
NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES

CHRISTIAN SATTLER

Abstract. Some unfinished notes on a categorical presentation of normalization by evaluation
We choose a presentation of cwf’s close to natural models [Awo16].

1. Categories with families

Given a category 𝒞, we write 𝒞 for the category of presheaves on 𝒞. We will freely use
type-theoretic language for working with presheaves, referring to 𝒞 as a presheaf model. Here, a
context Γ means a presheaf Γ ∈ 𝒞, a type Γ ⊢ 𝐴 means a presheaf 𝐴 ∈ ∫̂ Γ, and a term Γ ⊢ 𝑡 ∶ 𝐴
means a section 𝑡 of 𝐴. Given types Γ ⊢ 𝐴 and Γ, 𝑎 ∶ 𝐴 ⊢ 𝐵(𝑎), we write

Γ ⊢ (𝑎 ∶ 𝐴) × 𝐵(𝑎) =def ∑
𝑎∶𝐴

𝐵(𝑎)

for the dependent sum
Γ ⊢ (𝑎 ∶ 𝐴) → 𝐵(𝑎) =def ∏

𝑎∶𝐴
𝐵(𝑎)

for the dependent product. We also use list notation for iterated dependent sums. For example,
given types Γ ⊢ 𝐴, Γ.𝐴 ⊢ 𝐵, Γ.𝐴.𝐵 ⊢ 𝐶, we write

Γ ⊢ [𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵(𝑎), 𝐶(𝑎, 𝑏)] =def ∑
𝑎∶𝐴

∑
𝑏∶𝐵(𝑎)

𝐶(𝑎, 𝑏) =def Σ𝐴Σ𝐵𝐶.

The extensional equality type is denoted Eq.
We allow ourselves to identify and freely mix contexts and global types.

Definition 1.1. A category with families (cwf) is a category 𝒞 together with, in the presheaf
model 𝒞, a context Ty, a type Ty ⊢ Tm, and a representing object of Tm[𝐴] for each element
𝐴∶ 𝑦Γ → Ty of Ty. □

The last condition in the above definition is equivalent to a right adjoint to the first projection
Ty.Tm → Ty.

Remark 1.2. We adopt the usual notation for a cwf 𝒞. The category 𝒞 is referred to as the
category of contexts and substitutions. The elements of Ty and Tm are called types and terms,
respectively. Given a type 𝐴 ∈ Ty(Γ), note that Tm[𝐴] is a presheaf over ∫ 𝑦Γ ≃ 𝒞/Γ; its
representing object is denoted 𝑞𝐴 ∈ Tm[𝐴](𝑝𝐴) = Tm[𝐴[𝑝𝐴]] where 𝑝𝐴 ∶ Γ.𝐴 → Γ; we call Γ.𝐴
the context extension of Γ by 𝐴 and respectively call 𝑝𝐴 and 𝑞𝐴 the context projection and last
variable of the context Γ.𝐴.

Consider a substitution 𝜎 ∶ Δ → Γ. Given a type 𝐴 ∈ Ty(Γ), we write 𝐴[𝜎] ∈ Ty(Δ) for
the image of 𝐴 under the action of Ty on 𝜎; we have an induced substitution 𝜎.𝐴 between the

1

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 2

associated context extensions, forming a pullback as below:

Δ.𝐴[𝜎] 𝜎.𝐴 //

𝑝𝐴[𝜎]
��

_�
Γ.𝐴

𝑝𝐴
��

Δ 𝜎 // 𝐴.

Given a term 𝑡 ∈ Tm(Γ, 𝐴), we write 𝑡[𝜎] ∈ Tm(Δ, 𝐴[𝜎]) for the image of 𝑡 under the action of
Tm on (𝜎, 𝐴); note that 𝑞𝐴[𝜎] = 𝑞𝐴[𝜎.𝐴].

We omit subscripts if they are evident from the surrounding context. □

Remark 1.3. Following Cartmell, Cwf’s are the models for a generalized algebraic theory; we
do not describe it in detail here. Recall that the models for a generalized algebraic theory form
a category. We thus obtain a category of cwf’s. A morphism

(𝐹 , 𝑢, 𝑣) ∶ (𝒞, Ty𝒞, Tm𝒞) → (𝒟, Ty𝒟, Tm𝒟)

consists of a functor 𝐹 ∶ 𝒞 → 𝒟, a natural transformation 𝑢∶ Ty0 → Ty1𝐹 , and an isomorphism
𝑣 ∶ Tm0 ≃ (Tm1𝐹)[𝑢]. Note that precomposition with 𝐹 , denoted here by postfixing 𝐹 , induces
a morphism from the presheaf model over 𝒞 to the presheaf model over 𝒟. □

We will be interested also in the category of cwf’s with category of contexts 𝒞 fixed, i.e. the
category of cwf structures on 𝒞. We see that a morphism from (Ty0, Tm0) to (Ty1, Tm1) is a
pair (𝑢, 𝑣) with a natural transformation 𝑢∶ Ty0 → Ty1 and an isomorphism 𝑣 ∶ Tm0 ≃ Tm1[𝑢].
Note that this can also be represented by a pullback square

Ty0.Tm0 //

��

_�
Ty1.Tm1

��

Ty0 // Ty1.

We will now specify what it means for a cwf 𝒞 as above to have certain type formers.

1.1. Extensional type formers.

Definition 1.4. Unit types are given by a term 𝟏 ∶ Ty with an isomorphism 1 ≃ Tm(𝟏), all in
the empty context. □

Definition 1.5. Dependent sums are given by a term 𝚺𝐴,𝐵 ∶ Ty with an isomorphism

∑
𝑎∶Tm(𝐴)

Tm(𝐵(𝑎)) ≃ Tm(𝚺𝐴,𝐵),

all in context 𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty. □

Definition 1.6. Dependent products are given by a term 𝚷𝐴,𝐵 ∶ Ty with an isomorphism

∏
𝑎∶Tm(𝐴)

Tm(𝐵(𝑎)) ≃ Tm(𝚷𝐴,𝐵),

all in context 𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty. □

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 3

1.2. Empty types. Before we start defining non-extensional type formers, we give a definition
that will help us characterize many of the common eliminators.

Definition 1.7. Given a function 𝑋 ⊢ 𝑓 ∶ 𝐴 → 𝐵, elimination consists of a section of the
pullback exponential in context 𝑋 with 𝑓 of fst ∶ ΣTyTm → Ty. □

In more concrete terms, elimination for 𝑋 ⊢ 𝑓 ∶ 𝐴 → 𝐵 is a term

𝑋, 𝐶 ∶ 𝐵 → Ty, 𝑐𝐴 ∶ (𝑎 ∶ 𝐴) → Tm(𝐶(𝑓(𝑥))) ⊢ 𝑐𝐵 ∶ (𝑏 ∶ 𝐵) → Tm(𝐶(𝑏))

such that 𝑐𝐵 ∘ 𝑓 = 𝑐𝐴.

Definition 1.8. Empty types are given by a term 𝟎 ∶ Ty and a function 0 → Tm(𝟎) with
elimination, all in the empty context. □

In more concrete terms, empty types consist of a term ⊢ 𝟎 ∶ Ty with a term

𝐶 ∶ 𝟎 → Ty ⊢ 𝟎-elim𝐶 ∶ (𝑡 ∶ 𝟎) → Tm(𝐶(𝑡)).

1.3. Coproduct types.

Definition 1.9. Coproduct types are given by a term 𝐴 +++ 𝐵 ∶ Ty and a function

𝝉 ∶ Tm(𝐴) + Tm(𝐵) → Tm(𝐴 +++ 𝐵)

with elimination, all in context 𝐴 ∶ Ty, 𝐵 ∶ Ty. □

In more concrete terms, coproduct types consist of a term 𝐴+++ 𝐵 ∶ Ty (we use infix notation)
with terms

𝝉0 ∶ Tm(𝐴) → Tm(𝐴 +++ 𝐵),
𝝉1 ∶ Tm(𝐵) → Tm(𝐴 +++ 𝐵),

all in context 𝐴 ∶ Ty, 𝐵 ∶ Ty, and a term

+++-elim𝐶,𝑐0,𝑐1
∶ (𝑡 ∶ 𝐴 +++ 𝐵) → 𝐶(𝑡)

in context

𝐴 ∶ Ty,
𝐵 ∶ Ty,
𝐶 ∶ 𝐴 +++ 𝐵 → Ty,
𝑐0 ∶ (𝑎 ∶ Tm(𝐴)) → Tm(𝐶(𝝉0(𝑎))),
𝑐1 ∶ (𝑏 ∶ Tm(𝐵)) → Tm(𝐶(𝝉1(𝑏)))

such that

+++-elim𝐶,𝑐0,𝑐1
(𝝉𝟎(𝑎)) = 𝑐0(𝑎),

+++-elim𝐶,𝑐0,𝑐1
(𝝉𝟏(𝑏)) = 𝑐1(𝑏),

in additional contexts 𝑎 ∶ Tm(𝐴) and 𝑏 ∶ Tm(𝐵), respectively.

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 4

1.4. Identity types.

Definition 1.10. Identity types are given by a term

𝐴 ∶ Ty, 𝑥 𝑦 ∶ Tm(𝐴) ⊢ Id𝐴(𝑥, 𝑦) ∶ Ty

with a lift of the diagonal through the context projection

[𝐴 ∶ Ty, 𝑎 ∶ Tm] //

refl
((

[𝐴 ∶ Ty, 𝑥 𝑦 ∶ Tm(𝐴)]

[𝐴 ∶ Ty, 𝑥 𝑦 ∶ Tm(𝐴), 𝑝 ∶ Tm(Id𝐴(𝑥, 𝑦))]

66mmmmmmmmmmmmm

that has elimination in context Ty. □

In more concrete terms, identity types consist of a term

𝐴 ∶ Ty, 𝑥 𝑦 ∶ Tm(𝐴) ⊢ Id𝐴(𝑥, 𝑦) ∶ Ty

as above and a term

𝐴 ∶ Ty, 𝑎 ∶ Tm(𝐴) ⊢ refl𝐴(𝑎) ∶ Tm(Id𝐴(𝑎, 𝑎))
such that the function

𝐴 ∶ Ty ⊢ ⟨id, id, refl⟩ ∶ Tm(𝐴) → [𝑥 𝑦 ∶ Tm(𝐴), Tm(Id𝐴(𝑥, 𝑦))]
has elimination; this means a term

𝐽𝐶,𝑑 ∶ [𝑥 𝑦 ∶ Tm(𝐴), 𝑝 ∶ Id𝐴(𝑥, 𝑦)] → Tm(𝐶(𝑥, 𝑦, 𝑝))
in context

𝐴 ∶ Ty,
𝐶 ∶ [𝑥 𝑦 ∶ Tm(𝐴), 𝑝 ∶ Id𝐴(𝑥, 𝑦))] → Ty,
𝑑 ∶ (𝑎 ∶ Tm(𝐴)) → Tm(𝐶(𝑎, 𝑎, refl𝐴(𝑎)))

such that 𝐽𝐶,𝑑(𝑎, 𝑎, refl𝐴(𝑎)) = 𝑑 in additional context 𝑎 ∶ Tm(𝐴).

1.5. 𝑊 -types. Observe that in context 𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, we have an internal endo-
functor 𝑃𝐴,𝐵 sending 𝑋 to [𝑎 ∶ Tm(𝐴), 𝑓 ∶ Tm(𝐵(𝑎)) → 𝑋]. We have the type

[𝑇 ∶ Ty, 𝑠 ∶ [𝑎 ∶ Tm(𝐴), 𝑓 ∶ Tm(𝑇)Tm(𝐵(𝑎))] → Tm(𝑇)]
of algebra types. This is isomorphically the type of algebras of 𝑃𝐴,𝐵 with carrier classified by
Ty ⊢ Tm. In additional context of an algebra (𝑋, 𝑠), we have the type

[𝐶 ∶ 𝑋 → Ty, [𝑎 ∶ Tm(𝐴), 𝑓 ∶ 𝑋Tm(𝐵(𝑎)), 𝑢 ∶ (𝑏 ∶ Tm(𝐵(𝑎))) → Tm(𝐶(𝑓(𝑏)))] → 𝐶(𝑠(𝑎, 𝑓))
of algebra families over (𝑋, 𝑠). This is isomorphically the type of objects of the slice over (𝑋, 𝑠)
of the internal category of algebra over 𝑃𝐴,𝐵 with morphism on carriers classified by Ty ⊢ Tm.
A section of such an algebra family is a section of the morphism to (𝑋, 𝑠) it induces.

Definition 1.11. 𝑊 -types are given by an algebra type (W𝐴,𝐵, sup) in context 𝐴 ∶ Ty, 𝐵 ∶
Tm(𝐴) → Ty and in additional context of an algebra family over its induced algebra, a section.

□

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 5

In more concrete terms, 𝑊 -types consist of a term W𝐴,𝐵 and a function
sup ∶ [𝑎 ∶ Tm(𝐴), 𝑓 ∶ Tm(𝐵(𝑎)) → Tm(W𝐴,𝐵)] → Tm(W𝐴,𝐵),

both in context 𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, and a term
W-elim𝐶,𝑑 ∶ (𝑡 ∶ W𝐴,𝐵) → Tm(𝐶(𝑡))

in additional context
𝐶 ∶ W𝐴,𝐵 → Ty,
𝑑 ∶ [𝑎 ∶ Tm(𝐴), 𝑓 ∶ Tm(𝐵(𝑎)) → W𝐴,𝐵, 𝑢 ∶ (𝑏 ∶ Tm(𝐵(𝑎))) → Tm(𝐶(𝑓(𝑏)))]

→ Tm(𝐶(sup(𝑎, 𝑓)))
such that

W-elim𝐶,𝑑(sup(𝑎, 𝑓)) = 𝑑(𝑎, 𝑓, 𝜆𝑏. W-elim𝐶,𝑑(𝑓(𝑏)))
in additional context 𝑎 ∶ Tm(𝐴), 𝑓 ∶ Tm(𝐵(𝑎)) → W𝐴,𝐵.

1.6. Preservation of type formers. Just as cwf’s are the models for a generalized algebraic
theory, so are cwf’s with any choice of the above type formers. We thus obtain categories of cwf’s
with empty types, dependent sums, etc. Given a collection 𝑇 of type formers, we write CwF𝑇

for the category of cwf’s with type formers 𝑇 . These project to the category of cwf’s via faithful
forgetful functors. Thus, their morphisms can be described as morphisms 𝐹 = (𝐹 , 𝑢, 𝑣) ∶ 𝒞 → 𝒟
of cwf’s that satisfy a condition modelling preservation of the respective type formers.

Let the cwf’s 𝒞 and 𝒟 have dependent sums. Then 𝐹 preserves dependent sums if: [ugly
unfolding; it must be possible tot write this in a nice form]

1.7. Universes.

Definition 1.12. A universe (or universe types) is given by a term ⊢ U ∶ Ty and a map
El ∶ Tm(U) → Ty. □

The associated cwf of a universe as above has contexts 𝒞, types Tm(U), and terms Tm(U) ⊢
Tm[El]. We have a morphism of cwf’s over 𝒞 from the associated cwf (𝒞, Tm(U), Tm[El]) to
the original cwf (𝒞, Ty, Tm) given by the natural transformation El ∶ Tm(U) → Ty between
presheaves of types and the identity isomorphism for presheaves of terms.

A universe is closed under a type former if that type former is present in the associated cwf
and preserved by the morphism to the original cwf.

A morphism of universes from (U′, El′) to (U, El) is a map
lift ∶ Tm(U′) → Tm(U)

such that
Tm[El ∘ lift] = Tm[El′].

Note that this gives rise to an associated morphism of cwf’s over 𝒞 between the associated cwf’s
of U′ and U.

This morphism of universes is closed under a type former if both the associated cwf’s have
that type former and it is preserved by the morphism of cwf’s between them.

Remark 1.13. A universe (U, El) is called injective if the components of El are injective.
Applying these definitions to the universe and morphism of universe type formers itself, one

we may define arbitrary (cumulative as well as non-cumulative) hierarchies of universes (for
circular hierarchies, the definition of cwf’s becomes inductive). We will only consider a wellformed
hierarchy indexed by 𝜔. □

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 6

2. Renamings

A morphism of cwf’s
(𝐹 , 𝑢, 𝑣) ∶ (𝒞, Ty𝒞, Tm𝒞) → (𝒟, Ty𝒟, Tm𝒟)

is creating types if 𝑢 is an isomorphism. We denote
CwFiso-on-types ↪ CwF.

the wide subcategory of those morphisms of cwf’s that create types.
There must be a categorical way to define renamings. Given a cwf 𝒞, the renamings are

essentially the morphisms of 𝒞 that are constructible from zero. Can we express this as a free
construction?

Renamings form a cwf, but without any type constructors. Should objects of 𝒞 stay the
same? Maybe we should integrate it with the construction that freely constructs objects as
iterated context extensions. So then the entire category 𝒞 is freely reconstructed.

Lemma 2.1. Let 𝒞 be a cwf. The slice category
CwFiso-on-types/𝒞

has an initial object.

Proof. The category CwFiso-on-types/𝒞 is equivalent to the category of models of the following
essentially algebraic theory:

• Sorts are objΓ indexed by objects Γ of 𝒞 and hom𝜎 indexed by morphisms 𝜎 of 𝒞.
• We have domain and codomain, identity, and composition operations over those of 𝒞,

satisfying the laws of a category.
• Given Γ ∈ 𝒞 and 𝐴 ∈ Ty(Γ), an operations that take Γ′ ∈ objΓ and return an object

Γ′.𝐴 ∈ objΓ.𝐴 and a map 𝑝′
𝐴 ∶ Γ′.𝐴 → Γ′ in hom𝑝𝐴

with laws specifying its domain and
codomain as indicated. Furthermore, operations and laws that express functoriality of
this operation and operations and laws that express that the action on morphisms is
valued in cartesian squares.

Thus, by standard universal algebra, we have an inital object. □

Definition 2.2. The cwf of renamings Ren(𝒞) of a cwf 𝒞 is defined with an associated morphism
of cwf’s 𝐹 ∶ Ren(𝒞) → 𝒞 as follows. In the following, types and terms by default refer to those of
Ren(𝒞); those of 𝒞 will be explicitly annotated by a subscript.

The objects of Ren(𝒞) are tuples (𝑚, Γ, 𝐴) with 𝑚 ∈ ℕ, Γ𝑖 ∈ 𝒞 for 0 ≤ 𝑖 ≤ 𝑚 with Γ0 = 𝜀,
and 𝐴𝑖 ∈ Ty𝒞(Γ𝑖) and Γ𝑖+1 = Γ𝑖.𝐴𝑖 for 0 ≤ 𝑖 < 𝑚. We call 𝑚 the degree of the object (𝑚, Γ, 𝐴).
The action of 𝐹 ∶ Ren(𝒞) → 𝒞 on objects sends (𝑚, Γ, 𝐴) to Γ𝑚.

The types of Ren(𝒞) are created from those of 𝒞 via 𝐹 ∶ Ren(𝒞) → 𝒞. That is, we set
Ty(𝑚, Γ, 𝐴) =def Ty𝒞(𝐴𝑚)

and the action of 𝐹 ∶ Ren(𝒞) → 𝒞 on types is the identity.
The terms of Ren(𝒞) are defined as follows: given a context (𝑚, Γ, 𝐴) with a type 𝑋 ∈

Ty𝒞(𝐴𝑚), we set
Tm((𝑚, Γ, 𝐴); 𝑋) =def {0 ≤ 𝑖 < 𝑚 | 𝑋 = 𝐴𝑖[𝑝𝑚−𝑖]]}.

The action of 𝐹 ∶ Ren(𝒞) → 𝒞 on terms sends 𝑖 to 𝑞𝐴𝑖
[𝑝𝑚−(𝑖+1)] ∈ Tm𝒞(Γ𝑚, 𝑋).

The morphisms of Ren(𝒞) are defined together with the action of 𝐹 ∶ Ren(𝒞) → 𝒞 on morphisms
as follows. We will define (𝑛, Δ, 𝐵) → (𝑚, Γ, 𝐴) by recursion on 𝑚. If 𝑚 = 0, we let there be a
unique morphism; the action of 𝐹 on it is uniquely determined as (𝑚, Γ, 𝐴) is sent to a terminal

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 7

object of 𝒞. If 𝑚 = 𝑚′ + 1, we let a morphism be pair (𝑢, 𝑖) where 𝑢∶ (𝑛, Δ, 𝐵) → (𝑚, Γ, 𝐴) and
𝑖 ∈ Tm((𝑛, Δ, 𝐵); 𝐴𝑚′ [𝐹𝑢]); the action of 𝐹 sends it to ⟨𝐹𝑢, 𝐹 𝑖⟩.

Substitution of types of Ren(𝒞) is created from 𝒞 via Ren(𝒞) → 𝒞. That is, given 𝐴 ∈
Ty(𝑚, Γ, 𝐴) and 𝜎 ∶ (𝑛, Δ, 𝐵) → (𝑚, Γ, 𝐴), we set 𝐴[𝜎] = 𝐴[𝐹𝜎]. This is clearly compatible with
𝐹 ∶ Ren(𝒞) → 𝒞.

Substitution of terms of Ren(𝒞) is defined as follows. Given a type 𝑋 ∈ Ty(𝑚, Γ, 𝐴), a term
𝑖 ∈ Tm((𝑚, Γ, 𝐴); 𝑋), i.e. 0 ≤ 𝑖 < 𝑚 such that 𝑋 = 𝐴𝑖[𝑝𝑚−𝑖], and 𝑢∶ (𝑛, Δ, 𝐵) → (𝑚, Γ, 𝐴),
we define 𝑖[𝑢] ∈ Tm((𝑛, Δ, 𝐵); 𝑋[𝐹𝑢]), i.e. 0 ≤ 𝑖[𝑢] < 𝑛 such that 𝑋[𝐹𝑢] = 𝐵𝑖[𝑢][𝑝𝑛−𝑖[𝜎]], by
recursion on 𝑚.

Note that 𝑚 > 𝑖 ≥ 0. Write 𝑚 = 𝑚′ + 1 and 𝑢 = (𝑢′, 𝑗) with 𝑢′ ∶ (𝑛, Δ, 𝐵) → (𝑚′, Γ′, 𝐴′) and
𝑗 ∈ Tm((𝑛, Δ, 𝐵); 𝐴𝑚′ [𝐹𝑢′]), i.e. 0 ≤ 𝑗 < 𝑛 such that 𝐴𝑚′ [𝐹𝑢′] = 𝐵𝑗[𝑝𝑛−𝑗].

If 𝑚′ = 𝑖, we set 𝑖[𝑢] =def 𝑗, using that

𝑋[𝐹𝑢] = 𝐴𝑚′ [𝑝𝑚−𝑚′][𝐹𝑢]
= 𝐴𝑚′ [𝑝][⟨𝐹𝑢′, 𝐹 𝑗⟩]
= 𝐴𝑚′ [𝐹𝑢′]
= 𝐵𝑗[𝑝𝑛−𝑗].

This is compatible with 𝐹 ∶ Ren(𝒞) → 𝒞 since

𝑞𝐴𝑖
[𝑝𝑚−(𝑖+1)][𝐹𝑢] = 𝑞𝐴𝑖

[𝐹𝑢]
= 𝑞𝐴𝑖

[⟨𝐹𝑢′, 𝐹 𝑗⟩]
= 𝐹𝑗
= 𝑞𝐵𝑗

[𝑝𝑛−(𝑗+1)].

Otherwise, we have 𝑖 < 𝑚′ and 𝑖 ∈ Tm((𝑚′, Γ′, 𝐴′), 𝐴𝑖[𝑝𝑚′−𝑖]), hence by recursion have
𝑖[𝑢′] ∈ Tm((𝑛, Δ, 𝐵), 𝐴𝑖[𝑝𝑚′−𝑖][𝐹𝑢′]) already defined, i.e. 𝐴𝑖[𝑝𝑚′−𝑖][𝐹𝑢′] = 𝐵𝑖[𝑢][𝑝𝑛−𝑖[𝑢]]. We set
𝑖[𝑢] =def 𝑖[𝑢′], using that

𝑋[𝐹𝑢] = 𝐴𝑖[𝑝𝑚−𝑖][𝐹𝑢]
= 𝐴𝑖[𝑝𝑚′−𝑖][𝑝][⟨𝐹𝑢′, 𝐹 𝑗⟩]
= 𝐴𝑖[𝑝𝑚′−𝑖][𝐹𝑢′]
= 𝐵𝑖[𝑢][𝑝𝑛−𝑖[𝑢]].

This is compatible with 𝐹 ∶ Ren(𝒞) → 𝒞 since

𝑞𝐴𝑖
[𝑝𝑚−(𝑖+1)][𝐹𝑢] = 𝑞𝐴𝑖

[𝑝𝑚′−𝑖][𝑝][⟨𝐹𝑢′, 𝐹 𝑗⟩]
= 𝑞𝐴𝑖

[𝑝𝑚′−𝑖][𝐹𝑢′]
= 𝑞𝐵𝑖[𝑢][𝑝𝑛−(𝑖[𝑢]+1)]

where we have used the induction hypothesis in the last step.

Identities in Ren(𝒞) are defined as follows. Consider an object (𝑚, Γ, 𝐴). By recursion on
𝑘 < 𝑚, we define a morphism 𝑤𝑚,𝑘 ∶ (𝑚, Γ, 𝐴) → (𝑘, Γ′, 𝐴′) such that 𝐹𝑤𝑚,𝑘 = 𝑝𝑚−𝑘 as follows.
For 𝑘 = 0, there is nothing to define and the condition holds for free. For 𝑘 = 𝑘′ + 1, we let

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 8

𝑤𝑚,𝑘 =def (𝑤𝑚,𝑘′ , 𝑘′) using that 𝐴𝑘′ [𝐹𝑤𝑚,𝑘′] = 𝐴𝑘′ [𝑝𝑚−𝑘′]; we have

𝐹𝑤𝑚,𝑘 = ⟨𝐹𝑤𝑚,𝑘′ , 𝐹𝑘′⟩
= ⟨𝑝𝑚−𝑘′ , 𝑞𝐴′

𝑘
[𝑝𝑚−(𝑘′+1)]⟩

= ⟨𝑝𝑝𝑚−𝑘, 𝑞𝐴′
𝑘
[𝑝𝑚−𝑘]⟩

= 𝑝𝑚−𝑘

where we used the induction hypothesis in the second step.
We now let the identity on (𝑚, Γ, 𝐴) be given by 𝑤𝑚,𝑚. Note that 𝐹 preserves identities since

𝐹𝑤𝑚,𝑚 = 𝑝𝑚−𝑚 = id.

Compositions in Ren(𝒞) are defined as follows. Consider a composable pair of morphisms

(𝑜, Θ, 𝐶) 𝑣 // (𝑛, Δ, 𝐵) 𝑢 // (𝑚, Γ, 𝐴).

We define the composition 𝑢 ∘ 𝑣 in a way that is compatible with the action of 𝐹 ∶ Ren(𝒞) → 𝒞
by recursion on 𝑚.

For 𝑚 = 0, there is nothing to define and compatibility with 𝐹 holds for free.
Otherwise, we have 𝑚 = 𝑚′ + 1. Write 𝑢 = (𝑢′, 𝑖) with 𝑢′ ∶ (𝑛, Δ, 𝐵) → (𝑚′, Γ′, 𝐴′) and

𝑖 ∈ Tm((𝑛, Δ, 𝐵); 𝐴𝑚′ [𝐹𝑢′]), i.e. 0 ≤ 𝑖 < 𝑛 such that 𝐴𝑚′ [𝐹𝑢′] = 𝐵𝑖[𝑝𝑛−𝑖]. By recursion,
we already have defined 𝑢′ ∘ 𝑣 ∶ (𝑜, Θ, 𝐶) → (𝑚′, Γ′, 𝐴′) compatible with 𝐹 . We will define
𝑢 ∘ 𝑣 =def (𝑢 ∘ 𝑣, 𝑗) with 0 ≤ 𝑗 < 𝑜 such that 𝐵𝑖[𝑝𝑛−𝑖][𝐹𝑣] = 𝐶𝑗[𝑝𝑜−𝑗], implying

𝐴𝑚′ [𝐹 (𝑢′ ∘ 𝑣)] = 𝐴𝑚′ [𝐹𝑢′][𝐹𝑣]
= 𝐵𝑖[𝑝𝑛−𝑖][𝐹𝑣]
= 𝐶𝑗[𝑝𝑜−𝑗].

This will then be compatible with 𝐹 since

𝐹(𝑢 ∘ 𝑣) = 𝐹(𝑢′ ∘ 𝑣, 𝑗)
= ⟨𝐹(𝑢′ ∘ 𝑣), 𝐹𝑗⟩
= ⟨𝐹𝑢′ ∘ 𝐹𝑣, 𝐹𝑗⟩
= ⟨𝐹𝑢′, 𝐹 𝑗⟩ ∘ 𝐹𝑣
= 𝐹(𝑢′, 𝑗) ∘ 𝐹𝑣
= 𝐹𝑢 ∘ 𝐹𝑣.

The definition of 𝑗 depends only on 𝑣 and 𝑖, so we can forget about 𝑢′. It proceeds by recursion
on 𝑛.

Note that 𝑛 > 𝑖 ≥ 0. Write 𝑛 = 𝑛′ + 1 and 𝑣 = (𝑣′, 𝑘) with 𝑣′ ∶ (𝑜, Θ, 𝐶) → (𝑛′, Δ′, 𝐵′) and
𝑘 ∈ Tm((𝑜, Θ, 𝐶); 𝐵𝑛′ [𝐹𝑣′]), i.e. 0 ≤ 𝑘 < 𝑜 such that 𝐵𝑛′ [𝐹𝑣′] = 𝐶𝑘[𝑝𝑜−𝑘].

If 𝑛′ = 𝑖, we set 𝑗 =def 𝑘, using that

𝐵𝑖[𝑝𝑛−𝑖][𝐹𝑣] = 𝐵𝑛′ [𝑝][⟨𝐹𝑣′, 𝐹𝑘⟩]
= 𝐵𝑛′ [𝐹𝑣′]
= 𝐶𝑘[𝑝𝑜−𝑘].

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 9

Otherwise, we have 𝑖 < 𝑛′ and 𝑖 ∈ Tm((𝑛′, Δ′, 𝐵′); 𝐵𝑖[𝑝𝑛′−𝑖]), hence by recursion we have
0 ≤ 𝑗 < 𝑜 such that 𝐵𝑖[𝑝𝑛′−𝑖][𝐹𝑣′] = 𝐶𝑗[𝑝𝑜−𝑗]. Then we also have

𝐵𝑖[𝑝𝑛−𝑖][𝐹𝑣] = 𝐵𝑖[𝑝𝑛′−𝑖][𝑝][⟨𝐹𝑣′, 𝐹𝑘⟩]
= 𝐵𝑖[𝑝𝑛′−𝑖][𝐹𝑣′]
= 𝐶𝑗[𝑝𝑜−𝑗].

The empty context is given by the unique object of degree zero. The context extension of
an object (𝑚, Γ, 𝐴) by a type 𝐴𝑚 ∈ Ty𝒞(Γ𝑚) is given by (𝑚 + 1, Γ, 𝐴). The context projec-
tion 𝑝𝐴𝑚

∶ (𝑚 + 1, Γ, 𝐴) → (𝑚, Γ, 𝐴) is given by 𝑤𝑚+1,𝑚. The generic term 𝑞𝐴𝑚
∶ Tm((𝑚 +

1, Γ, 𝐴), 𝐴𝑚[𝑝]) is given by 𝑚. The substitution extension operation is given by the definition of
morphisms. All of these are clearly compatible with 𝐹 ∶ Ren(𝒞) → 𝒞.

We have defined all the sorts and operations of a cwf, defined the action of 𝐹 ∶ Ren(𝒞) → 𝒞
on the sorts and checked that 𝐹 preserves the operations. It remains to check that the operation
in Ren(𝒞) satisfy the laws of a cwf. Here, we will take a shortcut and go via a faithful morphism
to the cwf FinSetop.

Recall that FinSetop forms a cwf. There is a unique type in every context, i.e. the presheaf
of types is terminal. The terms in context 𝑆 of the unique type are given by the elements of 𝑆,
i.e. the presheaf of terms is given by the embedding FinSet → Set. The empty context is given
by 0. The context extension of 𝑆 by the unique type is 𝑆 + 1. The associated context projection
is the inclusion 𝑝𝑆 ∶ 𝑆 ↪ 𝑆 + 1. The representing term of the context extension is given by the
element 𝑞𝑆 ∶ 1 ↪ 𝑆 + 1. The substitution extension operation is given by the universal property
of coproducts.

Let us construct a morphism of cwf’s 𝑃 ∶ Ren(𝒞) → FinSetop (this notion makes sense also
when some of the laws of a cwf in the domain are not required to hold).

For an object (𝑚, Γ, 𝐴), we define
𝑃(𝑚, Γ, 𝐴) =def 𝑚 =def {0, 1, …, 𝑚 − 1}.

For a morphism 𝑢∶ (𝑛, Δ, 𝐵) → (𝑚, Γ, 𝐴), we define the function 𝑃𝑢∶ 𝑚 → 𝑛 by recursion on
𝑚. If 𝑚 = 0, there is nothing to define. If 𝑚 = 𝑚′ + 1, we write 𝑢 = (𝑢′, 𝑗) with 𝑢′ ∶ (𝑛, Δ, 𝐵) →
(𝑚′, Γ′, 𝐴′) and 𝑗 ∈ Tm((𝑛, Δ, 𝐵); 𝐴𝑚′ [𝐹𝑢′]), i.e. 0 ≤ 𝑗 < 𝑛 such that 𝐴𝑚′ [𝐹𝑢′] = 𝐵𝑗[𝑝𝑛−𝑗]; we
define 𝑃𝑢(𝑖) =def 𝑃 𝑢′(𝑖) for 𝑖 < 𝑚′ and 𝑃𝑢(𝑚′) =def 𝑗.

From the recursions defining identities and compositions in Ren(𝒞), it is evident that 𝑃 pre-
serves these. Thus, we have shown 𝑃 a functor.

The action of 𝑃 on types is uniquely contrained.
The action of 𝑃 on terms sends 𝑖 ∈ Tm((𝑚, Δ, 𝐴); 𝑋) to 𝑖 ∈ 𝑚. From the recursion defining

substitutions of terms in Ren(𝒞), we see that 𝑃 preserves these.
By inspecting the corresponding definitions in Ren(𝒞), we also see that 𝑃 preserves the empty

context, context extension (if we take care to define 𝑚 correctly), context projections, represent-
ing terms of context extensions, and extension of substitutions.

It follows that 𝑃 is a morphism of cwf’s. Furthermore, the assignment of a function to each
morphism is clearly injective, making 𝑃 a faithful morphism. From faithfulness, it follows that
all the laws of a cwf hold in Ren(𝒞) (except for preservation of identities and compositions by
substitutions of types, which holds because types are created from 𝒞).

This finishes the definition of the cwf Ren(𝒞) of renamingsand its associated morphism of
cwf’s 𝐹 ∶ Ren(𝒞) → 𝒞. □
Remark 2.3. Note that the cwf FinSetop considered in the construction of Definition 2.2 is
itself an instance of a cwf of renamings: we have FinSetop ≃ Ren(1) where 1 denotes the terminal

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 10

cwf. The morphism Ren(𝒞) → FinSetop can be seen as the action of Ren as an endofunctor on
CwF applied to the unique morphism 𝒞 → 1.

Alternatively, FinSetop can be seen as the free cwf with one global type. □

We can characterize the cwf Ren(𝒞) of renamings by a universal property. Hopefully, this can
be used later to gain some high-level understanding.

Lemma 2.4. Let 𝒞 be a cwf. Then Ren(𝒞) together with the associated morphism 𝐹 ∶ Ren(𝒞) → 𝒞
is an initial object of the slice category

CwFiso-on-types/𝒞.

Proof. Let 𝒟 be a cwf with a morphism 𝐺∶ 𝒟 → 𝒞 that creates types. We need to show that
there is a unique morphism 𝐻 ∶ Ren(𝒞) → 𝒟 that creates types such that 𝐺 = 𝐹𝐻.

Let us first check that the action of 𝐻 on an object (𝑚, Γ, 𝐴) is uniquely determined. We
proceed by induction on 𝑚. If 𝑚 = 0, then (𝑚, Γ, 𝐴) is the empty context and thus needs to
be sent to the empty context in 𝒟. If 𝑚 = 𝑚′ + 1, then (𝑚, Γ, 𝐴) is the context extension of
(𝑚′, Γ′, 𝐴′) with 𝐴𝑚′ ; it must thus be sent to the context extension of 𝐻(𝑚′, Γ′, 𝐴′) by 𝐻𝐴𝑚′ .
Note that the action of 𝐻 on objects defined thusly coheres with those of 𝐹 and 𝐺.

The action of 𝐻 on types is uniquely determined by the condition that all of 𝐹, 𝐺, 𝐻 create
types.

The terms of Ren(𝒞) in context (𝑚, Γ, 𝐴) are all of the form 𝑞𝐴𝑖
[𝑝𝑚−(𝑖+1)] with 0 ≤ 𝑖 < 𝑚.

Since 𝐻 needs to preserve 𝑞, 𝑝, and substitution of terms, the action of 𝐻 on terms is uniquely
determined.

The morphisms of Ren(𝒞) are of the form of iterated substitution extensions starting with the
unique morphism to the empty context. Since 𝐻 needs to preserve substitution extension and
terminality of the empty context, the action of 𝐻 on morphisms is uniquely determined.

It follows that 𝐻 is uniquely determined. It remains to check that the operations of 𝐻 thusly
defined satisfy the laws of a morphism of cwf’s and that 𝐺 = 𝐹𝐻. This is all straightforward,
though tedious. □

Lemma 2.5. Let 𝒞 be a cwf. Then Ren(𝒞) admits an orthogonal factorization system created
from the (epi, mono) orthogonal factorizatiom system via the functor Ren(𝒞) → FinSetop.

Lemma 2.6. Let 𝒞 be a cwf. Then Ren(𝒞) has pushouts, and they are preserved by the functor
Ren(𝒞) → 𝒞.

Proof. Consider a span

(𝑘, Γ, 𝐴) 𝑓
//

𝑔
��

(𝑚, Δ, 𝐵)

��

(𝑛, Θ, 𝐶) // (𝑝, Ξ, 𝐷).
_�

We will try to construct its pushout as indicated. For this, we perform induction on 𝑛.
If 𝑛 = 0, then we let 𝑝 = 0, and the dotted maps are uniquely determined. This maps to a

pushout in FinSetop because pullbacks in FinSet preserve initial objects as FinSet as locally
cartesian closed. It remains to see that, given any competing cocone in Ren(𝒞), the induced map
in FinSetop lifts to Ren(𝒞). But this is evident as it is a copy of the map from (𝑛, Θ, 𝐶).

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 11

Now let 𝑛 = 𝑛′+1. Then 𝑔 = (𝑔′, 𝑖) where 𝑔′ ∶ (𝑘, Γ, 𝐴) → (𝑛′, Θ, 𝐶) and 𝑖 ∈ Tm((𝑘, Γ, 𝐴); 𝐶𝑛′ [𝐹𝑔′]).
By induction hypothesis, we have a pushout

(𝑘, Γ, 𝐴) 𝑓
//

𝑔′

��

(𝑚, Δ, 𝐵)

��

(𝑛′, Θ, 𝐶) // (𝑝′, Ξ′, 𝐷′)
_�

that is preserved under Ren(𝒞) → 𝒞.

Given a map
𝑢∶ (𝑛, Δ, 𝐵) → (𝑚, Γ, 𝐴)

and an index 𝑖 < 𝑛, let’s look at the set of 𝑗 < 𝑚 that get mapped to 𝑖.
□

Lemma 2.7. Let 𝒞 be a cwf. Then Ren(𝒞) has pullbacks, and they are preserved by the functor
Ren(𝒞) → 𝒞.

Proof. Consider a cospan
(𝑘, Γ, 𝐴)

𝑓
��

(𝑚, Δ, 𝐵) 𝑔
// (𝑛, Θ, 𝐶).

We will try to construct its pullback.
□

3. Abstract Nonsense

Let ℰ be a category.

Definition 3.1. A class of maps ℛ in ℰ is called good if:
• ℛ is closed under identities and composition; we denote ℰℛ the wide subcategory of ℰ

with maps restricted to ℛ,
• ℛ is closed under pullback,
• ℛ is right cancellable: if 𝑔𝑓, 𝑔 ∈ ℛ, then 𝑓 ∈ ℛ,
• for every 𝐴 ∈ ℰ, the slice category ℰℛ/𝐴 has an initial object (𝐹(𝐴), 𝐹(𝐴)

𝑡𝐴−→ 𝐴).
□

Let ℰ be a good class of maps in ℰ. For 𝐴 ∈ ℰ, we call 𝐹(𝐴) the ℛ-free object on 𝐴. We say
that 𝐴 is ℛ-free if 𝑡𝐴 ∶ 𝐹 (𝐴) → 𝐴 is an isomorphism, i.e. if (𝐴, id𝐴) is initial in ℰℛ/𝐴.

The naming is justified by the following statement.

Lemma 3.2. For every 𝐴 ∈ ℰ, the ℛ-free object 𝐹(𝐴) on 𝐴 is itself ℛ-free.

Proof. The forgetful functors

ℰℛ/𝐹(𝐴) (ℰℛ/𝐴)/(𝐹(𝐴), 𝑡𝐴) //≃oo ℰℛ/𝐴
create initial objects. □

Lemma 3.3. An object is ℛ-free exactly if it is left orthogonal to ℛ.

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 12

Proof. If 𝐴 ∈ ℰ is left orthogonal to ℛ, then there in particular unique solutions to lifting problem
of the form

𝐵
∈ℛ
��

𝐴
id𝐴

//

??

𝐴,

making (𝐴, id𝐴) initial in ℰℛ/𝐴.
Conversely, let 𝐴 ∈ ℰ be ℛ-free and consider a lifting problem

𝑌
∈ℛ
��

𝐴 //

??

𝑋.
Lifts as indicated are in bijection with sections to 𝑝 ∶ 𝐴 ×𝑋 𝑌 → 𝐴. Note that 𝑝 ∈ ℛ since ℛ is
closed under pullback. These can be seen as maps from (𝐴, id𝐴) to (𝐴 ×𝑋 𝑌 , 𝑝) in ℰℛ/𝐴. Since
(𝐴, id𝐴) is initial, there is a unique lift. □

Do we have an orthogonal factorization system on cwf’s with right class those maps that are
bijective on types? Yes, the left class is generated by a single map: the inclusion from the free
cwf with a context to the free cwf with a context and a type over it.

Do we have an orthogonal factorization system on cwf’s with right class those maps that are
fully faithful? Yes, the left class is generated by a single map: the inclusion from the free cwf to
the free cwf with a context.

4. Contextual cwf’s

We write Catff for the wide subcategory of categories with morphisms restricted to fully
faithful functors. Given a category ℰ with an implicit forgetful functor ℰ → Catff, we similarly
write ℰff to denote the pullback of ℰ along Catff → Cat, i.e. the wide subcategory of ℰ with
morphisms restricted to those maps that project to a fully faithful functor in Cat.

Definition 4.1. The contextual cwf Ctx(𝒞) on a cwf 𝒞 with an associated forgetful morphism
𝐵𝒞 ∶ Ctx(𝒞) → 𝒞 is the initial object of the slice category CwFiso-on-types,ff/𝒞. □

In other words, Ctx(𝒞) is the free cwf with a fully faithful morphism 𝐵𝒞 ∶ Ctx(𝒞) → 𝒞.

Definition 4.2. A cwf 𝒞 is contextual if the morphism 𝐵𝒞 ∶ Ctx(𝒞) → 𝒞 is an isomorphism. □

In other words, 𝒞 is contextual if (𝒞, 𝒞 id−→ 𝒞) is initial in CwFiso-on-types,ff/𝒞.

Lemma 4.3. The contextual cwf Ctx(𝒞) of a cwf 𝒞 is contextual.

Proof. Abbreviate ℰ =def CwFiso-on-types,ff/𝒞 and use that the forgetful functor
CwFff/Ctx(𝒞) ≃ ℰ/(Ctx(𝒞), 𝐵𝒞) → ℰ

reflects initial objects. □

Lemma 4.4. The free cwf is contextual.

Proof. Let 𝒞 be the initial cwf. Recall that the forgetful functor CwF/𝒞 → 𝒞 reflects initial
objects. By cancellation properties of fully faithful functors (one of the cases of 2-out-of-3), any
section to a fully faithful functors is itself fully faithful. Morphisms of cwf’s that are bijective on
types also enjoy the same cancellation property, so any section to a morphism of cwf’s bijective

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 13

on types is also bijective on types. Thus, also the forgetful functor CwFiso-on-types,ff/𝒞 → CwF/𝒞
reflects initial objects. □

Let us give an explicit construction of the contextual cwf Ctx(𝒞) on a cwf 𝒞 and the functor
𝐵𝒞 ∶ Ctx(𝒞) → 𝒞.

Consider the directed graph 𝐺 with vertices objects of 𝒞 and an edge from Γ to Γ.𝐴 given for
every type 𝐴 ∈ Ty(Γ). We have a distinguished vertex 𝑣0 ∈ 𝐺 given by the empty context. The
objects are Ctx(𝒞) are the paths in 𝐺 that start in 𝑣0. We write an object as a tuple (𝑛, Γ, 𝐴)
where 𝑛 ≥ 0, Γ𝑖 ∈ 𝒞 for 𝑖 ≤ 𝑛, Γ0 is the empty context, and 𝐴𝑖 ∈ Ty(Γ𝑖) and Γ𝑖+1 = Γ𝑖.𝐴𝑖
for 𝑖 < 𝑛. The action of 𝐵𝒞 on objects is to return the endpoint of the path. The rest of the
category structure of Ctx(𝒞) and the functor structure on 𝐵𝒞 is induced by the requirement that
𝐵𝒞 be fully faithful.

The types of Ctx(𝒞) are uniquely determined by the requirement that 𝐵𝒞 is bijective on types.
The terms of Ctx(𝒞) are uniquely determined since 𝐵𝒞 needs to be bijective on terms (by fully
faithfulness).

The empty context is the unique path of lenth zero. The context extension of (𝑛, Γ, 𝐴) with
𝑋 ∈ Ty(Γ𝑛) is given by (𝑛 + 1, Γ′, 𝐴′) where Γ′

𝑖 = Γ𝑖 for 𝑖 ≤ 𝑛, Γ𝑛+1 = Γ𝑛.𝑋, 𝐴′
𝑖 = 𝐴𝑖 for 𝑖 < 𝑛,

and 𝐴′
𝑛 = 𝑋. The associated context projection is given by 𝑝𝑋. The associated representing

term is given by 𝑞𝑋.
One easily verifies that this constitutes a cwf and that 𝐵𝐶 is a fully faithful morphism of cwf’s

bijective on types. Initiality is verified in a straightforward way.

The situation is more complicated for free cwf’s with type formers.

Lemma 4.5 (Free cwf is contextual). Let 𝒞 be the free cwf with type formers 𝑇 . Consider the
directed graph 𝐺 with vertices objects of 𝒞 and edges indexed by 𝐴 ∈ Ty(Γ), going from Γ to
Γ.𝐴. We have a distinguished vertex 𝑣0 ∈ 𝐺 given by the empty context. Then the function from
paths starting at 𝑣0 to objects of 𝒞 returning the last endpoint is a bijection.

We need to build a cwf based on 𝒞 that includes context building information. Let us try
𝒟 as follows. An object consists of a list of types (𝑛, Γ, 𝐴) and an object Θ of 𝐶 with a map
Γ𝑛 → Θ. Functor to 𝒞 is fully faithful and sends this object to Θ. Types and terms created from
𝒞. Empty context and context extension defined in the evident way.

Again, why do we have dependent products?

Can we abstractly specify what 𝑇 is? It should be some kind of signature 𝑆 in a type theory
with standard extensional type formers, a global type Ty, a type Ty ⊢ Tm. We cannot specify
types, just terms and equations between them. Specifying types might be useful for extensions
of cwf’s, for example when defining neutral terms and normal forms.

A cwf with type formers 𝑇 is then a category 𝒞 with a presheaf Ty on 𝒞 and a presheaf Tm
on ∫ Ty with the usual representability property and furthermore an interpretation of 𝑆 in 𝒞.

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 14

Dependent sums.
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty ⊢ Σ(𝐴, 𝐵) ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑎 ∶ Tm(𝐴), 𝑏 ∶ Tm(𝐵(𝑎)) ⊢ pair(𝑎, 𝑏) ∶ Tm(Σ(𝐴, 𝐵))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑠 ∶ Tm(Σ(𝐴, 𝐵)) ⊢ fst(𝑠) ∶ Tm(𝐴)
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑠 ∶ Tm(Σ(𝐴, 𝐵)) ⊢ snd(𝑠) ∶ Tm(𝐵(fst(𝑠)))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑎 ∶ Tm(𝐴), 𝑏 ∶ Tm(𝐵(𝑎)) ⊢ fst(pair(𝑎, 𝑏)) = 𝑎
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑎 ∶ Tm(𝐴), 𝑏 ∶ Tm(𝐵(𝑎)) ⊢ snd(pair(𝑎, 𝑏)) = 𝑏
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑠 ∶ Tm(Σ(𝐴, 𝐵)) ⊢ 𝑠 = pair(fst(𝑠), snd(𝑠))

We could have chosen to use dependent sums in the specifying language. Then the specifica-
tion, except for the first line, would really just be an isomorphism.
Dependent products.

𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty ⊢ Π(𝐴, 𝐵) ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑏 ∶ (𝑎 ∶ Tm(𝐴)) → Tm(𝐵(𝑎)) ⊢ lam(𝑏) ∶ Tm(Π(𝐴, 𝐵))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑓 ∶ Tm(Π(𝐴, 𝐵)), 𝑎 ∶ Tm(𝐴) ⊢ app(𝑓, 𝑎) ∶ Tm(𝐴)
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑓 ∶ Tm(Π(𝐴, 𝐵)) ⊢ 𝑓 = lam(𝜆𝑎. app(𝑓, 𝑎))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑏 ∶ (𝑎 ∶ Tm(𝐴)) → Tm(𝐵(𝑎)), 𝑎 ∶ Tm(𝐴) ⊢ app(lam(𝑏), 𝑎) = 𝑏(𝑎)
We could have chosen to use dependent products in the specifying language. Then the speci-

fication, except for the first line, would really just be an isomorphism.
Unit types.

⊢ 1 ∶ Ty
⊢ unit ∶ Tm(1)
𝑥 ∶ Tm(1) ⊢ 𝑥 = unit

We could have chosen to use empty types in the specifying language. Then the specification,
except for the first line, would really just be an isomorphism.
Empty types.

⊢ 0 ∶ Ty
𝐶 ∶ 0 → Ty, 𝑥 ∶ Tm(0) ⊢ absurd ∶ Tm(𝐶(𝑥))

Coproduct types.
𝐴 ∶ Ty, 𝐵 ∶ Ty ⊢ 𝐴 + 𝐵 ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Ty, 𝑎 ∶ Tm(𝐴) ⊢ 𝜏0(𝑎) ∶ Tm(𝐴 + 𝐵)
𝐴 ∶ Ty, 𝐵 ∶ Ty, 𝑏 ∶ Tm(𝐵) ⊢ 𝜏1(𝑏) ∶ Tm(𝐴 + 𝐵)
𝐶 ∶ Tm(𝐴 + 𝐵) → Ty, 𝑢 ∶ (𝑎 ∶ Tm(𝐴)) → 𝐶(𝜏0(𝑎)), 𝑣 ∶ (𝑏 ∶ Tm(𝐵)) → 𝐶(𝜏1(𝑏)), 𝑥 ∶ Tm(𝐴 + 𝐵) ⊢ case(𝑢, 𝑣, 𝑥) ∶ Tm(𝐶(𝑥))
𝐶 ∶ Tm(𝐴 + 𝐵) → Ty, 𝑢 ∶ (𝑎 ∶ Tm(𝐴)) → 𝐶(𝜏0(𝑎)), 𝑣 ∶ (𝑏 ∶ Tm(𝐵)) → 𝐶(𝜏1(𝑏)), 𝑎 ∶ Tm(𝐴) ⊢ case(𝑢, 𝑣, 𝜏0(𝑎)) = 𝑢(𝑎)
𝐶 ∶ Tm(𝐴 + 𝐵) → Ty, 𝑢 ∶ (𝑎 ∶ Tm(𝐴)) → 𝐶(𝜏0(𝑎)), 𝑣 ∶ (𝑏 ∶ Tm(𝐵)) → 𝐶(𝜏1(𝑏)), 𝑏 ∶ Tm(𝐵) ⊢ case(𝑢, 𝑣, 𝜏1(𝑏)) = 𝑣(𝑏)
𝑊 -types.
𝐴 ∶ Ty, 𝐵 ∶ Ty → Ty ⊢ 𝑊(𝐴, 𝐵) ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑎 ∶ Tm(𝐴), 𝑓 ∶ Tm(𝐵(𝑎)) → 𝑊(𝐴, 𝐵) ⊢ sup(𝑎, 𝑓) ∶ Tm(𝑊(𝐴, 𝐵))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝐶 ∶ Tm(𝑊(𝐴, 𝐵)) → Ty, 𝑑 ∶ ((𝑎 ∶ Tm(𝐴)) × (𝑓 ∶ (𝑏 ∶ Tm(𝐵(𝑎))) → Tm(𝑊(𝐴, 𝐵))) × (𝑟 ∶ (𝑏 ∶ Tm(𝐵(𝑎))) → Tm(𝐶(𝑓(𝑏)))) → Tm(𝐶(sup(𝑎, 𝑓))), 𝑥 ∶ Tm(𝑊(𝐴, 𝐵)) ⊢ ind(𝑑, 𝑥) ∶ Tm(𝐶(𝑥))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝐶 ∶ Tm(𝑊(𝐴, 𝐵)) → Ty, 𝑑 ∶ ((𝑎 ∶ Tm(𝐴)) × (𝑓 ∶ (𝑏 ∶ Tm(𝐵(𝑎))) → Tm(𝑊(𝐴, 𝐵))) × (𝑟 ∶ (𝑏 ∶ Tm(𝐵(𝑎))) → Tm(𝐶(𝑓(𝑏)))) → Tm(𝐶(sup(𝑎, 𝑓))), 𝑎 ∶ Tm(𝐴), 𝑓 ∶ (𝑏 ∶ Tm(𝐵(𝑎))) → Tm(𝑊(𝐴, 𝐵)) ⊢ ind(𝑑, sup(𝑎, 𝑓)) = 𝑑(𝑎, 𝑓, 𝜆𝑏. ind(𝑑, 𝑓(𝑏)))

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 15

Universe.
⊢ 𝑈 ∶ Ty
𝐴 ∶ Tm(𝑈) ⊢ Eln(𝐴) ∶ Ty
𝐴 ∶ Tm(𝑈), 𝐵 ∶ Tm(El(𝐴)) → Tm(𝑈) ⊢ U-Σ ∶ Tm(𝑈)
𝐴 ∶ Tm(𝑈), 𝐵 ∶ Tm(El(𝐴)) → Tm(𝑈) ⊢ El(U-Σ)) = Σ(El(𝐴), 𝜆𝑎. El(𝐵(𝑎)))
etc.

5. Neutral terms and normal forms

Let 𝒞 be a cwf.
We define normal forms and neutral terms. These are defined mutually inductive with natural

interpretation maps to terms. That is, we define
NF ∈ ̂TyRen(𝒞), tm ∶ NF𝐹 → Tm𝒞,
NE ∈ ̂TyRen(𝒞), tm ∶ NE𝐹 → Tm𝒞,

all by mutual induction.

𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) ⊢ Σ(𝐴, 𝐵) ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑎 ∶ Tm(𝐴), 𝑏 ∶ Tm(𝐵(𝑎)), isNf(𝑎), isNf(𝑏) ⊢ pair-nf ∶ isNf(pair(𝑎, 𝑏))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑠 ∶ Tm(Σ(𝐴, 𝐵)), isNe(𝑠) ⊢ fst-ne ∶ isNe(fst(𝑠))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑠 ∶ Tm(Σ(𝐴, 𝐵)), isNe(𝑠) ⊢ fst-ne ∶ isNe(snd(𝑠))
We could have chosen to use dependent sums in the specifying language. Then the specifica-

tion, except for the first line, would really just be an isomorphism.
Dependent products.

𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) ⊢ Π(𝐴, 𝐵) ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑏 ∶ (𝑎 ∶ Tm(𝐴)) → Tm(𝐵(𝑎)) ⊢ lam(𝑏) ∶ Tm(Π(𝐴, 𝐵))
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty, 𝑓 ∶ Tm(Π(𝐴, 𝐵)), 𝑎 ∶ Tm(𝐴) ⊢ app(𝑓, 𝑎) ∶ Tm(𝐴)

The basic neutral terms are just the terms of the cwf of renamings.

𝐴 ∈ Ty(Γ) 𝑎 ∈ TmRen(𝒞)(Γ, 𝐴)
var(𝑎) ∈ NF(Γ, 𝑎) tm(var(𝑎)) = 𝐹(𝑎)

Dependent sums.

𝐴 ∈ Ty(Γ) 𝐵 ∈ Ty(Γ.𝐴) 𝑠 ∈ NE(Γ, 𝚺𝐴,𝐵)
fst(𝑠) ∈ NE(Γ, 𝐴) tm(fst(𝑠)) = fst(tm(𝑠))

snd(𝑠) ∈ NE(Γ, 𝐵(fst(tm(𝑠)))) tm(snd(𝑠)) = snd(tm(𝑠))

𝐴 ∈ Ty(Γ) 𝐵 ∈ Ty(Γ.𝐴) 𝑎 ∈ NF(Γ, 𝐴) 𝑏 ∈ NF(Γ, 𝐵(tm(𝑎)))
pair(𝑎, 𝑏) ∈ NF(Γ, 𝚺𝐴,𝐵) tm(pair(𝑎, 𝑏)) = pair(tm(𝑎), tm(𝑏))

Dependent products.

𝐴 ∈ Ty(Γ) 𝐵 ∈ Ty(Γ.𝐴) 𝑓 ∈ NE(Γ, 𝚷𝐴,𝐵) 𝑎 ∈ NF(Γ, 𝐴)
app(𝑓, 𝑎) ∈ NF(Γ, 𝐵(tm(𝑎))) tm(app(𝑓, 𝑎)) = app(tm(𝑓), tm(𝑎))

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 16

𝐴 ∈ Ty(Γ) 𝐵 ∈ Ty(Γ.𝐴) 𝑓 ∈ NF(Γ.𝐴, 𝐵)
lam(𝑏) ∈ NF(Γ, 𝚷𝐴,𝐵) tm(lam(𝑏)) = lam(tm(𝑏))

Unit types.

unit ∈ NF(Γ, 1) tm(unit) = unit
Empty types.

𝐶 ∈ Ty(Γ.0) 𝑥 ∈ NE(Γ, 𝐴 +++ 𝐵)
0-elim(𝐶, 𝑥) ∈ NF(Γ.0, 𝐶) tm(0-elim(C, x)) = 0-elim𝐶(tm(𝑥))

Coproduct types.

𝐴, 𝐵 ∈ Ty(Γ) 𝐶 ∈ Ty(Γ.(𝐴 +++ 𝐵))
𝑐0 ∈ NF(Γ.(𝑎 ∶ 𝐴), 𝐶(𝝉0(𝑎))) 𝑐1 ∈ NF(Γ.(𝑏 ∶ 𝐵), 𝐶(𝝉1(𝑏))) 𝑥 ∈ NE(Γ, 𝐴 +++ 𝐵)

+-elim(𝐶, 𝑐0, 𝑐1, 𝑥) ∈ NF(Γ.(𝐴 +++ 𝐵), 𝐶)
tm(+-elim(𝐶, 𝑐0, 𝑐1, 𝑥)) = +++-elim𝐶,tm(𝑐0),tm(𝑐1)(tm(𝑥))

𝐴, 𝐵 ∈ Ty(Γ) 𝑎 ∈ NF(Γ, 𝐴)
𝜏0(𝑎) ∈ NF(Γ, 𝐴 +++ 𝐵) tm(�0(𝑎)) = 𝝉0(tm(𝑎))

𝐴, 𝐵 ∈ Ty(Γ) 𝑏 ∈ NF(Γ, 𝐴)
𝜏1(𝑏) ∈ NF(Γ, 𝐴 +++ 𝐵) tm(�1(𝑏)) = 𝝉1(tm(𝑏))

Identity types.

𝐴 ∈ Ty(Γ) 𝐶 ∈ Ty(Γ.(𝑥 𝑦 ∶ 𝐴).Id𝐴(𝑥, 𝑦))
𝑑 ∈ NF(Γ.(𝑎 ∶ 𝐴), 𝐶(𝑎, 𝑎, refl(a))) 𝑥, 𝑦 ∈ NF(Γ, 𝐴) 𝑝 ∈ NE(Γ, Id𝐴(𝑥, 𝑦))

J𝐶,𝑑(𝑥, 𝑦, 𝑝) ∈ NF(Γ.(𝑥 𝑦 ∶ 𝐴).Id𝐴(𝑥, 𝑦), 𝐶) tm(J𝐶,𝑑(𝑥, 𝑦, 𝑝)) = J𝐶,𝑑(tm(𝑥), tm(𝑦), tm(𝑝))

𝐴 ∈ Ty(Γ) 𝑎 ∈ NF(Γ, 𝐴)
refl(𝑎) ∈ NF(Γ, Id𝐴(tm(𝑎), tm(𝑎))) tm(refl(𝑎)) = refl(tm(𝑎))

Universe.

𝐴 ∈ NF(Γ, 𝑈) 𝐵 ∈ NF(Γ, 𝑈)
𝐴 + 𝐵 ∈ NF(Γ, 𝑈) tm(𝐴 + 𝐵) = tm(𝐴) +++ tm(𝐵)

𝐴 ∈ NF(Γ, 𝑈) 𝐵 ∈ NF(Γ.El(𝐴), 𝑈)
Σ𝐴,𝐵 ∈ NF(Γ, 𝑈) tm(Σ𝐴,𝐵) = 𝚺tm(𝐴),tm(𝐵)

etc.

Neutral to normal. We need a way to go from neutral terms to normal forms. However,
this should only be possible if we are not in an extensional type former, i.e. dependent product,
dependent sum, or unit type. How do we enforce this? We could be in a type El(𝑥) where 𝑥
reduces to the code of a dependent sum.

The situation might be easier if we do not have any 𝜂-laws at all.

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 17

𝐴 ∈ Ty(Γ) 𝐴 ≠ 𝚺•,•, 𝚷•,•, 1 𝑎 ∈ NE(Γ, 𝐴)
ne(𝑎) ∈ NF(Γ, 𝐴) tm(ne(𝑎)) = tm(𝑎)

This rule makes the definition impossible for an arbitrary 𝒞: it might be that a type becomes
equal to a sigma type after substituting with a renaming. Can we show this is impossible for
the syntactic category? That is, given a type 𝑋 ∈ Ty(Γ) and a renaming 𝜎 ∶ Δ → Γ such that
𝑋[𝜎] = Σ𝐴′,𝐵′ with 𝐴′ ∈ Ty(Δ), 𝐵′ ∈ Ty(Δ.𝐴), are there 𝐴 ∈ Ty(Γ), 𝐵 ∈ Ty(Γ.𝐴′) such that
𝑋 = Σ𝐴,𝐵 and 𝐴′ = 𝐴[𝜎], 𝐵′ = 𝐵[𝜎]?

Is the action of renamings on terms injective? It feels like it is; if it is, then it will be enough
to have 𝐴′ = 𝐴[𝜎], 𝐵′ = 𝐵[𝜎].

Another approach. Change the condition to: the type will never become a dependent sum
after any renaming. This is stable under renaming by construction.

𝐴 ∈ Ty(Γ) ∀𝜎 ∈ Ren(𝒞)(Δ, Γ).𝐴[𝜎] ≠ 𝚺•,•, 𝚷•,•, 1 𝑎 ∈ NE(Γ, 𝐴)
ne(𝑎) ∈ NF(Γ, 𝐴) tm(ne(𝑎)) = tm(𝑎)

Another idea (Thierry). Omit the condition on 𝐴 entirely. The the interpretation function
from normal forms to syntax will not be injective, but that may not be a problem: at the same
time, the quote function of the interpretation of any type will not be surjective. Since it is
type-directed, only the truly-wellformed normal forms are taken as values.

This yields the nicest definition of NF and NE, possible for any cwf 𝒞 with type formers. So
let us adopt this approach for now.

6. The twisted glueing

Let 𝒞 be a cwf with type formers as in the previous section. We construct a new cwf with
type formers, the twisted glueing Tw(𝒞) of 𝒞.

Let 𝑇 ∶ 𝒞 → ̂Ren(𝒞) denote the restricted Yoneda functor. So 𝑇 (Γ, Δ) = 𝒞(Δ, Γ). It is
a pseudomorphism of cwf’s (defined in another note). On types, it sends 𝐴 ∈ Ty(Γ) to the
presheaf on ∫ 𝑇 Γ sending (Δ, 𝜎) to Tm(Δ, 𝐴[𝜎]). On terms, it sends 𝑡 ∈ Tm(Γ, 𝐴) to the
presheaf section sending (Δ, 𝜎) to 𝑡[𝜎] ∈ Tm(Δ, 𝐴[𝜎]).

Consider a type 𝐴 ∈ Ty(Γ). We define types NF𝐴, NE𝐴 in context 𝑇 Γ, i.e. presheaves on
∫ 𝑇 Γ, as follows.

NF𝐴(Δ, 𝜎) = NF(Δ, 𝐴[𝜎])
NE𝐴(Δ, 𝜎) = NE(Δ, 𝐴[𝜎]).

From the previous section, we have maps

NE𝐴

��
<<

<<
<<

<
NF𝐴

����
��
��
�

𝑇 𝐴

in context 𝑇 Γ.
The category of contexts Tw(𝒞) is Set ↓ 𝑇 .

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 18

The types over |Γ| 𝛼−→ 𝑇 Γ consist of 𝐴 ∈ Ty(Γ) and |𝐴| ∈ Ty(|Γ|) with a map 𝑓 making the
following diagram commute:

|Γ|.|𝐴| 𝑓
//

��

𝑇 (Γ.𝐴)

��

|Γ| 𝛼 // 𝑇 Γ.
This is an internal function |Γ| ⊢ 𝑓 ∶ |𝐴| → 𝑇 𝐴[𝛼].

The terms over |Γ| 𝛼−→ 𝑇 Γ of (𝐴, |𝐴|, 𝑓) consist of 𝑡 ∈ Tm(Γ, 𝐴) and |𝑡| ∈ Tm(|Γ|, |𝐴|) such
that 𝑓(|𝑡|) = 𝑇 𝑡[𝛼].

We modify the types as follows. In context |Γ| 𝛼−→ 𝑇 Γ, in addition to 𝐴, |𝐴|, 𝑓 as above, require
maps |Γ| ⊢ 𝑢 ∶ NE(Γ, 𝐴)[𝛼] → |𝐴| and |Γ| ⊢ 𝑞 ∶ |𝐴| → NF(Γ, 𝐴)[𝛼] commuting over 𝑇 𝐴[𝛼].

We can give an interpretation of dependent sums, dependent products, and unit types.
We can give an interpretation of coproduct types.
Can we given an interpretation of equality types?
The interpretation of the universe uses normal forms.

6.1. A universe. The universe type in the empty context is given by (|𝑈|, 𝑇 U, 𝑓) as follows.
Note that |𝑈| is a presheaf over Ren(𝒞) and 𝑓 is a map between such presheaves. We set
|𝑈| = (𝐴 ∶ 𝑇 𝑈) × (Tm(El(𝐴)) → 𝑈).

Consider a context |Γ| 𝛼−→ 𝑇 Γ. The universe type in it is given by (|𝑈|, 𝑇 U, 𝑓) where
in it is given by the universe U ∈ Ty(Γ), the set of sets 𝑈 ∈ Ty(|Γ|), and the function

|Γ| ⊢ 𝑈 → U[𝛼] that sends

6.2. Starting the normalization. To start the normalization, we need an inhabitant of |Γ|(Γ)
where ⟦Γ⟧ = (Γ, |Γ|, 𝑓) is the interpretation of Γ in Tw(𝒞). This will be easier to prove in
generalized form: given a renaming Δ → Γ, there is an inhabitant of |Γ|(Δ) (really? does this
not follow immediately since |Γ| is a presheaf?)

An inhabitant of |Γ|(Γ) is given by a map 𝑦Γ → |Γ|. This is given by a map
(Γ, 𝑦Γ, 𝑐) → (Γ, |Γ|, 𝑓)

(where 𝑐 ∶ 𝑦Γ → 𝑇 Γ is the canonical inclusion) that maps to the identity in 𝒞.
What properties does the map sending Γ to (Γ, 𝑦Γ, 𝑐) have? It is a functor 𝑄; is that really

true? 𝑦Γ is only functorial in Ren(𝐶); the functor 𝑄 should start from Ren(𝐶). Thus, the maps
(Γ, 𝑦Γ, 𝑐) → (Γ, |Γ|, 𝑓)

should assemble into a natural transformation.
Functors 𝒟 → Tw(𝐶) are tuples (𝐹 , 𝐺, 𝑢) with a functor 𝐹 ∶ 𝒟 → 𝒞, a functor 𝐺∶ 𝒟 →

̂Ren(𝒞), and a natural transformation 𝑢∶ 𝐺 → 𝑇 𝐹 . Remember that 𝑇 = restrict ∘ 𝑦. So
we specify 𝑄∶ Ren(𝒞) → Tw(𝒞) as the tuple (𝐹 , 𝐺, 𝑢) where 𝐹 ∶ Ren(𝒞) → 𝒞 is embedding,
𝐺∶ Ren(𝒞) → ̂Ren(𝒞) is Yoneda, and 𝑢∶ [Ren(𝒞), ̂Ren(𝒞)](𝑦, restrict ∘ 𝑦 ∘ embed), equivalently
𝑢∶ [Ren(𝒞 × 𝒞op, Set](hom, hom ∘(embed × embed)) is the action of embedding on homs.

Want a natural transformation 𝑄 → ⟦−⟧. Can we get this using freeness properties?
Consider Γ ⊢ 𝐴. Assume we have an inhabitant of |Γ|(Γ). We want an inhabitant of

|Γ.𝐴|(Γ.𝐴),

What is the exponential 𝒟𝒞 of cwf’s of 𝒟 with 𝒞? Need a map
𝒟𝒞 × 𝒞 → 𝒟

with a universal property. What is a type in 𝒟𝒞?

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 19

7. A clean specification of the toy type theory

Dependent sums.

𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty ⊢ Σ(𝐴, 𝐵) ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty ⊢ Tm(Σ(𝐴, 𝐵)) ≃ ((𝑎 ∶ Tm(𝐴)) × Tm(𝐵(𝑎)))

Dependent products.

𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty ⊢ Π(𝐴, 𝐵) ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Tm(𝐴) → Ty ⊢ Tm(Π(𝐴, 𝐵)) ≃ ((𝑎 ∶ Tm(𝐴)) → Tm(𝐵(𝑎)))

Unit types.

⊢ ⊤ ∶ Ty
⊢ Tm(⊤) ≃ 1

Empty types.

⊢ ⊥ ∶ Ty
𝐶 ∶ ⊥ → Ty, 𝑥 ∶ Tm(⊥) ⊢ absurd(𝐶, 𝑥) ∶ Tm(𝐶(𝑥))

Coproduct types.

𝐴 ∶ Ty, 𝐵 ∶ Ty ⊢ 𝐴 ⊕ 𝐵 ∶ Ty
𝐴 ∶ Ty, 𝐵 ∶ Ty, 𝑥 ∶ Tm(𝐴) + Tm(𝐵) ⊢ 𝜏(𝑥) ∶ Tm(𝐴 ⊕ 𝐵)
𝐶 ∶ Tm(𝐴 ⊕ 𝐵) → Ty, 𝑑 ∶ (𝑥 ∶ Tm(𝐴) + Tm(𝐵)) → 𝐶(𝜏(𝑥)), 𝑥 ∶ Tm(𝐴 ⊕ 𝐵) ⊢ case(𝐶, 𝑑, 𝑥) ∶ Tm(𝐶(𝑥))
𝐶 ∶ Tm(𝐴 ⊕ 𝐵) → Ty, 𝑑 ∶ (𝑥 ∶ Tm(𝐴) + Tm(𝐵)) → 𝐶(𝜏(𝑥)), 𝑥 ∶ Tm(𝐴) + Tm(𝐵) ⊢ case(𝐶, 𝑑, 𝜏(𝑥)) = 𝑑(𝑥)
Universe.

⊢ 𝑈𝑛 ∶ Ty
𝐴 ∶ Tm(𝑈𝑛) ⊢ El𝑛(𝐴) ∶ Ty
𝐴 ∶ Tm(𝑈𝑎) ⊢ lift𝑎,𝑏(𝐴) ∶ Tm(𝑈𝑏)
𝐴 ∶ Tm(𝑈𝑎) ⊢ El𝑏(lift𝑎,𝑏(𝐴)) = El𝑎(𝐴)
𝐴 ∶ Tm(𝑈𝑎) ⊢ lift𝑏,𝑐(lift𝑎,𝑏(𝐴)) = lift𝑎,𝑐(𝐴)
⊢ ⊤𝑛 ∶ Tm(𝑈𝑛)
⊢ El𝑛(⊤𝑛) = ⊤
⊢ lift𝑎,𝑏(⊤𝑎) = ⊤𝑛
etc.

8. A clean specification of the toy type theory, alternative

Dependent sums.

𝐴 ∶ Ty𝑛, 𝐵 ∶ Tm𝑛(𝐴) → Ty𝑛 ⊢ Σ𝑛(𝐴, 𝐵) ∶ Ty𝑛
𝐴 ∶ Ty𝑛, 𝐵 ∶ Tm𝑛(𝐴) → Ty𝑛 ⊢ Tm𝑛(Σ𝑛(𝐴, 𝐵)) ≃ ((𝑎 ∶ Tm𝑛(𝐴)) × Tm𝑛(𝐵(𝑎)))

Dependent products.

𝐴 ∶ Ty𝑛, 𝐵 ∶ Tm𝑛(𝐴) → Ty𝑛 ⊢ Π𝑛(𝐴, 𝐵) ∶ Ty𝑛
𝐴 ∶ Ty𝑛, 𝐵 ∶ Tm𝑛(𝐴) → Ty𝑛 ⊢ Tm𝑛(Π𝑛(𝐴, 𝐵)) ≃ ((𝑎 ∶ Tm𝑛(𝐴)) → Tm𝑛(𝐵(𝑎)))

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 20

Unit types.
⊢ ⊤𝑛 ∶ Ty𝑛
⊢ Tm𝑛(⊤𝑛) ≃ 1

Empty types.
⊢ ⊥𝑛 ∶ Ty𝑛
𝐶 ∶ ⊥𝑛 → Ty𝑛, 𝑥 ∶ Tm𝑛(⊥𝑛) ⊢ absurd(𝐶, 𝑥) ∶ Tm𝑛(𝐶(𝑥))

Coproduct types.
𝐴 ∶ Ty𝑛, 𝐵 ∶ Ty𝑛 ⊢ 𝐴 ⊕𝑛 𝐵 ∶ Ty𝑛
𝐴 ∶ Ty𝑛, 𝐵 ∶ Ty𝑛, 𝑥 ∶ Tm𝑛(𝐴) + Tm𝑛(𝐵) ⊢ 𝜏(𝑥) ∶ Tm𝑛(𝐴 ⊕𝑛 𝐵)
𝐶 ∶ Tm𝑛(𝐴 ⊕𝑛 𝐵) → Ty𝑛, 𝑑 ∶ (𝑥 ∶ Tm𝑛(𝐴) + Tm𝑛(𝐵)) → 𝐶(𝜏(𝑥)), 𝑥 ∶ Tm𝑛(𝐴 ⊕𝑛 𝐵) ⊢ case(𝐶, 𝑑, 𝑥) ∶ Tm𝑛(𝐶(𝑥))
𝐶 ∶ Tm𝑛(𝐴 ⊕𝑛 𝐵) → Ty𝑛, 𝑑 ∶ (𝑥 ∶ Tm𝑛(𝐴) + Tm𝑛(𝐵)) → 𝐶(𝜏(𝑥)), 𝑥 ∶ Tm𝑛(𝐴) + Tm𝑛(𝐵) ⊢ case(𝐶, 𝑑, 𝜏(𝑥)) = 𝑑(𝑥)
Universes.

⊢ 𝑈𝑎,𝑏 ∶ Ty𝑏
⊢ Tm𝑏(𝑈𝑎,𝑏) ≃ Ty𝑎

Cumulativity.
𝐴 ∶ Ty𝑎 ⊢ lift𝑎,𝑏(𝐴) ∶ Ty𝑏
𝐴 ∶ Ty𝑎 ⊢ lift𝑏,𝑐(lift𝑎,𝑏(𝐴)) = lift𝑎,𝑐(𝐴)
𝐴 ∶ Ty𝑎 ⊢ Tm𝑏(lift𝑎,𝑏(𝐴)) ≃ Tm𝑎(𝐴)
coherence for the above isomorphism
optionally the requirement that lift is mono
equations specifying that lift preserves type formers, constructors, eliminators

9. A notion of type theory with only certain types exponentiable

Consider a functor 𝐹 ∶ 𝒞 → 𝒟.
Consider presheaves 𝐴, 𝐵 ∈ 𝒟.
Write precomposition with 𝐹 as 𝐹 ∗ ∶ 𝒟 → 𝒞.
We have a comparison map 𝐹 ∗(𝐵𝐴) → (𝐹 ∗𝐵𝐹 ∗𝐴).
Ty � Tm
Tm representable
category C, model of a certain generalized algebraic theory in Presheaf(C)
Presheaf(D) → Presheaf(C)

10. Manual specification of the type theory

Recall that we write CwF(𝒞) for the category of cwf-structures on a category 𝒞, i.e. the fiber of
the forgetful functor CwF → Cat over 𝒞. Note that a cwf morphism (Id, 𝑢, 𝑣) ∶ (𝒞, Ty0, Tm0) →
(𝒞, Ty1, Tm1) that is the identity on underlying categories necessarily has 𝑣 an isomorphism.

Definition 10.1. Let 𝕀 be a non-empty category. An 𝕀-graded cwf 𝒞 = (𝒞, Ty, Tm) consists of
a category 𝒞 and a diagram 𝕀 → CwF(𝒞). □

Let 𝕀 be a category. An 𝕀-graded cwf 𝒞 = (𝒞, Ty, Tm) consists of a category 𝒞, for each 𝑖 ∈ 𝕀
presheafs Ty𝑖 ∈ 𝐶 and Tm𝑖 ∈ ∫̂ Ty𝑖, and for each 𝑓 ∶ 𝑖 → 𝑖′ a map Ty𝑓 ∶ Ty𝑖 → Ty𝑖′ with an
isomorphism

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 21

Definition 10.2. Dependent sums for a cwf 𝒞 consist of, for Γ ∈ 𝒞:
• given 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴), a type Σ(𝐴, 𝐵) ∈ Ty(Γ),
• additionally, a bijection pair𝐴,𝐵 between (𝑎 ∈ Tm(𝐴))×(𝑏 ∶ Tm(𝐵(𝑎))) and Tm(Σ(𝐴, 𝐵))

that are stable under substitution, i.e. given a substitution 𝜎 ∶ Δ → Γ:
• given 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴), we have Σ(𝐴, 𝐵)[𝜎] = Σ(𝐴[𝜎], 𝐵[𝜎+]).
• given additionally 𝑎 ∈ Tm(𝐴) and 𝑏 ∈ Tm(𝐵(𝑎)), we have pair(𝑎, 𝑏)[𝜎+] = pair(𝑎[𝜎], 𝑏[𝜎]).

□

Remark 10.3. Given dependent sums, the inverse to pair is written (fst, snd), i.e. for 𝐴 ∈ Ty(Γ),
𝐵 ∈ Ty(Γ.𝐴), and 𝑠 ∈ Tm(Σ(𝐴, 𝐵)), we have

fst𝐴,𝐵(𝑠) ∈ Tm(𝐴),
snd𝐴,𝐵(𝑠) ∈ Tm(𝐵(fst(𝑠))).

It follows that fst and snd are also stable under substitution, i.e. given additionally 𝜎 ∶ Δ → Γ,
we have

fst(𝑠)[𝜎] = fst(𝑠[𝜎]),
snd(𝑠)[𝜎] = snd(𝑠[𝜎]).

□

Definition 10.4. A morphism of cwf’s with dependent sums is a morphism 𝐹 ∶ 𝒞 → 𝒟 of
underlying cwf’s such that for Γ ∈ 𝒞:

• given 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴), we have 𝐹(Σ(𝐴, 𝐵)) = Σ(𝐹(𝐴), 𝐹(𝐵)),
• additionally, we have 𝐹(pair𝐴,𝐵) = pair𝐹𝐴,𝐹𝐵.

□

Definition 10.5. Dependent products for a cwf 𝒞 consist of, for Γ ∈ 𝒞:
• given 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴), a type Π(𝐴, 𝐵) ∈ Ty(Γ),
• additionally, a bijection lam𝐴,𝐵 between Tm(𝐵) and Tm(Π(𝐴, 𝐵))

that are stable under substitution, i.e. given a substitution 𝜎 ∶ Δ → Γ:
• given 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴), we have Π(𝐴, 𝐵)[𝜎] = Π(𝐴[𝜎], 𝐵[𝜎+]).
• given additionally 𝑏 ∈ Tm(𝐵), we have lam(𝑏)[𝜎] = lam(𝑏[𝜎+]).

□

Remark 10.6. Given dependent product, the inverse to lam is written eval, i.e. for 𝐴 ∈ Ty(Γ),
𝐵 ∈ Ty(Γ.𝐴), and 𝑓 ∈ Tm(Π(𝐴, 𝐵)), we have

eval𝐴,𝐵(𝑓) ∈ Tm(𝐵).
It follows that eval is also stable under substitution, i.e. given additionally 𝜎 ∶ Δ → Γ, we have

eval(𝑓)[𝜎+] = eval(𝑓[𝜎]).
Given 𝐴 ∈ Ty(Γ), 𝐵 ∈ Ty(Γ.𝐴), 𝑓 ∈ Tm(Π(𝐴, 𝐵)), and 𝑎 ∈ Tm(𝐴), we define

app𝐴,𝐵(𝑓, 𝑎) ∈ Tm(𝐵(𝑎)),
app𝐴,𝐵(𝑓, 𝑎) =def eval(𝑓)(𝑎).

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 22

This is stable under substitution: given additionally 𝜎 ∶ Δ → Γ, we have
app(𝑓, 𝑎)[𝜎] = eval(𝑓)(𝑎)[𝜎]

= eval(𝑓)[𝜎+](𝑎[𝜎])
= eval(𝑓[𝜎])(𝑎[𝜎])
= app(𝑓[𝜎], 𝑎[𝜎]).

□
Definition 10.7. A morphism of cwf’s with dependent products is a morphism 𝐹 ∶ 𝒞 → 𝒟 of
underlying cwf’s such that for Γ ∈ 𝒞:

• given 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴), we have 𝐹(Π(𝐴, 𝐵)) = Π(𝐹(𝐴), 𝐹(𝐵)),
• additionally, we have 𝐹(lam𝐴,𝐵) = lam𝐹𝐴,𝐹𝐵.

□
Definition 10.8. Unit types for a cwf 𝒞 consist of, for Γ ∈ 𝒞:

• a type 1Γ ∈ Ty(Γ),
• a unique inhabitant ptΓ ∈ Tm(1)

that are stable under substitution, i.e. given a substitution 𝜎 ∶ Δ → Γ:
• we have 1Γ[𝜎] = 1∆,
• we have ptΓ[𝜎] = pt∆.

□
Definition 10.9. A morphism of cwf’s with unit types is a morphism 𝐹 ∶ 𝒞 → 𝒟 of underlying
cwf’s such that for Γ ∈ 𝒞:

• we have 𝐹(1Γ) = 1𝐹Γ,
• additionally, we have 𝐹(ptΓ) = pt𝐹Γ.

□
Definition 10.10. Identity types for a cwf 𝒞 consist of, for Γ ∈ 𝒞:

• given 𝐴 ∈ Ty(Γ), a type Id𝐴 ∈ Ty(Γ.𝐴.𝐴),
• additionally, a term refl𝐴 ∈ Tm(Id𝐴[𝑝𝐴, 𝑞𝐴, 𝑞𝐴]),
• given additionally 𝐶 ∈ Ty(Γ.𝐴.𝐴.𝐼𝑑𝐴) and 𝑑 ∈ Tm(𝐶[𝑝𝐴, 𝑞𝐴, 𝑞𝐴, refl𝐴]), a term J𝐴,𝐶,𝑑 ∈

Tm(𝐶) such that J𝐴,𝐶,𝑑[𝑝𝐴, 𝑞𝐴, 𝑞𝐴, refl𝐴] = 𝑑
that are stable under substitution, i.e. given a substitution 𝜎 ∶ Δ → Γ:

• given 𝐴 ∈ Ty(Γ), we have Id𝐴[𝜎++] = Id𝐴[𝜎],
• additionally, we have refl𝐴[𝜎++] = refl𝐴[𝜎]
• given additionally 𝐶 ∈ Ty(Γ.𝐴.𝐴.𝐼𝑑𝐴) and 𝑑 ∈ Tm(𝐶[𝑝𝐴, 𝑞𝐴, 𝑞𝐴, refl𝐴]), we have

J𝐴,𝐶,𝑑[𝜎+++] = J𝐴[𝜎],𝐶[𝜎+++],𝑑[𝜎+].
□

Definition 10.11. A morphism of cwf’s with identity types is a morphism 𝐹 ∶ 𝒞 → 𝒟 of under-
lying cwf’s such that for Γ ∈ 𝒞:

• given 𝐴 ∈ Ty(Γ), we have 𝐹 Id𝐴 = Id𝐹𝐴,
• additionally, we have 𝐹 refl𝐴 = refl𝐹𝐴,
• given additionally 𝐶 ∈ Ty(Γ.𝐴.𝐴.𝐼𝑑𝐴) and 𝑑 ∈ Tm(𝐶[𝑝𝐴, 𝑞𝐴, 𝑞𝐴, refl𝐴]), we have

𝐹J𝐴,𝐶,𝑑 = J𝐹𝐴,𝐹𝐶,𝐹𝑑.
□

Definition 10.12. Empty types for a cwf 𝒞 consist of, for Γ ∈ 𝒞:

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 23

• a type 0Γ ∈ Ty(Γ),
• given 𝐶 ∈ Ty(Γ.0), a term 0-elim𝐶 ∈ Tm(𝐶)

that are stable under substitution, i.e. given a substitution 𝜎 ∶ Δ → Γ:
• we have 0Γ[𝜎] = 0∆,
• given additionally 𝐶 ∈ Ty(Γ.0) we have 0-elim𝐶 [𝜎+] = 0-elim𝐶[𝜎+].

□

Definition 10.13. A morphism of cwf’s with empty types is a morphism 𝐹 ∶ 𝒞 → 𝒟 of underlying
cwf’s such that for Γ ∈ 𝒞:

• we have 𝐹(0Γ) = 0𝐹Γ,
• given 𝐶 ∈ Ty(Γ.0), we have 𝐹0-elim𝐶 = 0-elim𝐹𝐶 .

□

Definition 10.14. Coproduct types for a cwf 𝒞 consist of, for Γ ∈ 𝒞:
• given 𝐴0, 𝐴1 ∈ Ty(Γ), a type +(𝐴0, 𝐴1) ∈ Ty(Γ),
• additionally, terms 𝜏𝐴0,𝐴1,𝑖 ∈ Tm(Γ.𝐴𝑖, +(𝐴0, 𝐴1)[𝑝]) for 𝑖 ∈ {0, 1},
• given additionally 𝐶 ∈ Ty(Γ. + (𝐴0, 𝐴1)) and 𝑓𝑖 ∈ Tm(𝐶[𝑝, 𝜏𝑖]) for 𝑖 ∈ {0, 1}, a term

+-elim𝐶,𝑓0,𝑓1
∈ Tm(𝐶) such that +-elim𝐶,𝑓0,𝑓1

[𝑝, 𝜏𝑖] = 𝑓𝑖.
that are stable under substitution, i.e. given a substitution 𝜎 ∶ Δ → Γ:

• given 𝐴0, 𝐴1 ∈ Ty(Γ), we have +(𝐴0, 𝐴1)[𝜎] = +(𝐴0[𝜎], 𝐴1[𝜎]).
• additionally, we have 𝜏𝑖[𝜎+] = 𝜏𝑖 for 𝑖 ∈ {0, 1},
• given additionally 𝐶 ∈ Ty(Γ. + (𝐴0, 𝐴1)) and 𝑓𝑖 ∈ Tm(𝐶[𝑝, 𝜏𝑖]) for 𝑖 ∈ {0, 1}, we have

+-elim𝐶,𝑓0,𝑓1
[𝜎+] = +-elim𝐶[𝜎+],𝑓0[𝜎+],𝑓1[𝜎+].

□

Definition 10.15. A morphism of cwf’s with coproduct types is a morphism 𝐹 ∶ 𝒞 → 𝒟 of
underlying cwf’s such that for Γ ∈ 𝒞:

• given 𝐴0, 𝐴1 ∈ Ty(Γ), we have 𝐹(+(𝐴0, 𝐴1)) = +(𝐹𝐴0, 𝐹𝐴1),
• additionally, we have 𝐹𝜏𝐴0,𝐴1,𝑖 = 𝜏𝐹𝐴0,𝐹𝐴1,𝑖 for 𝑖 ∈ {0, 1},
• given additionally 𝐶 ∈ Ty(Γ. + (𝐴, 𝐵)) and 𝑓𝑖 ∈ Tm(𝐶[𝑝, 𝜏𝑖]) for 𝑖 ∈ {0, 1}, we have

𝐹+-elim𝐶,𝑓0,𝑓1
= +-elim𝐹𝐶,𝐹𝑓0,𝐹𝑓1

.
□

Definition 10.16. A universe U for a cwf 𝒞 consists of, for Γ ∈ 𝒞,
• a type UΓ ∈ Ty(Γ),
• a type ElΓ ∈ Ty(Γ.U)

that are stable under substitution, i.e. given a substitution 𝜎 ∶ Δ → Γ:
• we have UΓ[𝜎] = U∆,
• we have ElΓ[𝜎+] = El∆.

□

Definition 10.17. A morphism of cwf’s with universes is a morphism 𝐹 ∶ 𝒞 → 𝒟 of underlying
cwf’s such that for Γ ∈ 𝒞:

• we have 𝐹UΓ = U𝐹Γ,
• we have 𝐹ElΓ = U𝐹Γ .

□

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 24

Definition 10.18. Given a cwf 𝒞 with a universe U, the cwf of U-types 𝒞U =def (𝒞, TyU, TmU)
has underlying category 𝒞, types TyU(Γ) =def Tm(𝑈Γ), and terms TmU(𝐴) = Tm(El(𝐴)),
with substitution defined from substitution in the cwf 𝒞. Given Γ ∈ 𝒞 and 𝐴 ∈ TyU(Γ), context
extension and projection is defined as Γ.U𝐴 =def Γ.El(𝐴) and 𝑝U

𝐴 =def 𝑝El(𝐴), and the representing
term is 𝑞U

𝐴 =def 𝑞El(𝐴).
The embedding morphism 𝒞U → 𝒞 is the identity on underlying categories, sends a type

𝐴 ∈ TyU(Γ) to El(𝐴) ∈ Ty(Γ), and is the identity on terms. □
Remark 10.19. The preceeding definition is much nicer in the discrete comprehension category
style of presenting cwf’s. There, one sees directly that any presheaf 𝑇 on 𝒞 with a natural
transformation 𝑢∶ 𝑇 → Ty gives rise to a cwf 𝐶𝑇 with the same underlying category and terms,
but types “restricted” to 𝑇 . Given a universe U, one defines 𝑇 (Γ) as the set of sections of
𝜒(𝑈Γ). □
Definition 10.20. Let 𝒞 be a cwf with a universe U.

• Let 𝒞 have dependent sums. Then U-dependent sums consist of: given 𝐴 ∈ Tm(U)
□

Definition 10.21. Let 𝑇 be a collection of type formers, excluding universes. Let 𝛼 be an
ordinal. An 𝛼-indexed cumulative hierarchy with type formers 𝑇 is a diagram 𝒞∶ 𝛼 → CwF𝑇
that is the identity on underlying categories together with, for 𝑆𝛽 < 𝛼, a universe U𝛽 in 𝒞𝑆𝛽
such that 𝒞𝛽 and 𝒞U𝛽

𝑆𝛽 are isomorphic over 𝒞𝑆𝛽; we require 𝒞U𝛽
𝑆𝛽 → 𝒞𝑆𝛽 to be injective.1 □

In the context of 𝒞 ∈ CwF𝛼
𝑇 , we write Ty𝑛(Γ) for Ty𝒞𝑛

(Γ).
Definition 10.22. Let 𝒞 and 𝒟 be 𝛼-indexed cumulative hierarchies with type formers 𝑇 . A
morphism 𝐹 ∶ 𝒞 → 𝒟 is a natural transformation such that, for 𝑆𝛽 < 𝛼, 𝐹𝑆𝛽 is a morphism of
cwf’s with universe. □

We denote CwF𝛼
𝑇 the category of 𝛼-indexed cumulative hierarchy with type formers 𝑇 . As a

category of models of a generalized (or essentially) algebraic theory, it is cocomplete.
A weak morphism of objects in CwF𝛼

𝑇 is a morphism of underlying objects in CwF𝛼. A
pseudomorphism preserves context extension only up to canonical isomorphism. A weak pseudo-
morphism is like a pseudomorphism, but does not have to respect the type formers 𝑇 .

11. Standard model

Let 𝜅 be an 𝛼-indexed hierarchy of regular cardinals. We have a standard model Set ∈ CwF𝛼
𝑇

that has as underlying category the category of sets Set and as types at level 𝑛 < 𝛼, the families
that are valued in sets of cardinality bounded by 𝜅𝑛.

Given 𝒞 ∈ CwF𝛼
𝑇 , we have a global section weak pseudomorphism 𝐹 ∶ 𝒞 → Set that on

underlying categories is given by 𝒞(1, −) and on types sends 𝐴 ∈ Ty𝑛(Γ) to the family sending
𝜎 ∶ 1 → Γ to Tm(𝐴[𝜎]).

Given a small category ℂ, we have a presheaf model ℂ̂ ∈ CwF𝛼
𝑇 that has as underlying

category the presheaf category ℂ̂ and as types at level 𝑛 < 𝛼 the presheaves that are valued in
sets of cardinality bounded by 𝜅𝑛. This construction is contravariantly weakly functorial: given
a functor 𝐹 ∶ 𝒞 → 𝒟, we obtain a weak morphism �̂� → 𝐶 induced by precomposition with 𝐹 (it
is a nice accident that we obtain a weak morphism instead of just a weak pseudomorphism).

Given 𝒞 ∈ CwF𝛼
𝑇 , we have a Yoneda weak pseudomorphism 𝐹 ∶ 𝒞 → 𝒞 that on underlying

categories is given by the Yondeda functor 𝑦 and on types sends 𝐴 ∈ Ty𝑛(Γ) to the presheaf
sending an element 𝜎 ∶ Δ → Γ of 𝑦Γ to Tm(𝐴[𝜎]).

1Investigate whether this restriction can be lifted.

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 25

12. Manual specification of the category of renamings

For the remainder of the section, let us fix an object 𝒞 of CwF𝛼
𝑇 . Given 𝑛 < 𝛼, we write Ty𝑛

and Tm𝑛 for Ty𝒞𝑛
and Tm𝒞𝑛

, respectively.
Let 𝒟 denote the colimit of 𝒞. Explicitly, the underlying category of 𝒟 is the same as for 𝒞;

a type in 𝒟 is a pair (𝑛, 𝐴) with 𝑛 < 𝛼 and 𝐴 ∈ Ty(𝒞𝑛), subject to the quotient that identifies
(𝑛, 𝐴) and (𝑛′, 𝐴′) if the images of 𝐴 and 𝐴′ are equal in Ty(𝒞𝑛+1) (this description uses that
𝒞 consists of monomorphisms).

We define category Ren(𝒞) of renamings of 𝒞 as that of 𝒟, i.e. Ren(𝒞) =def Ren(𝒟).

13. Manual specification of neutral terms and normal forms

We define normal forms and neutral terms. These are defined mutually inductive with natural
interpretation maps to terms. That is, we define

NF ∈ ̂TyRen(𝒞), tm ∶ NF𝐹 → Tm𝒞,
NE ∈ ̂TyRen(𝒞), tm ∶ NE𝐹 → Tm𝒞,

all by mutual induction.
Given 𝑛 < 𝛼 and 𝐴 ∈ Ty𝑛, we write NF𝑛(Γ, 𝐴) for NF(Γ, (𝑛, 𝐴)))
Neutral to normal

𝑡 ∈ NE𝑛(Γ, 𝐴)
ne(𝑡) ∈ NF𝑛(Γ, 𝐴) tm(ne(𝑡)) = tm(𝑡)

Variables

𝐴 ∈ Ty𝑛(Γ) 𝑎 ∈ TmRen(𝒞)(Γ, 𝐴)
var(𝑎) ∈ NF𝑛(Γ, 𝑎) tm(var(𝑎)) = 𝐹(𝑎)

Dependent sums.

𝐴 ∈ Ty𝑛(Γ) 𝐵 ∈ Ty𝑛(Γ.𝐴) 𝑠 ∈ NE𝑛(Γ, Σ(𝐴, 𝐵))
fst(𝑠) ∈ NE𝑛(Γ, 𝐴) tm(fst(𝑠)) = fst(tm(𝑠))

snd(𝑠) ∈ NE𝑛(Γ, 𝐵(fst(tm(𝑠)))) tm(snd(𝑠)) = snd(tm(𝑠))

𝐴 ∈ Ty𝑛(Γ) 𝐵 ∈ Ty𝑛(Γ.𝐴) 𝑎 ∈ NF𝑛(Γ, 𝐴) 𝑏 ∈ NF𝑛(Γ, 𝐵(tm(𝑎)))
pair(𝑎, 𝑏) ∈ NF𝑛(Γ, Σ(𝐴, 𝐵))) pair(𝑎, 𝑏)) = pair(tm(𝑎), tm(𝑏))

Dependent products.

𝐴 ∈ Ty𝑛(Γ) 𝐵 ∈ Ty𝑛(Γ.𝐴) 𝑓 ∈ NE𝑛(Γ, Π(𝐴, 𝐵)) 𝑎 ∈ NF𝑛(Γ, 𝐴)
app(𝑓, 𝑎) ∈ NF𝑛(Γ, 𝐵(tm(𝑎))) tm(app(𝑓, 𝑎)) = app(tm(𝑓), tm(𝑎))

𝐴 ∈ Ty𝑛(Γ) 𝐵 ∈ Ty𝑛(Γ.𝐴) 𝑓 ∈ NF𝑛(Γ.𝐴, 𝐵)
lam(𝑏) ∈ NF(Γ, Π(𝐴, 𝐵)) tm(lam(𝑏)) = lam(tm(𝑏))

Universes.

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 26

𝑚 < 𝑛 𝐴 ∈ NF𝑛(Γ, U𝑚) 𝐵 ∈ NF𝑛(Γ.El(𝐴), U𝑚)
Σ(𝐴, 𝐵) ∈ NF𝑛(Γ, U𝑚) tm(Σ(𝐴, 𝐵)) = Σ(tm(𝐴), tm(𝐵))

𝑚 < 𝑛 𝐴 ∈ NF𝑛(Γ, U𝑚) 𝐵 ∈ NF𝑛(Γ.El(𝐴), U𝑚)
Π(𝐴, 𝐵) ∈ NF𝑛(Γ, U𝑚) tm(Σ(𝐴, 𝐵)) = Π(tm(𝐴), tm(𝐵))

𝑖 < 𝑚 < 𝑛
U𝑖 ∈ NF𝑛(Γ, U𝑚) tm(U𝑖) = U𝑖

We have to check that these definitions respect the quotient defining the types of Ren(𝒞).

14. Manual specification of the glueing

We will define an object ℰ of CwF𝛼
𝑇 .

Write 𝑖 ∶ Ren(𝒞) → 𝒞 for the canonical weak morphism. The underlying category is defined
as the sconing of the functor

𝒞 𝑦
// 𝒞 ̂𝑖 // ̂Ren(𝒞),

i.e. ℰ =def
̂Ren(𝒞) ↓ 𝐹 where 𝐹 =def ̂𝑖 ∘ 𝑦.

Contexts and substitutions. The objects of ℰ are triples (Γ, |Γ|, 𝛾) where Γ ∈ 𝒞, |Γ| ∈
̂Ren(𝒞), and 𝛾 ∶ |Γ| → 𝐹Γ. We write such an object simply as |Γ|

𝛾
−→ 𝐹Γ. A morphism from

(Δ, |Δ|, 𝛿) to (Γ, |Γ|, 𝛾) is written as a pair (𝜎, |𝜎|) with morphisms 𝜎 ∶ Δ → Γ and |𝜎| ∶ |Δ| → |Γ|
such that the following diagram commutes:

|Δ| 𝛿 //

|𝜎|
��

𝐹Δ
𝐹𝜎
��

Γ 𝛾
// 𝐹Γ.

Types. Let |Γ|
𝛾
−→ 𝐹Γ be an object of ℰ. We define Ty𝑛(|Γ|

𝛾
−→ 𝐹Γ) as the set of triples

(𝐴, |𝐴|, 𝛼) with types 𝐴 ∈ Ty𝑛(Γ), |𝐴| ∈ Ty𝑛(|Γ|), i.e. |𝐴| is a 𝜅𝑛-small presheaf over ∫ |Γ|, and
a natural transformation 𝛼∶ |𝐴| → 𝐹𝐴[𝛾] of presheaves over ∫ |Γ|. The action of substitutions
on Ty𝑛 is evident.

[Should we represent 𝛼 as a map |Γ|.|𝐴| → 𝐹(Γ.𝐴) with a commuting diagram condition?]
Terms. Given a type (𝐴, |𝐴|, 𝛼) ∈ Ty𝑛(|Γ|

𝛾
−→ 𝐹Γ), we define Tm(𝐴, |𝐴|, 𝛼) as the set of

pairs (𝑡, |𝑡|) with terms 𝑡 ∈ Tm(𝐴) and |𝑡| ∈ Tm(|𝐴|) such that 𝛼(|𝑡|) = 𝐹𝑡[𝛾]. The action of
substitutions on Tm𝑛 is evident.

Context extension. Consider a type (𝐴, |𝐴|, 𝛼) ∈ Ty𝑛(|Γ|
𝛾
−→ 𝐹Γ). The associated context

extension is (Γ.𝐴, |Γ|.|𝐴|, 𝛾.𝛼) where 𝛾.𝑎 =def ⟨𝛾 ∘ 𝑝|𝐴|, 𝛼(𝑞|𝐴|)⟩. Here, we take the liberty of
using cwf notation also for the non-canonical context extension 𝐹(Γ.𝐴) (recall that 𝐹 is a weak
pseudomorphism and preserves context extension up to canonical isomorphism). The associated
context projection is 𝑝(𝐴,|𝐴|,𝛼) =def (𝑝𝐴, 𝑝|𝐴|). The representing term is 𝑞(𝐴,|𝐴|,𝛼) =def (𝑞𝐴, 𝑞|𝐴|).
One easily checks the universal property of context extension.

Hierarchy. Given 𝑛 ≤ 𝑛′ < 𝛼, we have a natural transformation Ty𝑛 → Ty𝑛′ . These
assemble into an 𝛼-indexed diagram of cwf’s.

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 27

Dependent sums. Consider types (𝐴, |𝐴|, 𝛼) ∈ Ty𝑛(|Γ|
𝛾
−→ 𝐹Γ) and (𝐵, |𝐵|, 𝛽) ∈ Ty𝑛(Γ.𝐴, |Γ|.|𝐴|, 𝛾.𝛼).

The associated dependent sums is (Σ(𝐴, 𝐵), Σ(|𝐴|, |𝐵|), Σ(𝛼, 𝛽)) where

Σ(𝛼, 𝛽) ∶ Σ(|𝐴|, |𝐵|) → 𝐹(Σ(𝐴, 𝐵))[𝛾]
comes from the map 𝛾.𝛼.𝛽 over 𝛾.

|Γ|.|A|.|B| → F(Γ.A.B) → F(Γ.Σ(A,B)) → FΓ.F(Σ(A,B)) | |Γ| → FΓ
is the composition of

Σ(|𝐴|, |𝐵|) / / Σ(|𝐴|, 𝐹𝐵[𝛾.𝛼]) // Σ(𝐹𝐴[𝛾], 𝐹𝐵[𝛾])

FA � Ty(FΓ) FB � Ty(F(Γ.A))
|A| � Ty(|Γ|) |B| � Ty(|Γ|.|A|)
|Γ| � � : |A| → FA[�] |Γ|.|A| � � : |B| → FB[�.�]
|Γ| � ? : Σ(|A|, |B|) → F(Σ(A, B))[�]
Tm(|Γ|.Σ(|A|, |B|), F(Σ(A, B))[�][p]) — Tm(|Γ|.|A|.|B|, F(Σ(A, B))[�][pp]) —
Γ.A.B → Γ with Tm(Γ.A.B, Σ(A, B)[pp]) has universal property of context extension
hence has F(Γ.A.B) → FΓ with Tm(F(Γ.A.B), F(Σ(A, B)[pp]))
goes via Σ(𝐹𝐴, 𝐹𝐵).
Universes.
Given a context |Γ|

𝛾
−→ 𝐹Γ, we define the universe

U𝑛 ∈ Ty𝑛+1(|Γ|
𝛾
−→ 𝐹Γ),

U𝑛 =def (U𝑛, (𝑋 ∶ 𝐹U𝑛[𝛾]) × (𝐹El𝑛[𝛾+](𝑋) → U𝑛), 𝜋1)
with

El𝑛 ∈ Ty𝑛+1(Γ.U𝑛, |Γ|.((𝑋 ∶ 𝐹U𝑛[𝛾]) × (𝑃 ∶ 𝐹El𝑛[𝛾+](𝑋) → U𝑛)), 𝛾.𝜋1),
El𝑛 = (El𝑛, (𝑥 ∶ 𝐹El𝑛(𝑋)) × El𝑛(𝑃 (𝑥)), 𝜋1).

An element of Tm(U𝑛, (𝑋 ∶ 𝐹U𝑛[𝛾]) × (𝐹El𝑛(𝑋) → U𝑛), 𝜋1) consists of a term 𝑡 ∈ Tm(U𝑛)
and a term |𝑡| ∈ Tm((𝑋 ∶ 𝐹U𝑛[𝛾]) × (𝐹El𝑛(𝑋) → U𝑛)) such that 𝜋1(|𝑡|) = 𝐹𝑡. This corresponds
to a type 𝐴 ∈ Ty𝑛(Γ) and a type |𝐴| ∈ Ty𝑛(|Γ|.𝐹𝐴[𝛾]).

[So this forces types to be defined fiberwise. Let us try to define universes differently.]
Given a context |Γ|

𝛾
−→ 𝐹Γ, we define the universe

U𝑛 ∈ Ty𝑛+1(|Γ|
𝛾
−→ 𝐹Γ),

U𝑛 =def (U𝑛, (𝑋 ∶ 𝐹U𝑛[𝛾]) × (|𝑋| ∶ U𝑛) × ((𝐹El𝑛[𝛾+](𝑋) → El𝑛(|𝑋|))), 𝜋1)
with

El𝑛 ∈ Ty𝑛+1(Γ.U𝑛, |Γ|.((𝑋 ∶ 𝐹U𝑛[𝛾]) × (|𝑋| ∶ U𝑛) × ((𝐹El𝑛[𝛾+](𝑋) → El𝑛(|𝑋|)))), 𝛾.𝜋1),
El𝑛 = (El𝑛, El𝑛(𝜋2), 𝜋3).

An element of Tm(U𝑛, (𝑋 ∶ 𝐹U𝑛[𝛾]) × (|𝑋| ∶ U𝑛) × ((𝐹El𝑛(𝑋) → El𝑛(|𝑋|))), 𝜋1) consists of
a term 𝑡 ∈ Tm(U𝑛) and a term |𝑡| ∈ Tm(𝑋 ∶ 𝐹U𝑛[𝛾]) × (|𝑋| ∶ U𝑛) × ((El𝑛(|𝑋|) → 𝐹El𝑛(𝑋)))
such that 𝜋1(|𝑡|) = 𝐹𝑡. This corresponds to a type 𝐴 ∈ Ty𝑛(Γ) and a type |𝐴| ∈ Ty𝑛(|Γ|) with
a term Tm(|𝐴| → 𝐹𝐴[𝛾]).

[But that is really different from before. Here, the total space |𝑋| is small, before only the
fibers of the map |𝑋| → 𝐹𝑋[𝛾] were small. I am curious to know whether both of these variants
of glueings will work.]

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 28

In the twisted glueing, the types are now modified. A type over |Γ| 𝛼−→ ̂𝑖𝑦Γ additionally consists
of maps

NE𝑛(𝐴)[𝛼]

tm[𝛼] %%KK
KKK

KKK
K

// |𝐴|

��

// NF𝑛(𝐴)[𝛼]

tm[𝛼]yysss
sss

sss

̂𝑖𝑦𝐴[𝛼]

NORMALIZATION BY EVALUATION FOR CATEGORIES WITH FAMILIES 29

15. Taking fibrations of cwf seriously

Given a cwf 𝒞 and a context Γ ∈ 𝒞, we write
TyCat∁(Γ) // 𝒞/Γ

for the fully faithful functor sending 𝐴 ∈ Ty(Γ) to 𝑝𝐴 ∶ Γ.𝐴 → Γ. We call TyCat𝒞(Γ) the
category of types in context Γ. These assemble to a category-valued presheaf TyCat𝒞 ∶ 𝒞op →
Cat.

Definition 15.1. A fibration 𝑃 ∶ ℰ → 𝒞 of cwf’s is a strict morphism 𝑃 with the following
structure.

• On underlying categories, it is a cloven isofibration.
• For Γ ∈ ℰ, 𝑋 ∈ Tyℰ(Γ), 𝐵 ∈ Ty𝒞(𝑃Γ), and 𝑓 ∶ 𝑃Γ.𝐵 → 𝑃Γ.𝑃𝑋 over 𝑃Γ, we have

𝐾𝑋,𝐵,𝑓 ∈ Tyℰ(Γ) and 𝑘𝑋,𝐵,𝑓 ∶ Γ.𝐾𝑋,𝐵,𝑓 → Γ.𝑋 over Γ such that 𝑘𝑋,𝐵,𝑓 is a cartesian
lift of 𝑓 with respect to the functor 𝑃Γ ∶ ℰ/Γ → 𝒞/𝑃Γ:

𝐾𝑋,𝐵,𝑓
𝑘𝑋,𝐵,𝑓

cart
// Γ.𝑋 ℰ/Γ

𝑃Γ
��

𝑃Γ.𝐵 // 𝑃Γ.𝑃𝑋 𝒞/𝑃Γ.

Furthermore, this data is stable under substitution, i.e. given 𝜎 ∶ Δ → Γ, we have
𝐾𝑋,𝐵,𝑓 [𝜎] = 𝐾𝑋[𝜎,𝐵[𝑃𝜎],𝑓[𝑃𝜎]]
𝑘𝑋,𝐵,𝑓 [𝜎] = 𝑘𝑋[𝜎,𝐵[𝑃𝜎],𝑓[𝑃𝜎]].

□
Let now 𝑃 ∶ ℰ → 𝒞 be a fibration of cwf’s and 𝐹 ∶ 𝒟 → 𝒞 a pseudomorphism of cwf’s.

Construct the pullback
ℱ //

��

_�
ℰ

𝑄
��

𝒟 𝐹 // 𝒞
in the category of cwf’s without context extension.

References
[Awo16] Steve Awodey. Natural models of homotopy type theory. Mathematical Structures in Computer Science,

pages 1–46, 2016.

	1. Categories with families
	1.1. Extensional type formers
	1.2. Empty types
	1.3. Coproduct types
	1.4. Identity types
	1.5. W-types
	1.6. Preservation of type formers
	1.7. Universes

	2. Renamings
	3. Abstract Nonsense
	4. Contextual cwf's
	5. Neutral terms and normal forms
	6. The twisted glueing
	6.1. A universe.
	6.2. Starting the normalization

	7. A clean specification of the toy type theory
	8. A clean specification of the toy type theory, alternative
	9. A notion of type theory with only certain types exponentiable
	10. Manual specification of the type theory
	11. Standard model
	12. Manual specification of the category of renamings
	13. Manual specification of neutral terms and normal forms
	14. Manual specification of the glueing
	15. Taking fibrations of cwf seriously
	References

