
KOCK’S FAT ∆ IS A DIRECT REPLACEMENT OF ∆

1. Ambifibrations

Let B be a category with an orthogonal factorization system (L,R). We consider a functor
P : E → B and its restrictions

EL //

PL

��

E

P

��

L // B,

ER //

PR
��

E

P

��

R // B.

Let W ⊆ E be the subcategory mapped to isomorphisms via P.
We call P an ambifibration if PL a Grothendieck opfibration and PR a Grothendieck fibration.

The orthogonal factorization system (L,R) on B then has lifts (EL, Ecart
R ) and (Ecocart

L , ER) to E .
Every map in E factors uniquely and functorially as a map in Ecocart

L followed by a map in W
followed by a map in Ecart

R .

Proposition 1.1. Assume that PL be a Grothendieck opfibration, and that P and

E [1]
R

êxp(d1,PR)
// E ×B R→ (1.1)

have weakly contractible fibers. Then the homotopical functor (E ,W)→ (B, Iso) is a Dwyer-Kan
equivalence.

A word on terminology. By fibers of a functor, we mean essential fibers (also called homotopy
fibers) rather than strict fibers. For the current proposition and its proof, this will make no
difference as PL is an isofibration. It also follows that the below (strict) pullbacks of categories
are also bicategorical pullbacks.

Weak equivalences in categories are created from weak equivalences in simplicial sets by the
nerve. A category is weakly contractible if the canonical map to the terminal category is a
weak equivalence. A homotopical functor (a map between relative categories) is a Dwyer-Kan
equivalence if it induces an equivalence of (∞, 1)-categories upon simplicial localization.

Proof of Proposition 1.1. By [Hin16, 1.3.6 Key Lemma], it suffices to show that P [n] : E [n] → B[n]

has weakly contractible fibers for any n ≥ 0. We proceed by induction. The case n = 0 is given
by assumption.

Assume now that P [n] has weakly contractible fibers and consider a chain C : [n + 1] → B.
Let C ′ =def C ◦ dn+1 : [n] → B denote its first n maps. To show that (P [n+1])−1(C ) is weakly
contractible, it will suffice to verify that the projection

(P [n+1])−1(C ) // (P [n])−1(C ′) (1.2)

is a weak equivalence.
Let f : U → V denote the last map of C . Note that (1.2) is a pullback of

(P [1])−1(f ) // P−1(U), (1.3)
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and thus a discrete Grothendieck fibration (this is true for any functor P). Applying Quillen’s
Theorem A, it then suffices to show that the fiber of (1.3) over any X ∈ P−1(U) is weakly
contractible.

Let

U
f //

l   

V

M

r

>>

be the unique (L,R)-factorization of f . Since PL is a Grothendieck opfibration, there is a
cocartesian lift l ′ : X → N of l . Using the universal property of cocartesian arrows, the fiber
of (1.3) over X is equivalent to the fiber of

(P
[1]
R )−1(r) // P−1(M)

over N. But this is a pullback of (1.1) and thus has weakly contractible fibers by assumption. �

2. The fat ∆

Joachim Kock defines a category ∆ (fat simplex category) as follows. Objects are epimor-
phisms in ∆. A map (u, i) from f : [a] � [m] to g : [b] � [n] is given by a map u : [m]→ [n] and
a monomorphism i : [a] � [b] in ∆ making the following square commute:

[a] //
i //

����

[b]

����

[m]
u
// [n].

Composition is defined in the evident way.
The canonical inclusion of the semisimplex into the simplex category factors via ∆:

∆+ //

!!

∆

P
��

∆.

Here, the top functor is the “inclusions” ∆+ → ∆ sending [m] to id : [m] → [m]. The right
functor is the “projection” P : ∆→ ∆ sending [a] � [m] to [m].

Recall that ∆ is a Reedy category with Reedy factorization (L,R) given by epimorphisms
and monomorphisms. Note that P has cocartesian lifts of epimorphisms L and cartesian lifts of
monomorphisms R. Thus, the projection ∆→ ∆ is an ambifibration.

3. The directed homotopy type of the fat ∆

We will consider ∆ as a homotopical category. The weak equivalences W ⊆ ∆ are created
from the identities in ∆ via P.

Proposition 3.1. The projection P : (∆,W) → (∆, Iso) is a Dwyer-Kan equivalence of homo-
topical categories.

Proof. Since P is an ambifibration, we may apply Proposition 1.1. For this, we need to verify
that all categories (3.1) and (3.2) defined below are weakly contractible.

Given [n] ∈ ∆, note that

P−1([n]) = (∆+)n+1 (3.1)



KOCK’S FAT ∆ IS A DIRECT REPLACEMENT OF ∆ 3

Similarly, given a monomorphism r : [m]→ [n] in ∆ and a lift u ∈ P−1([m]), i.e. an epimorphism
s : [a]→ [m], the fiber of (P [1])−1(r)→ P−1([m]) over u is isomorphic to∏

i∈[n]

r−1(i) ↓∆+,aug ∆+ =
∏
i∈[n]

{
r−1(i)/∆+ if i ∈ im(r)

∆+ else.
(3.2)

Coslice categories are weakly contractible as they have an initial object. Finite products of
weakly contractible categories are again weakly contractible. To finish the proof, it thus suffices
to observe that ∆+ is weakly contractible by Proposition 3.2. �

Proposition 3.2. ∆+ is weakly contractible.

The below proof was given by Charles Rezk in a Math Overflow post; a comment indicated it
is (separately?) due to Maltsiniotis in “La Théorie de l’homotopie de Grothendieck”.

Proof. The identity functor on ∆+ and the constant functor returning [0] are related by a cospan
of natural transformations using the join inclusions:

Id // Id ? const([0]) const([0]).oo

�

Old and redundant proof of Proposition 3.2. We will show that ∆≤n+ is weakly contractible for
even n. Since {0} → N∆+ arises as a sequential colimit of trivial cofibrations

N∆≤0
+
// ∼ // N∆≤2

+
// ∼ // · · · ,

then ∆+ will be weakly contractible as well.

We will show that the inclusion ∆≤n+,aug → ∆≤n+ is a weak equivalence for n even. For n ≥ 0,
the domain is weakly contractible since it has an initial object. By 2-out-of-3, the codomain will
then be weakly contractible as well.

For the latest claim, we proceed by induction. The base case is n = −2 where domain
and codomain are both empty. For the induction step, by stability of trivial cofibrations un-
der pushout and 2-out-of-3, it will suffice to show that the Leibniz application of N(−)≤n →
N(−)≤n+2 to ∆+ → ∆+,aug, i.e. the inclusion

N∆≤n+2
+ ∪ N∆≤n+,aug

// // N∆≤n+2
+,aug (3.3)

is a trivial cofibration.
Consider the functor

[1]n+3 ' // (∆≤0
+,aug)n+3 // ∆≤n+2

+,aug (3.4)

where the second map is given by (n + 3)-fold join. Consider further the simplicial subset

U
d0×̂···×̂d1 // N[1]n+3 (3.5)

of the cube with all faces removed that contain the initial vertex. The inclusion (3.3) is the
quotient of (3.5) under the nerve of the functor (3.4):

U // //

epi

��

N[1]n+3

epi

��

N∆≤n+2
+ ∪ N∆≤n+,aug

// // N∆≤n+2
+,aug .
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The above commuting square is the image of a similar one in cubical sets (without symmetries
or connections) under realization of cubes as simplices. Since cubical realization is a Quillen
equivalence, let us switch to the cubical picture.

Note that the missing faces of the cube [1]n+3 all get identified under the above quotient. So
the bottom map misses precisely two elements: an (n + 2)-dimensional cube a and a [n + 3]-
dimensional cube b. Note that n + 3 of the faces of b are given by a. Since n + 3 is odd, these
form a trivial cofibration.1 �
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1This needs to be justified. The argument should be as for Dunce’s hat and be purely synthetical. A similar
statement for horn inclusions with an odd number of missing faces, all identified, is written up. More flexible
shapes would make the write-up nicer.
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