
Natural numbers from integers

Abstract—In homotopy type theory, a natural number type is
freely generated by an element and an endomorphism. Similarly,
an integer type is freely generated by an element and an
automorphism. Using only dependent sums, identification types,
extensional dependent products, and a type of two elements with
large elimination, we construct a natural number type from an
integer type. As a corollary, homotopy type theory with only Σ,
Id, Π, and finite colimits with descent (and no universes) admits
a natural number type. This improves and simplifies a result by
Rose and settles a long-standing open question.

I. INTRODUCTION

In set theory and other impredicative background theories,
an object of natural numbers is easily constructed from some
source of infinity. As soon as we have a set X with a “zero’
element z : X and a “successor” embedding s : X → X
whose image does not contain z, we may carve out the
natural numbers by taking the intersection of all subsects of
X closed under z and s. However, this reasoning is essentially
impredicative: for this definition to make sense, we need
subsets of X to again be a set, that is, the power set of X to
exist. In predicative settings, such as Martin-Löf’s dependent
type theory, this reasoning is ill-founded. Therefore, the natural
numbers (and other inductive types) are usually axiomatically
assumed.

Homotopy type theory is a version of Martin-Löf’s type the-
ory with functional extensionality, univalence for any universes
that are assumed, and generalizations of inductive types called
higher inductive types. A special case of a non-recursive higher
inductive types is the circle S1, freely generated by an element
b and an identification of b with itself. As proved in [1], the
loop space of the circle (the type of self-identifications of
its base point) has the universal properties of the integers:
it is freely generated by an element (given by the trivial
self-identification) and an automorphism (given by running
along the circle). This object feels infinitary, even though
formally speaking is generated using purely finitary means: the
higher inductive type of the circle does not have any recursive
constructors. Categorically speaking, it arises from only finite
limits and colimits.

The loop space of the circle provides a free source of
infinity in the higher-dimensional setting. If our theory was
impredicative, we could attempt to use to replay the previous
argument and construct the natural numbers. This leaves an
open question: in a predicative theory such as homotopy
type theory, can we construct the natural numbers form the
integers? To our knowledge, this question was first raised in
a discussion between Egbert Rijke and Mike Shulman on the
nForum [2]. (Instead of the integers, we may also assume non-
recursive higher inductive types such as the circle and assume
a univalent universe.)

The first real progress made towards this question was made
by Robert Rose in his PhD thesis [3]. Surprisingly to many
experts, he was able to construct the natural numbers from the
integers in homotopy type theory. However, his construction
is quite complicated, and needs two univalent universes (only
the outer one may be replaced by large elimination).

Our contribution in this paper is to provide a new con-
struction that we believe to be much simpler. Furthermore,
our construction is more general: we do not need any uni-
valent universes whatsoever. Instead, we just rely on effec-
tivity of finite coproducts (that the coprojections are disjoint
embeddings; equivalently, that we have a two-element type
that satisfies descent, a homotopically weakened version of
large elimination). In fact, we present two versions of our
construction: a direct one in Section VI and an indirect one
in Section VII.

The categorical analogue of our result is the following. Sup-
pose we have a locally cartesian closed (higher) category with
finite coproducts that satisfy descent. Then given an integer
object, we have a natural number object. In particular, any
locally cartesian closed (higher) category with finite colimits
that satisfy descent has a natural number object.

The higher categorical version of our setting is a locally
cartesian closed higher category with finite coproducts that
satisfy descent and an initial integer algebra. As per Remark
3, this is in particular provided by a locally cartesian closed
higher categories with finite colimits that satisfy descent.
When replayed in that setting (in the continued absence of
an internal language result), the analogue of our constructions
in that setting then prove that such a (higher) category has a
natural number object.1

II. SETTING: A RESTRICTED TYPE THEORY

We work in dependent type theory with only a limited
set of type formers as set out below. We use ≡ to denote
judgmental equality and ≡def to denote judgmental definitions.
We generally follow the homotopy type theory book [5] for
notational conventions.

We have the identification type x =A y for x, y : A
in the sense of Martin-Löf (no equality reflection or ax-
iom K). We have the unit type ⊤, dependent sum types∑

(x:A) B(x), and dependent product types
∏

(x:A) B(x), all
satisfying judgmental β- and η-laws. Dependent products are

1A weaker higher categorical result, namely that every elementary higher
topos has a natural number object, is claimed in [4]. Note that an elementary
higher topos is impredicative by definition, that is, has access to size-
preserving power objects. This simplifies the problem greatly. Furthermore, we
believe that the approach of that paper is broken, due to a mistake in the proof
of Lemma 1.2.1: Eq(g1, g2) is not generally a subspace of Map/X(g1, g2).

extensional, meaning functional extensionality holds (phrased
using identification types).

We assume a two-element type 2, freely generated by
elements 0, 1 : 2. Its universal property says that for any type
C with elements d0, d1 : C, the type of maps f : 2 → C with
identifications f(0) =C d0 and f(1) =C d1 is contractible.
From this, we can derive a dependent elimination principle
whose reduction rule holds up to identification type.

A. Descent

We assume the two-element type satisfies descent. This
encapsulates elimination into a univalent universe, allowing
us to omit universes from our type theory. The principle
is as follows. Given types A0 and A1, we have a family
C(x) over x : 2 together with equivalences C(0) ≃ A0 and
C(1) ≃ A1. Here, the notion of equivalence is defined as
usual in homotopy type theory (using dependent sums and
products). This is a homotopically weakened version of large
elimination.

B. Basic consequences

a) Elimination principle for two-element type: From the
universal property of the two-element type 2, we can derive
a dependent elimination principle whose reduction rule holds
up to identification type. More precisely, given C(x) for x : 2
with d0 : C(0) and d1 : C(1), we obtain e(x) : C(x) for
x : 2 together with identifications e(0) =C d0 and e(1) =C

d1. Moreover, the type of such e is contractible (this uses
functional extensionality).

b) Empty type: We may construct the empty type as

⊥ ≡def 0 =2 1.

Its recursion principle follows from descent for the two-
element type: given any type A, we have a family C(x) over
x : 2 with C(0) ≃ ⊤ and C(1) ≃ A. From y : 0 =2 1, we then
get C(0) ≃ C(1), so A ≃ ⊤, meaning that A is contractible.
From this, we obtain the elimination principle for ⊥ as usual.

c) 2 is a set: By descent, we have a family C(x) over
x : 2 with C(0) ≃ ⊤ and C(1) ≃ ⊥. The sum over x :
2 of C(x) has an element at x ≡ 0. By induction over 2
and ⊥, every element in the sum is equal to it. This shows
that

∑
(x:2) C(x) is contractible. Since C(0) is contractible, it

follows that 0 =2 0 is contractible. A dual argument shows
that 1 =2 1 is contractible, making 2 a set by 2-induction.

d) Binary coproducts: From descent for the two-element
type, we can construct the binary coproduct type A0 ⨿A1 of
types A0 and A1. First, we obtain C(x) over x : 2 from
descent. We then define

A0 ⨿A1 ≡def

∑
x:2

C(x).

The coprojections τi : Ai → A0 ⨿ A1 for i ∈ {0, 1} are
defined by passing backward along the equivalence C(i) ≃ Ai.
The universal property of the binary coproducts reduces using
dependent products to the universal property of the two-
element type. Given functions fi : Ai → C for i ∈ {0, 1},

we write [f0, f1] : A → C for the map induced by recursion.
Equivalently, the dependent elimination principle for coprod-
ucts is justified by that principle for the two-element type.
Its reduction rules again hold up to identification type. Given
C(x) for x : 2 and f(ai) : C(τi(ai)) for i ∈ {0, 1}, our
notation for dependent elimination is [f0, f1] :

∏
(x:2) C(x).

e) No confusion for binary coproducts: The constructors
for binary coproducts are disjoint embeddings. Disjointness
follows from the tautology ¬(0 =2 1). The embedding
property reduces to contractibility of 0 =2 0 and 1 =2 1.

f) Descent for binary coproducts: No confusion implies
descent for binary products (in fact, it is equivalent to our
assumption of descent for the two-element type). This is
the following principle, again encapsulating a homotopically
weakened version of large elimination into a univalent uni-
verse. Given families Ci(ai) over ai : Ai for i ∈ {0, 1},
we have a family D(y) over y : A0 ⨿ A1 with equivalences
D(τi(ai)) ≃ Ci(ai). To justify it, we first construct

D′ ≡def

(∑
a0:A0

C0(a0)
)
⨿
(∑
a1:A1

C1(a1)
)
.

Coproduct recursion induces a map p : D′ → A0⨿A1. By no
confusion, this map pulls back along τi for i ∈ {0, 1} to the
projection from

∑
(ai:Ai)

Ci(ao) to Ai. We may thus define
D(y) as the fiber of p over y.

g) Finite coproducts with no confusion and descent: Of
course, we may reduce ternary coproducts and and higher to
binary coproducts. The same holds for properties such as no-
confusion or descent. For a coproduct of (external) arity k ∈ N,
we denote the coprojections by τi where 0 ≤ i < k.

III. NATURAL NUMBERS AND INTEGERS

A natural number algebra is a type A together with an
element z : A and an endofunction s : A → A. Note that this
is an external notion (lacking universes, we may not quantify
internally over types A in our type theory). We generally refer
to a natural number algebra just by its underlying type. We
use z and s generically to refer to the structure components
of a natural number algebra A. The structure map of A is the
map ⊤⨿A → A induced by z and s.

Given natural number algebras A and B, the type of algebra
morphisms from A to B consists of a function f : A → B with
f(z) =B z and f(s(a)) =B s(f(a)). We call a natural number
algebra A initial if this type is contractible for any B. We then
say A is a natural number type. Every natural number algebra
A has an identity algebra morphisms idA. Algebra morphisms
f : A → B and g : B → C admit a composition g ◦ f :
A → C. These operations satisfy neutrality and associativity
laws (phrased using identification types). We will not need any
higher coherence conditions.

We also have displayed analogues of these notions. Given
a natural number A, a natural number algebra B displayed
over A is a family B(a) over a : A with z : B(z) and
sa(b) : B(s(a)) for a : A and b : B(a). Its total algebra is
obtained by taking the dependent sum. The type of sections of
B consists of b(a) : B(a) for a : A together with b(z) =B(z) z

and b(s(a)) =B(s(a)) s(b(a)) for a : A. We say that A has
elimination if every natural number algebra displayed over it
has a section. As is standard, one proves (externally):

Lemma III.1. A natural number algebra is initial exactly if
it has elimination.

The following notion features centrally in our constructions.

Definition III.2. A natural number algebra A is stable if its
structure map [z, s] : ⊤⨿A → A is an equivalence.

This means that z : ⊤ → A and s : A → A form
a colimiting cocone, i.e., that A is non-recursively freely
generated by z and s. Lambek’s lemma states that every initial
natural number algebra is stable.

We call a natural number algebra A an integer algebra if
its endofunction s is an equivalence. Note that this condition
is a proposition. This justifies defining morphisms of integer
algebras as morphisms of the underlying natural number
algebras. An integer algebra A is initial if the type of integer
algebra morphisms from A to B is contractible for any integer
algebra B. We then say that A is an integer type (more
verbosely, a type of integers).

We have a notion of displayed integer algebra analogous to
the case of natural number algebras. The type of sections of a
displayed integer algebra is defined as the type of sections of
the underlying displayed natural number algebra. Analogous
to the case of natural numbers, we have:

Lemma III.3. An integer algebra is initial exactly if it has
elimination.

Our goal in the rest of this article is to construct a natural
number type from an integer type. We thus now make the
standing assumption of an integer type Z, with element
denoted Z : Z and automorphism denoted S : Z ≃ Z
(to distinguish from the natural number algebras we will
consider). Note that any other integer type is equivalent to it
(by universality). It thus makes sense to speak of the integer
type Z.

The rest of this paper is devoted to proving the following:

Theorem III.4. Assume an integer type. Then we have a
natural number type.

We provide two separate proofs, a direct one in Section VI
and an indirect one in Section VII.

IV. AN EQUIVALENCE Z ≃ Z⨿ Z
Our starting point for constructing the natural numbers is

the following observation.

Lemma IV.1. We have an equivalence Z ≃ Z⨿ Z.

Proof. We first define the operation of squaring integer al-
gebras. Given an integer algebra X ≡ (X, z, s), its square
Sq(X) is the integer algebra (X, z, s◦ s). Note that s◦ s is an
equivalence since s is. This operation is functorial: it has an
evident action on morphisms of integer algebras (we do not
need any higher witnesses of functoriality). Furthermore, the

functorial action reflects equivalences: if Sq(f) is invertible,
then so is f .

Next, for an integer algebra X ≡ (X, z, s), we define the
twisted rotation integer algebra Tw(X) with carrier X ⨿ X ,
element τ0(z), and automorphism r relating τ0(x) with τ1(x)
and τ1(x) with τ0(s(x)). This uses the universal property of
binary coproducts to define r.

Note that the automorphism of Sq(Tw(X)) relates τ0(x)
with τ0(s(x)) and τ1(x) with τ1(s(x)). That is, on each
component, it is just given by the original automorphism
s. In particular, τ0 forms an algebra morphism from X to
Sq(Tw(X)).

By initiality of Z, we have an algebra map Z → Sq(Z). Let
us call its underlying map double : Z → Z. Note that

[double, S ◦ double] : Z⨿ Z → Z

forms an algebra map from Tw(Z) to Z.
To construct an equivalence Z ≃ Z⨿Z of types, it suffices to

show that the unique algebra map c : Z → Tw(Z) is invertible.
By initiality of Z, we have that [double, S ◦ double] ◦ c is the
identity morphism, in particular invertible. If we can show that

u ≡def c ◦ [double, S ◦ double]

is invertible, then c will be invertible by 2-out-of-6 for
equivalences. In fact, we will show that u is the identity (on
underlying maps).

Note that Sq(u) is an algebra endomorphism on Sq(Tw(Z)).
By initiality of Z, we have Sq(u) ◦ τ0 = τ0. On underlying
maps, that is u ◦ τ0 = τ0. It remains to check u ◦ τ1 = τ1. For
x : Z, we calculate

u(τ1(x)) = c(S(double(x)))

= r(d(double(x)))

= r(u(τ0(x)))

= r(τ0(x))

= τ1(x).

V. APPROXIMATING THE INTEGERS VIA HALVES

If we already had the natural numbers N, we could describe
the integers as being built out of two copies of the natural
numbers, one for the positive and one for the negative half:

Z ≃ N⨿⊤⨿ N (1)

Conversely, we may use a decomposition with similar proper-
ties to tell us something about the integers, for example when
an integer is positive or negative. This is the intuition behind
the following construction.

Construction V.1. Consider types A and B with an equiv-
alence e : B ⨿ A ≃ A. Then we have an automorphism on
A⨿B ⨿A given by reassociating the equivalence

A⨿ (B ⨿A) ≃ (A⨿B)⨿A

where we act using e on the left component and using the
inverse of e on the left component. Given an element b : B,
this forms an integer algebra structure on A⨿B ≃ A.

In the above situation, initiality of Z provides us with an
algebra morphism from Z to A⨿B⨿A. Restricting along the
underlying function, the ternary decomposition on the right
induces a decomposition

Z ≃ Z− ⨿ Z0 ⨿ Z+ (2)

of Z into three parts (this uses effectiveness of coproducts —
that the coprojections are disjoint embeddings). The automor-
phism S of Z restricts to separate equivalences S− : Z− ≃
Z−⨿Z0 and S+ : Z0⨿Z+ ≃ Z+ that combine to give S via
the above decomposition. Furthermore, since Z : Z is sent to
τ1(b), we know that Z lies in the middle component Z0.

In the presence of the naturals, one may prove that the
decomposition (2) in fact agrees with the decomposition (1).

VI. FIRST APPROACH: DIRECT

We now give a direct construction of an initial natural num-
ber algebra. First we apply Construction V.1 to the equivalence
Z ≃ Z ⨿ Z from Lemma IV.1 and the element Z : Z to
obtain the decomposition (2). We write M for Z0 ⨿ Z+. By
construction, for x : Z, we have that x lies in M iff S(x) lies
in Z+, so S restricts to an equivalence M ≃ Z+. Thus we get
also an equivalence Z0 ⨿ M ≃ M . We write S also for the
induced map M → M lying above S : Z → Z.

We will show that M essentially has the universal property
of the naturals: it is freely generated by Z0 → M and S :
M → M . Note also that we have an element of Z0 – namely
Z. To construct N from here, we will use a simple rectification
argument.

We first explain how to prove that M has the stated universal
property. We essentially follow a well-known strategy for
reducing natural number recursion (which constructs func-
tions out of N) to natural number induction (which proves
(proposition-valued) predicates on N) by considering an ap-
propriate notion of “partially defined inductive function”. To
this end, we first need a notion of ordering on Z.

Lemma VI.1. Z has a proposition-valued relation < with the
following properties:

(i) if x < y, then x < S(y),
(ii) if S(x) < S(y), then x < y,

(iii) if x : M then we do not have x < Z
(iv) x < S(x) for all x.

Proof. Using initiality of Z, we can define subtraction on Z
such that x−Z = x and x−S(y) = S−1(x− y). It can then
be proven by integer induction that S(x)− S(y) = x− y and
x−x = Z. We take x < y to mean that x− y lies in Z−. All
the listed properties can be verified directly.

We will suppress witnesses of the relation <, writing a dash
in their place, relying on references to the previous lemma to
fill them as required.

We recall some preliminaries on fixpoints. Given an endo-
function t on a type X , we write fix(t) for the type of fixpoints
of t, defined as

fix(t) ≡def

∑
x:X

t(x) = x.

The below “rolling rule” is useful for manipulating fixpoints.

Lemma VI.2 (Rolling rule). For f : X → Y and g : Y → X ,
we have an equivalence fix(g ◦ f) ≃ fix(f ◦ g).

Proof. Both types arise from∑
(x:X)

∑
(y:Y)

(f(x) = y)× (g(y) = x)

by contracting singletons.

Now we prove the universal property of M . Suppose we
are given a type family A over M together with

• zA :
∏

(x:Z0) A(x),
• sA :

∏
(x:M) A(x) → A(S(x)).

Define a type family pfun over Z by

pfun(u) ≡def

∏
x:M

(x < u) → A(x).

Thus an element of pfun(u) is a section of A defined on a
finite interval of M . For u : Z, we have a restriction map

resu : pfun(S(u)) → pfun(u)

using part (i) of Lemma VI.1 and an extension map

extu : pfun(u) → pfun(S(u))

given by a case distinction using the equivalence Z0+M ≃ M :
• extu(f, x,−) ≡def zA(x) for x in Z0,
• extu(f, S(x),−) = sA(f(x,−)) using the backward

direction of part (ii) of Lemma VI.1.

Lemma VI.3. The operations res and ext commute in the
sense that extu ◦ resu = resS(u) ◦ extS(u) for u : Z.

Proof. For each f : pfun(S(u)) and x : M with x < u, we
have to prove an equality in A(x). We do a case distinction
using the equivalence Z0 ⨿ M ≃ M . Each case is direct by
unfolding definitions.

Now define a type family indfun over Z by

indfun(u) ≡def fix(resu ◦ extu).

It is direct to see that resu(extu(f)) = f if and only f satisfies
the recursive equation f(x,−) = zA(x) for x : Z0 and
f(S(x),−) = sA(f(x),−) whenever these equations make
sense. We defined indfun in this more compact way in order
to obtain a simple proof of the following result.

Lemma VI.4. For all u : Z, we have an element f(u) of
indfun(u).

Proof. By integer induction. We trivially have an element of
indfun(Z), since there is no x : M with x < Z. Moreover,
we have

indfun(S(u)) ≃ fix(resS(u) ◦ extu)
≃ fix(extu ◦ resu)
≃ fix(resu ◦ extu)
≃ indfun(u)

by Lemma VI.3 and the rolling rule.

In fact one can strengthen the above result to the claim that
indfun(u) is contractible – so in particular the proof only uses
integer induction for propositions – but we will not need this
strengthening.

Lemma VI.5. We have g : Πx:MA(x) with g(x) = zA(x) for
x : Z0 and g(S(x)) = sA(g(x)).

Proof. We define g(x) by evaluating f(S(x)) at x, using
part (iv) of Lemma VI.1. The first equation follows from the
fact that f(S(Z)) is inductive. The second equation follows
from the fact that f(S(x)) = extx(f(x)), which we have by
construction of f and the proof of the rolling rule.

This finishes the proof that M has the stated universal
property.

Lemma VI.6. Let X and Y be types with maps ι : Y → X
and s : X → X . Suppose that X is freely generated by these
two maps. If Y has an element, then we have a natural number
type.

Proof. Let z : Y be given. We define a self-map r : X → X
by r(ι(y)) = ι(z) and r(s(x)) = s(r(x)) using the universal
property of X . Let N ≡def Σx:Xr(x) = x be the type of
fixpoints of r. By Lambek’s lemma,2 the map Y + X → X
is an equivalence, so in particular ι and s are embeddings.We
have an equivalence eι : (z = y) ≃ (r(ι(y)) = ι(y)) since ι is
an embedding, and es : (r(x) = x)) ≃ (r(s(x)) = s(x)) since
s is an embedding. Thus we have an element zN : N given by
(z, eι(refl)). We also have an endomorphism sN : N → N
given by sN(x, p) = (s(x), es(p).

We claim that this makes N a natural number type. Thus
let P be a type family over N with zP : P (zN) and
sP : Πn:NP (n) → P (sN(n)). We construct a term p :
Πx:XΠh:r(x)=xP (x, h) using the universal property of X . We
first need to construct, for y : Y , a term Πh:r(ι(y))=ι(y)P (y, h),
or equivalently Πh:z=yP (y, eι(h)). We can define this by path
induction using zP . Then we have to construct for x : X
and f : Πh:r(x)=xP (x, h) a term Πh:r(s(x))=s(x)P (s(x), h),
or equivalently Πh:r(x)=xP (s(x), es(h)). Given h : r(x) = x,
we simply use sP (x, h)(f(h)). It is direct to verify that
this defines a section of P as a displayed natural numbers
algebra.

Proof of Theorem III.4. Combining Lemma VI.6 with the uni-
versal property of M .

VII. SECOND APPROACH: INDIRECT

A family is a type A together with a type B(x) for x : A.
We say that a family is closed under binary coproducts if
for a0, a1 : A, we have t : A with an equivalence B(t) ≃
B(a0)⨿B(a1). Similarly, we define when a family is closed
under empty types, unit types, etc. The intuition is that we
see A as a universe and B as the associated universe family,

2In the case at hand, we start from an equivalence Z0⨿M ≃ M and there
is no need to invoke Lambek’s lemma.

sending a code in the universe to an actual type. Note that we
do not assume that the family is univalent.

Lemma VII.1. There is a family (U,El) closed under the unit
type and finite coproducts.

Proof. We take U ≡def Z → Z and El as taking fixpoints:

El(f) ≡def

∑
x:Z

f(x) =Z x.

The unit type is coded by the function constant on Z. For
finite coproducts, we make use of the equivalence Z ≃ Z⨿Z
provided Lemma IV.1. Under this equivalence, it suffices
to exhibit codes as fixpoints of endofunctions on Z ⨿ Z.
Calculating the fixpoints of these endofunctions then makes
use of the no-confusion property for binary coproducts.

• The empty type is coded by the endofunction on Z ⨿ Z
swapping the two components. The type of fixpoints of
this endofunction is empty.

• The binary coproduct of f, g : U is coded by the
endofunction on Z ⨿ Z that is separately f on the left
component and g on the right component. Fixpoints
of this endofunction are equivalent to the coproduct of
fixpoints of f and fixpoints of g.

Definition VII.2. A counting structure on a natural number
algebra A consists, for x : A:

• types C(x) and D(x),
• min,max : D(x),
• low, upp : C(x) → D(x)

such that D(x) is freely generated separately by min and upp
as well as low and max. We further demand the following:

• C(z) ≡ ⊥,
• C(s(x)) ≡ D(x) for x : A,
• min ̸= max in D(s(x)) for x : A.

Here, free generation equivalently means that the map ⊤⨿
C(x) → D(x) induced by min and upp is an equivalence (and
similarly for low and max). Note that this may be expressed
by a propositional type. We may also omit D entirely from the
definition and instead demand an automorphism on ⊤⨿C(x).
The role of D(x) is to symmetrically split this automorphism
via a type “in the middle”.

The intuition of Definition VII.2 is that we want to associate
to a natural number a set of that cardinality. We could enhance
the definition to include the requirement that C(x) is a
decidable total order with the rest of the data witnessing a
successor equivalence between the total orders ⊤ ⋆ C(x) and
C(x) ⋆⊤ (where A ⋆B denotes the join of orders A and B).
However, we do not need this for our development.

A counting algebra is a natural number algebra equipped
with a counting structure.

Lemma VII.3. We have a counting algebra.

Proof. We take as carrier the iterated dependent sum of c : U
and d : U and min,max : El(c) and low, upp : El(c) → El(d)
satisfying conditions as in Definition VII.2. The zero element

has c given by the codes for the empty and unit types. The
successor of an element of above is given by:

• c′ ≡def d and d′ a code for El(d)⨿⊤,
• min′ = τ0(min), max′ = τ1(∗),
• low′ = τ0 and upp′ defined on low(x) by τ0(upp(x)) and

on max by τ1(∗).

Corollary VII.4. Every natural number algebra receives a
map from a counting algebra.

Proof. Take the product of the given natural number algebra
with the counting algebra of Lemma VII.3.

Lemma VII.5. Let A be a counting algebra. Then A admits
the following:

• a type M(x) for x : A with:
– M(z) is contractible,
– an equivalence pair : M(x)×A → M(s(x)),

• for x : A, an element lastx(m) : ⊤ ⨿ A for m : M(x)
with identifications:
– lastz(∗) = τ0(∗),
– lasts(x)(pair(m, y)) = τ1(y) for m : M(x) and y : A,

• an element restx(m) : M(x) for m : M(x) with an
identification

rests(x)(pair(m, y)) =M(s(x)) pair(restx(m), nextx(m))

where nextx(m) ≡def [z, s](lastx(m)) : A.

Proof. We define M(x) ≡def C(x) → A. Note that M(z) is
contractible since C(z) ≡ ⊥. The equivalence

pair : (C(x) → A)×A ≃ (C(s(x)) → A)

is induced by C(s(x)) ≡ D(x) and low : C(x) → D(x) and
max : D(x).

For the other data, we use that D(x) is freely generated by
min and upp. The element lastx(m) : ⊤ ⨿ A is defined by
case distinction on max : D(x):

• on min, we return τ0(∗),
• on upp(y) with y : C(x), we return τ1(m(y)).
The element restx(m)(c) : A for m : C(x) → A and c :

C(x) is defined by case distinction on low(c) : D(x):
• on min, we return z,
• on upp(y) with y : C(x), we return s(y).
All the required identifications are direct.

Lemma VII.6. Every natural number algebra receives a map
from a stable natural number algebra (see Definition III.2).

Proof. Let A denote the given natural number algebra. Using
Corollary VII.4, we may reduce to the setting where A comes
equipped with a counting structure. From this, we only need
the structure given by Lemma VII.5.

The natural number algebra B we construct over A has
carrier given by iterated dependent sum of:

• x : A,
• m : M(x),
• q : x = nextx(m).

• p : m =M(x) restx(m),
This type lies over A using the evident projection to the first

component. Given x : A, we write B(x) for the remaining
three components of the “record type” B.

It remains to construct an equivalence ⊤ ⨿ B → B over
[z, s] : ⊤⨿A → A. We construct this equivalence in a series
of steps.

First note that B(x) arises by contracting k and α in the
following iterated dependent sum:

• k : ⊤⨿A,
• q : x =A [z, s](k),
• m : M(x),
• α : k =⊤⨿A lastx(m),
• p : m =M(x) restx(m).
Contracting x with q, we have for k : ⊤⨿A that B([z, s](k))

is equivalent to:
• m : M(x),
• α : k = lastx(m),
• p : m = restx(m)

where x ≡def [z, s](k). We transform this type under the cases
of k.

For k = τ0(∗), we have x = z and are left with:
• m : M(z),
• α : τ0(∗) = lastz(m),
• p : m = restz(m).

Since M(z) is contractible, this is equivalent to τ0(∗) =⊤⨿A

τ0(∗). By no-confusion, τ0 is an embedding, so this is con-
tractible.

For k = τ1(y), we have x = s(y) and are left with:
• m : M(s(y)),
• α : τ1(y) = lasts(y)(m),
• p : m = rests(y)(m).

Expanding the product M(s(y)) ≃ M(y)×A, this is equiva-
lent to:

• m′ : M(y),
• z : A,
• α : τ1(y) = lasts(y)(pair(m

′, z)),
• p : pair(m′, z) = rests(y)(pair(m

′, z)).
This rewrites to:

• m′ : M(y),
• z : A,
• α : τ1(y) = τ1(z),
• p : pair(m′, z) = pair(resty(m

′), nexty(m
′)).

Since τ1 is an embedding by no-confusion, we may contract
z with α:

• m′ : M(y),
• p : pair(m′, y) = pair(resty(m

′), nexty(m
′)).

Splitting p into a pair of equalities, we recover B(y).

The strategy of the above proof is reminiscient of the
proof of the rolling rule (Lemma VI.2). In particular, the
definition of B is almost that of the fixpoints of an operation
on

∑
(x:A) M(x). However, type of p seems to resist this (it

is an identification in M(x), not M(nextx(m))). It is unclear
to us if this analogy can be exploited further.

Lemma VII.7. We have a stable natural number algebra that
embeds into Z.

Proof. By Lemma VII.6, we have a stable natural number
algebra A with a morphism f : A → Z. We now apply
Construction V.1 to the type A ≡def A and B ≡def ⊤. The
equivalence A ≃ B⨿A is just the structure map of the stable
natural number algebra A. Note that B has a unique element.
The resulting integer algebra (with carrier A⨿⊤⨿A) again lies
over Z: we send τ0(a) to S−1(inv(a)), τ1(∗) to Z, and τ2(a) to
S(f(a)). Here, inv is the underlying map of the unique integer
algebra morphism from Z to Z′ where Z′ has automorphism
S−1 instead of S.

By initiality of Z, the algebra map Z → A ⨿ ⊤ ⨿ A is a
section of the algebra map A⨿⊤⨿A → Z. By construction,
the former map sends Z0 in the decomposition (2) to the
middle component in A ⨿ ⊤ ⨿ A, and in turn, that middle
component is sent to Z0 by the latter map (specifically, to
Z). This exhibits Z0 as a retract of ⊤, in particular it is
contractible. We may thus silently replace Z0 by ⊤ in the
obtained decomposition (2).

This makes ⊤⨿Z+ with zero element τ0(∗) and successor
function τ1 ◦ S+ into a stable natural number algebra embed-
ding into Z.

In the last step of the above lemma, we can equivalently
directly use Z+ as the desired natural number algebra. Denote
the image of the zero in Z by t. We then need to postcompose
with the shifting map of Z that sends t to Z to obtain the
algebra embedding from Z+ to Z.

Lemma VII.8. Let A be stable natural number algebra over
Z such that A(Z) is contractible. Then A is initial.

Proof. Using Lemma III.3, it suffices to show that A has
elimination. Note that, in natural number algebras over A,
having a section is a covariant structure. That is, given a
morphism E′ → E of natural number algebras over A, if
E′ has a section, then so does E. Using Lemma VII.6, it
thus suffices to construct a section for a stable natural number
algebra E over A. In fact, we will show that E is fiberwise
contractible over A.

Since both A and E are stable, we have E(z) ≃ 1 and
E(s(a)) ≃ E(a).

We define an integer algebra Q over Z that is a family of
propositions by setting

Q(x) ≡def

∏
a:A(x)

isContr(E(a))

for x : A. Note that Q(0) holds because z : 1 → A(Z) is an
equivalence and E(z) is contractible. It remains to show that
Q(x) and Q(S(x)) are logically equivalent for x : Z.

From s : A(x) → A(S(x)) and E(s(a)) ≃ E(a), we
have Q(S(x)) → Q(x). Let us check Q(x) → Q(S(x)).

Given f :
∏

(a:A(x)) isContr(E(a)) and a′ : A(S(x)), we need
isContr(E(a′)). We case split on [z, s]

−1
(S(x), a′) : ⊤⨿A:

• For (S(x), a′) = (0, z), the goal follows from E(z) ≃ 1.
• For (S(x), a′) = (S(y), s(a)) where y : Z and a : A(y),

the goal reduces to isContr(E(s(a))). This follows from
E(s(a)) ≃ E(a) and f(a) : isContr(E(a)).

By initiality of Z, we obtain a section q of Q. So, given
a : A(x), we have q(x, a) : isContr(E(a)).

Proof of Theorem III.4. Apply Lemma VII.8 to Lemma VII.7.

REFERENCES

[1] N. Kraus and J. von Raumer, “Path spaces of higher inductive types in
homotopy type theory,” in 2019 34th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). IEEE, 2019, pp. 1–13.

[2] E. Rijke, Discussion post on the nForum, 2017. [Online]. Avail-
able: https://nforum.ncatlab.org/discussion/6691/higher-inductive-type/
?Focus=61552#Comment 61552

[3] R. Rose, “The natural numbers in predicative univalent type theory,” Ph.D.
dissertation, Indiana University, 2020.

[4] N. Rasekh, “Every elementary higher topos has a natural number object,”
Theory and Applications of Categories, vol. 37, no. 13, pp. 337–377,
2021.

[5] T. Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: https:
//homotopytypetheory.org/book, 2013.

https://nforum.ncatlab.org/discussion/6691/higher-inductive-type/?Focus=61552#Comment_61552
https://nforum.ncatlab.org/discussion/6691/higher-inductive-type/?Focus=61552#Comment_61552
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

	Introduction
	Setting: a restricted type theory
	Descent
	Basic consequences

	Natural numbers and integers
	An equivalence ZZZ
	Approximating the integers via halves
	First approach: direct
	Second approach: indirect
	References

