
Natural numbers from integers

ABSTRACT
In homotopy type theory, a natural number type is freely generated

by an element and an endomorphism. Similarly, an integer type is

freely generated by an element and an automorphism. Using only

dependent sums, identity types, extensional dependent products,

and a type of two elements with large elimination, we construct a

natural number type from an integer type. As a corollary, homotopy

type theory with only Σ, Id, Π, and finite colimits with descent (and

no universes) admits a natural number type. This improves and

simplifies a result by Rose and settles a long-standing open question.

ACM Reference Format:
. 2024. Natural numbers from integers. In .ACM, NewYork, NY, USA, 8 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In standard set theory and other impredicative background theories,

an object of natural numbers is easily constructed from some source

of infinity. As soon as we have a set 𝑋 with a “zero” element 𝑧 : 𝑋

and an injective “successor” function 𝑠 : 𝑋 → 𝑋 whose image does

not contain 𝑧, we may carve out the natural numbers by taking the

intersection of all subsets of 𝑋 closed under 𝑧 and 𝑠 . However, this

reasoning is essentially impredicative: for this definition to make

sense (and yield the expected induction principle), we need the

collection of all subsets of 𝑋 to form a set, the power set of 𝑋 .

In predicative settings such as Martin-Löf dependent type theory,

this reasoning is ill-founded. Inductive type formers such as natural

numbers cannot be reduced to non-inductive constructions: without

impredicativity as a free source of induction principles, we are

stuck. Therefore, the natural numbers (and other inductive types)

are usually assumed axiomatically.

Homotopy type theory is a version of Martin-Löf type theory

with function extensionality, univalence for any assumed universes,

and generalizations of inductive types called higher inductive types.
An example of a non-recursive higher inductive type is the circle
𝑆1, freely generated by an element 𝑏 and an identification of 𝑏 with

itself. As proved in [7], the loop space of the circle (the type of self-

identifications of its base point) has the universal properties of the

integers: it is freely generated by an element (given by the trivial self-

identification) and an automorphism (given by postcomposition

with the generating loop). Although its loop space has infinitely

many elements, the type itself is generated using purely finite

means: the higher inductive type of the circle does not have any

recursive constructors. Categorically, it arises from only finite limits

and colimits.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

The integers are certainly a source of infinity. And if our theory

was impredicative, it is reasonable to expect that we can carve out

a natural number type from it in some way. But in a predicative

setting such as homotopy type theory, the problem of constructing

the natural numbers from the integers is perplexingly challenging.

For example, there does not seem to be an easy way of even defining

the subtype of non-negative integers: all the standard approaches

use an inductively defined predicate. The only possible form of

induction, integer induction, is reversible, in the sense that the

induction step must be an equivalence instead of an implication.

That seems to be severe restriction.

The question to settle is this: in a predicative theory such as

homotopy type theory, can we construct the natural numbers from

the integers? To our knowledge, this question was first raised

in a discussion between Egbert Rijke and Mike Shulman on the

nForum [10]. (Instead of the integers, we may also assume non-

recursive higher inductive types such as the circle and assume a

univalent universe.)

To the surprise of many experts, Robert Rose settled this ques-

tion positively in his PhD thesis [12]. His construction is quite

complicated, reflected in the length of his thesis. There were also

some caveats: he needs two nested univalent universes (although

the outer one may be replaced by large elimination).

Our contribution in this paper is to provide a new construction

of the natural numbers from the integers that we believe to be much

simpler. Furthermore, our construction is more general: we do not

need any univalent universes whatsoever. Instead, we just rely on

effectivity of finite coproducts (that the coprojections are disjoint

embeddings; equivalently, that we have a two-element type that

satisfies descent, a version of large elimination that computes up to

equivalence). In fact, we two construction: a direct one in Section 6

and an indirect one in Section 7.

The key novel idea of our work is the following. We would like

to say that a natural number is a non-negative integer. So we would

like to be able to define themap𝜎 : Z→ 2 from integers to Booleans

that tells whether an integer is negative or non-negative. A priori

it is unclear how to do this: our only tool is integer induction, but

𝜎 is not induced by any automorphism of 2. Consider instead how

to define 𝜎 supposing we have the naturals N available: then we

define an automorphism of the coproduct N⊔ 1⊔N, get an induced

map 𝜎 : Z → N ⊔ 1 ⊔ N (which happens to be an equivalence),

and postcompose with the natural map N ⊔ (1 ⊔ N) → 2. In our

setting, we cannot use N but we can simply replace N⊔ 1⊔N with

another coproduct 𝐴 ⊔ 𝐵 ⊔𝐴. This has an automorphism with the

desired properties whenever we have an equivalence 𝐴 ≃ 𝐵 ⊔𝐴. In

particular, one can define an equivalence Z ≃ Z⊔Z, decomposing Z
into an even part and an odd part, directly using integer induction.

The categorical analogue of our result is the following. Suppose

we have a locally cartesian closed (higher) category with finite

coproducts that satisfy descent. Then given an integer object, we

have a natural number object. In particular, any locally cartesian

closed (higher) category with finite colimits that satisfy descent

has a natural number object. In the absence of an internal language

Conference’17, July 2017, Washington, DC, USA

result of our type theory in such higher categories (related con-

jectures are made in [5] with progress in [6, 8]), we believe that

our constructions are sufficiently abstract that they can be directly

replayed in any concrete model for higher categories.
1

2 SETTING: A RESTRICTED TYPE THEORY
We work in dependent type theory with only a limited set of type

formers as set out below. We use ≡ to denote judgmental equality

and ≡def to denote judgmental definitions. We generally follow the

homotopy type theory book [13] for notational conventions.

We have the identity type 𝑥 =𝐴 𝑦 for 𝑥,𝑦 : 𝐴 in the sense of

Martin-Löf (no equality reflection or axiom K). We have the unit

type 1, dependent sum types

∑
𝑥 :𝐴 𝐵(𝑥), and dependent product

types

∏
𝑥 :𝐴 𝐵(𝑥), all satisfying judgmental 𝛽- and 𝜂-laws. Depen-

dent products are extensional, meaning function extensionality

holds (phrased using identity types).

We assume a two-element type 2, freely generated by elements

0, 1 : 2. Its universal property says that for any type 𝐶 with ele-

ments 𝑑0, 𝑑1 : 𝐶 , the type of maps 𝑓 : 2 → 𝐶 with identifications

𝑓 (0) =𝐶 𝑑0 and 𝑓 (1) =𝐶 𝑑1 is contractible. From this, we can derive

a dependent elimination principle whose computation rule holds

up to identity type.

2.1 Descent
We assume the two-element type satisfies descent. This encapsulates
elimination into a univalent universe, allowing us to omit universes

from our type theory. The principle is as follows. Given types𝐴0 and

𝐴1, we have a family 𝐶 (𝑥) over 𝑥 : 2 together with equivalences

𝐶 (0) ≃ 𝐴0 and 𝐶 (1) ≃ 𝐴1. Here, the notion of equivalence is

defined as usual in homotopy type theory (using dependent sums

and products). This is a homotopically weakened version of large

elimination.

2.2 Basic consequences
Elimination principle for two-element type. From the universal

property of the two-element type 2, we can derive a dependent

elimination principle whose reduction rule holds up to identity type.

More precisely, given𝐶 (𝑥) for 𝑥 : 2with𝑑0 : 𝐶 (0) and𝑑1 : 𝐶 (1), we
obtain 𝑒 (𝑥) : 𝐶 (𝑥) for 𝑥 : 2 together with identifications 𝑒 (0) =𝐶 𝑑0
and 𝑒 (1) =𝐶 𝑑1. Moreover, the type of such 𝑒 is contractible (this

uses function extensionality).

Empty type. We may construct the empty type as

0 ≡def 0 =2 1.

Its recursion principle follows from descent for the two-element

type: given any type 𝐴, we have a family 𝐶 (𝑥) over 𝑥 : 2 with

𝐶 (0) ≃ 1 and 𝐶 (1) ≃ 𝐴. From 𝑦 : 0 =2 1, we then get 𝐶 (0) ≃ 𝐶 (1),
so 𝐴 ≃ 1, meaning that 𝐴 is contractible. From this, we obtain the

elimination principle for 0 as usual.

1
We note that a similar-looking result is claimed in Rasekh [9]. However, this is in a

setting with impredicativity, which as explained above simplifies the problem greatly.

Furthermore, we have found severe mistakes in that paper, for example in the proof of

Lemma 1.2.1: Eq(𝑔1, 𝑔2) is not generally a subspace ofMap/𝑋 (𝑔1, 𝑔2) , which seems

to deal a blow to the approach. We have notified the author in December 2022. He

agrees with the problem and we are waiting for a correction to be issued. We leave it

to the LICS editor to decide how we should handle this citation.

2 is a set. By descent, we have a family 𝐶 (𝑥) over 𝑥 : 2 with

𝐶 (0) ≃ 1 and 𝐶 (1) ≃ 0. The sum over 𝑥 : 2 of 𝐶 (𝑥) has an element

at 𝑥 ≡ 0. By induction over 2 and 0, every element in the sum is

equal to it. This shows that

∑
𝑥 :2𝐶 (𝑥) is contractible. Since 𝐶 (0) is

contractible, it follows that 0 =2 0 is contractible. A dual argument

shows that 1 =2 1 is contractible, making 2 a set by 2-induction.

Binary coproducts. From descent for the two-element type, we

can construct the binary coproduct type 𝐴0 ⊔𝐴1 of types𝐴0 and𝐴1.

First, we obtain 𝐶 (𝑥) over 𝑥 : 2 from descent. We then define

𝐴0 ⊔𝐴1 ≡def

∑︁
𝑥 :2

𝐶 (𝑥).

The coprojections 𝜏𝑖 : 𝐴𝑖 → 𝐴0 ⊔ 𝐴1 for 𝑖 ∈ {0, 1} are defined by

passing backward along the equivalence 𝐷 (𝑖) ≃ 𝐴𝑖 . The universal

property of binary coproducts reduces, using dependent products,

to the universal property of the two-element type. Given functions

𝑓𝑖 : 𝐴𝑖 → 𝐷 for 𝑖 ∈ {0, 1}, we write [𝑓0, 𝑓1] : 𝐴0 ⊔𝐴1 → 𝐷 for the

map given by the universal property. Equivalently, the dependent

elimination principle for coproducts is justified by that principle for

the two-element type. Its reduction rules again hold up to identity

type. We use the notation [−,−] also in this dependent case.

No confusion for binary coproducts. The constructors for binary
coproducts are disjoint embeddings. Disjointness follows from the

tautology ¬(0 =2 1). The embedding property reduces to con-

tractibility of 0 =2 0 and 1 =2 1.

Descent for binary coproducts. Descent for the two-element type

implies descent for binary coproducts. No confusion implies descent

for binary products (in fact, it is equivalent to our assumption of

descent for the two-element type). This is the following principle,

again encapsulating a homotopically weakened version of large

elimination into a univalent universe. Given families 𝐵𝑖 (𝑎𝑖) over
𝑎𝑖 : 𝐴𝑖 for 𝑖 ∈ {0, 1}, we have a family 𝐷 (𝑦) over 𝑦 : 𝐴0 ⊔𝐴1 with

equivalences 𝐷 (𝜏𝑖 (𝑎𝑖)) ≃ 𝐵𝑖 (𝑎𝑖). To justify it, we first construct

𝐷′ ≡def

(∑︁
𝑎0:𝐴0

𝐵0 (𝑎0)
)
⊔
(∑︁
𝑎1:𝐴1

𝐵1 (𝑎1)
)
.

Coproduct recursion induces a map 𝑝 : 𝐷′ → 𝐴0 ⊔𝐴1. By no con-

fusion, this map pulls back along 𝜏𝑖 for 𝑖 ∈ {0, 1} to the projection

from

∑
𝑎𝑖 :𝐴𝑖

𝐵𝑖 (𝑎𝑜) to 𝐴𝑖 . We may thus define 𝐷 (𝑦) as the fiber of
𝑝 over 𝑦.

Finite coproducts with no confusion and descent. We derive fi-

nite coproducts from binary coproducts and the empty type. This

extends to properties such as no-confusion or descent (note that

descent for nullary coproducts is vacuous). For a coproduct of

(external) arity 𝑘 ∈ N, we denote the coprojections by 𝜏𝑖 where

0 ≤ 𝑖 < 𝑘 .

2.3 Formalization
The first approach in this paper has been formalized in Agda [2].

Where appropriate, lemmas and theorem in our paper come with a

reference to the corresponding part of the formalization. Agda has

many features beyond the setting of this paper, including universes

and general inductive types. The formalization avoids such features

and does not use any library. The only inductive types declared

in the formalization are the ones in our setting. It does not seem

Natural numbers from integers Conference’17, July 2017, Washington, DC, USA

feasible to avoid mentioning the first universe Set entirely when for-
malizing Agda, since it is used for example for type polymorphism

and to express the judgement “𝐴 is a type”, but we restrict our uses

of Set to such places where it could in principle be eliminated.

Isomorphisms and equivalences. A fundamental result in any li-

brary of homotopy type theory is the fact that every map with a

two-sided inverse has contractible fibers, and we need this result

also in the present work. The well-known proof of this result, re-

produced for example in Section 10.4 of [11], is not entirely trivial,

requiring some higher path algebra. We present a new proof which

we argue is simpler and easier to remember. A similar argument

appears in lectures notes by Martín Escardó [3].

We start from two types 𝐴 and 𝐵 with maps 𝑓 : 𝐴 → 𝐵 and

𝑔 : 𝐵 → 𝐴 such that 𝑔(𝑓 (𝑎)) = 𝑎 for all 𝑎 : 𝐴 and 𝑓 (𝑔(𝑏)) = 𝑏 for

all 𝑏 : 𝐵. We claim that the action on paths

ap𝑓 : (𝑎 =𝐴 𝑎′) → (𝑓 (𝑎) =𝐵 𝑓 (𝑎′))
is an isomorphism for all 𝑎, 𝑎′ : 𝐴, i.e. it also has a left inverse and

a right inverse. We have a map

ap𝑔 : (𝑓 (𝑎) =𝐵 𝑓 (𝑎′)) → (𝑔(𝑓 (𝑎)) =𝐴 𝑔(𝑓 (𝑎′))
and an isomorphism

𝑒 : (𝑔(𝑓 (𝑎)) =𝐴 𝑔(𝑓 (𝑎′)) → (𝑎 =𝐴 𝑎′)
since 𝑔(𝑓 (𝑎)) = 𝑎 and 𝑔(𝑓 (𝑎′)) = 𝑎′. We have

𝑒 (ap𝑔 (ap𝑓 (𝑝))) =𝑎=𝐴𝑎′ 𝑝
for 𝑝 : 𝑎 =𝐴 𝑎′ by path induction on 𝑝 and using that 𝑒 sends

reflexivity to reflexivity. Thus ap𝑓 has a left inverse. By the same

argument, swapping the roles of 𝑓 and 𝑔, ap𝑔 has a left inverse.

Since 𝑒 is an isomorphism, ap𝑔 has a left inverse and a right inverse,
so it is an isomorphism. Thus ap𝑓 is also an isomorphism. From this,

we prove that 𝑓 has contractible fibers as follows. Since 𝑏 = 𝑓 (𝑔(𝑏))
for 𝑏 : 𝐵, it suffices to consider the fiber of 𝑓 over 𝑓 (𝑎) for 𝑎 : 𝐴,

that is

∑
𝑎′ :𝐴 𝑓 (𝑎) =𝐵 𝑓 (𝑎′). Since ap𝑓 is an isomorphism, this is

isomorphic to

∑
𝑎′ :𝐴 𝑎 =𝐴 𝑎′, a singleton, hence contractible.

3 NATURAL NUMBERS AND INTEGERS
A natural number algebra is a type𝐴 together with an element 𝑧 : 𝐴

and an endofunction 𝑠 : 𝐴 → 𝐴. Note that this is an external notion

(lacking universes, we may not quantify internally over types 𝐴 in

our type theory). We generally refer to a natural number algebra

just by its underlying type. We use 𝑧 and 𝑠 generically to refer to the

structure components of a natural number algebra 𝐴. The structure
map of 𝐴 is the map 1 ⊔𝐴 → 𝐴 induced by 𝑧 and 𝑠 .

Given natural number algebras 𝐴 and 𝐵, the type of algebra
morphisms from 𝐴 to 𝐵 consists of a function 𝑓 : 𝐴 → 𝐵 with

𝑓 (𝑧) =𝐵 𝑧 and 𝑓 (𝑠 (𝑎)) =𝐵 𝑠 (𝑓 (𝑎)). We call a natural number

algebra 𝐴 initial if this type is contractible for every 𝐵. We then say

𝐴 is a natural number type. Every natural number algebra 𝐴 has an

identity algebra morphism id𝐴 . Algebra morphisms 𝑓 : 𝐴 → 𝐵 and

𝑔 : 𝐵 → 𝐶 admit a composition 𝑔 ◦ 𝑓 : 𝐴 → 𝐶 . These operations

satisfy unit and associativity laws (phrased using identity types).

We will not need any higher coherence conditions.

We also have displayed analogues of these notions. Given a

natural number 𝐴, a natural number algebra 𝐵 displayed over 𝐴
is a family 𝐵(𝑎) over 𝑎 : 𝐴 with 𝑧 : 𝐵(𝑧) and 𝑠𝑎 (𝑏) : 𝐵(𝑠 (𝑎))

for 𝑎 : 𝐴 and 𝑏 : 𝐵(𝑎). Its total algebra is obtained by taking the

dependent sum. The type of sections of 𝐵 consists of 𝑏 (𝑎) : 𝐵(𝑎)
for 𝑎 : 𝐴 together with 𝑏 (𝑧) =𝐵 (𝑧) 𝑧 and 𝑏 (𝑠 (𝑎)) =𝐵 (𝑠 (𝑎)) 𝑠 (𝑏 (𝑎))
for 𝑎 : 𝐴. We say that 𝐴 has elimination if every natural number

algebra displayed over it has a section. As is standard, one proves

(externally):

Lemma 3.1. A natural number algebra is initial exactly if it has
elimination. □

The following notion features in our second approach. A vari-

ation with a family of nullary constructors appears in our first

approach.

Definition 3.2. A natural number algebra 𝐴 is stable if its struc-
ture map [𝑧, 𝑠] : 1 ⊔𝐴 → 𝐴 is an equivalence.

This means that 𝑧 : 1 → 𝐴 and 𝑠 : 𝐴 → 𝐴 form a colimiting

cocone, i.e., that 𝐴 is non-recursively freely generated by 𝑧 and 𝑠 .

Lambek’s lemma states that every initial natural number algebra is

stable.

We call a natural number algebra 𝐴 an integer algebra if its

endofunction 𝑠 is an equivalence. Note that this condition is a

proposition. This justifies defining morphisms of integer algebras as

morphisms of the underlying natural number algebras. An integer

algebra 𝐴 is initial if the type of integer algebra morphisms from 𝐴

to 𝐵 is contractible for any integer algebra 𝐵. We then say that 𝐴 is

an integer type (more verbosely, a type of integers).
We have a notion of displayed integer algebra analogous to the

case of natural number algebras. The type of sections of a displayed

integer algebra is defined as the type of sections of the underlying

displayed natural number algebra. Analogous to the case of natural

numbers, we have:

Lemma 3.3. An integer algebra is initial exactly if it has elimina-
tion. □

Our goal in the rest of this article is to construct a natural num-

ber type from an integer type. We thus now make the standing

assumption of an integer type Z, with element denoted 𝑍 : Z and
automorphism denoted 𝑆 : Z ≃ Z (to distinguish from the natural

number algebras we will consider). Note that any other integer type

is equivalent to it (by universality). It thus makes sense to speak of

the integer type Z.
The rest of this paper is devoted to proving the following:

Theorem 3.4. Assume an integer type. Then we have a natural
number type.

We provide two separate proofs, a direct one in Section 6 and an

indirect one in Section 7.

4 AN EQUIVALENCE Z ≃ Z ⊔ Z
Our starting point for constructing the natural numbers is the

following observation.

Lemma 4.1 (Doubling.halve-iso). We have an equivalence Z ≃
Z ⊔ Z.

Proof. We first define the operation of squaring integer alge-

bras. Given an integer algebra 𝑋 ≡ (𝑋, 𝑧, 𝑠), its square Sq(𝑋) is the
integer algebra (𝑋, 𝑧, 𝑠 ◦𝑠). Note that 𝑠 ◦𝑠 is an equivalence since 𝑠 is.

Conference’17, July 2017, Washington, DC, USA

This operation is functorial: it has an evident action on morphisms

of integer algebras (we do not need any higher witnesses of functo-

riality). Furthermore, the functorial action reflects equivalences: if

Sq(𝑓) is invertible, then so is 𝑓 .

Next, for an integer algebra 𝑋 ≡ (𝑋, 𝑧, 𝑠), we define the twisted
rotation integer algebra Tw(𝑋) with carrier 𝑋 ⊔ 𝑋 , element 𝜏0 (𝑧),
and automorphism 𝑟 mapping 𝜏0 (𝑥) to 𝜏1 (𝑥) and 𝜏1 (𝑥) to 𝜏0 (𝑠 (𝑥)).
This uses the universal property of binary coproducts to define 𝑟 .

The automorphism of Sq(Tw(𝑋)) maps 𝜏0 (𝑥) to 𝜏0 (𝑠 (𝑥)) and
𝜏1 (𝑥) to 𝜏1 (𝑠 (𝑥)). That is, on each component, it is just given by

the original automorphism 𝑠 . In particular, 𝜏0 forms an algebra

morphism from 𝑋 to Sq(Tw(𝑋)).
By initiality of Z, we have an algebra map Z → Sq(Z). Let us

call its underlying map double : Z→ Z. Note that

[double, 𝑆 ◦ double] : Z ⊔ Z→ Z

forms an algebra map from Tw(Z) to Z.
Again by initiality of Z, we have an algebra map 𝑐 : Z→ Tw(Z).

To finish the proof, it suffices to show that its underlying function

Z→ Z ⊔ Z is invertible. By initiality of Z, the algebra morphism

composite [double, 𝑆 ◦ double] ◦ 𝑐 is the identity, hence also on un-

derlying functions. It remains to show that the underlying function

of the algebra endomorphism

𝑢 ≡def 𝑐 ◦ [double, 𝑆 ◦ double]

on Tw(Z) is the identity.
Note that Sq(𝑢) is an algebra endomorphism on Sq(Tw(Z)). By

initiality of Z, we have Sq(𝑢) ◦ 𝜏0 = 𝜏0. On underlying maps, this

means 𝑢 ◦ 𝜏0 = 𝜏0. It remains to check 𝑢 ◦ 𝜏1 = 𝜏1. Given 𝑥 : Z, we
calculate

𝑢 (𝜏1 (𝑥)) = 𝑐 (𝑆 (double(𝑥)))
= 𝑟 (𝑐 (double(𝑥)))
= 𝑟 (𝑢 (𝜏0 (𝑥)))
= 𝑟 (𝜏0 (𝑥))
= 𝜏1 (𝑥). □

Remark 4.1. We note an abstract perspective on Lemma 4.1. We

have an endo-adjunction on the (higher) category of natural number

algebras: the left adjoint is twisted rotation and the right adjoint is

squaring. Both functors preserve integer algebras, so the adjunction

descends to the full subcategory of integer algebras. As left adjoints

preserve initial objects, the twisted rotation Tw(Z) is again initial,

in particular equivalent to Z.
To render this reasoning in our type theory without universes,

we represent (higher) categories as a mixed external-internal no-

tion: external at object level and internal at morphism level and

above. That is, we have (external) sets of objects (since those involve
types in the case of algebras), but types of morphisms. As usual,

the construction depends only on a finite approximation of the

higher-categorical coherence tower, in this case just composition

of morphisms and one level of coherence. For the adjunction, we

just need the equivalence between hom-types without naturality.

The given proof of Lemma 4.1 can be seen as the unravelling of the

abstract perspective in this manner.

(This mixed reasoning can be formalized in two-level type the-

ory [1] using a variation of the notion of wild category with an

outer type of objects and inner types of morphisms.)

5 APPROXIMATING THE INTEGERS VIA
HALVES

If we already had the natural numbers N, we could describe the

integers as being built out of two copies of the natural numbers,

one for the positive and one for the negative half:

Z ≃ N ⊔ 1 ⊔ N (1)

Conversely, we may use a decomposition with similar properties to

tell us something about the integers, for example when an integer

is positive or negative. This is the motivation behind the following

construction.

Construction 5.1 (Signs.shift-equiv). Consider types𝐴 and 𝐵

with an equivalence 𝑒 : 𝐴 ≃ 𝐵 ⊔𝐴. Then we have an automorphism

on 𝐴 ⊔ 𝐵 ⊔𝐴 given by reassociating the equivalence

𝐴 ⊔ (𝐵 ⊔𝐴) ≃ (𝐴 ⊔ 𝐵) ⊔𝐴

where we act using 𝑒 on the left component and using the inverse

of 𝑒 on the right component. Given also an element 𝑏 : 𝐵, this forms

an integer algebra structure on 𝐴 ⊔ 𝐵 ⊔𝐴.

In the above situation, initiality of Z provides us with an algebra

morphism from Z to 𝐴 ⊔ 𝐵 ⊔𝐴. Restricting along the underlying

function, the ternary decomposition on the right induces a decom-

position

Z ≃ Z− ⊔ Z0 ⊔ Z+ (2)

of Z into three parts (this uses effectiveness of coproducts – that

the coprojections are disjoint embeddings). The automorphism 𝑆

of Z restricts to separate equivalences 𝑆− : Z− ≃ Z− ⊔ Z0 and 𝑆+ :

Z0 ⊔ Z+ ≃ Z+ that combine to give 𝑆 via the above decomposition.

Furthermore, since 𝑍 : Z is sent to 𝜏1 (𝑏), we know that 𝑍 lies in

the middle component Z0.

In the presence of the naturals, one may prove that the decom-

position (2) in fact agrees with the decomposition (1).

6 FIRST APPROACH: DIRECT
We now give a direct construction of an initial natural number alge-

bra. First we apply Construction 5.1 to the equivalence Z ≃ Z ⊔ Z
from Lemma 4.1 and the element 𝑍 : Z to obtain the decomposi-

tion (2). We write𝑀 for Z0⊔Z+. By construction, for 𝑥 : Z, we have
that 𝑥 lies in𝑀 iff 𝑆 (𝑥) lies in Z+, so 𝑆 restricts to an equivalence

𝑀 ≃ Z+. Thus we get also an equivalence Z0 ⊔𝑀 ≃ 𝑀 . We write 𝑆

also for the induced map𝑀 → 𝑀 lying above 𝑆 : Z→ Z.
We will show that𝑀 has a universal property close to that of the

natural numbers: it is freely generated by Z0 → 𝑀 and 𝑆 : 𝑀 → 𝑀 .

Note also that we have an element of Z0, namely 𝑍 . To construct N
from here, we will use a simple rectification argument.

We first explain how to prove that 𝑀 has the stated universal

property. We essentially follow a well-known strategy for reducing

natural number recursion (which constructs functions out of N)
to natural number induction (which proves proposition-valued

predicates on N) by considering an appropriate notion of “partially

defined inductive function”. To this end, we first need a notion of

ordering on Z.

Natural numbers from integers Conference’17, July 2017, Washington, DC, USA

Lemma 6.1 (Signs.agda). Z has a proposition-valued relation <

with the following properties:
(i) if 𝑥 < 𝑦, then 𝑥 < 𝑆 (𝑦),
(ii) if 𝑆 (𝑥) < 𝑆 (𝑦), then 𝑥 < 𝑦,
(iii) if 𝑥 : 𝑀 then we do not have 𝑥 < 𝑍 ,
(iv) 𝑥 < 𝑆 (𝑥) for all 𝑥 .

Proof. Using initiality of Z, we can define subtraction on Z such
that 𝑥 −𝑍 = 𝑥 and 𝑥 − 𝑆 (𝑦) = 𝑆−1 (𝑥 −𝑦). It can then be proven by

integer induction that 𝑆 (𝑥) − 𝑆 (𝑦) = 𝑥 − 𝑦 and 𝑥 − 𝑥 = 𝑍 . We take

𝑥 < 𝑦 to mean that 𝑥 −𝑦 lies in Z− . All the listed properties can be

verified directly. □

We will suppress witnesses of the relation <, writing a dash in

their place, relying on references to the previous lemma to fill them

as required. This is harmless as < is valued in propositions.

We recall some preliminaries on fixpoints. Given an endofunction

𝑡 on a type 𝑋 , we write fix(𝑡) for the type of fixpoints of 𝑡 :

fix(𝑡) ≡def

∑︁
𝑥 :𝑋

𝑡 (𝑥) = 𝑥 .

The below “rolling rule” is useful for manipulating fixpoints.

Lemma 6.2 (RollingRule.agda). For 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 ,
we have an equivalence fix(𝑔 ◦ 𝑓) ≃ fix(𝑓 ◦ 𝑔).

Proof. Both types arise from∑︁
𝑥 :𝑋

∑︁
𝑦:𝑌

(𝑓 (𝑥) = 𝑦) × (𝑔(𝑦) = 𝑥)

by contracting singletons. □

Note that the forward map fix(𝑔 ◦ 𝑓) → fix(𝑓 ◦ 𝑔) is 𝑓 applied

to the first component, and the first component of the inverse map

is similarly given by 𝑔. This follows from unfolding the proof above.

6.1 The universal property of𝑀
This subsection is devoted to proving the universal property of𝑀 :

Proposition 6.3 (M.M-ind). Let 𝐴 be a family over 𝑀 together
with

• 𝑧𝐴 (𝑥) : 𝐴(𝑥) for 𝑥 : Z0,
• 𝑠𝐴 (𝑎) : 𝐴(𝑆 (𝑥)) for (implicit) 𝑥 : 𝑀 with 𝑎 : 𝐴(𝑥).

Then we have 𝑔(𝑥) : 𝐴(𝑥) for 𝑥 : 𝑀 such that:
• 𝑔(𝑥) = 𝑧𝐴 (𝑥) for 𝑥 : Z0,
• 𝑔(𝑆 (𝑥)) = 𝑠𝐴 (𝑔(𝑥)) for 𝑥 : 𝑀 .

Throughout this subsection, we fix 𝐴 together with 𝑧𝐴 and 𝑠𝐴
as above. We define for 𝑢 : Z a type

pfun(𝑢) ≡def

∏
𝑥 :𝑀

(𝑥 < 𝑢) → 𝐴(𝑥)

of partial sections of 𝐴 defined below 𝑢. Intuitively, an element of

pfun(𝑢) is a section of 𝐴 defined on a finite prefix of𝑀 . For 𝑢 : Z,
we have a restriction map

res𝑢 : pfun(𝑆 (𝑢)) → pfun(𝑢)
using part (i) of Lemma 6.1 and an extension map

ext𝑢 : pfun(𝑢) → pfun(𝑆 (𝑢))
given by a case distinction using the equivalence Z0 ⊔𝑀 ≃ 𝑀 :

• ext𝑢 (𝑓 , 𝑥,−) ≡def 𝑧𝐴 (𝑥) for 𝑥 in Z0,
• ext𝑢 (𝑓 , 𝑆 (𝑥),−) = 𝑠𝐴 (𝑓 (𝑥,−)) using part (ii) of Lemma 6.1.

Lemma 6.4 (ext-res-eq-res-ext). The operations res and ext
commute in the sense that ext𝑢 ◦ res𝑢 = res𝑆 (𝑢) ◦ ext𝑆 (𝑢) for 𝑢 : Z.

Proof. For each 𝑓 : pfun(𝑆 (𝑢)) and 𝑥 : 𝑀 with 𝑥 < 𝑢, we have

to prove an equality in 𝐴(𝑥). We do a case distinction on 𝑥 using

the equivalence Z0 ⊔ 𝑀 ≃ 𝑀 . Each case is direct by unfolding

definitions. □

Now we define for 𝑢 : Z a type

indfun(𝑢) ≡def fix(res𝑢 ◦ ext𝑢)
of partial sections 𝑓 of 𝐴 defined below 𝑢 together with a wit-

ness that 𝑓 is inductive. To understand this terminology, note that

res𝑢 (ext𝑢 (𝑓)) = 𝑓 unfolds to the recursive equation 𝑓 (𝑥,−) =

𝑧𝐴 (𝑥) for 𝑥 : Z0 with 𝑥 < 𝑢 and 𝑓 (𝑆 (𝑥),−) = 𝑠𝐴 (𝑓 (𝑥),−) for 𝑥 : 𝑀

with 𝑆 (𝑥) < 𝑢. We defined indfun in this more compact way in

order to obtain a simple proof of the following result.

Lemma 6.5 (M.M-ind-aux). For all𝑢 : Z, we have an element 𝑓 (𝑢)
of indfun(𝑢).

Proof. By integer induction. We trivially have an element of

indfun(𝑍), since there is no 𝑥 : 𝑀 with 𝑥 < 𝑍 . Moreover, we have

indfun(𝑆 (𝑢)) ≃ fix(res𝑆 (𝑢) ◦ ext𝑆 (𝑢))
≃ fix(ext𝑢 ◦ res𝑢)
≃ fix(res𝑢 ◦ ext𝑢)
≃ indfun(𝑢)

by Lemma 6.4 and the rolling rule. □

In fact, one can strengthen the above result to the claim that

indfun(𝑢) is contractible – so in particular the proof only uses inte-

ger induction for propositions – but we will not need this strength-

ening.

Proof of Proposition 6.3. We define 𝑔(𝑥) as the evaluation of

𝑓 (𝑆 (𝑥)) at 𝑥 , using part (iv) of Lemma 6.1. The first equation fol-

lows from the fact that 𝑓 (𝑆 (𝑍)) is inductive. The second equation

follows from the fact that 𝑓 (𝑆 (𝑥)) = ext𝑥 (𝑓 (𝑥)), which we have by

construction of 𝑓 and the fact that the rolling map

fix(res𝑥 ◦ ext𝑥) → fix(ext𝑥 ◦ res𝑥)
is ext𝑥 : indfun(𝑥) → indfun(𝑆 (𝑥)) on first components. □

6.2 Defining the natural numbers
Lemma 6.6 (Naturals.agda). Let 𝑋 and 𝑌 be types with maps

𝜄 : 𝑌 → 𝑋 and 𝑠 : 𝑋 → 𝑋 . Suppose that 𝑋 is freely generated by
these two maps. If 𝑌 has an element, then we have a natural number
type.

Proof. Let 𝑧 : 𝑌 be given. We define a self-map 𝑟 : 𝑋 → 𝑋

by 𝑟 (𝜄 (𝑦)) = 𝜄 (𝑧) and 𝑟 (𝑠 (𝑥)) = 𝑠 (𝑟 (𝑥)) using the universal prop-

erty of 𝑋 . Let N ≡def
∑
𝑥 :𝑋 𝑟 (𝑥) = 𝑥 be the type of fixpoints of

𝑟 . By Lambek’s lemma,
2
the map 𝑌 + 𝑋 → 𝑋 is an equivalence,

so in particular 𝜄 and 𝑠 are embeddings. We have an equivalence

2
In the case at hand, we start from an equivalence Z0 ⊔𝑀 ≃ 𝑀 and there is no need

to invoke Lambek’s lemma.

Conference’17, July 2017, Washington, DC, USA

𝑒𝜄 : (𝑧 = 𝑦) ≃ (𝑟 (𝜄 (𝑦)) = 𝜄 (𝑦)) since 𝜄 is an embedding, and

𝑒𝑠 : (𝑟 (𝑥) = 𝑥)) ≃ (𝑟 (𝑠 (𝑥)) = 𝑠 (𝑥)) since 𝑠 is an embedding. Thus

we have an element 𝑧N : N given by (𝑧, 𝑒𝜄 (refl)). We also have an

endomorphism 𝑠N : N→ N given by 𝑠N (𝑥, 𝑝) = (𝑠 (𝑥), 𝑒𝑠 (𝑝)).
We claim that this makes N a natural number type. Thus let 𝑃

be a type family over N with 𝑧𝑃 : 𝑃 (𝑧N) and 𝑠𝑃 :

∏
𝑛:N 𝑃 (𝑛) →

𝑃 (𝑠N (𝑛)). We construct an element 𝑝 :

∏
𝑥 :𝑋

∏
ℎ:𝑟 (𝑥)=𝑥 𝑃 (𝑥, ℎ) us-

ing the universal property of𝑋 . We first need to construct, for𝑦 : 𝑌 ,

an element

∏
ℎ:𝑟 (𝜄 (𝑦))=𝜄 (𝑦) 𝑃 (𝑦,ℎ), or equivalently

∏
ℎ:𝑧=𝑦 𝑃 (𝑦, 𝑒𝜄 (ℎ)).

We can define this by path induction using 𝑧𝑃 . Then we have

to construct, for 𝑥 : 𝑋 and 𝑓 :

∏
ℎ:𝑟 (𝑥)=𝑥 𝑃 (𝑥, ℎ), an element of∏

ℎ:𝑟 (𝑠 (𝑥))=𝑠 (𝑥) 𝑃 (𝑠 (𝑥), ℎ), or equivalently
∏

ℎ:𝑟 (𝑥)=𝑥 𝑃 (𝑠 (𝑥), 𝑒𝑠 (ℎ)).
Given ℎ : 𝑟 (𝑥) = 𝑥 , we simply use 𝑠𝑃 (𝑥, ℎ) (𝑓 (ℎ)). It is direct to
verify that this defines a section of 𝑃 as a displayed natural numbers

algebra. □

Proof of Theorem 3.4. Apply Lemma 6.6 to𝑀 with its univer-

sal property (Proposition 6.3). □

7 SECOND APPROACH: INDIRECT
The strategy of our second approach is more indirect and perhaps

more in the spirit of Rose [12]. The key operation is stabilizing
natural number algebras: carving out a fragment (not generally

a subtype) on which the structure map is invertible. We achieve

this by storing with each element a trace of previous elements that

explains how the element is obtained by iterations of the structure

map. To construct a type of such traces for an element 𝑥 , we need

a function type valued in the carrier of the algebra, but domain

varying in 𝑥 . If we had access to a univalent universe, we could

make the choice of such a totally ordered domain type part of the

data of the trace (we believe this is the essential part of Rose’s

construction). Without univalence, the extra redundancy of this

choice creates problems. We eliminate this redundancy by forcing

(the code for) the domain type to be uniquely determined by the

values the trace function takes. The technical complexity of the

development results from encoding this very dependent type [4].
Lastly, to avoid a universe entirely, we custom-build a universe out

of fixpoints of endofunctions on the integers that is closed under

sufficient type formers.

7.1 A custom universe
We say that a family of types 𝐵(𝑥) for 𝑥 : 𝐴 has binary coproducts if,
for 𝑎0, 𝑎1 : 𝐴, we have 𝑡 : 𝐴 and maps 𝐵(𝑎0) → 𝐵(𝑡) and 𝐵(𝑎1) →
𝐵(𝑡) exhibiting 𝐵(𝑡) as a binary coproduct (equivalently, we have

𝑡 : 𝐴 with an equivalence 𝐵(𝑡) ≃ 𝐵(𝑎0) ⊔ 𝐵(𝑎1)). We similarly

define when the family has empty types (nullary coproducts) and
unit types. The intuition is that we see 𝐴 as a universe and 𝐵 as the

associated universal family, sending a code in the universe to an

actual type. Note that we do not assume that the family is univalent.

Lemma 7.1. There is a family El over a type 𝑈 that has unit types
and finite coproducts.

Proof. We take𝑈 ≡def Z→ Z and El as taking fixpoints:

El(𝑓) ≡def

∑︁
𝑥 :Z

𝑓 (𝑥) =Z 𝑥 .

The unit type is coded by the function constant on 𝑍 . For finite

coproducts, we make use of the equivalence Z ≃ Z ⊔ Z provided
Lemma 4.1. Under this equivalence, it suffices to exhibit codes as

fixpoints of endofunctions on Z ⊔ Z. Calculating the fixpoints of

these endofunctions then makes use of the no-confusion property

for binary coproducts.

• The empty type is coded by the endofunction on Z ⊔ Z
swapping the two components. The type of fixpoints of this

endofunction is empty.

• The binary coproduct of 𝑓 , 𝑔 : 𝑈 is coded by the endofunction

𝑓 ⊔𝑔 on Z⊔Z that is separately 𝑓 on the left component and

𝑔 on the right component. Its type of fixpoints is equivalent

to the coproduct of the types of fixpoints of 𝑓 and 𝑔. □

7.2 Counting structures
Definition 7.2. The type of successor structures from a type 𝐶

to a type 𝐷 is the record type (iterated dependent sum) with the

following data:

• min : 𝐷 and upp : 𝐶 → 𝐷 , together freely generating,

• low : 𝐶 → 𝐷 and max : 𝐷 , together freely generating,

Note that free generation is expressed by a propositional type.

Equivalently, the maps

[min, upp] : 1 ⊔𝐶 → 𝐷 ,

[low,max] : 𝐶 ⊔ 1 → 𝐷

are invertible. The induced equivalence

1 ⊔𝐶 ≃ 𝐷 ≃ 𝐶 ⊔ 1

can be thought of as a successor relation on 𝐶 that misses a unique

predecessor and successor from being an equivalence (as for exam-

ple for a finite prefix of the natural numbers). We could strengthen

the definition to work with decidable total orders and require that

the above equivalences lifts to

1★𝐶 ≃ 𝐷 ≃ 𝐶 ★ 1

where 𝐴 ★ 𝐵 denotes the join of orders 𝐴 and 𝐵. However, we do

not need this in our development.

Definition 7.3. A counting structure on a natural number alge-

bra 𝐴 is a family 𝐶 over 𝐴 with ¬𝐶 (𝑧) and a successor structure

(min𝑥 , upp𝑥 , low𝑥 ,max𝑥) from𝐶 (𝑥) to𝐶 (𝑠 (𝑥)) for 𝑥 : 𝐴 such that

min𝑠 (𝑥) ≠ max𝑠 (𝑥) in 𝐶 (𝑠 (𝑠 (𝑥))) for 𝑥 : 𝐴. A counting algebra is a
natural number algebra equipped with a counting structure.

The notion of counting structures is motivated by our desire to

associate to each natural number a set of that cardinality.

Lemma 7.4. There is a counting algebra.

Proof. From Lemma 7.1, we have a family El over a type𝑈 with

unit types and finite coproducts. For our counting algebra, we take

as carrier the type of tuples (𝑐, 𝑑, 𝑠) of 𝑐, 𝑑 : 𝑈 with a successor

structure 𝑠 = (min, upp, low,max) from El(𝑐) to El(𝑑). The zero

element has 𝑐 given by the code for the empty type and 𝑑 given

by the code for the unit type, with essentially unique successor

structure. The successor of (𝑐, 𝑑, 𝑠) is given by (𝑑, 𝑒, 𝑡) where 𝑒 is
a code for El(𝑑) ⊔ 1 and 𝑡 = (min′, upp′, low′,max′) has low′ = 𝜏0

Natural numbers from integers Conference’17, July 2017, Washington, DC, USA

and max′ = 𝜏1 (−) while [min′, upp′] fills the below square of

equivalences:

1 ⊔ (El(𝑐) ⊔ 1) ≃ //

1⊔[low,max] ≃
��

(1 ⊔ El(𝑐)) ⊔ 1

[min,upp]⊔1≃
��

1 ⊔ El(𝑑)
[min′,upp′]

// El(𝑑) ⊔ 1.

Note that min′ ≠ max′ by effectivity of binary coproducts. □

Corollary 7.5. Every natural number algebra receives a map
from a counting algebra.

Proof. Take the product of the given natural number algebra

with the counting algebra of Lemma 7.4. Since counting structures

are contravariant in the natural number algebra, this product in-

herits a counting structure. □

7.3 Stabilization
The following statement is our only use of counting structures. It

provides a mechanism for annotating an algebra element with a

“recursive” vector of algebra elements.

Lemma 7.6. Every counting algebra 𝐴 admits the following:
• a type𝑀 (𝑥) for 𝑥 : 𝐴 with:
– 𝑀 (𝑧) is contractible,
– an equivalence pair : 𝑀 (𝑥) ×𝐴 → 𝑀 (𝑠 (𝑥)),

• last𝑥 (𝑚) : 1 ⊔𝐴 for𝑚 : 𝑀 (𝑥) with identifications:
– last𝑧 (−) = 𝜏0 (∗),
– last𝑠 (𝑥) (pair(𝑚,𝑦)) = 𝜏1 (𝑦) for𝑚 : 𝑀 (𝑥) and 𝑦 : 𝐴,

• rebuild𝑥 (𝑚) : 𝑀 (𝑥) for𝑚 : 𝑀 (𝑥) with identification

rebuild𝑠 (𝑥) (pair(𝑚,𝑦)) =𝑀 (𝑠 (𝑥)) pair(rebuild𝑥 (𝑚), next𝑥 (𝑚))
where next𝑥 (𝑚) ≡def [𝑧, 𝑠] (last𝑥 (𝑚)) : 𝐴.

Proof. Let 𝐶 denote the counting structure of 𝐴. We define

𝑀 (𝑥) ≡def 𝐶 (𝑥) → 𝐴.

Note that𝑀 (𝑧) is contractible since ¬𝐶 (𝑧). The equivalence
pair : (𝐶 (𝑥) → 𝐴) ×𝐴 ≃ (𝐶 (𝑠 (𝑥)) → 𝐴)

is induced by freeness of low : 𝐶 (𝑥) → 𝐶 (𝑠 (𝑥)) and max : 𝐶 (𝑠 (𝑥)).
For the other data, we use that𝐶 (𝑠 (𝑥)) is freely generated bymin

and upp. The element last𝑥 (𝑚) : 1⊔𝐴 is defined by case distinction

on max : 𝐶 (𝑠 (𝑥)):
• on min, we return 𝜏0 (∗),
• on upp(𝑦) with 𝑦 : 𝐶 (𝑥), we return 𝜏1 (𝑚(𝑦)).

The element rebuild𝑥 (𝑚) (𝑐) : 𝐴 for𝑚 : 𝐶 (𝑥) → 𝐴 and 𝑐 : 𝐶 (𝑥)
is defined by case distinction on low(𝑐) : 𝐶 (𝑠 (𝑥)):

• on min, we return 𝑧,

• on upp(𝑦) with 𝑦 : 𝐶 (𝑥), we return𝑚(𝑦).
All the required identifications are direct. □

We now use the vectors provided by the previous lemma to an-

notate an algebra element with a trace witnessing that it is obtained

recursively from the structure map. Restricting to elements with

such a trace stabilizes the natural number algebra.

Lemma 7.7. Every natural number algebra receives a map from a
stable natural number algebra (see Definition 3.2).

Proof. Let 𝐴 denote the given natural number algebra. Using

Corollary 7.5, wemay reduce to the settingwhere𝐴 comes equipped

with a counting structure. There, we have the structure given by

Lemma 7.6.

We define a natural number algebra 𝐵 with underlying type the

following record (iterated dependent sum):

• 𝑥 : 𝐴,

• 𝑚 : 𝑀 (𝑥),
• 𝑞 : 𝑥 = next𝑥 (𝑚).
• 𝑝 :𝑚 =𝑀 (𝑥) rebuild𝑥 (𝑚),

This lies over 𝐴 via the first projection. Given 𝑥 : 𝐴, we write 𝐵(𝑥)
for the record of the remaining three components. It remains to

construct an equivalence 1 ⊔ 𝐵 ≃ 𝐵 over [𝑧, 𝑠] : 1 ⊔ 𝐴 → 𝐴. We

construct this equivalence in reverse direction as a series of steps.

First, 𝐵 arises by contracting 𝑘 and 𝛼 in the following record:

• 𝑥 : 𝐴,

• 𝑘 : 1 ⊔𝐴,

• 𝑞 : 𝑥 =𝐴 [𝑧, 𝑠] (𝑘),
• 𝑚 : 𝑀 (𝑥),
• 𝛼 : 𝑘 =1⊔𝐴 last𝑥 (𝑚),
• 𝑝 :𝑚 =𝑀 (𝑥) rebuild𝑥 (𝑚).

Contracting 𝑥 with 𝑞, we obtain the equivalent record:

• 𝑘 : 1 ⊔𝐴,

• 𝑚 : 𝑀 (𝑥),
• 𝛼 : 𝑘 = last𝑥 (𝑚),
• 𝑝 :𝑚 = rebuild𝑥 (𝑚)

where the reverse direction sets 𝑥 ≡def [𝑧, 𝑠] (𝑘) as required. It
remains to show that the record of the last three fields is equivalent

to 𝐵(𝑘). For this, we perform case distinction on 𝑘 .

For 𝑘 = 𝜏0 (∗), we have 𝑥 = 𝑧 and are equivalently left with:

• 𝑚 : 𝑀 (𝑧),
• 𝛼 : 𝜏0 (∗) = last𝑧 (𝑚),
• 𝑝 :𝑚 = rebuild𝑧 (𝑚).

Since 𝑀 (𝑧) is contractible, this is equivalent to 𝜏0 (∗) =1⊔𝐴 𝜏0 (∗).
By no-confusion, 𝜏0 is an embedding, so this is contractible.

For 𝑘 = 𝜏1 (𝑦), we have 𝑥 = 𝑠 (𝑦) and are equivalently left with:

• 𝑚 : 𝑀 (𝑠 (𝑦)),
• 𝛼 : 𝜏1 (𝑦) = last𝑠 (𝑦) (𝑚),
• 𝑝 :𝑚 = rebuild𝑠 (𝑦) (𝑚).

Expanding the product𝑀 (𝑠 (𝑦)) ≃ 𝑀 (𝑦) ×𝐴, this is equivalent to:

• 𝑚′
: 𝑀 (𝑦),

• 𝑧 : 𝐴,

• 𝛼 : 𝜏1 (𝑦) = last𝑠 (𝑦) (pair(𝑚′, 𝑧)),
• 𝑝 : pair(𝑚′, 𝑧) = rebuild𝑠 (𝑦) (pair(𝑚′, 𝑧)).

This rewrites to:

• 𝑚′
: 𝑀 (𝑦),

• 𝑧 : 𝐴,

• 𝛼 : 𝜏1 (𝑦) = 𝜏1 (𝑧),
• 𝑝 : pair(𝑚′, 𝑧) = pair(rebuild𝑦 (𝑚′), next𝑦 (𝑚′)).

Since 𝜏1 is an embedding, we may contract 𝑧 with 𝛼 :

• 𝑚′
: 𝑀 (𝑦),

• 𝑝 : pair(𝑚′, 𝑦) = pair(rebuild𝑦 (𝑚′), next𝑦 (𝑚′)).
Splitting 𝑝 into a pair of equalities, we recover 𝐵(𝑦). □

Conference’17, July 2017, Washington, DC, USA

The strategy of the above proof is reminiscent of the proof of

the rolling rule (Lemma 6.2). In particular, the definition of 𝐵 is

almost that of the fixpoints of an operation on

∑
𝑥 :𝐴𝑀 (𝑥). However,

type of 𝑝 seems to resist this (it is an identification in 𝑀 (𝑥), not
𝑀 (next𝑥 (𝑚))). It is unclear to us how this analogy can be exploited.

7.4 Defining the natural numbers
Lemma 7.8. There is a stable natural number algebra that embeds

into Z.

Proof. By Lemma 7.7, we have a stable natural number algebra

𝐴 with a morphism 𝑓 : 𝐴 → Z. We now apply Construction 5.1

with 𝐴 ≡def 𝐴 and 𝐵 ≡def 1. The equivalence 𝐴 ≃ 𝐵 ⊔ 𝐴 is the

structure map of the stable natural number algebra 𝐴. Note that 𝐵

has a unique element. The resulting integer algebra (with carrier

𝐴⊔1⊔𝐴) again lies over Z: we send 𝜏0 (𝑎) to 𝑆−1 (inv(𝑎)), 𝜏1 (∗) to𝑍 ,
and 𝜏2 (𝑎) to 𝑆 (𝑓 (𝑎)). Here, inv is the underlying map of the unique

integer algebra morphism from Z to Z′ where Z′ has automorphism

𝑆−1 instead of 𝑆 .

By initiality of Z, the algebra map Z → 𝐴 ⊔ 1 ⊔ 𝐴 is a section

of the algebra map 𝐴 ⊔ 1 ⊔ 𝐴 → Z. By construction, the former

map sends Z0 in the decomposition (2) to the middle component in

𝐴 ⊔ 1 ⊔𝐴, and in turn, that middle component is sent to Z0 by the

latter map (specifically, to 𝑍). This exhibits 𝑍 0
as a retract of 1, in

particular it is contractible. We may thus silently replace 𝑍 0
by 1

in the obtained decomposition (2).

This makes 1⊔Z+ with zero element 𝜏0 (∗) and successor function
𝜏1 ◦ 𝑆+ into a stable natural number algebra embedding into Z. □

In the last step of the above lemma, we can equivalently directly

use Z+ as the desired natural number algebra. Denote the image of

the zero in Z by 𝑡 . We then need to postcompose with the shifting

map of Z that sends 𝑡 to 𝑍 to obtain the algebra embedding from

Z+ to Z.

Lemma 7.9. Let 𝐴 be a stable natural number algebra over Z such
that 𝐴(𝑍) is contractible. Then 𝐴 is initial.

Proof. Using Lemma 3.3, it suffices to show that 𝐴 has elimi-

nation. In natural number algebras over 𝐴, having a section is a

covariant structure. That is, given a morphism 𝐸′ → 𝐸 of natural

number algebras over 𝐴, if 𝐸′ has a section, then so does 𝐸. Using

Lemma 7.7, it thus suffices to construct a section for a stable natural
number algebra 𝐸 over 𝐴. In fact, we will show that 𝐸 is fiberwise

contractible over𝐴. Since both𝐴 and 𝐸 are stable, we have 𝐸 (𝑧) ≃ 1

and 𝐸 (𝑠 (𝑎)) ≃ 𝐸 (𝑎) for 𝑥 : Z and 𝑎 : 𝐴(𝑥).
We define an integer algebra 𝑄 over Z with underlying family

of propositions

𝑄 (𝑥) ≡def

∏
𝑎:𝐴(𝑥)

isContr(𝐸 (𝑎)).

Note that 𝑄 (𝑍) holds because 𝑧 : 1 → 𝐴(𝑍) is an equivalence

and 𝐸 (𝑧) is contractible. We will check in the next paragraph that

𝑄 (𝑥) and 𝑄 (𝑆 (𝑥)) are logically equivalent for 𝑥 : Z. Once we

have that, initiality of Z gives a section 𝑞 of 𝑄 . Then we have

𝑞(𝑥, 𝑎) : isContr(𝐸 (𝑎)) for 𝑎 : 𝐴(𝑥) as desired.
From 𝑠 : 𝐴(𝑥) → 𝐴(𝑆 (𝑥)) and 𝐸 (𝑠 (𝑎)) ≃ 𝐸 (𝑎), we have that

𝑄 (𝑆 (𝑥)) implies 𝑄 (𝑥). Let us check that 𝑄 (𝑥) implies 𝑄 (𝑆 (𝑥)).

Given 𝑓 :

∏
𝑎:𝐴(𝑥) isContr(𝐸 (𝑎)) and 𝑎′ : 𝐴(𝑆 (𝑥)), we need to

show that 𝐸 (𝑎′) is contractible. We case split on

[𝑧, 𝑠]−1 (𝑆 (𝑥), 𝑎′) : 1 ⊔∑
𝑥 :Z𝐴(𝑥).

• For (𝑆 (𝑥), 𝑎′) = (𝑍, 𝑧), the goal follows from 𝐸 (𝑧) ≃ 1.

• For (𝑆 (𝑥), 𝑎′) = (𝑆 (𝑦), 𝑠 (𝑎)) where 𝑦 : Z and 𝑎 : 𝐴(𝑦), it
remains to show that 𝐸 (𝑠 (𝑎)) is contractible. This follows
from 𝐸 (𝑠 (𝑎)) ≃ 𝐸 (𝑎) and 𝑓 (𝑎) : isContr(𝐸 (𝑎)). □

Proof of Theorem 3.4. Apply Lemma 7.9 to Lemma 7.8. □

REFERENCES
[1] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. 2023. Two-

level type theory and applications. Mathematical Structures in Computer Science
33, 8 (2023), 688–743. https://doi.org/10.1017/S0960129523000130

[2] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda—a

functional language with dependent types. In Theorem Proving in Higher Order
Logics. Springer, 73–78.

[3] Martín Hötzel Escardó. 2019. Introduction to Univalent Foundations

of Mathematics with Agda. Lecture notes from Midlands Graduate

School. https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/

HoTT-UF-Agda.html#149931

[4] Jason J Hickey. 1996. Formal objects in type theory using very dependent types.

Foundations of Object Oriented Languages 3 (1996), 117–170.
[5] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. 2018. The homotopy theory

of type theories. Advances in Mathematics 337 (2018), 1–38. https://doi.org/10.

1016/j.aim.2018.08.003

[6] Krzysztof Kapulkin and Karol Szumiło. 2019. Internal languages of finitely

complete (∞, 1)-categories. Selecta Mathematica 25 (2019), 1–46.
[7] Nicolai Kraus and Jakob von Raumer. 2019. Path spaces of higher inductive types

in homotopy type theory. In 2019 34th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). IEEE, 1–13.

[8] Hoang Kim Nguyen and Taichi Uemura. 2022. ∞-type theories.

arXiv:2205.00798 [math.CT]

[9] Nima Rasekh. 2021. Every Elementary Higher Topos has a Natural Number

Object. Theory and Applications of Categories 37, 13 (2021), 337–377.
[10] Egbert Rijke. 2017. Discussion post on the nForum. https://nforum.ncatlab.org/

discussion/6691/higher-inductive-type/?Focus=61552#Comment_61552

[11] Egbert Rijke. 2022. Introduction to Homotopy Type Theory.

arXiv:2212.11082 [math.LO]

[12] Robert Rose. 2020. The Natural Numbers in Predicative Univalent Type Theory.
Ph. D. Dissertation. Indiana University.

[13] The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for

Advanced Study.

