
Potential Generating Left Classes

In the following, we will examine different choices for the category of generating left maps
I (and its embedding in SSet→ via a functor I → SSet→, which we often will leave implicit,
especially if it is faithful and injective on objects). Objects in I will always at least be classical
trivial cofibration, and hence also monomorphisms. Most of the time, we will actually choose I
as a subcategory of SSet→cart consisting of arrows and cartesian commutative squares for reasons
now explained.

The problem with non-cartesian choices of I. Consider a morphism in I, comprising
arrows j : A→ B and k : C → D and a commutative square as follows:

A //

j

��

C

k
��

B // D

(0.1)

We will be interested in how much this square diverges from being a pullback diagram, so let us
draw in the true pullback for comparison:

A //

j

��

  

C

k

��

C ′

88

k′

~~

B // D

(0.2)

Note that A → C ′ is mono because of j, and k′ is mono because it is a base change of the
monomorphism k. The induced map A → C ′ to the pullback measures how much the original
square j → k diverges from being cartesian.

We will now consider the algebraic weak factorization system cofibrantly generared by I. Let
us fix a right map p : X → Y and a lifting problem as follows:

A //

j

��

X

p

��

B //

d

>>

Y

The algebraically generated solution is denoted d.
For any factoring of this lifting problem

A //

j

��

C //

k

��

X

p

��

B //

d

77

D //

e

>>

Y

(0.3)
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through the map j → k from diagram (0.1), we have coherence of the algebraically generated
lifts d and e as indicated. Let us put diagrams (0.2) and (0.3) together:

A //

j

��

  

C //

k

��

X

p

��

C ′

88

k′

~~

B //

d

<<

D //

e

GG

Y

(0.4)

Pasting together the pullback square, the upper triangle for the filler e, and the coherence triangle
of d and e, we see that the two ways of going from C ′ to X (via B or via C) coincide. It follows
that d is not just a filler for j → p, but also for k′ → p.

If B → D is a monomorphism, it quite often has a retraction B → D, for example if B and
D are both representable. Let us assume now this is the case. Then any filler d′ for the square
j → p can be used to factor j → p through j → k as in diagram (0.3):

A //

j

��

C
k //

k
��

D //

id
��

B
d′ //

id
��

X

p

��

B // D
id // D // B // Y

Let us use this factorization with the previous paragraph. Let us zoom into the top triangle of
d as a filler for k′ → p:

C ′ //

k′

��

C
k // D // B

d′ // X

B

77

id

::

d

<<

In addition to the composite triangle, the left and middle shapes commute. Therefore d and d′

agree on k′. Since d′ was chosen arbitrary, it follows that all fillers for j → p agree on k′.
Observe that this statement no longer mentions any of the fillers for p provided by the algebraic

weak factorization system. This seems very suspicious. For many non-cartesian choices of I, we
can even arrange for the image of B → D to lie in the image of C → D. The base change k′ of
k : B → D along C → D then becomes the identity, implying lifting problems j t p have unique
solutions.

This happens for example for the following type of non-cartesian morphism of horn inclusions:

Λni
//

hn
i

��

Λn+1
i

hn+1
i

��

∆n
dn+1
n+1
// ∆n+1

Including these morphisms in I would imply that every horn has a unique filler. By induction
on dimension, it is easily seen that this forces fibrant simplicial sets to be discrete.

On the opposite end of the spectrum, with B → D being epi instead of mono, things are likely
a bit safer. It seems that non-cartesian coherence for squares in I where the lower map is epi
encode regularity-like properties [reference later definition of regular Kan fibrations]. However,
non-cartesian coherence makes it harder to show a universe fibrant [explain intuition or reference
later section].
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Uniform with respect to cartesian product. Let I be given as the product of I ′ with ∆
where the objects of I ′ are the horn inclusions hni : Λni → ∆n and we have three obvious options
for the morphisms.
Option One. We can have I ′ discrete. We have tried Π, but even though uniformity buys us
the degeneracy laws, we cannot get the face laws right. The underlying reason seems to be that
surjective maps ∆n → ∆k arise uniquely as a retract of some π1 : ∆k ×∆n−k → ∆k, whereas in
the cubical model we can get an actual isomorphism instead of a section-retraction pair. Fibrancy
of the universe seems to go through (modulo Cisinski transposition).
Option Two. We can let I ′ be a full subcategory of SSet→cart. But a morphism

Λni
//

��

Λn
′

i′

��

∆n // ∆n′

being cartesian is equivalent to the bottom being an isomorphism. We thus recover the first
option.
Option Three. We can let I ′ be a full subcategory of SSet→. Note that the bottom map t :
[n]→ [n′] in

Λni
//

��

Λn
′

i′

��

∆n // ∆n′

extends to the top precisely in the following disjoint cases:

• we have (n, i) = (n′, i′) and t = id,

• we have n′ = n+ 1 and t = dn
′

i′ ,
• there is a′ 6= i′ not in the image of t.

Note that in the third case, the image of t lies in the image of the right vertical map. Since
every object of I ′ occurs as the left vertical map of a situation as in case three with the bottom
map furthermore a monomorphism, the reasoning from the previous section will force the class
of right maps to have unique lifting solutions. This makes this case undesirable.

Every object of I ′ furthermore occurs as the left vertical map of a situation as in case two.
Since the bottom map is a monomorphism, we can again apply the reasoning from the previous
section. Note that the base change of Λn

′

i′ along dn
′

i′ is the boundary inclusion ∂∆n → ∆n. Thus,
the right class of maps will have unique opposite face filling. This makes this case undesirable as
well.
Conclusion. The only sensible (and also intuitively most natural option) is to have I = I ′ ×∆
where I ′ is the set of horn inclusion.

Uniform with respect to join, first try. Let I be the full subcategory of SSet→cart on objects
generalized horn inclusions hnA : ΛnA → ∆n with ∅ 6= A ( [n]. A morphism

ΛnA
//

hn
A

��

Λn
′

A′

hn′
A′
��

∆n // ∆n′

is given by a map t : [n]→ [n′] such that t−1(A′) = A and t|[n]−A : [n]−A→ [n′]−A′ is bijective.
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Note that the objects are equivalently given by iterated Leibniz joins in augmented simplicial
sets of the zero dimensional horn inclusion h0

0 and boundary inclusion i0 with at least one
occurrence of each. Under this representation, the morphisms are induced by cartesian maps

0 //

��

0

h0
0
��

∆−1 // ∆0

0 //

h0
0?̂h

0
0
��

0

h0
0
��

∆1 // ∆0

from the Leibniz join of zero and two copies of h0
0 to h0

0.
Pi now seems to go through. Universe seems to go through as well (modulo Cisinski transpo-

sition).
Unfortunately, this class is problematic for a new reason. We will show that all right maps

with non-empty fibers are trivial Kan fibration. Fix a right map p : X → Y and consider a lifting
problem with n ≥ 1 as follows:

∂∆n //

in

��

X

p

��

∆n //

<<

Y

We are going to factor this lifting problem as follows:

∂∆n //

in

��

Λn+1
n+1

//

��

X

p

��

∆n

dn+1
n+1

//

66

∆n+1 //

==

Y

The middle vertical map belongs to the left class, and any lift in the right square will induce a
lift for the outer square.

The map ∆n+1 → Y is constructed from the retraction snn to dn+1
n+1. This leaves the map

t : Λn+1
n+1 → X, which has to yield the map ∂∆n → X when precomposed with ∂∆n → Λn+1

n+1

and needs to satisfy commutativity of the right square. For ∅ 6= A ( [n], let tA denote the
algebraically given filler below:

∆[n]−A //

h
[n+1]−A

[n]−A
��

∂∆n //

in

��

X

p

��

∆[n+1]−A //

tA

33

∆n+1

snn

// ∆n // Y

Note that the left vertical here is a generalized horn inclusion with all faces but one missing. For
B ⊆ A, the lifts tA and tB will be coherent as shown below:

∆[n]−A //

��

∆[n]−B //

��

X

p

��

∆[n+1]−A //

tA

44

∆[n+1]−B //

tB

::

Y
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Taking the colimit over the poset of those A ( [n] with 1 ≤ |A| ≤ 2, we derive a lift t

∂∆n id //

��

∂∆n //

in

��

X

p

��

Λn+1
n+1

//

t

33

∆n+1

snn

// ∆n // Y

fulfilling all required commutativity constraints as indicated.

Uniform with respect to join, second try. Note that the problems in the previous attempt
were caused by the morphisms

ΛnA
//

hn
A

��

Λn
′

A′

hn′
A′
��

∆n // ∆n′

in I with [n] → [n′] injective. We could instead restrict I to only include the morphisms with
[n]→ [n′] surjective. But this does not seem to buy us much.

Uniform with respect to join, third try. Instead of generalizing filling of horns from one
missing face to a set of missing faces, we can generalize to horn-like inclusions that still have a
distinguished vertex in the direction of which the filling is going to be, but can possibly have
other vertices degenerated.

In detail, for any n ≥ 1 and 0 ≤ k ≤ n, let Cnk be the full subcategory of ∆/[n] consisting
of surjective maps t : [m] → [n] under which k has exactly one preimage. We have a faithful
functor Ink : Cnk → SSet→cart injective on objects given by pulling back hnk : Λnk → ∆n. Let us

identify Ink with its image. Note that the objects of Ink and In
′

k′ are disjoint for (n, k) 6= (n′, k′).
Finally, let I be the disjoint union of the subcategories Ink .

Note that we could in principle extend Cnk to non-surjective maps t : [m] → [n]: we would
have Ink (t) = id∆m . This would not make any difference except for the technical inconvenience of
not having Ink as subcategories. Nonetheless, the proper treatment consists of having a functor
I → SSet→cart instead of a subcategory.

It appears this does not solve the problem of the first try. The subcategory I1
0 is all that is

needed to replay the same argument.

Leibniz-style uniformity wrt. cartesian product of one dimensional horns. Let I be a
full subcategory of SSet→cart such that every object of I is a decidable monomorphism i : A→ B
(i.e. every in : An → Bn has a decidable image) with decidable codomain B (i.e. degeneracies in
B are decidable). We suppose that I contains at least all boundary inclusions in : ∂∆n → ∆n.
Taking I as generating left category, the right maps will be called uniform trivial Kan fibrations.
We have functors h1

0 ×̂ − and h1
1 ×̂ − of signature I → SSet→cart. Let J be the disjoint sum of

these functors. Taking J as left generating functor, the right maps will be called uniform Kan
fibrations. 1

After our experiences with other potential left classes, we start with some sanity checks:

Lemma 0.1. Classically, every ordinary trivial Kan fibration is a uniform trivial Kan fibration.

1The rationale for omitting higher dimensional horns is that those (at least in bare form) are indirectly included
as retracts of one dimensional horns by Leibniz product with certain subobjects of representables.
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Proof. For the rest of the proof, fix an ordinary trivial Kan fibration p : X → Y . Without loss of
generality, we can assume that I is actually the full subcategory of SSet→cart of all decidable mo-
nomorphisms with decidable codomain as the notion of uniform trivial Kan fibration is strongest
in this case.

First, we define diagonal fillers d for squares in → p. Using excluded middle, we distinguish on
whether the square in → p factors through some degeneracy sn−1

k as shown below (this applies
only to n ≥ 1):

∂∆n //

in

��

∆n−1 //

id
��

X

p

��

∆n

sn−1
k

//

d

55

∆n−1 // Y

If that is the case, we define d using the canonical diagonal filler in the right square. Otherwise,
we use the axiom of choice to choose an arbitrary filler, utilizing that p is an ordinary trivial
Kan fibration.

Now consider an arbitrary object c of I and a square c → p. We define a diagonal filler by
decomposing c into a transfinite composition of cobase changes of boundary inclusions, again
using the axiom of choice2, filling each of these according to the previous paragraph. Crucially,
this process is independent of the actual order of the boundary fillings (note that this is not true
for the analogous situation of horn fillings). For each morphism in I and commuting triangle of
squares

A′ //

��

A

��

// X

��

B′ //

77

B //

??

Y

we need to exhibit coherence of fillers as indicated. By “vertical” induction and the remark on
order invariance of boundary fillings, it will suffice to study the case where the middle vertical
map is a boundary inclusion. By “horizontal” induction, it will suffice to study the case where
the left bottom map is either a face or degeneracy operation as the morphisms of I are generated
by these.

Let us first examine the case of a face operation.

∆n //

��

∂∆n+1

��

// X

��

∆n

dn+1
k

//

55

∆n+1 //

;;

Y

Since the left vertical map is necessarily the identity, the filler for the composite square is uniquely
determined, so there is no coherence to be verified.

2This instance of the axiom of choice can be eliminated if the actual category I only includes monomorphisms
with finite codomain
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Let us now examine the case of a degeneracy operation.

2× ∂∆n //

��

π2

))⋃
i 6=k,k+1 ∆[n+1]−i //

��

∂∆n

��

// X

��

2×∆n //

π2

66∂∆n+1 //

��

44

∆n

��

>>

∆n+1

snk

//

99

∆n //

FF

Y

The pullback of the boundary inclusion ∂∆n → ∆n along snk decomposes as a cobase change of
two parallel boundary inclusions of dimension n followed by a boundary inclusion of dimension
n + 1 as indicated. The two parallel boundary fillings are identical copies of the original right
square boundary filling, so they cohere as indicated. Finally, the filling for the boundary inclusion
∂∆n+1 → ∆n+1 coheres as indicated by how boundary filling was originally defined for degenerate
squares. �

Lemma 0.2. Classically, every ordinary Kan fibration is a uniform Kan fibration.

Proof. Let p : X → Y be an ordinary Kan fibration. Then êxp(h1
k, p) is an ordinary trivial Kan

fibration for k = 0, 1. By the previous lemma, classically êxp(h1
k, p) is also a uniform trivial Kan

fibration. But that means p is a uniform Kan fibration. �

Definition 0.3. For the purpose of this definition, fix a direction k ∈ {0, 1} of filling. Consider
a simplicial map i : A→ B and a square h1

k ×̂ a→ p:

{1− k} ×B +{1−k}×B ∆1 ×A //

h1
k×̂i
��

X

p

��

∆1 ×B //

55

Y

A filling for this square is a diagonal map as indicated. The simple, though underutilized map
of arrows θ : !0→{k} → h1

k induces a second square i→ p via precomposition:

i //

θ×̂i !!

p

h1
k ×̂ i

==

A composition for the original square h1
k ×̂ i → p is a diagonal map for the square i → p as

indicated below:
{k} ×A //

i

��

X

p

��

{k} ×B //

;;

Y

A filling extends a given composition if the diagonal maps for h1
k ×̂ i→ p and i→ p commute in

the obvious way.

Definition 0.4. Coherent filling (respectively, coherent composition) for a simplicial map p
consists of a choice natural in c : I of fillings (compositions) for squares of the form h1

k ×̂ c→ p.
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Observe that having coherent fillings is the definition of a uniform Kan fibration.

Lemma 0.5. Assume I is closed under Leibniz product with h1
k for k = 0, 1 (in the sense of h1

k×̂−
restricting to an endofunctor on I). Then any map p : X → Y with coherent composition has
coherent filling. Furthermore, the coherent filling can be made to extend the coherent composition.

Proof. The crucial ingredient (“connections”) is the fact that h1
k is a strong deformation retract.

Recalling our previous characterization of strong homotopy equivalences, this implies that θ ×̂h1
k

is a section in the arrow category.
Suppose we are given a square v : h1

k ×̂ c → p to fill. Since θ ×̂ h1
k is a section, so is

(θ ×̂ h1
k) ×̂ c ' θ ×̂ (h1

k ×̂ c). We thus may factor the given square as follows:

h1
k ×̂ c

v //

θ×̂(h1
k×̂c) &&

p

h1
k ×̂ (h1

k ×̂ c)

::

So a filling for the square v : h1
k ×̂ c → p is nothing more than a composition for the derived

square h1
k ×̂ (h1

k ×̂ c)→ p! By assumption, the map h1
k ×̂ c is again an object of I and has such

a composition available. Observe that this argument is entirely natural in c : I. Thus, coherent
composition induces coherent filling.

Let us now show that the defined filling extends the given composition. For this, consider the
below situation:

c
θ×̂h1

k

''

θ×̂h1
k

��

h1
k ×̂ c

h1
k×̂(θ×̂c)

��

w

$$
h1
k ×̂ c v

//

θ×̂(h1
k×̂c) &&

p

h1
k ×̂ (h1

k ×̂ c)

::

Recall that the square h1
k ×̂(h1

k ×̂c)→ p was defined in terms of v via a retraction r : h1
k ×̂h1

k → h1
k

to θ ×̂h1
k. Crucially, note that r is automatically also a retraction to h1

k ×̂θ. It follows that w = v
in the above diagram. We need to show that the diagonal map for the square c→ p induced by
the filling of v (the new composition) coincides with the given composition of v. As seen in the
diagram, this is now just coherence of the given coherent composition with respect to θ ×̂ c. �
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