
THOUGTS ON THE GLUEING CONSTRUCTION FOR
CATEGORIES WITH FAMILIES

Abstract. Categories with families (cwf’s) are traditionally identified with
full split comprehension categories. Peter Lumsdaine has advocated that they
should better be identified with discrete comprehension categories. We agree
with his sentiment.

While the equivalence of these concepts is relatively easy to verify, the
bookkeeping is quite tremendous when building actual equivalences between
categories (with strict morphisms, pseudomorphisms, or lax morphisms) of
categories with families on one hand and discrete comprehension categories
on the other. Here, we try to give a conceptual account using the theory of
comonadicity. Our argument is suitable for formalization.
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1. Recollections on comonads and adjunctions

1.1. Functors. We write Funcstrict for the category of functors and strict mor-
phisms, i.e. the functor category from the walking arrow toCat. We write Funcpseudo,Funclax,Funcoplax

for the category of 2-functors from the walking arrow to Cat with pseudo-, oplax,
and lax natural transformations as morphisms. In all cases, given functors F1 : C1 →
D1 and F2 : C2 → D2, a morphism from F1 to F2 is a tuple (U, V, φ) with functors
U : C1 → C2 and V : D1 → D2, but the signature of the natural transformation
φ differs. In the lax case, we have φ : F2U → V F1. In the oplax case, we have
φ : V F1 → F2U . In the pseudo case, we have an isomorphism φ : V F1 → F2U . In
the strict case, we require that φ : V F1 → F2U is an identity. In summary, we have
a diagram of inclusions of wide subcategories as follows:

Funcoplax

Funcstrict
� � // Funcpseudo

' �
44

� w

**

Funclax.

In all cases, we have projection functors

Cat

Func•

Dom 66

Cod ((
Cat

returning the domain and codomain category of the given functor.

1.2. Adjunctions. Let us describe the category Adj of adjunctions.
• An object of Adj is a tuple (C,D, L,R, η, ε) consisting adjoint functors
L : C → D and R : D → C with unit η and counit ε.

• A morphism

(C1,D1, L1, R1, η1, ε1)→ (C2,D2, L2, R2, η2, ε2)

is a tuple (U, V, l, r) with functors U : C1 → C2 and V : D1 → D2 and natural
transformations l : L2U → V L1 and r : UR1 → R2V such that

rL1 ◦ Uη1 = R2l ◦ η2U

and
V ε1 ◦ lR1 = ε2V ◦ L2r.

• The identity on (C,D, L,R, η, ε) is (IdC , IdC , id, id). The composition of

(U1, V1, l1, r1) : (C1,D1, L1, R1, η1, ε1)→ (C2,D2, L2, R2, η2, ε2)

and

(U2, V2, l2, r2) : (C2,D2, L2, R2, η2, ε2)→ (C3,D3, L3, R3, η3, ε3)

is
(U2U1, V2V1, V2L1 ◦ L3U1, r2U1 ◦ U2r1).

• Neutrality and associativity laws clearly hold.
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Note that the last two conditions on a morphism in Adj above are equivalent
and both specify that l and r are adjoint transposes, i.e.

R2V ε1 ◦R2lR1 ◦ η2UR1 = r

or equivalently
ε2V L1 ◦ ◦L2rL1 ◦ L2Uη1 = l.

Thus, one may remove one of l and r from the data of a morphism and omit these
equations altogether. One obtains fully faithful functors

Funcoplax

Adj

Left 66

Right ))

Funclax

projecting to the left and right adjoint. One may alternatively define Adj in this
way, letting the morphism structure be created via these maps.

We add subscripts left-pseudo, left-strict, right-pseudo, right-strict,pseudo, strict
to Adj to indicate that we are taking the wide subcategory of morphisms as above
for which l or r or both are invertible or an identity, respectively. These subscripts
maybe combined.

1.3. Comonads. Let us describe the category Cmd.
• An object is a tuple (D, N, ε, ν) with a category D and a comonad (N, ε, ν)

on D.
• A morphism from (D1, N1, ε1, ν1) to (D2, N2, ε2, ν2) is a functor V : D1 →
D2 and a natural transformation v : V N1 → N2V such that V ε1 = ε2V ◦ v
and N1v ◦ vN1 ◦ V ν1 = ν2V ◦ v.

• The identity on (C, T, η, µ) is (IdC , id). The composition of

(V1, v1) : (D1, N1, ε1, ν1)→ (C2, T2, ε2, ν2)

and
(V2, v2) : (D2, N2, ε2, ν2)→ (C3, T3, ε3, ν3)

is (V2V1, v2V1 ◦ V2v1).
• Neutrality and associativity laws clearly hold.

We write Cmdpseudo and Cmdstrict for the wide subcategory of Cmd of mor-
phisms as above for which v is invertible or an identity, respectively. Analogous
categories are defined for copointed endofunctors, in which case the comultiplication
component is omitted. This gives a diagram of categories as follows:

Cmdstrict
� � //

��

Cmdpseudo
� � //

��

Cmd

��

Endocopt,strict
� � // Endocopt,pseudo

� � // Endocopt.

The horizontal arrows are wide subcategory inclusions.

1.4. Comonads and adjunctions. There is a functor S : Adjleft-strict → Cmd
sending an adjunction (C,D, L,R, η, ε) to the comonad (D, LR, ε, LηR) and a mor-
phism

(U1, V1, l1, r1) : (C1,D1, L1, R1, η1, ε1)→ (C2,D2, L2, R2, η2, ε2)

to the morphism

(V1, L2r) : (D1, L1R1, ε1, L1η1R1)→ (D2, L2R2, ε2, L2η2R2).
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The functor S has a right adjoint T : Cmd → Adjleft-strict sending a comonad
(D, N, ε, ν) to the adjunction (Coalg(N),D, L,R, η, ε) where L : Coalg(N) → D is
the forgetful functor sending a coalgebra (A, f) to A and R is the cofree coalge-
bra functor sending A to the coalgebra (TA, νA); the component η(A,f) : (A, f) →
(TA, νA) of the unit is given by f . The morphism

(V, v) : (D1, N1, ε1, ν1)→ (C2, T2, ε2, ν2)

is send to the morphism

(U, V, id, r) : (Coalg(N)2,D2, U2, F2, η2, ε2)→ (Coalg(N2),D2, U2, F2, η2, ε2)

where U sends a coalgebra (A, f) for N1 to the coalgebra (V A, vA ◦V f) for N2 and
we do not to describe r or check any more laws since the projection Adjleft-strict →
Funcstrict to the left adjoint is fully faithful.

The adjunction

Adjleft-strict

S
**

⊥

��

Cmd

T

kk

��

Cat

lives strictly over Cat as indicated where the left functor returns the target of the
left adjoint and the right functor returns the underlying category. It is further-
more a reflection, i.e. the right adjoint T is fully faithful. The adjunctions in the
essential image of T , i.e. those adjunctions X for which the unit X → TSX is an
isomorphism, are called strictly comonadic.

Note that the above reflection restricts to reflections

Adjpseudo,left-strict

S
,,

⊥ Cmdpseudo

T

mm

and

Adjstrict

S
**

⊥ Cmdstrict.
T

kk

2. Stuff on cartesian copointings

Recall that a functor is cartesian if it preserves pullbacks. Recall that a nat-
ural transformation is cartesian if its naturality squares are pullbacks. Recall
that a (co)monad is cartesian if it is cartesian as a functor and its (co)unit and
(co)multiplication are cartesian natural transformations.

Lemma 2.1. Let (N, ε) be a copointed endofunctor. If the copointing ε is cartesian,
then so is the whole copointed endofunctor (N, ε).

Proof. The functor N is cartesian by a pullback pasting argument in a cube, using
that its copointing ε is cartesian. �

Lemma 2.2. Let (N, ε, ν) be a comonad. If the counit ε is cartesian, then so is
the whole comonad (N, ε, ν).

Proof. The functor N is cartesian by Lemma 2.1. By pullback pasting cancellation
in the neutrality law εN ◦ ν, we see that also ν is cartesian. �
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Lemma 2.3. Let (N, ε, ν) be a comonad with cartesian counit on a category D.
Then the forgetful functor

F : Coalg(N, ε, ν)→ Coalg(N, ε)

is an isomorphism.

Proof. Clearly F is injective on objects and fully faithful. It remains to show
that it is surjective on objects. Let (A, u) with u : A → NA be an object of
Coalg(N, ε). To show that (A, u) lifts through F , we need to show that u respects
the comultiplication, i.e. that the following diagram commutes:

A
u //

u

��

NA

Nu
��

NA
νA // N2A.

(2.1)

Since ε is cartesian, we have the following pullback:

N2A
εNA //

NεA
��

NA

εA

��

NA
εA // A.

It thus suffices to verify that the two composites in (2.1) are equal when postcom-
posed with εNA and NεA. The composites of vA with these two maps are identities,
so it remains to show that the postcompositions of Nu ◦ u with εNA and NεA are
equal to u. In the former case, we have

εNA ◦Nu ◦ u = u ◦ εNA ◦ u
= u ◦ id

= u.

In the latter case, we have

NεA ◦Nu ◦ u = N(εA ◦ u) ◦ u
= N(id) ◦ u
= u. �

Lemma 2.4. The vertical forgetful functors in the diagram

Cmdstrict
� � //

��

Cmdpseudo
� � //

��

Cmd

��

Endocopt,strict
� � // Endocopt,pseudo

� � // Endocopt

(2.2)

are isomorphisms on copointed endofunctors with cartesian copointing.

Proof. All vertical functors have the same action on objects. Let us show that is
it bijective. Let (C, N, ε) be a copointed endofunctor with ε cartesian. We wish to
show that there is a unique comultiplication µ satisfying the left and right neutrality
and associativity laws.

Since ε is cartesian, we have the following pullback:

N2 εN //

Nε

��

N

ε

��

N
ε
// Id .

(2.3)
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This allows us to define comultiplication ν follows:

N

id

%%

id

��

ν

!!

N2 εN //

Nε

��

N

ε

��

N
ε
// Id .

(2.4)

Since ε is natural transformation, so is ν. The left and upper triangles in (2.4)
witness the neutrality laws for a comonad. In fact, as seen in (2.4), ν is determined
uniquely by these requirements.

Let us check the associativity law:

N
ν //

ν

��

N2

Nν
��

N2 νN // N3.

(2.5)

From (2.3), we get the following pullback:

N3 εN2
//

NεN
��

N2

εN

��

N2

εN
// N .

It thus suffices to check that the two composites in (2.5) are equal when postcom-
posed with εN2 and NεN . In both cases, this is easily verified using the neutrality
laws.

Thus, we have shown that (N, ε, ν) is a comonad. Together with the unicity of
ν observed earlier, this concludes the verification that the action on objects of the
vertical maps in (2.2) are bijections.

It remains to show that the vertical maps in (2.2) are fully faithful. Since this
property is preserved under pullback, it suffices to check this for the rightmost
vertical map Cmd→ Endocopt. It is clearly faithful. To show that is full, consider
objects (D1, N1, ε1, ν1) and (D2, N2, ε2, ν2) of Cmd with cartesian counits and a
morphism

(V, v) : (N1, ε1)→ (N2, ε2)

in Endocopt. To lift this morphism to Cmd, we need to check that the following
diagram commutes:

V N1
v //

V ν1

��

N2V

ν2V

��

V N2
1

vN1 // N2V N1
N2v // N2

2V .

(2.6)

From (2.3) for the counit ε2, we get the following pullback:

N2
2V

ε2N2V //

N2ε2V

��

N2V

ε2V

��

N2V
ε2V

// V .
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It thus suffices to check that the two composites in (2.6) are equal when postcom-
posed with ε2N2V and N2ε2V . For the upper right composite, we obtain v using
the neutrality laws for the comonad (N2, ε2, ν2). For the lower left composite, we
calculate

ε2N2V ◦N2v ◦ vN1 ◦ V ν1 = v ◦ ε2V N1 ◦ vN1 ◦ V ν1

= v ◦ V ε1N1 ◦ V ν1

= v

and

N2ε2V ◦N2v ◦ vN1 ◦ V ν1 = N2V ε1 ◦ vN1 ◦ V ν1

= v ◦ V N1ε1 ◦ V ν1

= v. �

Lemma 2.5. Consider an endofunctor N on a category B with a cartesian copoint-
ing ε. Then the forgetful functor Coalg(N, ε)→ B is a discrete fibration.

Proof. Let f : A→ B be a map in B and consider a coalgebra structure v : B → NB
on B. Our goal is to show that there is a unique coalgebra structure u : A → NA
on A such that f forms a coalgebra morphism from (A, u) to (B, v). That is, we
must show that there is a unique dotted map in the diagram

A //

f

��

NA
εA //

Nf

��

A

f

��

B
v
// NB

εB
// B

commutes, where we ommited drawing the horizontal composite identities. This
follows from the universal property of the pullback given by the naturality square
of ε at f . �

3. Stuff on discrete fibrations

3.1. Connected limits in discrete fibrations.

Lemma 3.1. A discrete fibration that is bijective on objects is an isomorphism.

Proof. Trivial. �

Lemma 3.2. Let P : E → B be a discrete fibration and F : I → E be a diagram
with I connected. Then the induced functor

Q : const ↓[I,E] F → const ↓[I,B] PF

is bijective on objects.

Proof. Since Q is a discrete fibration, so is QI : [I, E ]→ [I,B], hence the functor

Q′ : [I, E ]/F → [I,B]/PF

is an isomorphism of categories. By functoriality of the comma category construc-
tion, we have a commuting diagram of categories

const ↓[I,E] F
Q
//

L

��

const ↓[I,B] PF

R

��

[I, E ]/F
Q′

// [I,B]/PF .

(3.1)

Note that L and R are injective on objects since I is inhabited. Since L and Q′ are
injective on objects, so is Q.
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Let us show that Q is is surjective on objects. Consider an object (B, u), where
u : const(B)→ PF , of the codomain of Q. Let (Y ′, v) the (unique) lift of R(B, u) =
(constB, u) through Q′. Since R is injective on objects, it remains to lift (Y ′, v)
through L.

Since P reflects identities, we have that Y ′K = Y ′K ′ and Y ′j = id for any map
j : K → K ′ in I. Since I is connected, there hence is an object Y ∈ E such that
Y ′ = constY . Then (Y, v) is a lift of (Y ′, v) through L. �

Lemma 3.3. Let P : E → B be a discrete fibration and F : I → E be a diagram
with I connected. Then the induced functor

Q : const ↓[I,E] F → const ↓[I,B] PF

is an isomorphism.

Proof. We know by Lemma 3.2 that Q is bijective on objects. Using Lemma 3.1,
it remains to show that Q is a discrete fibration. So let (Y, v) be an object of its
domain and (A, s)→ (PY, Pv) a map in its codomain; we want to show that it has
a unique lift (X,u)→ (Y, v) in its codomain.

We extend F using the cone (Y, v), obtaining a new functor G : 1 ? I → E . Now
consider the functor

R : const ↓[1?I,E] G→ const ↓[1?I,B] PG.

The map (A, s)→ (PY, Pv) forms an object of its codomain. Lifts (X,u)→ (Y, v)
correspond to lifts of this object to its codomain. By Lemma 3.2, lifts of objects
through R are unique. �

Alternative to our setup, one could show directly that the diagram (3.2) in the
proof of Lemma 3.2 is a pullback.

Corollary 3.4. Discrete fibrations create connected limits.

Proof. Using the characterization of limits as terminal objects in appropriate comma
categories, this is just Lemma 3.3. �

Corollary 3.5. Discrete fibrations create pullbacks. �

Corollary 3.6. Discrete fibrations create coequalizers. �

3.2. Discrete fibrations with right adjoints.

Lemma 3.7. Consider a discrete fibration P : E → B with a right adjoint (R, ε).
Then ε is a cartesian natural transformation.

Proof. Let g : B → C be a map in B. We want to show that the square

PRB
PRg

//

εB

��

PRC

εC

��

B
g

// C

is a pullback. Let us consider a cone

A

f ′

&&

h

��

f

""

PRB
PRg

//

εB

��

PRC

εC

��

B
g

// C;

(3.2)
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our goal is to show that there is a unique map f as indicated making the diagram
commute.

Let w : X → RC be the unique lift of h to E , using that P is a discrete fibration.
In particular, we have A = PX. The outer square in (3.2) states commutativity of
the triangle

PX εC◦Pw

��f ′
!!

B
g
// C.

(3.3)

We will now work with transposes with respect to the adjunction P a R. Let us
write u : X → RB be the transpose of f ′. Using naturality of transposition in the
codomain, we obtain from (3.3) the commuting triangle

X w

��
u
!!

RB
Rg
// RC.

(3.4)

For existence of f in (3.2), we can now put f =def Pu. The left triangle commutes
because f ′ is the transpose of u. The upper triangle commutes because it is the
image of (3.4) under P .

For uniqueness of f , we argue as follows. Since P is a discrete fibration, we
must have f = Pu for some map u in E with codomain RB. Using the left triangle
in (3.2), we have that u is the transpose of f ′. This determines u, and hence f ,
uniquely. �

We call an adjunction cartesian if the left and right adjoints are cartesian functors
and the unit and counit are cartesian natural transformations. Note that this
implies that the induced monad and comonad are cartesian.

Proposition 3.8. Consider a discrete fibration P : E → B with a right adjoint R.
Then the adjunction P a R is cartesian.

Proof. We know that P preserves pullbacks by Corollary 3.5. Note that R preserves
pullbacks as it is a right adjoint. The counit ε is cartesian by Lemma 3.7.

The unit η is cartesian by the following reasoning. Recall the triangle law
Pη ◦ εP = idP . Since ε is cartesian, so is εP , and hence Pη by pullback past-
ing cancellation. Then η is cartesian as P reflects pullbacks by Corollary 3.5. �

Let us recall a few items from the theory of comonadic adjunctions. Consider
a functor P : E → B with right adjoint R, denoting the unit η and counit ε. The
adjunction P a R is called comonadic if the canonical comparison functor

E //

P
��

Coalg(PR)

��

B
over B sending X to the comonad algebra (PX,PηX) is an equivalence. It is
strictly comonadic if this comparison functor is an isomorphism. In case P is an
amnestic isofibration, for example because it is a discrete fibration, comonadicity
is equivalent to strict comonadicity.

There are various versions of the comonadicity theorem, which gives sufficient
(and sometimes equivalent) conditions for detecting comonadicity. In our case, we
will only need the following. Given an adjunction P a R as above, if P creates
coequalizers, then P a R is comonadic.
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Proposition 3.9. Consider a discrete fibration P : E → B with a right adjoint R.
Then the adjunction P a R is strictly comonadic.

Proof. It is comonadic because P creates coequalizers by Corollary 3.6. It is then
strictly comonadic as P is a discrete fibration. �

We add the subscript left-discfib to the category Adj to indicate that we restrict
to objects where the left adjoint is a discrete fibration.

4. Variants of categories with families

4.1. Standard definition.

Definition 4.1. A category with families (cwf, standard variation) C = (C,TyC ,TmC , pC , qC)

consists of a category C, a presheaf TyC on C, a presheaf TmC on
∫
TyC , and for

each Γ ∈ C and A ∈ TyC(Γ), a universal element

(pC(Γ,A) : Γ.A→ Γ, qC(Γ,A) ∈ TmC(TyC(pC(Γ,A))(A)))

of the presheaf

WkTmC(Γ,A) : (C/Γ)op // (
∫
TyC)op TmC // Set

where the first map is the functor sending σ : ∆→ Γ to (∆,TyC(σ)(A)).

We introduce some shorthand notation. We omit superscripts if they are evident
from the context. The category C is also referred to as the category of contexts
and substitutions. Its objects are usually denoted with uppercase greek letters
Γ,∆,Ξ, . . .. The elements of Ty and Tm are called types and terms, respectively.

Let Γ ∈ C be a context and A ∈ Ty(Γ) be a type over it. The context Γ.A
is called the context extension (of Γ) with A. The morphism pA : Γ.A → Γ is
called the context projection of A. Given also a substitution σ : ∆ → Γ, we write
A[σ] =def Ty(σ)(A) for the substitution of A by σ. Given additionally a term
t ∈ Tm(Γ, A), we write t[σ] =def Tm(σ,A)(t) for the substitution of t by σ. Note
that this notation is ambiguous if the values of the presheaf Ty respectively Tm
are not disjoint.

Definition 4.2. A lax morphism of cwf’s from C to D is a tuple (F, u, v) with
a functor F : C → D, a natural transformation u : TyC → TyDF , and a natural
transformation v : TmC → TmD(

∫
u).

Given a lax morphism of cwf’s as in Definition 4.2 and Γ ∈ C with A ∈ TyC(Γ),
note that (FpC(Γ,A), v(Γ.A,A[pA])q

C
(Γ,A)) is an element of the presheaf WkTmD(FΓ,uΓA).

By universality of (pD(FΓ,uΓA), q
D
(FΓ,uΓA)), there is thus a unique coercion substitution

F (Γ.A)
τ(Γ,A)

//

F (pC(Γ,A) ##

FΓ.uΓA

p
D(FΓ,uΓA)

{{
Γ

over Γ as indicated such that v(Γ.A,A[pA])q
C
(Γ,A) = qD(FΓ,uΓA)[τ(Γ,A)]. The lax mor-

phism (F, u, v) is a pseudomorphism if all coercion substitutions are isomorphisms
and a strict morphism if they are identities.

Lax morphisms of cwf’s compose in the evident way. The identity on C is given
by (IdC , id, id). The composition of morphisms

C
(F,u,v)

// D
(F ′,u′,v′)

// E
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is given by (F ′F, u′F ◦ u, v′(
∫
u) ◦ v). Neutrality and associativity laws are easily

verified.
Observe that identities in CwFlax are strict morphisms and that pseudomor-

phisms and strict morphisms are closed under composition. This justifies the fol-
lowing definition.

Definition 4.3. We have categories of cwf’s (standard variation) with strict mor-
phisms CwFstrict, pseudomorphisms CwFpseudo, and lax morphisms CwFlax.

In summary, we have a sequence of wide subcategory inclusions

CwFstrict
� � // CwFpseudo

� � // CwFlax. (4.1)

4.2. Slickering. Let us look for a more categorical way of defining cwf’s. The
first change is to present types and terms in terms of discrete fibrations instead
of presheaves. This cuts down on instances of the category of elements construc-
tion, which passes from presheaves to discrete fibrations and appears already inside
Definition 4.1.

Replacing all presheaves by discrete fibrations, and overloading names in the
process, we obtain we the following. A category with families C is equivalently
given by a tower of discrete fibrations

TmC

disc Q
����

TyC

disc P
����

C

together with, for each A ∈ Ty, a universal element of the presheaf

(C/PA)op ' // (TyC/A)op dom // (TyC)op Q−1

// Set (4.2)

where the first map is given by the unique lifting property of discrete fibrations.
Note that the first functor in (4.2) is fact an isomorphism as indicated. Thus,

we may simplify the condition without changing it by omitting it, requiring instead
for each A ∈ Ty a universal element of the presheaf

(TyC/A)op dom // (TyC)op Q−1

// Set. (4.3)

Note that this condition does not make use of the discrete fibration P : TyC → C
at all anymore, only its total space.

A final simplification is achieved by noting that the category of elements of the
presheaf (4.3) is just the comma categoryQ ↓ A. A universal element of the presheaf
is a terminal object in there. Thus, a choice for each A ∈ TyC of a universal element
of the presheaf (4.3) is nothing but a right adjoint for Q. Therefore, we obtain the
following categorical definition.
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Definition 4.4. A category with families (cwf, slick variation) C is a tower of
discrete fibrations

TmC

disc

QC

����

TyC

disc PC

����

RCa

``

C
with a right adjoint RC to Q as indicated.

This categorical phrasing makes the definition of categories of cwf’s much easier.
Let us write DiscFib for the full subcategory of Funcstrict of functors that are
discrete fibrations.

Definition 4.5. The category of cwf’s (slick variation) with lax morphisms is
defined by the pullback

CwFlax
//

��

Adjleft-discfib,left-strict

Cod◦Left

��

DiscFib
Dom // Cat.

The categories of cwf’s with pseudomorphisms and strict morphisms are defined by
an analogous pullback, but with Adjleft-discfib,left-strict replaced by

Adjleft-discfib,left-strict,right-pseudo

and
Adjleft-discfib,strict,

respectively.

Unfolding the components of morphisms, identities, and composition in this def-
inition, one finds that the categories defined are indeed equivalent to Definition 4.3
and that these equivalences respect the wide subcategory inclusions of (4.1).

5. Variants of discrete comprehension categories

5.1. Standard definition.

Definition 5.1. A discrete comprehension category (standard variation) C is a
commuting diagram of categories

TyC
χC

//

PC
  

C→

cod
��
C

where the left map is a discrete fibration and χC maps morphisms to pullback
squares.

We copy some usage and terminology from cwf’s. We omit superscripts if they
are evident from the context. The category C is again referred to as the category
of contexts and substitutions. The objects of Ty are called types. Given Γ ∈ C, we
write Ty(Γ) =def P

−1(Γ) for the types over Γ.
Let A ∈ Ty be a type in context Γ =def PA. The map χ(A) : Γ.A→ Γ is called

the comprehension or context projection of A. Its domain is the context extension
with A. Given also a substitution σ : ∆ → Γ, we write A[σ] → A for the unique
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lift of σ, using that P is a discrete fibration. We call A[σ] the substitution of A by
σ. Observe that, in contrast to the case of categories with families, this notation is
never ambiguous.

Definition 5.2. A lax morphism of discrete comprehension categories from C to
D consists of functors F,G and a natural transformation ζ fitting into a diagram

TyC
χC

//

��

G
��

C→

��

F→

��
�� ζ

TyD
χD

//

��

D→

��

C
F

��

D
such that the bottom left square commutes and ζ lies over the identity, i.e. codD ζ =
id.

In Definition 5.2, note that we do not require ζ to be valued in pullback squares.
If this is the case, equivalently if ζ is an isomorphism, we have a pseudomorphism.
If ζ is an identity, we have a strict morphism.

Lax morphisms of comprehension categories compose in the evident way. Ob-
serve that the identity lax morphism is strict and that strict morphisms and pseu-
domorphisms are closed composition. This justifies the following definition.

Definition 5.3. We have categories of comprehension categories (standard vari-
ation) with strict morphisms CompCatstrict, pseudomorphisms CompCatpseudo,
and lax morphisms CompCatlax.

In summary, we have a sequence of wide subcategory inclusions

CompCatstrict
� � // CompCatpseudo

� � // CompCatlax. (5.1)

5.2. Slickering. Suppose we are given a comprehension category

TyC
χC

//

PC
  

C→

cod
��
C.

(5.2)

Since P C is a discrete fibration, we have a pullback square

(TyC)→
disc // //

cod
��

C→

cod

��

TyC
disc // // C.

(5.3)

Note that the top arrow in (5.3) is again a discrete fibration as indicated, for example
because discrete fibrations are stable under pullback. From the pullback (5.3), we
see that giving χC making the diagram (5.2) commute is the same thing as giving
a section to

codTyC : (TyC)→ → TyC .

Furthermore, since discrete fibrations create pullbacks by Corollary 3.5, we have
that χC maps morphisms to pullback squares exactly if the corresponding section
to codTyC : (TyC)→ → TyC has that property.
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Finally, observe that a section to codTyC that maps morphisms to pullback
squares is the same thing as a copointed endofunctor on TyC with cartesian co-
pointing. Recall from Lemmata 2.1 and 2.4 that a copointed endofunctor with
cartesian copointing is the same thing as a cartesian copointed endofunctor and a
cartesian comonad. Thus, we obtain the following isomorphic definition of discrete
comprehension categories.

Definition 5.4. A discrete comprehension category (slick variation) C is a discrete
fibration TyC → C together with a cartesian copointed endofunctor on TyC .

This definition makes it slightly easier to specify categories of comprehension cat-
egories. Let us write Endocopt,cart for the full subcategory of copointed endofunctor
that are cartesian and similarly for its variants.

Definition 5.5. The category of comprehension categories (slick variation) with
lax morphisms is defined by the pullback

CompCatlax
//

��

Endocopt,cart

��

DiscFib
Dom // Cat

where the right functor returns the underlying category of an endofunctor. The
categories of comprehension categories with pseudomorphisms and strict morphisms
are defined by an analogous pullback, but with Endocopt,cart replaced by

Endocopt,pseudo,cart

and
Endocopt,strict,cart,

respectively.

Unfolding the components of morphisms, identities, and composition in this def-
inition, one finds that the categories defined are indeed equivalent to Definition 5.3
and that these equivalences respect the wide subcategory inclusions of (5.1).

6. Comparing categories with families and discrete comprehension
categories

With the framework we have built up, comparing not just categories with families
and discrete comprehension categories but also the different categories thereof is
now possible in a very conceptual manner.

Theorem 6.1. Categories with families and discrete comprehension categories are
equivalent in the sense of vertical equivalences making the following diagram com-
mute:

CwFstrict
� � //

≈
��

CwFpseudo
� � //

≈
��

CwFlax

≈
��

CompCatstrict
� � // CompCatpseudo

� � // CompCatlax.

(6.1)

Proof. All six categories are defined in Definitions 4.5 and 5.5 via a pullback along
the same functor

DiscFib
Dom // Cat.
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Instead of constructing the equivalences in (6.1) directly, we may thus instead
construct equivalences as in

Adjleft-discfib,strict
� � //

≈
��

Adjleft-discfib,left-strict,right-pseudo
� � //

≈
��

Adjleft-discfib,left-strict

≈
��

Endocopt,strict,cart
� � // Endocopt,pseudo,cart

� � // Endocopt,cart

(6.2)
where each vertical arrow must live over Cat via the right vertical functors in
Definitions 4.5 and 5.5.

Let us first construct the rightmost equivalence in (6.2). We have a commuting
diagram

Adjleft-discfib,left-strict

Cod◦Left
))

Cmdcart
//oo

��

Endocopt,cart

uu
Cat

(6.3)

where the left horizontal arrow is a restriction of the fully faithful right adjoint
of the adjunction of adjunctions and comonads of Subsection 1.4, using that the
associated forgetful functor from the category of coalgebras for a cartesian comonad
is a discrete fibration by Lemma 2.5 and the right horizontal arrow is the functor
forgetting the comultiplication.

Recall from Proposition 3.9 that the adjunctions in Adjleft-discfib,left-strict are
strictly comonadic. Since the associated comonad of an adjunction inAdjleft-discfib,left-strict

is cartesian by Proposition 3.8, we have that the left horizontal functor in is es-
sentially surjective (via an explicit functor) and hence an equivalence. The second
horizontal arrow is an isomorphism by (2.4).

This gives the rightmost equivalence in (6.2). The middle and leftmost equiva-
lence are constructed using the same argument, but with modified subscripts as in
the diagrams

Adjleft-discfib,left-strict,right-pseudo

Cod◦Left
**

Cmdpseudo,cart
//oo

��

Endocopt,pseudo,cart

tt
Cat

and

Adjleft-discfib,strict

Cod◦Left
((

Cmdstrict,cart
//oo

��

Endocopt,strict,cart

vv
Cat.

Furthermore, all these diagrams fit together naturally. �

7. Some tools

For this section, fix a discrete comprehension category

TyC
χC

//

PC
  

C→

cod
��
C.
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7.1. Telescopes. For n ∈ N, we recursively define category Ty(n) of telescopes of
length n together with a comprehension functor χ(n) : Ty(n) → C[n]op

as follows.
• At the initial stage, we set Ty(0) =def C and let χ(0) : C → C[0] be the

canonical isomorphism.
• At the successor stage, we define Ty(n+1) via the pullback

Ty(n+1) //

disc P
(n+1)

(n)
����

Ty

disc P

����

Ty(n) χ(n)

// C[n]op C(0)
// C

and χ(n+1) : Ty(n+1) → C[n+1]op

via the induced map between pullbacks as
indicated below:

Ty(n+1) //

χ(n+1)

��

%%

Ty

χ

��

%%
Ty(n) //

χ(n)

��

C

C[n+1]op
//

&&

C→

cod

&&C[n]op C{n} // C.

We write P (n) for the following composite of functors: Consider the diagram

Ty(n) χ(n)

//

P (n)

!!

C[n]op

C{0}
}}
C.

By induction on n, we see that P (n) is a discrete fibration and that χ(n) as a
morphism of functors over C is cartesian, i.e. in this situation sends morphisms to
cartesian natural transformations.

We denote an object of Ty(n) as a tuple (Γ;A1, . . . , An) with Γ ∈ C and Ai ∈
Ty(Γi−1) for i ∈ {1, . . . , n} where Γ0 =def Γ and Γi =def Γi−1.Ai. A morphism
from (∆;B1, . . . , Bn) to (Γ;A1, . . . , An) then is a substitution σ : ∆→ Γ such that
Bi = Ai[σi−1] where σ0 =def σ and σi =def σi−1.Ai for i ∈ {1, . . . , n}.

7.2. Pullbacks along types. Consider a context Γ ∈ C, a substitution σ : ∆→ Γ,
and a type A ∈ Ty(Γ). The substitution σ lifts to a map A[σ]→ A between types.
Applying comprehension, we obtain a pullback square

∆.A[σ]
σ.A //

pA[σ]

��

Γ.A

pA

��

∆
σ // Γ.

Ordinarily, we view this situation as the base change A[σ] of the type A along the
substitution σ. Dually, however, we may also view it as the pullback σ.A of the
substitution σ along a type A. This operation lifts to a functor, which we write

(−).(−) : C→ ×C Ty→ C→
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where the pullback is taken with respect to cod and P .

8. Dependent sums and products

Consider a discrete comprehension category

TyC
χC

//

PC
  

C→

cod
��
C.

We have a pullback functor

Ty ×C C→ → C→

Ty(2) ×C Ty→ C→

Definition 8.1. The category of dependent products CΠ is defined with a functor
CΠ → Ty(2) as follows.

• An object over (Γ;A,B) consists of a type ΠAB ∈ Ty(Γ), and a bijection
eval from C(Γ,Γ.ΠAB) to C(Γ.A,Γ.A.B).

• A morphism over

(σ,m, n) : (Γ, A,B)→ (Γ′, A′, B′)

from (ΠA′B
′, eval′) to (ΠAB, eval) consists of a map o : ∆.ΠA′B

′ → Γ.ΠAB
over σ such that m∗ ◦ eval = eval ◦o∗.

Let I be a set.

Definition 8.2. The category of weak I-coproducts C+ is defined as follows.
• An object consists of a context Γ ∈ C, types Ai ∈ Ty(Γ) for i ∈ I, a type
X ∈ Ty(Γ), and maps fi : Γ.Ai → Γ.X over Γ for i ∈ I.

• A morphism from (∆, A′, X ′, f ′) to (Γ, A,X, f) consists of a substitution
σ : ∆→ Γ, maps mi : A

′
i → Ai over σ for i ∈ I, and a map u : ∆.X ′ → Γ.X

over σ such that the diagram

∆.A′i
f ′i //

χ(mi)

��

∆.X ′

u

��

Γ.Ai
fi // Γ.X

commutes for each i ∈ I.

D //

∼=
����

B
∼= P
����

C F // A
Given a context (ΓC ,ΓB) in D. Given types (Ci ∈ Ty(ΓC), Bi ∈ Ty(ΓB)) over

it. We want to take their coproduct. So we take C1 +C2 ∈ Ty(ΓC) and B1 +B2 ∈
Ty(ΓB). But these do not map to the same thing in A: F (C1 +C2) vs P (B1 +B2)
in Ty(ΓA).

Well, P is a strict map. So P (B1 + B2) = P (B1) + P (B2) = F (C1) + F (C2).
Have a canonical map F (C1) + F (C2)→ F (C1 + C2).
C(∆,∆.ΠA′B

′) C(Γ,Γ.ΠAB)



THOUGTS ON THE GLUEING CONSTRUCTION FOR CATEGORIES WITH FAMILIES 18

Definition 8.3. The category of dependent sums CΣ is defined with a functor
CΣ → Ty(2) as follows.

• An object over (Γ;A,B) is a pair (ΣAB, snd) with ΣAB ∈ Ty(Γ) and a
map

snd: χΓ.A(B)→ χΓ(ΣAB).A

in C/Γ.A such that (χΓ(ΣAB), snd) is an initial object in χΓ.A(B) ↓ (−).A.
• A morphism over

(σ,m, n) : (Γ, A,B)→ (Γ′, A′, B′)

from (ΣAB, η) to (ΣA′B
′, η′) is a map o : ΣA′B

′ → ΣAB in Ty over σ such
that

χ(B′)
χ(n)

//

snd′

��

χ(B)

snd

��

χ(ΣA′B
′).A′

χ(o).m
// χ(ΣAB).A

commutes.
• Identities and compositions are defined using that in Ty.

Formally, we may write CΣ as a full subcategory of the inserter

Ty(2) ×C Ty
F //

G
// C→

where the pullback is taken with respect to P (2) and P , the functor F is given by

Ty(2) ×C Ty
π0 // Ty(2) χ(2)

// C[2]op C{1,2} // C→

and the functor G is given by

Ty(2) ×C Ty
P

(2)

(1)
×Cχ
// Ty ×C C→

(−).(−)
// C→.

We restrict to those objects whose inserter map lies over the identity at the functor
. . ..

(Γ : C, A : Ty(Γ), b : C/Γ.A, x : C/A, C/Γ.A(b, x.A))c

��

Ty(2)

��

// Ty ×C C→

C
Let A ∈ Ty, with comprehension pA : Γ.A → Γ. We denote (−).A the induced

functor in the following commuting diagram:

Ty/A
N //

'
��

Ty/NA

'
��

C/Γ
(−).A

// C/Γ.A.
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Note that the vertical arrows are isomorphism since P is a discrete fibration. Since
the counit ε of N is cartesian, observe that the top functor in the above diagram is
a pullback functor in Ty along εA : NA→ A and hence so (−).A in C along pA.

Definition 8.4. Given A ∈ Ty(Γ) and B ∈ Ty(Γ.A), a dependent sum of A and
B is a type ΣAB ∈ Ty(Γ) and a map

η : χΓ.A(B)→ χΓ(ΣAB).A

in C/Γ.A such that (χΓ(ΣAB), η) is an initial object in χΓ.A(B) ↓ (−).A.

Consider a substitution σ : Γ′ → Γ, a map m : A′ → A in Ty over Γ, and a map
n : B′ → B in Ty over σ.m. Consider dependent sums (ΣAB, η) and (ΣA′B

′, η′).
The dependent sums are called coherent if there is a morphism o : ΣAB → ΣA′B

′

over σ

Definition 8.5. The category of dependent sums in C is defined as follows.
• The objects are tuples (Γ, A,B,ΣAB, η) with a context Γ, types A ∈ Ty(Γ),
B ∈ Ty(Γ.A), and ΣAB ∈ Ty(Γ), and a map

η : χΓ.A(B)→ χΓ(ΣAB).A

η : χΓ.A(B)→ χΓ.A((ΣAB)[σ])

in C/Γ.A such that (χΓ(ΣAB), η) is an initial object in χΓ.A(B) ↓ (−).A.
• The morphisms

(Γ, A,B,ΣAB, η)→ (Γ′, A′, B′,ΣA′B
′, η′)

are tuples (σ,m, n, o) with a substitution σ : Γ′ → Γ, a map m : A′ → A in
Ty over Γ, a map n : B′ → B in Ty over σ.m, and a map o : ΣA′B

′ → ΣAB
in Ty over σ such that

χ(B′)
χ(n)

//

η′

��

χ(B)

η

��

χ((ΣA′B
′)[pA′ ])

χ(o[pm])
// χ((ΣAB)[pA])

commutes.
• Identities and compositions are defined componentwise.

Note that
η : χΓ.A(B)→ χΓ(ΣAB).A

may also be written
η : χΓ.A(B)→ χΓ.A((ΣAB)[pA])

Fix a substitution σ : ∆→ Γ. Consider types A ∈ Ty(Γ) and B ∈ Ty(Γ.A) with
a dependent sum (ΣAB, η). We have morphisms in Ty of

A[σ]→ A

over σ and
B[σ.A]→ B

over σ.A and
(ΣAB)[σ]→ ΣAB

over σ. Applying χ, we get pullback squares

∆.A[σ] //

��

Γ.A

��

∆ // Γ
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and
∆.A[σ].B[σ.A] //

��

Γ.A.B

��

∆.A[σ] // Γ.A

and
∆.(ΣAB)[σ] //

��

Γ.ΣAB

��

∆ // Γ

η : χ∆.A[σ](B[σ.A])→ χ∆((ΣAB)[σ]).A[σ]

Definition 8.6. Given A ∈ Ty(Γ) and B ∈ Ty(Γ.A), a dependent product of A
and B is a type ΠAB ∈ Ty(Γ) and a map

ε : χΓ(ΣAB).A→ χΓ.A(B)

in C/Γ.A such that (χΓ(ΣAB), ε) is a terminal object in (−).A ↓ χΓ.A(B).

Definition 8.7. Let A ∈ Ty(Γ), B ∈ Ty(Γ.A), and σ : ∆→ Γ.

Remark 8.8. Fix A ∈ Ty(Γ). A choice of dependent sums for A and any B ∈
Ty(Γ.A) corresponds to a function

ΣA : Ty(Γ.A)→ Ty(Γ)

and a natural transformation ε as in

Ty(Γ.A)

εt|
χΓ.A

��

χΓΣA

%%

ΣA // Ty(Γ)

χΓ

��

C/Γ.A C/Γ
(−).A
oo

witnessing χΓΣA as the χΓ.A-relative left adjoint of (−).A.
Dually, a choice of dependent products for A and any B ∈ Ty(Γ.A) corresponds

to a function
ΠA : Ty(Γ.A)→ Ty(Γ)

and a natural transformation η as in

Ty(Γ.A)

4<ηχΓ.A

��

χΓΠA

%%

ΠA // Ty(Γ)

χΓ

��

C/Γ.A C/Γ
(−).A
oo

witnessing χΓΠA as the χΓ.A-relative right adjoint of (−).A.

9. Other stuff

9.1. General tools for discrete fibrations. where the bottom functor maps a
fibration to its total space and the right functor maps an adjunction to the target
of its left adjoint.

The category of comprehension categories is defined by the pullback

CompCatlax
//

��

Endocopt

��

DiscFib // Cat
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where the bottom functor maps a fibration to its total space and the right functor
maps a copointed endofunctor to the underlying category.

Definition 9.1. The category Alax is defined as follows.
• The objects are tuples (P,R, ε) with a discrete fibration P having a right

adjoint (R, ε). Often in our notation, we will leave the counit implicit.
• The morphism structure is created fromCat→ via the map sending (P,R, ε)

to P . In particular, a morphism from (P1, R1, ε1) to (P2, R2, ε2), where we
write Pi : Ei → Bi for i ∈ {1, 2}, is a pair (V,U) of functors making the
below square commute:

E1
V //

P1

��

E2
P2

��

B1
U // B2.

We refer to the morphisms of Alax as lax morphisms.

Consider a lax morphism (V,U) as denoted in Definition 9.1. The natural iso-
morphism id : P2V → UP1 transposes to a natural transformation q : V R1 → R2U .
We call (V,U) a strong morphism if q is an isomorphism and a strict morphism if it
is an identity. Observe that strong and strict morphisms are closed under finitary
composition.

Definition 9.2. The categories Apseudo and Astrict are the wide subcategories of
Alax consisting of pseudo and strict morphisms, respectively.

In summary, we have a sequence of wide subcategory inclusions

Astrict
� � // Apseudo

� � // Alax.

Observe that this is simply sequence of wide subcategory inclusions

Adjstrict
� � // Adjpseudo,left-strict

� � // Adjleft-strict

restricted to objects whose left adjoint is a discrete fibration.

Definition 9.3. The category CompCatlax is defined as follows.
• The objects are tuples (B, F, ε) with a category B, an endofunctor F on B,

and a copointing ε : F → Id that is cartesian.
• The morphism structure is created from the category of copointed endo-

functors and lax morphisms. In particular, a morphism from (B1, F1, ε1)
to (B2, F2, ε2) is a tuple (U, λ) with a functor U : B1 → B2 and a natural
transformation q : UF1 → F2U making the following triangle commute:

UF1
q

//

Uε1
��

F2U

ε2U
��

U .

We refer to the morphisms of CompCatlax as lax morphisms. Consider a lax
morphism (U, q) as denoted in Definition 9.3. We call (U, q) a strong morphism if
the natural transformation q is cartesian and a strict morphism if it is an identity.
Observe that strong and strict morphisms are closed under finitary composition.

Definition 9.4. The categories CompCatpseudo and CompCatstrict are the wide
subcategories ofCompCatlax consisting of pseudomorphisms and strict morphisms,
respectively.
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In summary, we have a sequence of wide subcategory inclusions

CompCatstrict
� � // CompCatpseudo

� � // CompCatlax.

Observe that this is simply the sequence of wide subcategory inclusions

Endocopt,strict
� � // Endocopt,pseudo

� � // Endocopt

restricted to objects with cartesian copointings.

We can also describe the categories of Definition 9.4 directly, using the copointed
endofunctor ((−)→, codcart) where cod′B : B→cart → B on Cat:

• CompCatstrict is the category of algebras for ((−)→, codcart),
• CompCatpseudo is the category of algebras and pseudomorphisms for ((−)→, codcart)

seen as a copointed 2-endofunctor,

Lemma 9.5. There is an equivalence Alax ≈ CompCatlax. It restricts to equiva-
lences Apseudo ' CompCatpseudo and Astrict ' CompCatstrict.

Proof. Given E → B, we returns the comonad RP . Given a cartesian copointed
endofunctor R on B, we let E be the category of its coalgebras.

In one direction, E → Coalg(PR) needs to be an isomorphism somehow.
In the other direction, we get the identity.
A -> NA
Given X ∈ E , why does X arise as a �

Lemma 9.6. Let B be a category. Then there is an equivalence of categories
between:

(i) discrete fibrations P : E → B with a right adjoint (R, ε).
(ii) sections to the forgetful functor cod: B→cart → B.

Proof. We have a functor from (i) to (ii) by sending (P,R, ε) to the functor ε : B →
B→cart. Its codomain is justified by (3.7). Recall that the codomain of the natural
transformation ε is the identity, making the functor ε a section to cod.

The functor
B→cart,section → B→cart

�

Definition 9.7. A category with families (version A) C consists of a category C, a
presheaf TyC on C, a presheaf TmC on

∫
TyC , and for each Γ ∈ C and A ∈ TyC(Γ),

a universal element

(pA : Γ.A→ Γ, qA ∈ TmC(TyC(pA)(A)))

for the presheaf

(C/Γ)op F // (
∫
TyC)

op TmC // Set

where F is the functor sending σ : ∆→ Γ to (∆,TyC(σ)(A)).

Definition 9.8. A category with families (version B) C consists of a category
C, a presheaf TyC on C, a presheaf TmC on

∫
TyC , and a right adjoint to the

Grothendieck construction
∫
TmC →

∫
TyC .

Definition 9.9. A category with families (version B) C consists of a category C, a
presheaf TyC on C, a presheaf TmC on

∫
TyC , and a section to the functor

(
∫
TyC)

→
cart

cod // (
∫
TyC)

→.
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Definition 9.10. A category with families (comprehension category version) (cwf)
C = (C,TyC , χC) consists of a category C, a presheaf TyC : Cop → Set, and a
cartesian morphism χC :

∫
TyC → C→ making the following diagram commute

strictly:

∫
TyC

χC //

π1

""

C→

codC
��
C.

10. Categories of cwf’s

Definition 10.1. A category with families (cwf) C = (C,TyC , χC) consists of a
category C, a presheaf TyC : Cop → Set, and a cartesian morphism χC :

∫
TyC →

C→ making the following diagram commute strictly:

∫
TyC

χC //

π1

""

C→

codC
��
C.

Note that
∫
TyC → C is a discrete fibration, hence every morphism in its do-

main is cartesian. The requirement of χC preserving cartesian arrows can thus be
equivalently expressed by giving it signature χC :

∫
TyC → C→cart.

We introduce some shorthand notation. We omit certain subscripts if they are
evident from the context. The category C is also referred to as the category of
contexts and substitutions. Its objects are usually denoted with uppercase greek
letters Γ,∆,Ξ, . . .. Let Γ ∈ C be a context and A ∈ Ty(Γ) be a type over it. We
write pA : Γ.A → Γ for the comprehension or context extension of A, its image
under χ. Given a substitution σ : ∆ → Γ, we write A[σ] =def Ty(σ)(A) for the
substitution of A by σ, the image of A under the action of the presheaf Ty on σ.
We also write pσ : pA[σ] → pA for the image of the morphism (∆, A[σ])

σ−→ (Γ, A) in∫
Ty under χ:

∆.A[σ]
σ.A //

pA[σ]

��

Γ.A

pA

��

∆
σ // Γ;

as indicated in the diagram, σ.A =def domC(pσ). When working with objects and
morphisms of C→ or C/Γ (where Γ ∈ C), we may regard them as objects and
morphisms of C, leaving the application of the domain functor domC : C→ → C or
the forgetful functor C/Γ→ C implicit.

Definition 10.2. A lax morphism F = (F, uF , vF ) of cwf’s from C to D consists of
a functor F : C → D, a natural transformation uF : TyC → TyDF , and a natural
transformation vF : F→χC → χD(

∫
uF ) of functors

∫
TyC → D→ lying strictly over
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the identity on F (i.e. codC vF = idFπ1
):∫

TyC
χC //

��

∫
uF

��

C→

��

F→

��
�� vF∫

TyD
χD //

��

D→

��

C
F

��

D.

This is a morphism if u is invertible. It is a strict morphism if u is an identity
natural transformation.

We introduce some shorthand notation. We omit certain subscripts if they are
evident from the context. When applied to a type A ∈ TyC(Γ), we usually write
just FA for the image (uF )Γ(A) of A under the component of the natural transfor-
mation uF at Γ.

Every cwf admits a strict identity morphism. There is an evident notion of
composition of lax morphisms; the result is a (strict) morphism if the inputs were.
Identity and composition satisfy the expected neutrality and associativity laws.
We write CwF (CwFlax, CwFstrict) for the category of cwf’s with (lax, strict)
morphisms.

11. The category of maps of cwf’s with right adjoints on types

Definition 11.1. Let F : C → D be a lax morphism of cwf’s. A right adjoint R
on types is a J-relative right adjoint (RΓ, εΓ) to F : C/Γ → D/FΓ for every Γ ∈ C
where J is the map TyD(FΓ)→ D/FΓ given by χD:

εΓ .6

TyD(FΓ)

J

vv

RΓ

!!

C/Γ
F

// D/FΓ.

Recall that a relative right adjoint is the same thing as an absolute right Kan
lift in the 2-category Cat, i.e. a right Kan extension in Catop (1-cells inverted).

Unfolding the above definition, we obtain the following. For any context Γ ∈ C
and type B ∈ TyD(FΓ), there is a context R(Γ, B) over Γ such that maps

∆ //

σ
��

R(Γ, B)

��

Γ

are in bijection with maps

F∆ //

Fσ
��

FΓ.B

pB
��

FΓ,

naturally in ∆ ∈ C/Γ.
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Consider a morphism F → F ′ in CwF→lax, i.e. a strictly commuting diagram of
lax morphisms

C F //

U
��

D

V
��

C′ F ′ // D′.

(11.1)

Assume that F and F ′ have right adjoints on types (RΓ, εΓ) and (R′Γ′ , ε
′
Γ′) with

Γ ∈ C and Γ′ ∈ C′, respectively.
Let Γ ∈ C and consider the commuting diagram, a prism with natural transfor-

mations as faces where the front square commutes strictly and the back left square
is missing:

εΓ .6

ε′FΓ .6

dΓ �� (vV )FΓ
t|

TyD(FΓ)
J

&&

RΓ

ss

(uV )FΓ)

��

C/Γ F //

U

��

D/FΓ

V

��

TyD′(F
′UΓ)

J′

&&

R′UΓ

ss
C′/UΓ

F ′
// D′/F ′UΓ.

(11.2)

Recall that absolute Kan lifts are stable under precomposition. By the universal
property of the absolute Kan lift (R′FΓ, ε

′
FΓ) precomposed with (uV )FΓ, there is

a unique natural transformation in the back left square as indicated making the
prism of natural transformations commute.

Definition 11.2. Consider a morphism of F → F ′ in CwF→lax as in (11.1) where
F and F ′ have right adjoints on types. We say that F → F ′ satisfies the Beck-
Chevalley condition if the induced natural transformation dΓ in (11.2) is an isomor-
phism for all Γ ∈ C.

Proposition 11.3. Maps that satisify the Beck-Chevalley condition in CwF→lax be-
tween objects that have right adjoints on types are closed under finitary composition.

Proof. Standard. �

We write CwF→r (CwF→lax,r, CwF→strict,r) for the category over CwF→ whose
objects are (lax, strict) morphisms of cwf’s with right adjoints on types and whose
morphisms from F to F ′ are given by commuting squares (U, V ) : F → F ′ in
CwFlax that satisfy the Beck-Chevalley condition such that U, V are morphisms
of cwf’s. If we wish U and V to be lax morphisms or strict morphisms intead, we
append a further outermost subscript as in ‘(CwF→r )lax’. We obtain nine different
categories in total, all given by Proposition 11.3.

11.1. Global description of right adjoints on types.

Lemma 11.4. Let F : C → D be a lax morphism of cwf’s with a right adjoint R
on types. Then the relative right adjoints (RΓ, εΓ) with Γ ∈ C assemble to a global
(C×DχD)-relative right adjoint (R, ε) of êxp(d0, F ) = 〈cod, F→〉 that is a cartesian
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morphism over C:

ε .6

C ×D
∫
TyD

C×DχD
��

//

��

R

uu

∫
TyD

��

χD

��

C→
〈cod,F→〉

//

  

C ×D D→

yy

// D→

codD
{{

C // D.
Proof. This is an instance of Lemma 17.2. �

Consider a morphism F → F ′ in CwF→lax as in (11.1). Assume that F and F ′
have right adjoints on types, assembling to global relative right adjoints (R, ε) and
(R′, ε′) as in Lemma 11.4.

Consider the following prism, where the top and bottom faces are the counits
natural transformations of the relative adjoints, the back right square is a pullback
of vUD , and the front square commutes strictly:

ε .6

ε′ .6

d �� C×DvUD
t|

C ×D
∫
TyD

R

ss
''

��

C→ //

��

C ×D D→

��

C′ ×D′
∫
TyD′

R′

ss
''

(C′)→ // C′ ×D′ (D′)→.

(11.3)

Recall that absolute Kan lifts are stable under precomposition. By the universal
property of the absolute Kan lift (R′, ε′) precomposed with UC ×UD UD, there is
a unique natural transformation in the back left square as indicated making the
prism of natural transformations commute.

Proposition 11.5. In the context of (11.3), the natural transformation d in (11.3)
is assembled from the natural transformations dΓ in (11.2) for Γ ∈ C.

Proof. Standard. �

Note that Proposition 11.5 implies that codB′ d = id.

Corollary 11.6. In the context of (11.3), the morphism F → F ′ satisfies the Beck-
Chevalley condition exactly if the natural transformation d is an isomorphism.

Given a lax morphism F : C → D with a right adjoint on types, there is a way of
forming an “intermediate” cwf with contexts coming from C and types coming from
D. This is the context of the next lemma.

Lemma 11.7. Let F : C → D be a lax morphism of cwf’s with a right adjoint R
on types. Then there is a cwf E with category of contexts C and types given by the
composite

C→ F // D→ // Set.
Furthermore, F factors via E as below:

C
lax

F //

lax

G
��

D

E.

lax

H

??
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Proof. Under the category of elements construction, precomposition of presheaves
corresponds to pullback of induced discrete fibrations. So

∫
E ' C ×D

∫
TyD,

and under this isomorphism, we may take the functor R of Lemma 11.4 for the
comprehension functor χE . This completes the definition of the cwf E .

The lax morphism E → D has functor on contexts given by F , natural transfor-
mation between types given by the identity on TyDF , and natural transformation
between comprehensions given by the counit of the relative adjoint R.

The lax morphism C → E has functor on contexts given by IdC , natural trans-
formations between types given by uF , and natural transformation between com-
prehensions given by vF under the natural isomorphism characterizing R as an
absolute right Kan lift. �

Note that even when starting with a morphism of cwf’s C → D in Lemma 11.7,
the induced lax morphisms C → E and E → D will generally not be morphisms.

12. Glueing over the walking arrow

[Note: old material, not yet converted to shorthand presheaf substitution.]
Let F : (C,TyC ,TmC)→ (D,TyD,TmD) be a map of cwf’s, required to preserve

types and terms strictly. We require that context extension is preserved only up to
canonical isomorphism in the following sense. Given ΓC ∈ C and AC ∈ TyC(ΓC),
we have a canonical comparison morphism

h(ΓC , AC) : F (ΓC .AC)→ FΓC .FAC .

We require that h(ΓC , AC) is invertible.
We define a new cwf (E ,TyE ,TmE) as follows. We choose to define compre-

hension instead of terms. This is an equivalent style of presentation. The terms
can be recovered by letting TmE(Γ, A) be the set of sections of p(A) : Γ.A → Γ.
Functoriality of comprehension makes TmE into a presheaf.

Contexts. We set E =def D ↓ F . Explicitly:
• an object is a tuple (ΓC ,ΓD, α) where ΓC ∈ C, ΓD ∈ D, and α : ΓD → FΓC ,
• a morphism from (∆C ,∆D, β) to (ΓC ,ΓD, α) is a pair (σC , σD) where σC : ∆C →

ΓC and σD : ∆D → ΓD such that F (σC) ◦ β = α ◦ σD,
• identity and composition of morphisms is given componentwise,
• neutrality and associativity laws follow componentwise.

Types. The presheaf TyE : Eop → Set is defined as follows.
• Given (ΓC ,ΓD, α) ∈ E , we let TyE(ΓC ,ΓD, α) be the set of pairs (AC , AD)

where AC ∈ TyC(ΓC) and AD ∈ TyD(ΓD.TyD(α)(FAC)).
• Given a morphism

(σC , σD) : (∆C ,∆D, β)→ (ΓC ,ΓD, α)

in E , we define

TyE(σC , σD) : TyE(ΓC ,ΓD, α)→ TyE(∆C ,∆D, β)

by sending (AC , AD) to (TyC(σC)(AC),TyD(σD.TyD(α)(FAC))(AD)) where

σD.TyD(α)(FAC) : ∆D.TyD(σD)(TyD(α)(FAC))→ ΓD.TyD(α)(FAC)

is our notation for comprehension of morphisms in D.
• Coherence with respect to identity and composition of morphisms in E

follow from those of TyC and TyD with respect to morphisms in C and D,
respectively, and the fact that comprehension in D respects identities and
compositions.
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Comprehension. Let us define a comprehension functor χE as below:∫
TyE

π1

""

χE // E→cart

cod
~~
E .

As usual, we also write χE(Γ, A) as p(A) : Γ.A→ Γ.
• On objects, we define χE as follows. Suppose we are given (ΓC ,ΓD, α) ∈ E

and (AC , AD) ∈ TyE(ΓC ,ΓD, α). The context extension

(ΓC ,ΓD, α).(AC , AD) ∈ E

is defined as

(ΓC .AC ,ΓD.TyD(α)(FAC).AD, γ)

where
γ : ΓD.TyD(α)(FAC).AD → F (ΓC .AC)

is defined as the composition

ΓD.TyD(α)(FAC).AD
p(AD)

// ΓD.TyD(α)(FAC)
α.FAC // FΓC .FAC

h(ΓC,AC)−1

// F (ΓC .AC).

The context projection

p(AC , AD) : (ΓC ,ΓD, α).(AC , AD)→ (ΓC ,ΓD, α)

is defined as (p(AC), p(TyD(α)(FAC)) ◦ p(AD)).
• Let us define χE on morphisms. Suppose we are given a morphism

(σC , σD) : (∆C ,∆D, β)→ (ΓC ,ΓD, α)

in E and a type (AC , AD) ∈ TyE(ΓC ,ΓD, α). We want to define the mor-
phism of context extensions

(σC , σD).(AC , AD) : (∆C ,∆D, β).TyE(σC , σD)(AC , AD)→ (ΓC ,ΓD, α).(AC , AD),

where the signature unfolds to

(∆C .TyC(σC)(AC),

∆D.TyD(β)(F (TyC(σC)(AC))).TyD(σD.TyD(α)(FAC))(AD), δ)→
(ΓC .AC ,ΓD.TyD(α)(FAC).AD, γ)

where γ is as before and δ is the composite

∆D.TyD(α)(F (TyC(σC)(AC))).TyD(σD.TyD(α)(FAC))(AD))

p(TyD(σD.TyD(α)(FAC))(AD)))

��

∆D.TyD(α)(F (TyC(σC)(AC)))

β.F (TyC(σC)(AC))

��

F∆C .F (TyC(σC)(AC))

h(∆C,TyC(σC)(AC))−1

��

F (∆C .TyC(σC)(AC)).

We take

(σC , σD).(AC , AD) =def (σC .AC , σD.TyD(α)(FAC).AD).
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The second component type-checks as follows:

∆D.TyD(β)(F (TyC(σC)(AC))).TyD(σD.TyD(α)(FAC))(AD)

∆D.TyD(σD)(TyD(α)(FAC)).TyD(σD.TyD(α)(FAC))(AD)

σD.TyD(α)(FAC).AD

��

ΓD.TyD(α)(FAC).AD.

To make (σC , σD).(AC , AD) into a morphism in E , we need to check that
the following diagram commutes:

∆D.TyD(α)(F (TyC(σC)(AC))).TyD(σD.TyD(α)(FAC))(AD))

σD.TyD(α)(FAC).AD

��

δ

,,

F (∆C .TyC(σC)(AC))

F (σC.AC)

��

ΓD.TyD(α)(FAC).AD

γ

,,
F (ΓC .AC).

Since σD.TyD(α)(FAC).AD lives over σD.TyD(α)(FAC) with respect to
the context projections that form the first factors of γ and δ, respectively,
this follows from commutativity of the following diagram:

∆D.TyD(α)(F (TyC(σC)(AC)))

σD.TyD(α)(FAC)

��

β.F (TyC(σC)(AC))

++

F∆C .F (TyC(σC)(AC))

F (σC).FAC

��

h(∆C,TyC(σC)(AC))−1

**

ΓD.TyD(α)(FAC)

α.FAC

++

F (∆C .TyC(σC)(AC))

F (σC.AC)

��

FΓC .FAC
h(ΓC,AC)−1

**

F (ΓC .AC).

Here, the left square commutes by functoriality of context extension in C
and commutativity of the right square is equivalent to commutativity of
the square

ΓD.TyD(α)(FAC)
h(∆C,TyC(σC)(AC))

//

F (σC.AC)

��

F∆C .F (TyC(σC)(AC))

F (σC).FAC

��

F (ΓC .AC)
h(ΓC,AC)

// FΓC .FAC .

This is a naturality square for the natural transformation relating context
extension in C to context extension in D.
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We now need to show that the morphism (σC , σD).(AC , AD) lives over
(σC , σD) with respect to the context projections, i.e. that the square

(∆C ,ΓD, β).TyE(σC , σD)(AC , AD)
(σC,σD).(AC,AD)

//

p(TyE(σC,σD)(AC,AD))

��

(ΓC ,ΓD, α).(AC , AD)

p(AC,AD)

��

(∆C ,ΓD, β)
(σC,σD)

// (ΓC ,ΓD, α)

(12.1)
commutes. By the construction of the category E . This decomposes into
commutativity of the squares

∆C .TyC(σC)(AC)
σC.AC //

p(TyC(σC)(AC))

��

ΓC .AC

p(AC)

��

∆C
σC // ΓC

(12.2)

and

∆D.TyD(β)(F (TyC(σC)(AC)).TyD(σD.TyD(α)(FAC))(AD)
σD.TyD(α)(FAC).AD

//

p(TyD(σD.TyD(α)(FAC))(AD))

��

ΓD.TyD(α)(FAC).AD

p(AD)

��

∆D.TyD(β)(F (TyC(σC)(AC))
σD.TyD(α)(FAC)

//

p(TyD(β)(F (TyC(σC)(AC)))

��

ΓD.TyD(α)(FAC)

p(TyD(α)(FAC))

��

∆D
σD // ΓD.

(12.3)
These are instances of induced morphisms between context extensions living
over the base context morphisms for C and D.

Finally, we need to check that the square (12.1) is cartesian, i.e. a pull-
back. By assumption, the squares (12.2) and (12.3) are cartesian since they
are images on morphisms of the comprehension functors in case of C and
pastings thereof in case of D. Since the functor F preserves comprehen-
sion up to (canonical) natural isomorphism, the image of (12.2) under F
is still a pullback. We now use the fact that limits in the comma category
E = D ↓ F are computed componentwise whenever F preserves the limit in
the component of C. It follows that the square (12.1) is also a pullback.

• Note that χE preserves identities and compositions because it preserves
cartesian arrows.

13. Generalized Glueing

Proposition 13.1 (Generalized glueing). Consider a morphism F and lax mor-
phism G of cwf’s as below:

A

F
��

B

G

lax

��
C.

Assume that G has a right adjoint on types (R, ε). Then there is a cwf GenGlue(F,G),
called the generalized glueing of F and G.

There is a forgetful strict morphism of cwf’s GenGlue(F,G) → A defined via
projection to the first component.
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We obtain the previous glueing construction (oplax limit over the walking arrow)
by letting G be an identity.

Proof. We abbreivate E =def GenGlue(F,G).
Contexts. We set E =def G ↓ F . Explicitly:
• an object is a tuple (ΓA,ΓB, α) where ΓA ∈ A, ΓB ∈ B, and α : GΓB →
FΓA,

• a morphism from (∆A,∆B, β) to (ΓA,ΓB , α) is a pair (σA, σB) where σA : ∆A →
ΓA and σB : ∆B → ΓB such that FσA ◦ β = α ◦GσB:

G∆B
β
//

GσB

��

F∆A

FσA

��

GΓB
α // FΓA,

(13.1)

• identity and composition of morphisms is given componentwise,
• neutrality and associativity laws follow componentwise.

Types. The presheaf TyE : Eop → Set is defined as follows.

• Given (ΓA,ΓB, α) ∈ E , we let TyE(ΓA,ΓB, α) be the set of pairs (AA, AB)
where AA ∈ TyA(ΓA) and AB ∈ TyB(RΓB((FAA)[α])).

• Given a morphism

(σA, σB) : (∆A,∆B, β)→ (ΓA,ΓB, α)

in E , we define

TyE(σA, σB) : TyE(ΓA,ΓB, α)→ TyE(∆A,∆B, β)

by sending (AA, AB) to (AA[σA], AB[RσB ((FAA)[α])]).
• Coherence with respect to identity and composition of morphisms in E

follow from those of TyA and TyB with respect to morphisms in A and B,
respectively, and the fact that R : B ×E

∫
TyC → B→ is a functor.

Comprehension. Let us define the comprehension functor χE as below:∫
TyE

π1

""

χE // E→

cod
~~
E .

• On objects, we define χE as follows. Suppose we are given (ΓA,ΓB, α) ∈ E
and (AA, AB) ∈ TyE(ΓA,ΓB, α). The context extension

(ΓA,ΓB, α).(AA, AB) ∈ E

is defined as

(ΓA.AA, RΓB((FAA)[α]).AB, γ)

where

γ : G(RΓB((FAA)[α]).AB)→ F (ΓA.AA)

is defined as the transport under the natural transformation vG and natural
isomorphism vF of

γ′ : GRΓB((FAA)[α]).GAB → FΓA.FAA.
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In turn, this is defined as the composite

GRΓB((FAA)[α])

ε(ΓB,(FAA)[α])

$$

GRΓB((FAA)[α]).GAB

p 44

FΓA.FAA.

GΓB .(FAA)[α]

α.FAA

66

The context projection

p(AA, AB) : (ΓA,ΓB, α).(AA, AB)→ (ΓA,ΓB, α)

is the pair of maps consisting of p(AA) : ΓA.AA → ΓA and

RΓB((FAA)[α]).AB
p
// RΓB((FAA)[α]) // ΓB.

• Let us define χE on morphisms. Suppose we are given a morphism

(σA, σB) : (∆A,∆B, β)→ (ΓA,ΓB, α)

in E and a type (AA, AB) ∈ TyE(ΓA,ΓB, α). We want to define the mor-
phism of context extensions

(σA, σB).(AA, AB) : (∆A,∆B, β).(AA, AB)[(σA, σB)]→ (ΓA,ΓB, α).(AA, AB),

where the signature unfolds to

(∆A.AA[σA], R∆B((F (AA[σA]))[β]).AB[RσB ((F (AA)[σA])[β])], δ)→
(ΓA.AA, RΓB((FAA)[α]).AB, γ)

where γ is as before and δ is the transport under the natural transformation
vG and natural isomorphism vF of γ′, given by the composite

GR∆B((F (AA[σA]))[β])

ε(ΓB,(F (AA[σA]))[β])

""

GR∆B((F (AA[σA]))[β]).GAB[RσB ((F (AA)[σA])[β])]

p 22

F∆A.F (AA[σA]).

G∆B .(F (AA[σA]))[β]
β.F (AA[α])
77

We take

(σA, σB).(AA, AB) =def (σA.AA, RσB ((FAA)[α]).AB).

The second component uses

RσB ((FAA)[α]) : R∆B((FAA)[α][GσB])→ RΓB((FAA)[α])

and type-checks because of the following chain of equations:

(F (AA[σA]))[β] = (FAA)[FσA][β]

= (FAA)[FσA ◦ β]

= (FAA)[α ◦GσB]

= (FAA)[α][GσB].
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To make (σA, σB).(AA, AB) into a morphism in E , we need to check that
the following diagram commutes:

G(R∆B((F (AA[σA]))[β]).AB[RσB ((F (AA[σA]))[β])])

G(RσB ((FAA)[α]).AB)

��

δ

++

F (∆A.AA[σA])

F (σA.AA)

��

G(RΓB((FAA)[α]).AB)

γ

++
F (ΓA.AA).

Using naturality squares of the natural transformation vG and natural iso-
morphism vF , this is equivalent to commutativity of the following diagram:

GR∆B((F (AA[σA]))[β]).G(AB[RσB ((F (AA[σA]))[β])])

GRσB ((FAA)[α]).GAB

��

δ′

,,

F∆A.F (AA[σA])

FσA.FAA

��

GRΓB((FAA)[α]).GAB
γ′

,,
FΓA.FAA.

Since GRσB ((FAA)[α]).GAB lives over GRσB ((FAA)[α]) with respect to
the context projections that form the first factors of γ′ and δ′, respectively,
this follows from commutativity of the following diagram:

GR∆B((F (AA[σA]))[β])
ε(ΓB,(F (AA[σA]))[β])

//

GRσB ((FAA)[α])

��

G∆B .(F (AA[σA]))[β]
β.F (AA[α])

//

GσB .(FAA)[α]

��

F∆A.F (AA[σA])

FσA.FAA

��

GRΓB((FAA)[α])
ε(ΓB,(FAA)[α])

// GΓB .(FAA)[α]
α.FAA // FΓA.FAA.

Here, the left square is a naturality square for the counit ε of R and the
right square comes substituting the type FAA along the morphisms of the
commuting square 16.1.

We now need to show that the morphism (σA, σB).(AA, AB) lives over
(σA, σB) with respect to the context projections, i.e. that the square

(∆A,ΓB, β).(AA, AB)[(σA, σB)]
(σA,σB).(AA,AB)

//

p((AA,AB)[(σA,σB)]

��

(ΓA,ΓB, α).(AA, AB)

p(AA,AB)

��

(∆A,ΓB, β)
(σA,σB)

// (ΓA,ΓB, α)

(13.2)
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commutes. By the construction of the category E , this decomposes into
commutativity of the square

∆A.TyA(σA)(AA)
σA.AA //

p

��

ΓA.AA

p

��

∆A
σA // ΓA,

(13.3)

which is a morphism in the image of χA, and the square

R∆B((FAA)[α][GσB]).AB[R∆B((FAA)[α][GσB])]
RσB ((FAA)[α]).AB

//

p

��

RΓB((FAA)[α]).AB

p

��

R∆B((FAA)[α][GσB])
RσB ((FAA)[α])

//

��

RΓB((FAA)[α])

��

∆B
σB // ΓB,

(13.4)
which is a pasting of a morphism in the image of χB and a morphism in
the image of R.

Finally, we need to check that the square (16.2) is cartesian, i.e. a pull-
back. By assumption, the squares (16.3) and (16.4) are cartesian since they
are (pastings of) images of cartesian arrows under cartesian morphisms into
the arrow categories of A and B, respectively. Since the functor F preserves
comprehension up to the natural isomorphism vF , the image of (16.3) un-
der F is still a pullback. We now use the fact that limits in the comma
category E = G ↓ F are computed componentwise whenever F preserves
the limit in the second component. It follows that the square (16.2) is also
a pullback.

• Note that χE preserves identities and compositions because it preserves
cartesian arrows.

We obtain the strict morphism of cwf’s E → A by projecting contexts and types
to their first component. �

We will now show that the generalized glueing construction is suitably functorial.

Proposition 13.2 (Generalized glueing: action on morphisms). Consider a dia-
gram of morphisms of cwf’s as below:

A

F
""UA

��

B

G

lax

|| UB

��

C

UC

��

A′

F ′ ""

B′

G′

lax

}}

C′.

Assume that G and G′ have right adjoints on types (R, ε) and (R′, ε′), respectively,
and that (UB, UC) : G → G′ satisfies the Beck-Chevalley condition. Then there is
an induced morphism cwf’s

GenGlue(U, V,W ) : GenGlue(F,G)→ GenGlue(F ′, G′)
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commuting with the forgetful strict morphisms as follows:

GenGlue(F,G)
strict //

��

A′

��

GenGlue(F ′, G′)
strict // A.

Proof. We abbreviate

E =def GenGlue(F,G),

E ′ =def GenGlue(F,G),

T =def GenGlue(U, V,W ).

As in (11.2) and (11.3), we write d for the natural isomorphism of the Beck-
Chevalley condition.

Contexts. Recall that the categories of contexts of source and target of T are
given by E = G ↓ F and E ′ = G′ ↓ F ′. The functor T between the categories of
contexts is induced by functoriality of the comma category construction.

Explicitly:

• An object

(ΓA,ΓB , α) ∈ E

with α : GΓB → FΓA is sent to the object

(UAΓA, UBΓB, UCα) ∈ E ′

with UCα : G′UBΓB → F ′UAΓA.
• A morphism

(σA, σB) : (∆A,∆B , β)→ (ΓA,ΓB , α)

of E is sent to the morphism

(UAσA, UBσB) : (UA∆A, UB∆B , UCβ)→ (UAΓA, UBΓB , UCα),

• preservation of identities and compositions follows from the that of UA and
UB.

Types. We need to define a natural transformation uT : TyE → TyE′T .

• Given (ΓA,ΓB, α) ∈ E , let us define the component

(uT )(ΓA,ΓB,α) : TyE(ΓA,ΓB, α)→ TyE′(UAΓA, UBΓB, UCα).

This will be given as a dependent pairing of functions. On the first compo-
nent, the function is

TyA(ΓA)
UA // TyA′(UAΓA).
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Given A ∈ TyA(ΓA), the function on the second component is the com-
posite

TyB(RΓB((FAA)[α]))

UB

''

TyB′(UBRΓB((FAA)[α]))

(−)[d−1
(ΓB,(FAA)[α])

]

((

TyB′(R
′
UBΓB

UB((FAA)[α]))

TyB′(R
′
UBΓB

((F ′UAAA)[UCα])).

• Given a morphism

(σA, σB) : (∆A,∆B , β)→ (ΓA,ΓB , α)

of E , let us verify that uT is natural at (σA, σB), i.e. that the square

TyE(ΓA,ΓB, α)
(uT )(ΓA,ΓB,α)

//

(−)[(σA,σB)]

��

TyE′(UAΓA, UBΓB, UCα)

(−)[(UAσA,UBσB)]

��

TyE(∆A,∆B, β)
(uT )(∆A,∆B,β)

// TyE′(UA∆A, UB∆B, UCβ)

commutes. On the first component, this is commutativity of the square

TyA(ΓA)
UA //

(−)[σA]

��

TyA′(UAΓA)

(−)[UAσA]

��

TyA(∆A)
UA // TyA′(UA∆A),

i.e. naturality of uUA at σA. On the second component, given AA ∈
TyA(ΓA), this is commutativity of the outer rectangle in the commuting
diagram

TyB(R∆B((F (AA[σA]))[β]))

UB

''
(−)[RσB ((FAA)[α])]

��

TyB′(UBR∆B((F (AA[σA]))[β]))

(−)[d−1
(∆B,(F (AA[σA]))[β])

]

((
(−)[UBRσB ((FAA)[α])]

��

TyB(RΓB((FAA)[α]))

UB
&&

TyB′(R
′
UB∆B

UB((F (AA[σA]))[β]))

(−)[R′UBσB
UB((FAA)[α])]

��

TyB′(UBRΓB((FAA)[α]))

(−)[d−1
(ΓB,(FAA)[α])

]
((

TyB′(R
′
UB∆B

((F ′UA(AA[σA]))[UCβ]))

(−)[R′UBσB
((F ′UAAA)[UCα])]

��

TyB′(R
′
UBΓB

UB((FAA)[α]))

TyB′(R
′
UBΓB

((F ′UAAA)[UCα])).
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The left square is the naturality square for uUB at the morphismRσB ((FAA)[α]).
The middle square is the naturality square for d−1 at the morphism (σB, (FAA)[α])
of B×C

∫
TyC . The right square commutes by rewriting using strict equal-

ities of functors.
Comprehension. We need to define a natural transformation∫

TyE

vT{�

χE //

∫
uT

��

E→

T→

��∫
TyE′

χE′ // (E ′)→

such that codE′ vt = id.
• Given (ΓA,ΓB , α) ∈ E and (AA, AB) ∈ TyE(ΓA,ΓB , α), let us define the

component

(vT )(AA,AB) : T→χE(AA, AB)→ χE′
∫
uT (AA, AB)

of vT at ((ΓA,ΓB , α), (AA, AB)).
On the component of A′, we need to find a morphism of arrows

UA(ΓA.AA) //

UAp

��

UAΓA.UAA

p

��

UAΓA // UAΓA.

We simply choose the component of vUA at (ΓA, AA). This has an identity
at the bottom.

On the component of B′, we need to find dotted morphisms making the
following outer square commute:

UB(RΓB((FAA)[α]).AB) //

UAp

��

R′UBΓB
((F (UAAA))[UCα]).(UBAB)[d−1

ΓB,(FAA)[α]]

p

��

UBRΓB((FAA)[α])
d(ΓB,(FAA)[α])

//

��

R′UBΓB
((FUAAA)[UCα])

��

UBΓB // UBΓB.

We decompose the square into two smaller squares as indicated. The lower
square is the component of d at (ΓB, (FAA)[α]). This has an identity at
the bottom. The upper square decomposes as follows:

UB(RΓB((FAA)[α]).AB) //

UAp

��

UBRΓB((FAA)[α]).UBAB //

p

��

R′UBΓB
((F (UAAA))[UCα]).(UBAB)[d−1

ΓB,(FAA)[α]]

p

��

UBRΓB((FAA)[α]) UBRΓB((FAA)[α]) //
d(ΓB,(FAA)[α])

// R′UBΓB
((FUAAA)[UCα]).

The left square is the component of vUB at (RΓB((FAA)[α]), AB). The right
square is the action of χB′ on the inverse of (d−1

(ΓB,(FAA)[α]), UBAB).
We now need to show that the morphisms in (A′)→ and (B′)→ are com-

patible with the morphism in (C′)→ of the objects T→χE(AA, AB) and
χE′

∫
uT (AA, AB). Because these share the same codomain and the bottom

morphisms of the squares in A′ and B′ are identities, it only remains to
show compatibility on domains. [To be finished.]

• [Naturality of comprehension needs to be checked.]
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�

We define
GenGlueInput =def CwF→ ×CwF CwF→lax,r

the category of input data for the generalized glueing construction (the pullback is
with respect to

Theorem 13.3. Generalized glueing forms a functor

GenGlue: GenGlueInput→ CwF

Proof. The action on objects and morphisms is defined in Proposition 13.1 and
Proposition 13.2, respectively. It remains to verify that identities and compositions
are preserved. [To be checked.] �

14. Thoughts on organizing generalized glueing better

Let us work with discrete fibrations instead of presheaves of types. Likely we do
not even need discreteness. Then we can formulate the construction at the level of
split comprehension categories.

Let

TyA
χA //

!!

A→

cod
}}

A

TyB
χB //

!!

B→

cod
~~
B

and
TyC

χC //

!!

C→

cod
~~
C

be split comprehension categories. Let F : A → C be a morphism of split compre-
hension categories and G : B → C a lax morphism of split comprehension categories
with a right adjoint on types. We will try to define the glued split comprehension
category E in an as categorical way as possible.

The category of contexts of E is given by

G ↓ F ' (B ×A)×C2 C→.
We have a functor H : E ×A TyA → B defined as the following composite:

E ×A TyA // (B ×TyC)×C2 C→ // B ×C TyC // B→ // B.

We let TyE → E be the pullback of TyB → B along H followed by postcomposition
with the pullback of TyA → A along E → A. [In a sense, the functor E → A is on
the same footing as the functor H.]

Now we need to define TyE → E→ over E .
Maps D → E are in correspondence with maps U : D → A and V : D → B with

a natural transformation GV → FU . An analogous correspondence holds for maps
D → E→.

We have a map

TyE // E ×A TyA // TyA // A→.

What about TyE → B→?
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14.1. A different approach. Given

A

F
��

B

G

lax

��
C.

We view it as
A

F
��

G ↓ C

||
C.

We show that G ↓ C is a cwf. And then show that G ↓ C → C is a special kind of
map of cwf that can be pulled back (a discrete “opfibration”).

A type in G ↓ C over (Y, f : FY → X) consists of a type A in C over X and a
type B in B over R(A[f ]).

Definition 14.1. A lax morphism F : C → D of cwf’s is called a (discrete) (op)fibration
if the morphism (uF , F ) from

∫
TyC → C to

∫
TyD → D in Cat→ is a Reedy (dis-

crete) (op)fibration, viewing the walking arrow as an inverse category.

Concretely, this means that C → D and
∫
TyC → C ×D

∫
TyD are a (discrete)

(op)fibrations.

Remark 14.2. In CwF, pullbacks along discrete opfibrations exist and are com-
puted componentwise in Cat. Discrete opfibrations are stable under pullback.

15. Pullbacks of cwf’s

Lemma 15.1. The forgetful functor Endocopt,pseudo → Funcpseudo creates pull-
backs in some sense.

ε : FD → IdD

The category of discrete fibrations has all limits. The category CwFstrict has all
limits.

Lemma 15.2. The category CwFpseudo has pullbacks along strict isofibrations.
Furthermore, the pullback of a strict isofibration can be chosen as a strict isofibra-
tion.

Like for Lemma 18.6, isofibrations are invariant under isomorphisms of maps in
Funcpseudo, but being strict is not, explaining the last point of the statement.

Proof. We work with the presentation of CwFpseudo given by Definition 5.5.
Consider a solid cospan in CwFpseudo with P a strict isofibration as follows:

D G //

Q isofib
��

B

P isofib
��

C F // A.
We have to construct a pullback as indicated such that Q a strict isofibration.

We work with the presentation of CwFpseudo given by Definition 5.5. The con-
texts and types of the cwf D are constructed from those of A,B,D by taking the
pullback in DiscFib (so that the pullback is preserved under the forgetful map
CwFpseudo → DiscFib).

Next, we construct the cartesian copointed endofunctor on (ND, εD) on TyD.
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(NB, εB)
(NA, εA)
(NC , εC)

D
β ;C

α
;C

//

��

ND

$$

B

��

NB

$$
D //

��

B

isofib

����

C //

NC

$$

A
NA

$$
C // A.

�

Definition 15.3. A morphism P : E → B in CwF is an isofibration if it is strict
and the underlying functor P is a split isofibration of categories.

Proposition 15.4. The category CwF has pullbacks along isofibrations. Isofibra-
tions are stable under pullback.

Proof. We are given a cospan

D F //

P isofib
��

B

P isofib
��

C F // A.

in the category CwF as indicated by the solid arrows, and we wish to construct its
pullback as indicated by the whole diagram.

To define the category of context D, we take the pullback as above on underlying
categories:

D F //

P isofib
����

B

P isofib
����

C F // A.

(15.1)

Importantly, since P : B → A is an isofibration in Cat, so is P : D → C and
the pullback (15.1) is also a pullback in Cat as a weak 2-category (a homotopy
pullback).

To define types TyD, we take the following pullback of presheaves over Dop:

TyD //

��

TyBF

��

TyCP // TyAFP .

Note that this makes ∫
TyD //

isofib
����

∫
TyB

isofib
����∫

TyC //
∫
TyA

(15.2)
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a pullback of categories with isofibrations as indicated. Furthermore, there is an
induced morphism in Cat from the square (15.2) to the square (15.1) which extends
the given morphism between cospans.

It remains to define comprehension

χD :
∫
TyD → D→.

∫
TyD //

��

&&

∫
TyB

��

&&

D→ //

��

B→

isofib

����

∫
TyC //

&&

∫
TyA

&&

C→ // A→.

Remark 15.5 (Excursion on pullbacks of isofibrations). Let P : E → B be a split
isofibration and F : B′ → B a functor:

E

P isofib
����

B′ F // B.

(15.3)

The category of semi-strict cones over the cospan (F, P ) is defined as follows:
• The objects are tuples (A, G,Q, θ) with a category A, functors Q : B′ → E ,
G : A → E , and a natural isomorphism θ : FQ→ PG:

A

θ{�

G //

Q
����

E

P isofib
����

B′
F

// B.

• Morphisms from (A1, G1, Q1, θ1) to (A2, G2, Q2, θ2) are pairs (H,α) with
a functor H : A1 → A2 such that Q1 = HQ2 and a natural isomorphism
α : G1 → G2H such that θ1 = θ2H ◦ Pα:

A1

θ1
{�

θ2{�

α
�

id 4<

H

$$

Q1

))

G1

��

A2
G2 //

Q2

��

E

P isofib
����

B′
F

// B;

and furthermore, for X ∈ A1, we have that αX : G1X → G2HX is the cho-
sen lift through P of the isomorphism (θ2HX)−1◦θ1X : PG1X → PG2HX
when given the lift G1X of the domain. Note that this is both a constraint
on G2H and α, and that α is completely determined by this constraint.

• The identity on (A, G,Q, θ) is given by (IdA, id). The composition

(A1, G1, Q1, θ1)
(H1,α1)

// (A2, G2, Q2, θ2)
(H2,α2)

// (A3, G3, Q3, θ3)
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is given by (H2H1, α2H1 ◦ α1). In both cases, we use that P is split.
• Neutrality and associativity laws are easily verified.

We take the ordinary pullback of the cospan (15.3) in Cat:

E ′ F //

P isofib
����

E

P isofib
����

B′ F // B.

Note that P will again be a split isofibration with cleavage transferred from P (and
F preserving the cleavage). Thus, we can regard (E ′, F , P , id) as a semi-strict cone
over (F, P ). We claim that it is terminal.

Consider an arbitrary object (A, G,Q, θ). Our aim is to construct a unique
morphism

(A, G,Q, θ)
(H,α)

// (E ′, F , P , id)

as indicated below:

A

θ{�

id{�

α
�

id 4<

H

$$

Q

isofib

((

G

��

E ′ F //

P
isofib

��

E

P isofib
����

B′
F

// B.

In detail, we consider the set of pairs (H,α) with a functor H : A → E ′ such
that PH = Q and a natural isomorphism α : G → FH such that Pα = θ and
furthermore, for X ∈ A, we have that αX : GX → FHX is the chosen lift through
P of θX : PGX → PFHX when given the lift GX of the domain.

Writing H = 〈Q′, G′〉 with Q′ : A → B′ and G′ : A → E such that FQ′ = PG′,
this is in bijection with the set of pairs (G′, α) with a functor G′ : A → E such
that PG′ = PFH and a natural isomorphism α : G → G′ such that Pα = θ and,
furthermore, for X ∈ A, we have that αX : GX → G′X is the chosen lift through
P of θX : PGX → PG′X when given the lift GX of the domain.

The latter condition determines (G′X,αX) uniquely for every X ∈ X , hence
determines (G′, α) uniquely. To see that the set is inhabited, define (G′X,αX) for
every X ∈ X according to the chosen lift through P of θX : PGX → PG′X when
given the lift GX of the domain. The action on morphisms of G′ is transported
from that of G using the family of isomorphisms α, making α natural. Preservation
of identities and compositions for G′ follows from that for G.

Then given a category A, functors G′ : A → B′, H : A → E and a natural
isomorphism α : FG → HP , there is a unique functor H ′ : A → E ′ and a natural
isomorphism α′ : FH ′ → H such that G′ = PH ′ and α = Pα′.∫

TyD → D a pullback of that same data for A,B, C in Cat→, and that this is
also a weak pullback. �

To define types

TyD : D→ → Set,
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we take the pullback of presheaves as follows:

TyD //

��

TyBF

��

TyCP // TyAFP .

Note that this makes
∫
TyD → D a pullback of that same data for A,B, C in Cat→,

and that this is also a weak pullback. Now we need to define comprehension

χD :
∫
TyD → D→.

For this, we use the weak pullback

D→ F
→
//

P
→ strict
��

B→

P→ strict
��

C→ F→ // A→.

The comprehension functors of A,B, C assemble to a morphism in the (weak) 2-
category of spans from the cospan of categories of types to the cospan in the above
diagram. By 2-functoriality of weak pullbacks, we thus obtain a functor χD as
required.

Explicitly, given an object (Θ,Γ,∆) where Γ = FΘ and Γ = P∆ of D and an
element (C,A,B) of TyD(Θ,Γ,∆) where A = FC and A = PB, we have

χD((Θ,Γ,∆), (C,A,B)) = (χC(Θ, C), χA(Γ, A), χB(∆, B)).

TyD //

��

TyB

��

TyC // TyA

16. Abstracted glueing

Proposition 16.1 (Abstracted glueing). Let G : B → C be a lax morphism of cwf’s
that has a right adjoint on types (R, ε). Then there is a cwf AGlue(G) and a discrete
opfibration AGlue(G)→ C.

Proof. We abbreviate E =def AGlue(G).
Contexts. We set E =def G ↓ C. Explicitly:
• an object is a tuple (ΓC ,ΓB, α) where ΓC ∈ C, ΓB ∈ B, and α : GΓB → ΓC ,
• a morphism from (∆C ,∆B, β) to (ΓC ,ΓB , α) is a pair (σC , σB) where σC : ∆C →

ΓC and σB : ∆B → ΓB such that σC ◦ β = α ◦GσB:

G∆B
β
//

GσB

��

∆C

FσA

��

GΓB
α // ΓC ,

(16.1)

• identity and composition of morphisms is given componentwise,
• neutrality and associativity laws follow componentwise.

Types. The presheaf TyE : Eop → Set is defined as follows.
• Given (ΓC ,ΓB, α) ∈ E , we let TyE(ΓC ,ΓB, α) be the set of pairs (AC , AB)

where AC ∈ TyC(ΓC) and AB ∈ TyB(RΓB(AC [α])).
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• Given a morphism

(σC , σB) : (∆C ,∆B, β)→ (ΓC ,ΓB, α)

in E , we define

TyE(σC , σB) : TyE(ΓC ,ΓB, α)→ TyE(∆C ,∆B, β)

by sending (AC , AB) to (AC [σC ], AB[RσB (AC [α])]).
• Coherence with respect to identity and composition of morphisms in E

follow from those of TyC and TyB with respect to morphisms in C and B,
respectively, and the fact that R : B ×E

∫
TyC → B→ is a functor.

Comprehension. Let us define the comprehension functor χE as below:∫
TyE

π1

""

χE // E→

cod
~~
E .

• On objects, we define χE as follows. Suppose we are given (ΓC ,ΓB, α) ∈ E
and (AC , AB) ∈ TyE(ΓC ,ΓB, α). The context extension

(ΓC ,ΓB, α).(AA, AB) ∈ E

is defined as
(ΓC .AC , RΓB(AC [α]).AB, γ)

where
γ : G(RΓB(AC [α]).AB)→ ΓC .AC

is defined as the composite

GRΓB(AC [α])

ε(ΓB,AA[α])

  

GRΓB(AC [α]).GAB

p 55

ΓC .AC .

GΓB .AC [α]

α.AC

::

The context projection

p(AC , AB) : (ΓC ,ΓB, α).(AC , AB)→ (ΓC ,ΓB, α)

is the pair of maps consisting of p(AC) : ΓC .AC → ΓC and

RΓB(AC [α]).AB
p
// RΓB(AC [α]) // ΓB.

• Let us define χE on morphisms. Suppose we are given a morphism

(σC , σB) : (∆C ,∆B, β)→ (ΓC ,ΓB, α)

in E and a type (AC , AB) ∈ TyE(ΓA,ΓB, α). We want to define the mor-
phism of context extensions

(σC , σB).(AC , AB) : (∆C ,∆B, β).(AC , AB)[(σC , σB)]→ (ΓC ,ΓB, α).(AC , AB),

where the signature unfolds to

(∆C .AC [σC ], R∆B(AC [σC ◦ β]).AB[RσB (AC [σC ◦ β])], δ)→
(ΓC .AC , RΓB(AC [α]).AB, γ)
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where γ is as before and δ is the composite

GR∆B(AC [σC ◦ β])

ε(ΓB,AC [σC◦β])

##

GR∆B(AC [σA ◦ β]).GAB[RσB (AC [σA ◦ β])]

p 22

∆C .AC [σC ].

G∆B .AC [σC ◦ β]
β.AC [α]
77

We take

(σC , σB).(AC , AB) =def (σC .AA, RσB (AC [α]).AB).

The second component uses

RσB (AC [α]) : R∆B(AC [α ◦GσB])→ RΓB(AC [α]).

To make (σC , σB).(AC , AB) into a morphism in E , we need to check that the
following diagram commutes:

G(R∆B(AC [σC ◦ β]).AB[RσB (AC [σC ◦ β])])

G(RσB (AC [α]).AB)

��

δ

++

∆C .AC [σC ]

σC.AC

��

G(RΓB(AC [α]).AB)

γ

++
ΓC .AC .

Since GRσB (AC [α]).GAB lives over GRσB (AC [α]) with respect to the con-
text projections that form the first factors of γ′ and δ′, respectively, this
follows from commutativity of the following diagram:

GR∆B((F (AA[σA]))[β])
ε(ΓB,(F (AA[σA]))[β])

//

GRσB ((FAA)[α])

��

G∆B .(F (AA[σA]))[β]
β.F (AA[α])

//

GσB .(FAA)[α]

��

F∆A.F (AA[σA])

FσA.FAA

��

GRΓB((FAA)[α])
ε(ΓB,(FAA)[α])

// GΓB .(FAA)[α]
α.FAA // FΓA.FAA.

Here, the left square is a naturality square for the counit ε of R and the
right square comes substituting the type FAA along the morphisms of the
commuting square 16.1.

We now need to show that the morphism (σA, σB).(AA, AB) lives over
(σA, σB) with respect to the context projections, i.e. that the square

(∆A,ΓB, β).(AA, AB)[(σA, σB)]
(σA,σB).(AA,AB)

//

p((AA,AB)[(σA,σB)]

��

(ΓA,ΓB, α).(AA, AB)

p(AA,AB)

��

(∆A,ΓB, β)
(σA,σB)

// (ΓA,ΓB, α)

(16.2)
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commutes. By the construction of the category E , this decomposes into
commutativity of the square

∆A.TyA(σA)(AA)
σA.AA //

p

��

ΓA.AA

p

��

∆A
σA // ΓA,

(16.3)

which is a morphism in the image of χA, and the square

R∆B((FAA)[α][GσB]).AB[R∆B((FAA)[α][GσB])]
RσB ((FAA)[α]).AB

//

p

��

RΓB((FAA)[α]).AB

p

��

R∆B((FAA)[α][GσB])
RσB ((FAA)[α])

//

��

RΓB((FAA)[α])

��

∆B
σB // ΓB,

(16.4)
which is a pasting of a morphism in the image of χB and a morphism in
the image of R.

Finally, we need to check that the square (16.2) is cartesian, i.e. a pull-
back. By assumption, the squares (16.3) and (16.4) are cartesian since they
are (pastings of) images of cartesian arrows under cartesian morphisms into
the arrow categories of A and B, respectively. Since the functor F preserves
comprehension up to the natural isomorphism vF , the image of (16.3) un-
der F is still a pullback. We now use the fact that limits in the comma
category E = G ↓ F are computed componentwise whenever F preserves
the limit in the second component. It follows that the square (16.2) is also
a pullback.

• Note that χE preserves identities and compositions because it preserves
cartesian arrows.

We obtain the strict morphism of cwf’s E → A by projecting contexts and types
to their first component. �

17. Appendix: Fibered right adjoints

Lemma 17.1. Let L be an opcartesian morphism over B and C → B an opfibration
in the strictly commuting diagram below:

C L //

opfib �� ��

D

����

B.
Let LA : CA → DA have a right adjoint (RA, εA) for every A ∈ B. Then these
local right adjoints assemble to a global right adjoint (R, ε) of L that is a cartesian
morphism over B.

Proof. Standard.
Consider the inclusion

LA ↓DA Y → L ↓D Y (17.1)
for A ∈ B and Y ∈ DA. The given right adjoints (RA, εA) to LA for A ∈ B consist
of a terminal object in the domain of (17.1) for every Y ∈ DA. The desired right
adjoint (R, ε) to L consists of a terminal object in the codomain of (17.1) for every
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A ∈ B and Y ∈ DA. It thus suffices to show that the inclusion (17.1) preserves
terminal objects. But it is a right adjoint since L preserves opcartesian arrows.

By construction of RY via the initial object of LA ↓DA Y , we see that the action
of objects of R commutes strictly with those of the functors to B. The unit and
counit maps are those of LA a RA and thus vertical (map to identities in B). By
naturality of counits, then R is a functor over B since L is.

Let us verify that R is a cartesian morphism. Let Y → Z be a cartesian arrow
in D over B → C in B. To show that RY → RZ is cartesian, consider A→ B in B
and a lift X → RZ of A→ C to C. Our goal is to show that there is a unique lift
X → RY of A→ B making the evident triangle in C commute, as seen in the left
diagram below:

X

  !!

C

��

RY // RZ

A

��   

B,

B // C

LX

  ��

D

��

Y
cart
// Z

A

  ��

B.

B // C

Using the adjunction L a R, such lifts correspond bijectively to lifts as in the right
diagram, which has a unique solution since Y → Z was assumed cartesian. �

Lemma 17.1 has a straightforward generalization to relative right adjoints.

Lemma 17.2. Let L be an opcartesian morphism and J a cartesian morphism over
B and C → B an opfibration in the strictly commuting diagram below:

D′

J

��

��

R

wwC L //

opfib �� ��

D

~~~~

B.
Let LA : CA → DA have a JA-relative right adjoint (RA, εA) for every A ∈ B. Then
these local relative right adjoints assemble to a global J-relative right adjoint (R, ε)
of L that is a cartesian morphism over B.

Proof. Consider the inclusion

LA ↓DA JAY → L ↓D JY (17.2)

for A ∈ B and Y ∈ D′A. The given right JA-relative adjoints (RA, εA) to LA for
A ∈ B consist of a terminal object in the domain of (17.2) for every Y ∈ D′A.
The desired J-relative right adjoint (R, ε) to L consists of a terminal object in the
codomain of (17.2) for every A ∈ B and Y ∈ D′A. It thus suffices to show that
the inclusion (17.2) preserves terminal objects. But it is a right adjoint since L
preserves opcartesian arrows.

By construction of RY via the initial objects of LA ↓DA JAY , we see that the
action of objects of R commutes strictly with those of the functors to B. The counit
maps are those of LA a RA and thus vertical (map to identities in B). By naturality
of counits, then R is a functor over B since L is.
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Let us verify that R is a cartesian morphism. Let Y → Z be a cartesian arrow
in D′ over B → C in B. To show that RY → RZ is cartesian, consider A → B in
B and a lift X → RZ of A → C to C. Our goal is to show that there is a unique
lift X → RY of A → B making the evident triangle in C commute, as seen in the
left diagram below:

X

  !!

C

��

RY // RZ

A

��   

B,

B // C

LX

!! !!

D

��

JY
cart
// JZ

A

!!   

B.

B // C

Using the adjunction L a R, such lifts correspond bijectively to lifts as in the right
diagram, which has a unique solution as JY → JZ is cartesian since Y → Z was
assumed cartesian and J is a cartesian morphism. �

18. Appendix: Isofibrations

Isofibrations are functors which admit lifts of isomorphisms given a lift of one of
their endpoints.

Definition 18.1. A functor P : E → B is an isofibration if, given an object X ∈ E
and an isomorphism f : PX → B in B, there is an isomorphism u : X → Y in E
such that Pu = f (and hence PY = B).

If there is always a unique such isomorphism u, we call P a discrete isofibration.

We may succinctly express that P is an isofibration by saying that it has the right
lifting property against the inclusion {•} ↪→ {• ' •}. For P a discrete isofibration,
the right lifting property is replaced by right orthogonality.

A cleavage for an isofibration P is a choice of lifts of isomorphisms as in Defini-
tion 18.1. We then speak of a cloven isofibration. For us, all isofibrations will be
cloven by default, and we will not mentioned this anymore.

Lemma 18.2. Given composable functors P and Q, if Q is a discrete isofibration,
then the following are equivalent:

(i) P is a (discrete) isofibration,
(ii) QP is a (discrete) isofibration.

Proof. This is an instance of an abstract fact about (weak) factorization systems.
�

Corollary 18.3. Let (U, V ) : P → Q be a morphism between discrete fibrations. If
V is an isofibration, then so is U .

Proof. Observe that discrete fibrations are discrete isofibrations and use Lemma 18.2.
�

Isofibrations are stable under pullback in Cat since they are defined by a right
lifting property. Recall that isofibrations are the fibrations of the canonical model
structure on Cat, in which every object is fibrant. Pullbacks along isofibrations
are thus also homotopy pullbacks, 2-pullbacks in the 2-category Cat. This 1-
categorical and 2-categorical behaviour gives rise to mixed properties as illustrated
by the following statement.
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Lemma 18.4. Consider a pullback of an isofibration as follows:

E ′ F ′ //

isofibP ′

����

E

isofibP
����

B′ F // B.

Then for any 2-cone

A

θ

'
{�

G //

Q

��

E

P isofib
����

B′
F

// B,

there is a functor H : A → E ′ such that Q = P ′H with a natural isomorphism
α : G→ F ′H such that Pα = θ:

A

θ'
{� α'

�

H

$$

Q

((

G

��

E ′ F ′ //

P ′ isofib
����

E

P isofib
����

B′
F

// B.

(18.1)

Proof. For each object X ∈ A, we have an isomorphism θX : PGX → FQX in B.
Since P is an isofibration, this lifts to an isomorphism we call αX : GX → G′X. This
defines the action on objects of a functor G′ : A → E and of a natural transformation
α : G → G′. The action on morphisms of G′ is transported from that of G using
the family of isomorphisms α, making α natural. Preservation of identities and
compositions by G′ follows from that by G.

Since PG′ = FQ, we can now define H = 〈Q,G′〉. This makes the left triangle
in (18.1) commute and makes α have the correct signature in the top triange (18.1)
by construction. We have Pα = θ by construction of α. �

Corollary 18.5. Consider a diagram in Cat

α
'
;C

B′

��

%% B

isofibP

����

C′ //

$$

A′

%%
C // A.

(18.2)

where the right square commutes and the bottom squares commutes up to a natural
isomorphism α as indicated. Then there is an induced functor between the pullbacks
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as in

D′
β

'
;C

α
'
;C

//

Q′

��

%%

B′

��

%%D //

��

B

isofibP

����

C′ //

%%

A′

%%
C // A.

(18.3)

where the left square commutes and the top square commutes up to a natural iso-
morphism β as indicated such that Pβ = αQ′.

Proof. Apply Lemma 18.4 to the 2-cone given by the object D′ over the cospan
C → A ← B. �

Call a map (U, V, V F
α−→ GU) : F → G in Funcpseudo good if V is an isofibration.

Lemma 18.6. The category Funcpseudo has pullbacks along good strict maps. Fur-
thermore, the pullback of a good strict map can be chosen as a good strict map.

Being good is invariant under isomorphisms of maps in Funcpseudo. Being strict
is not, however, explaining the last point of the statement.

Proof. Consider a span in Funcpseudo with one map being good and strict as
in (18.2). We take pullbacks in Cat separately in domain and codomain parts
and construct a commuting square

(D′,D, FD)
(G′,G,β)

//

good,strict(Q′,Q)

��

(B′,B, FB)

good,strict(P ′,P )

��

(C′, C, F C)
(F ′,F,α)

// (A′,A, FA)

(18.4)

as in (18.3) using Corollary 18.5. Note that omit writing the identity natural
isomorphism for strict morphisms.

Let us verify that the square (18.4) is a pullback in Funcpseudo. For this, consider
a cone as given by the outer square in the diagram

(E ′, E , F E)
(H′,H,η)

((

(R′,R,γ)

((

(T ′,T,δ)

&&

(D′,D, FD)
(G′,G,β)

//

good,strict(Q′,Q)

��

(B′,B, FB)

good,strict(P ′,P )

��

(C′, C, F C)
(F ′,F,α)

// (A′,A, FA).

(18.5)

We have to show that there is a unique dotted map (H ′, H, η) as indicated. Note
that H ′ and H are uniquely determined by the universal property of the pullbacks
in Cat shown in the front and back squares of the cube (18.3). Thus, it remains
to show that there is a unique natural isomorphism η : HF E → FDH ′ such that
βH ′ ◦Gη = δ and Qη = γ.
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Since P is an isofibration, the pullback

D G //

Q

��

B

P isofib
����

C F // A

(18.6)

is also a 2-pullback in the 2-category Cat. Let us look at the cone

E ′ TFE
′

��

RFE
′

))

B

P isofib
����

C
F

// A.

By the universal property of 2-pullbacks, the category of morphisms of 2-cones from
this cone to the one of (18.6) (with the identity natural isomorphism) is contractible
(equivalent to the terminal category). We have two such morphisms, one given by

E ′ TFE
′

��

RFE
′

))

HFE
′

$$
D G //

Q

��

B

P isofib
����

C
F

// A

with identity natural isomorphisms everywhere, and the other given by

E ′

φ�

ψ

4<

TFE
′

��

RFE
′

))

FDH′

$$
D G //

Q

��

B

P isofib
����

C
F

// A

where φ is the composite

TF E
′ δ // FBT ′ FBG′H ′

β−1H′
// GFDH ′

and ψ is the composite

RF E
′ γ

// F CR′ F CQ′H ′ QFDH ′.

A 2-cell between these morphisms is given by a morphism η : HF E → FDH ′ such
that Gη = φ and Qη = ψ, and it is invertible precisely if η is iso. By what we
have said about contractibility of the category of morphisms of 2-cones to the 2-
pullback (18.6), there is a unique such 2-cell and it is invertible. This proves our
claim. �
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