bar{q}^*$ and the square

is a pointwise pushout.

In detail, consider $x \in \mathcal{X}$. Take the pushout

$$p_! p^* x \longrightarrow x$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$p_! q^* q_! p^* x \longrightarrow x'.$$

Apply p^* and use the unit id $\simeq p^*p_!$ to obtain a pushout

making α invertible. This induces $\bar{q}_! x = \langle q_! p^* x ,_{\alpha} x' \rangle \in \mathcal{W}$ with unit

$$\eta_x \colon x \to x' \simeq \bar{q}^* \bar{q}_! x.$$

Proof. This is the combination and dualization of Lemma 4 and Lemma 2. The claimed description of the right adjoint is that of Lemma 4 with the description of the slicewise right adjoint given by Lemma 1 unfolded. \Box

Mapping spaces of pushouts

Corollary 6. Consider a pushout of categories

$$\begin{array}{c} \mathcal{A} \xrightarrow{g} \mathcal{C} \\ \downarrow^{f} & \downarrow^{\bar{f}} \\ \mathcal{B} \xrightarrow{\neg \bar{g}} \mathcal{D} \end{array}$$

with f fully faithful. The maps

$$\begin{aligned} \mathcal{C}(c_0,c_1) &\longrightarrow \mathcal{D}(f(c_0),f(c_1)), \\ |(c_0 \downarrow \mathcal{C}) \times_{\mathcal{C}} \mathcal{A} \times_{\mathcal{B}} (\mathcal{B} \downarrow b_1)| &\longrightarrow \mathcal{D}(\bar{f}(c_0),\bar{g}(b_1)), \\ |(b_0 \downarrow \mathcal{B}) \times_{\mathcal{B}} \mathcal{A} \times_{\mathcal{C}} (\mathcal{C} \downarrow c_1)| &\longrightarrow \mathcal{D}(\bar{g}(b_0),\bar{f}(c_1)) \end{aligned}$$

 $are \ invertible \ and \ the \ square$

$$\begin{aligned} |(b_0 \downarrow \mathcal{B}) \times_{\mathcal{A}} (\mathcal{B} \downarrow b_1)| & \longrightarrow \mathcal{B}(b_0, b_1) \\ \downarrow & \downarrow \\ |(b_0 \downarrow \mathcal{B}) \times_{\mathcal{B}} \mathcal{A} \times_{\mathcal{C}} \mathcal{C}^{[1]} \times_{\mathcal{C}} \mathcal{A} \times_{\mathcal{B}} (\mathcal{B} \downarrow b_1)| & \longrightarrow \mathcal{D}(\bar{g}(b_0), \bar{g}(b_1)) \end{aligned}$$

is a pushout.

Proof. We have an induced pullback of categories

Since f is fully faithful, so is the left adjoint $f_!$ of f^* . Lemma 3 applied dualized to the mirrored pullback shows that the unit id $\rightarrow \bar{f}^* \bar{f}_!$ and the Beck–Chevalley map $f_!g^* \rightarrow \bar{g}^* \bar{f}_!$ are invertible. Corollary 5 applied to the pullback shows that the square

$$\begin{array}{ccc} f_! f^* & \longrightarrow & \mathrm{id} \\ & & \downarrow \\ f_! g^* g_! f^* & \longrightarrow & \bar{g}^* \bar{g}_! \end{array}$$

is a pointwise pushout and the Beck–Chevalley map $g_! f^* \to \bar{f}^* \bar{g}_!$ is invertible. The mapping space claims correspond to the evaluations of these statements at representables. \Box