
FREE MONAD SEQUENCES AND EXTENSION OPERATIONS

CHRISTIAN SATTLER

Abstract. In the first part of this article, we give an analysis of the free
monad sequence in non-cocomplete categories, with the needed colimits explic-
itly parametrized. This enables us to state a more finely grained functoriality
principle for free monad and monoid sequences.

In the second part, we deal with the problem of functorially extending via
pullback squares a category of maps along the category of coalgebras of an
algebraic weak factorization system. This generalizes the classical problem of
extending a class of maps along the left class of a weak factorization system in
the sense of pullback squares where the vertical maps are in the chosen class
and the bottom map is in the left class. Such situations arise in the context
of model structures where one might wish to extend fibrations along trivial
cofibrations. We derive suitable conditions for the algebraic analogue of weak
saturation of the extension problem, using the results of the first part to reduce
the technical burden.
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1. Introduction

Let E be a locally presentable category. Let (L,R) be a weak factorization system
cofibrantly generated by a set I ⊆ E→ of arrows, for example the (trivial cofibration,
fibration) weak factorization system of a model structure. Let further F ⊆ E→ be a
class of arrows, for example the class of fibrations. In certain situations, one wishes
to extend maps in F along maps in L, in the following sense: given a map A→ B
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in L and a map X → A in F , one wishes to find a pullback square

X //

∈F
��

Y

∈F
��

A // B

(1.1)

with Y → B again in F . We say that A → B admits extension if this is the case
for all X → A in F . Let us take for granted that maps in I admit extension. One
then needs to show that the class of maps admitting extension is weakly saturated.

If E is a presheaf category and F is a class of local fibrations with size-bounded
fibers in the sense of Cisinksi [1], then E admits a classifier U for maps in F .
If furthermore all maps in I are objectwise decidable monomorphisms, one may
phrase the extension problem (1.1) as a lifting problem

A //

��

U

B

??

against U . Weak saturation is then automatic. Unfortunately, an inspection of [1]
reveals the restriction to objectwise decidable monomorphisms in I as essential.

More generally, one may separately verify that the class of maps admitting ex-
tension is closed under the saturation operations of coproduct, pushout, transfinite
composition, and retract. Under the assumption that F is closed under colimits in
E→ [colimits in E→

cart?], this boils down to showing that the colimits of the satura-
tion operations are van Kampen in the sense of [7]. This is the case if I consists
of monomorphisms and E is a topos, or more generally an extensive, adhesive, and
exhaustive category. Having eliminated the use of a classifier, no counterpart to
objectwise decidability is needed here.

The goal of this article is to provide a result analogous to the preceding paragraph
for the algebraic setting, starting with an algebraic weak factorization system (L,R)
on E cofibrantly generated by a small category u : I → E→ of arrows in the sense of
Garner’s algebraic variant of the small object argument [2], for example the (trivial
cofibration, fibration) algebraic weak factorization system of an algebraic model
structure. Instead of a class F , we consider a category v : F → E→, for example
the category of fibrations F =def I⋔ consisting of maps together with a coherent
family of lifts against maps in I. Extension (1.1) along A→ B now involves finding
a lift of Y → B to F , given a map X → A with a lift to F . Furthermore, we require
the square, read horizontally as a morphisms of arrows, to lift to a morphism in
F . Altogether, an extension operation of F along a category of arrows J → E→
should give rise to a functor F ×E J → F→. Our aim then is to get an extension
operation of F along coalg(L) from an extension operation of F along I subject to
assumptions to be identified.

To see how coalg(L) arises from I, we have to inspect the algebraic small object
argument [2]. One first constructs a single-step functorial factorization (L0, R0)
freely on I where R0 does not yet come with a monad multiplication. One then
uses Kelly’s [4] free monad sequence on the pointed endofunctor R0 to construct
the monad part R of the final algebraic weak factorization system (L,R). Finally,
arrows lifting to coalg(L) arise functorially as retracts of L, i.e. the domain part of
the unit of R. Letting η0 and η denote the respective units of R0 and R, the most
intricate part consists of going from an extension operation of F along dom ◦ η0 to
an extension operation along dom ◦ η.
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Differing from the standard small object argument, the algebraic variant fol-
lows up each step of freely adding fillers by quotienting out fillers already added
in previous steps. In the explication [4, Section 17] of the free monad sequence
on a pointed endofunctor, this is done using certain coequalizers. This is also the
description of [2, Paragraph 4.16] in the context of the free monoid sequence. Un-
fortunately, these coequalizers are not generally van Kampen (though this can be
remedied by enlarging the shape of the colimit diagram by an initial object), and so
the explication is not of direct use to us. However, the reduction to the free monad
sequence on a wellpointed endofunctor [4, Section 14] has the correct van Kampen
colimits under suitable assumptions. The extension operation of F along coalg(L)
can then again be built up step-by-step.

The basic strategy outlined above can be made less tedious through an abstrac-
tion. In going from extending along dom ◦ η0 to extending along dom ◦ η, we do
in fact not need to manually push extension through each step of the free monad
sequence, we merely have to use certain functoriality properties. An extension oper-
ation of F along dom◦η0 gives rise to a pointed endofunctor R′

0 on Fcart×E E→ that
extends R0. Here, Fcart denotes the wide subcategory of F with maps restricted
to pullback squares. The forgetful functor Fcart ×E E→ → E→ will not generally
preserve all connected colimits, but enough for the free monad sequence for R′

0 to
map to the free monad sequence for R0. The free monad on R′

0 then provides an
extension operation along dom ◦ η.

It will thus pay off to separately develop the free monad sequence in a potentially
non-cocomplete setting, finding a formalism that enables us to express the needed
colimits. For fine grained functoriality of the free monad sequence, we then merely
have to require preservation of the postulated colimits. This development will be
undertaken separately in Section 3 as we believe it to be of independent interest.

2. Preliminaries

2.1. Van Kampen colimits. Let E be a category. We write E→ for its arrow cate-
gory and E→cart for the wide subcategory of E→ with morphisms restricted to pullback
squares. Recall the following notion from [7]. [What is an earlier reference?]

Definition 2.1. A colimiting cocone u of a diagram F : S → E is called van
Kampen if:

(i) it is stable under pullback,
(ii) for any lift of F through cod: E→cart → E and compatible lift of u through

cod: E→ → E , we have that u lifts through E→cart → E→.

If E has pullbacks, then a colimit in E van Kampen precisely if it is preserved (as
a weak 2-limit) by the self-indexing weak 2-functor Eop → Cat. Our main usage
pattern of the van Kampen condition is given by the following statement.

Proposition 2.2. Let Ξ be a pullback-stable class of van Kampen colimiting cocones
in E. Then cod: E→cart → E lifts colimits in Ξ, and E→cart → E→ preserves these lifted
colimits.

Proof. Given a diagram F : S → E→cart and a colimiting cocone u of cod ◦F : S → S
in X , pullback stability of X implies that dom ◦F has a colimit, hence that the
colimit of F : S → E→ exists. Using the above consequence (ii’) of the van Kampen
condition, it lifts further to a colimit of F in E→cart. □

2.2. Categories with a class of maps.

Definition 2.3. The category of categories with classes of maps is defined as
follows. An object (E ,M) consists of a category E with a class M of maps. A
map from (E1,M1) to (E2,M2) is a functor F : E1 → E2 such that F (M1) ⊆M2.
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Definition 2.4. We say that (E ,M) has pullbacks if pullbacks along maps in M
exist and M is stable under pullback.

Definition 2.5. Let E be a category with a classM of maps. We write EM for the
wide subcategory of E with morphisms restricted toM. We writeMcart for the full
subcategory of Ecart with objects restricted toM. In E→ or one of its subcategories,
we writeM for the class of maps (u, v) with u, v ∈M.

Definition 2.6. Let κ > 0 be a regular ordinal. We say that (E ,M) has κ-
compositions if:

(i) M is closed under finitary composition;
(ii) EM has and EM → E preserves α-transfinite compositions for any limit

ordinal α ≤ κ.
We also use the term κ-compositions in (E ,M) to refer to the class of colimits
in (ii). We say that (E ,M) has van Kampen κ-compositions if they are futhermore
van Kampen.

Assuming condition (i), condition (ii) can also be phrased as follows. Let α ≤ κ
be a limit ordinal and F : α → E be a cocontinuous diagram with successor maps
F (β)→ F (β+1) inM. Then F admits a colimit, the coprojections F (β)→ colimF
are inM, and for any cocone (X,u) with maps uβ : F (β)→ X inM, the induced
map colimF → X is inM as well. The situation is illustrated in the below diagram,
with the membership in M of the dotted arrows being postulated:

F (0)
∈M
//

∈M

++

∈M

''

F (1)
∈M

//

∈M
))

∈M

""

. . .

colimF

∈M
��

X.

Corollary 2.7. Let (E ,M) have pullbacks and van Kampen κ-compositions. Then
(E→cart,M) has κ-compositions and all maps in

(E→cart,M) //

&&

(E→,M)

��

(E ,M)

lift and preserve κ-compositions.

Proof. By Proposition 2.2. □

Definition 2.8. Let E be a category with a classM of maps. We say that (E ,M)
has pushouts if pushouts along maps in M exist and M is stable under pushout.
We also use the term pushouts in (E ,M) to refer to the above class of colimits. We
say that (E ,M) has van Kampen pushouts if they are furthermore van Kampen.

In detail, given a span C ← A→ B with left leg A→ C in M, the pushout

A //

∈M
��

B

∈M
��

C // D

exists and B → D is again inM.
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Remark 2.9. Let (E ,M) have pullbacks and van Kampen pushouts. Then the
maps inM are adhesive in the sense of [3]. In particular, all maps inM are regular
monomorphisms.

In contrast to Corollary 2.7, the following statement needs arbitrary pullbacks
in E to exist. [Check]

Corollary 2.10. Let (E ,M) have pullbacks and van Kampen κ-compositions. As-
sume that E has all pullbacks. Then (E→cart,M) has κ-compositions and all maps
in

(E→cart,M) //

&&

(E→,M)

��

(E ,M)

lift and preserve κ-compositions.

Proof. By Proposition 2.2. □

Definition 2.11. Let (E ,M) have pullbacks and pushouts. We say that (E ,M)
has binary unions if subobjects in M are stable under binary union.

In detail, the definition says the following. Given maps B1 → D and B2 → D in
M, consider the pullback

A
∈M
//

∈M
��

B1

∈M
��

B2
∈M

// D.

Then the pushout corner map, i.e. the induced map from the pushout of B1 ←
A → B2 to D, is in M. The term union in this situation is sensible only in case
maps in M are mono, which in view of Remark 2.9 is enforced if (E ,M) has van
Kampen pushouts. However, we still use the term in the general situation.

Lemma 2.12. Let (E ,M) have pullbacks and van Kampen pushouts. Then pushout
of maps in M lifts to a functor P :Mcart ×E E→ →Mcart.

If (E ,M) has binary unions and M is closed under binary composition, then
this functor furthermore preserves M: given a map (u, v) in Mcart ×E E→ with
u, v ∈M, then P (u, v) ∈M.

Proof. The action on objects is clear from the assumptions. For the action on
morphisms, suppose we are given squares

A1
//

∈M
��

A2

∈M
��

B1
// B2,

A1
//

��

A2

��

C1
// C2,



FREE MONAD SEQUENCES AND EXTENSION OPERATIONS 6

We need to show that the right face of

A1
//

∈M

��

  

C1

∈M

��

!!

A2
//

∈M

��

C2

∈M

��

B1
//

  

D1

!!

B2
// D2

(2.1)

is a pullback. This is a consequence of stability ofM under pullback and stability
under pullback of pushouts alongM as implied by the van Kampen condition, for
example using [3, Lemma 2.2].

For the final assertion, note first that in a square

X1
∈M
//

∈M
��

X2

∈M
��

Y1
// Y2

the bottom map is inM just when the pushout corner map is inM. The forward
direction follows from closure ofM under binary union, the reverse one from closure
of M under pushout and composition. Now assume in the situation of (2.1) that
the maps A1 → A2, B1 → B2, C1 → C2 are in M. Our goal is to show that then
also D1 → D2 is inM. By the previous paragraph, the pushout corner map in the
left square of (2.1) is in M. As a pushout of that map, the pushout corner map
in the right square of (2.1) is then also inM. Again by the previous paragraph, it
follows that the map D1 → D2 is in M. □

2.3. Strong categories of functors, adjunctions, monads. Functoriality of
the free algebra and free monad construction will in each case be expressed by
means of a functor from a certain category of configurations to strong (non-lax)
variants of the categories Adj and Mnd of adjunctions and monads, respectively,
which we briefly recall below.

Definition 2.13. The category Funs of functors with strong morphisms is defined
as follows:

(i) An object consists of categories C and D with a functor F : C → D.
(ii) A morphism from (C,D, F ) to (C′,D′, F ′) consists of functors U : C → C′

and V : D → D′ with an isomorphism V F ≃ F ′U .

Definition 2.14. The category Adjs of adjunctions with strong morphisms is
defined as follows:

(i) An object consists of categories C and D with functors F : C → D and
G : D → C admitting natural transformations η : Id→ GF and ϵ : FG→ Id
such that ϵF ◦ Fη = id and Gϵ ◦ ηG = id.

(ii) A morphism from (C,D, F,G, η, ϵ) to (C′,D′, F ′, G′, η′, ϵ) consists of func-
tors U : C → C′ and V : D → D′ with isomorphisms α : F ′U ≃ V F and
β : UG ≃ G′V satisfying βF ◦ Uη = G′α ◦ η′U and V ϵ ◦ αG = ϵ′V ◦ F ′β.

Note that the second equation of part (ii) of the preceding definition is already
implied by the first. There are functors from Adjs to Funs selecting the left and
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right adjoint, respectively. Observe that there are lax version of Funs and Adjs for
which these functors are fully faithful, whereas this is not the case here. Requiring
α to be an isomorphism instead of just a natural transformation is what will encode
preservation of free algebras in Theorems 3.2 and 3.7.

Definition 2.15. The category Mnds of monads with strong morphisms is defined
as follows:

(i) An object is a monad (T, η, µ) on a category C.
(ii) A morphism from (C, T, η, µ) to (C′, T ′, η′, µ′) is a functor U : C → C′ with

an isomorphism γ : UT ≃ T ′U satisfying γ ◦ Uη = η′U and γ ◦ Uµ =
µ′U ◦ T ′γ ◦ γT .

There is a functor from Mnds to Funs forgetting the monad structure and the
endofunctor aspect. Finally, there is a functor from Adjs to Mnds sending an
adjunction to its associated monad. Similar to the above, observe that Mnds is a
wide subcategory of its more common lax version.

The above categories and the below categories of configurations are in fact strict
2-categories and the functors relating them will be strict 2-functors, but we shall
not need this here.

3. Functoriality of free algebras, monads, and monoids

The goal of this section is to review the free algebra and free monad constructions
of [4] on wellpointed and pointed endofunctors (and ultimately the free monoid con-
struction on a pointed object in a monoidal category) without the blanket assump-
tion that all small colimits exist. Instead, we make the needed colimits explicit,
parametrizing them by a class of maps M satisfying certain closure properties.
This allows us to apply the constructions in non-cocomplete settings, but the key
point is rather the more refined functoriality principles it provides, requiring the
translation functor between two settings to only preserve the parametrizing class
of maps and associated colimits for free algebras to be preserved and free monads
to be related. We also use the parametrizing class M to express the convergence
condition in a manner which is sufficient for our purposes, preferring not to intro-
duce the more complicated machinery of well-copowered orthogonal factorization
systems and tightness-preserving endofunctors of [4].

We first treat the case of a wellpointed endofunctor and then reduce the case of
a pointed endofunctor to it, following faithfully the constructions of [4]. The cate-
gories of configurations will involve an ordinal κ related to convergence of transfinite
sequence constructions. For simplicity of presentation, we prefer to fix κ uniformly
for all objects, only noting here that a more flexible treatment is possible.

We first state all the involved definitions, theorems, and corollaries. The main
proofs are offloaded to the last subsection and consist of an analysis of the colimits
involved in the construction of [4], though for readability we prefer to give them in
whole.

3.1. Wellpointed endofunctors. We follow the analysis in [4] in first dealing
with wellpointed endofunctors. The statements in here should be seen as technical
devices to be used in the general pointed case.

Definition 3.1. Let κ be a regular ordinal. The (large) category ConfMndκwp of
configurations for the free monad sequence on a wellpointed endofunctor is defined
as follows:

(i) An object is a tuple (E ,M, F ) of a category E with a class of mapsM and
a wellpointed endofunctor (F, η) on E such that:

(3.1.1) (E ,M) has κ-compositions.
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(3.1.2) η is valued in M,
(3.1.3) F preserves κ-transfinite compositions of maps in M.

(ii) A morphism from (E1,M1, F1) to (E2,M2, F2) is a map P : (E1,M1) →
(E1,M2) that preserves κ-compositions and extends to a map of pointed
endofunctors from F1 to F2.

The below theorem asserts that the forgetful functor out of the pointed endo-
functor algebra category functorially admits a left adjoint.

Theorem 3.2. The functor ConfMndκwp → Funs sending (E ,M, F ) to the forgetful
functor alg(F )→ E lifts through the restriction Adjs → Funs to the right adjoint.

Remark 3.3. There are two aspects to this statement and the one of Theorem 3.7.
The first is to ensure that free algebras exist for any fixed configuration. They will
be constructed explicitly using certain colimits, closely following [4]. This already
ensures that the functor Conf → Funs from the respective configuration category
lifts to Adj, defined as Adjs in Definition 2.14 only with α : F ′U → V F in the
definition of morphisms not required to be invertible: the restriction from Adj to
the right adjoint is fully faithful.

It then remains to show that Conf → Adjs lifts through the inclusion Adjs →
Adj, i.e. to show that the α-components of the action of Conf → Adj on morphisms
are invertible. This corresponds to showing that the colimits invoked in constructing
free algebras are preserved by the mediating functor, which is how morphisms in
Conf are defined.

Proof. Let (E ,M, F ) ∈ ConfMndκwp be a configuration with (F, η) a wellpointed
endofunctor. Recall that the forgetful functor alg(F ) → E is a fully faithful inclu-
sion, with alg(F ) consisting of those X ∈ E for which ηX is invertible, the algebra
map being given by η−1

X . Its left adjoint is constructed as the κ-transfinite compo-
sition

Id
η
// F

ηF
// F 2 ηF 2

// . . . (3.1)

where the successor of Fα is constructed as ηFα : Fα → Fα+1 =def FFα. This
transfinite composition exists by (3.1.1) since the successor maps have components
inM by (3.1.2). By (3.1.3), F preserves this κ-transfinite composition, making ηFκ

invertible using that F is wellpointed and thus producing a lift Fκ : E → alg(F ).
It is easy to check that Fκ is left adjoint to the forgetful functor alg(F )→ E . This
finishes the construction of the action on objects of ConfMndκwp → Adjs.

Given a morphism P : (E1,M1, F1)→ (E2,M2, F2), the canonical natural trans-
formation Fκ

2 P → PFκ
1 is invertible since P preserves κ-transfinite compositions of

maps in M1. This shows functoriality of ConfMndκwp → Adjs. □

As a consequence, free monads exist functorially.

Theorem 3.4. The canonical functor ConfMndκwp → Cat lifts to a functor ConfMndκwp →
Mnds sending (E ,M, F ) to the free and algebraically-free monad (T, ηT , µT ) on
(F, ηF ). The following properties are transferred:

(i) Let Ξ be a class of colimits in E. If F preserves Ξ, then so does T .
(ii) ηT is valued in M.
(iii) Let (C,N ) have κ-compositions and let (E ,M)→ (C,N ) preserve κ-compositions.

If F preserves maps mapping to N , then so does T .
(iv) Let (C,N ) have pullbacks and van Kampen κ-compositions and let (E ,M)→

(C,N ) preserve κ-compositions. Let S be a class of maps in E preserved by
F . If naturality squares of ηF on S get mapped to pullbacks in C, then the
same holds for ηT .
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The generalized setup of some of the above clauses is necessitated by how the
reduction to the wellpointed case of the corresponding clauses in the pointed case
is implemented.

Proof. The main statement is an immediate consequence of Theorem 3.2, noting
that the free and algebraically-free monad T on a wellpointed endofunctor F is given
by the monad of the free algebra adjunction. Assertion (i) holds by commutativity
of colimits. For assertion (ii), note that the unit of T is given by the κ-transfinite
composition (3.1) and hence valued inM by (3.1.1). Assertion (iii) follows from the
assumptions and (3.1.1) by iterative application of F preserving maps mapping to
N . For assertion (iv), proceed as in (iii) and (ii), using the van Kampen condition
at limit ordinal steps. □

3.2. Statements for pointed endofunctors. Due to their lengths, the proofs of
the statements in this section are given at the end of this section.

Definition 3.5. Let κ > 0 be a regular ordinal. The (large) category ConfMndκp
of configurations for the free monad sequence on a pointed endofunctor is defined
as follows.

(i) An object is a tuple (E ,M, F ) of a category E with a class of mapsM and
a pointed endofunctor (F, η) on E such that:

(3.5.1) (E ,M) has κ-compositions.
(3.5.2) (E ,M) has pushouts.
(3.5.3) η is valued in M,
(3.5.4) M is closed under Leibniz application of η,
(3.5.5) F preserves M,
(3.5.6) F preserves κ-transfinite compositions of maps in M.

(ii) A morphism from (E1,M1, F1) to (E2,M2,F2) is a map P : (E1,M1) →
(E2,M2) that preserves κ-compositions and pushouts and extends to a map
of pointed endofunctors from F1 to F2.

Remark 3.6. Let (E ,M, F ) ∈ ConfMndκp. If M consists only of monos, E has
pullbacks along maps inM, and crucially the unit of F is cartesian, condition (3.5.4)
is satisfied ifM is closed under binary union.

The below statements are similar to the wellpointed case.

Theorem 3.7. The functor ConfMndκp → Funs sending (E ,M, F ) to the forgetful
functor alg(F )→ E lifts through the restriction Adjs → Funs to the right adjoint.

Theorem 3.8. The canonical functor ConfMndκp → Cat lifts to a functor ConfMndκp →
Mnds sending (E ,M, F ) to the free and algebraically-free monad (T, ηT , µT ) on F .
It furthermore shares the following properties with F :

(i) Let Ξ be a class of colimits in E. If F preserves Ξ, then so does T .
(ii) ηT is valued in M,
(iii) T preserves M,
(iv) Assume (E ,M) has pullbacks and van Kampen pushouts. If ηF is cartesian,

then so is ηF .

3.3. Pointed objects in a monoidal category. Let MonCat denote the cate-
gory of monoidal categories. We default to strong (non-lax) monoidal functors.

Definition 3.9. Let κ > 0 be a regular ordinal. The (large) category ConfMonκp
of configurations for the free monoid sequence on a pointed object is defined as
follows:
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(i) An object is a tuple (E ,M, T ) of a monoidal category (E , I,⊗) with a class
of mapsM and a pointed object (T, η) in E such that (E ,M, T ⊗ (−)) is an
object of ConfMndκp and (−)⊗X is an endomorphism on it for in X ∈ E .
In detail, we require:

(3.9.1) (E ,M) has κ-compositions.
(3.9.2) (E ,M) has pushouts,
(3.9.3) η is valued in M,
(3.9.4) M is closed under Leibniz monoidal product η ⊗̂ (−),
(3.9.5) T ⊗ (−) preserves M.
(3.9.6) T ⊗ (−) preserves κ-transfinite compositions of maps in M.
(3.9.7) for any X ∈ E , right multiplication (−)⊗X lifts to an endomorphism

on (E ,M) that preserves κ-compositions and pushouts.
(ii) A morphism from (E1,M1, T1) to (E2,M2, T2) is a map P : (E1,M1) →

(E2,M2) that preserves κ-compositions and pushouts and extends to a
monoidal functor such that P (T1) ≃ T2 as pointed objects.

Let Mon denote the category of monoidal categories with a monoid. We have a
canonical projection Mon→MonCat.

Theorem 3.10. The canonical functor ConfMonκp → MonCat lifts to a functor
ConfMndκp →Mon sending (E ,M, T ) to the free and algebraically monoid on T .

Proof. This is by Theorems 3.7 and 3.8 as detailed in [4, Section 23]. For (E ,M, T ) ∈
ConfMonκp, the free monoid on T is given by the free monad on T ⊗ (−) applied to
the unit of E . □

Remark 3.11. As described in [4], we may discuss free monads and free monoids
in terms of each other:

• Functorially (E ,M, T ) ∈ ConfMonκp, we have (E ,M, T ⊗ (−)) ∈ ConfMndκp
and furthermore stable under (−)⊗X for X ∈ E .

• Given in (E ,M, F ) ∈ ConfMndκp, we have ([E , E ],M′, F ◦(−)) ∈ ConfMonκp
where M′ is the class of natural transformations whose components lie in
M.

However, the second point does not translate to the level of functors: a morphism
in ConfMndκp does not give rise to a morphism in ConfMonκp. This means that
the free monoid sequence, as a functorial construction, does not generalize the free
monad sequence.

3.4. Proofs for pointed endofunctors.

Proof of Theorem 3.7. Let (E ,M, F ) ∈ ConfMndκp be a configuration with (F, ηF )
a pointed endofunctor. We want to construct a left adjoint to the forgetful functor
alg(F ) → E . The strategy is to reduce to the wellpointed case. For this, we
will define a wellpointed configuration (E ′,M′, F ′) ∈ ConfMndκwp, deriving the
connection to the original pointed configuration as we go along. We identify M
with the full subcategory of E→ it generates. Without loss of generality, we can
assume it is replete.

Define E ′ via the following pullback, which is also a weak 2-pullback sinceM is
replete:

E ′ K′
//

_�

��

M
_�

��

F ↓ E K // E→.

(3.2)
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Here, we denote K : F ↓ E → E→ the functor that sends (A,B, f) with A,B ∈ E
and f : FA→ B to f ◦ ηFA . Explicitly, we can describe E ′ as the full subcategory of
F ↓ E of objects (A,B, f) such that the composite f ◦ ηFA : A→ B is in M.

The forgetful functor alg(F ) → E has an evident lift through the projection
F ↓ E → E sending (A,B, f) to A. It further lifts through E ′ → F ↓ E since
identities are contained inM by (3.5.1):

alg(F ) // E ′ // F ↓ E // E . (3.3)

Note that E ′ → E has a left adjoint sending X to (X,FX, idFX). Thus, the problem
of constructing a left adjoint to alg(F ) → E reduces to constructing a left adjoint
to alg(F )→ E ′.

Let E∼= denote the category of isomorphisms in E . The outer square below forms
a weak 2-pullback:

alg(F ) //

��

E≃

��

E ′ K′
//

��

M

��

F ↓ E K // E→.

The lower square is the weak 2-pullback (3.2), so the upper square is one as well.
Note that K ′ has a left adjoint J ′ sending an arrow f : A→ B to the triple (A,C, g)
defined by the pushout

A
ηF
A //

f

��

FA

g

��

B // C,

(3.4)

which exists by (3.5.2) since ηFA ∈ M by (3.5.3). Also note that E≃ → M is
the category of algebras for the wellpointed endofunctor (U, ηU ) on M that sends
m : A→ B to idB . Summarizing, we have the following situation:

alg(F )
,,

��

alg(U)

��

E ′
K′

**M.
J′

jj
_

(3.5)

We now apply Lemma 3.12 below to the adjunction J ′ ⊣ K ′ and the wellpointed
endofunctor U . This will define a wellpointed endofunctor (F ′, ηF

′
) on E ′ via the

following pushout for (A,B, f) ∈ E ′ where we write (X,Y, k) =def F
′(A,B, f):

(A,B +A FA, inr)
J′ηUK′

//

��

(B,FB, idFB)

��

(A,B, f)
ηF ′

// (X,Y, k).

(3.6)

We will show first that the pushout exists in F ↓ E and then that it lifts to E ′. The
pushout X of the domain components is trivially B and furthermore preserved by
F as it is absolute. Hence Y is simply computed as a pushout of the codomain
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components:

B +A FA
ηF ⊗̂fηF

A //

��

FB

��

B
h // Y .

(3.7)

The top map is the Leibniz application of η to fηFA and thus inM by (3.5.4) since
fηFA is in M, hence the pushout exists and the bottom map h is in M by (3.5.2).
The map k : FY → X is given by functoriality of pushouts in the cube

FA FB

FA FB

B +A FA FB

B Y ,

F (f◦ηA)

τ1
F (f◦ηA)

k
η⊗̂(f◦ηA)

[id,f ]

kf

h

whose top and bottom faces are pushouts. Note that

h = h ◦ [id, f ] ◦ τ1
= k ◦ (η ⊗̂ (f ◦ ηA)) ◦ τ1
= k ◦ ηB .

This verifies that (X,Y, k) ∈ E ′ since k ◦ ηFX = h is in M.
We continue the application of Lemma 3.12. By comparing the 2-pullbacks (3.9)

and (3.5), we see that the categories alg(F ) and alg(F ′) are equivalent over E ′.
Instead of constructing a left adjoint to alg(F )→ E ′, we construct one to alg(F ′)→
E ′, exploiting that now F ′ is wellpointed so that we may apply Theorem 3.2.

We letM′ be the class of arrows (u, v) of E ′ with u, v ∈M. Let us show that E ′
has α-transfinite composition of maps inM′ for any limit ordinal α ≤ κ. Consider
a diagram (U, V,m) : α→ E ′ with functors U, V : α→ E with successor maps inM
and a natural transformation m : FU → V such that m ◦ ηFU has components in
M. We will show that the colimit (X,Y, k) =def colimα(U, V,m) exists in F ↓ E
and lifts to E ′. By (3.5.5) and (3.5.1), the colimits of U , V , FU exist and have
coprojections in M. We have X = colimα U while Y and k are computed via the
following pushout:

colimα U //

''

colimα FU //

��

colimα V

��

F colimα U
k // Y .

(3.8)

Again by (3.5.5) and (3.5.1), the middle vertical map is in M. By (3.5.2), the
pushout exists and the right map is in M. Thus the colimit in F ↓ E exists.
By (3.5.1), the composite top row is in M. The composite X → FX → Y factors
as a sequence colimα U → colimα V → Y of maps inM, so is itself inM by (3.5.1).
Thus the colimit lifts to E ′.

Let us verify that the component of the unit ηF
′

on (A,B, f) ∈ E ′ depicted in
the bottom row (3.6) is in M′. The domain part was simply f ◦ ηFAA : A → B,
which is in E by definition of E ′. The codomain part is the bottom row of (3.7),
which as we saw there is in E .
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It remains to check that F ′ preserves κ-transfinite compositions of maps in
M′. This is a consequence of (3.5.6). This establishes (E ′,M′, F ′) as an object
of ConfMndκwp, allowing us to apply the object part of Theorem 3.2 to finish the
construction of the action on objects of ConfMndκp → Adjs.

Let us now examine functoriality of ConfMndκp → Adjs. Given a map P : (E1,M1, F1)→
(E2,M2, F2) of pointed configurations, we need to show that P preserves free al-
gebras. Following the structure of the construction for the object part and reusing
its notation annotated with appropriate subscripts, we will show that P induces
a morphism P ′ : (E ′1,M′

1, F
′
1) → (E ′2,M′

2, F
′
2) between the associated wellpointed

configurations, then apply the functoriality part of Theorem 3.2, and finish by re-
lating preservation of free algebras for the associated wellpointed endofunctors to
the original pointed endofunctors.

To see that P lifts to a functor P ′ : E ′1 → E ′2, we examine the pullback square (3.2).
Since P is a map of pointed endofunctors, it lifts to a map of functors from K1 to
K2. Observe that P lifts to a functor M1 → M2 by assumption. Together, this
induces the lift P ′ : E ′1 → E ′2. Note that P ′ maps M′

1 to M′
2 since P maps M1 to

M2.
To see that P ′ preserves α-transfinite compositions of maps inM1 for any limit

ordinal α ≤ κ, recall the construction of α-transfinite compositions in E ′1 and E ′2
as depicted in (3.8) and note that P preserves all of the involved colimits, namely
pushouts and α-transfinite compositions of maps in M1.

To see that P ′ extends to a map of pointed endofunctors from F ′
1 to F ′

2, recall
the construction of F ′

1 and F ′
2 via Lemma 3.12 as explicated in (3.6). Note that

P preserves the pushout (3.4) defining J ′
1 since one of its legs is in M,. It follows

that P lifts to a map of adjunctions from (J ′
1,K

′
1) to (J ′

2,K
′
2) Since it also trivially

lifts to a map of pointed endofunctors from U1 to U2, functoriality of Lemma 3.12
yields the desired map of pointed endofunctors from F ′

1 to F ′
2.

This shows that P ′ is a morphism relating the wellpointed configurations (E ′1,M′
1, F

′
1)

and (E ′2,M′
2, F

′
2). Using Theorem 3.2, we have that P ′ lifts to a map of adjunctions

from the free algebra adjunction for F ′
1 to the one for F ′

2.
Using Theorem 3.2, it follows that P ′ lifts to a map of adjunctions where the right

adjoints are the forgetful functors alg(F ′
1) → E1 and alg(F ′

2) → E ′2, or equivalently
the functors alg(F1) → E1 and alg(F2) → E ′2 from (3.3). Note that P trivially
lifts to a map of adjunctions where the right adjoints are the functors E ′1 → E1
and E ′2 → E2 from (3.3). Taken together, this implies that P lifts to a map of
adjunctions from the free algebra adjunction for F1 to the one for F2. □

Proof of Theorem 3.8. The main statement is an immediate consequence of The-
orem 3.7, noting that the free and algebraically-free monad T on a wellpointed
endofunctor F is given by the monad of the free algebra adjunction. To verify the
assertions (i) to (iv), recall from (3.3) that the free algebra adjunction for F was
up to equivalence constructed as a composite of adjunctions as follows:

alg(F ′)
R2

44⊥ E ′
L2

qq

R1

55⊥ E .
L1

tt

Here, recall the definition (3.4) of E ′ and the wellpointed endofunctor F ′ defined
in (3.7). Note that L1 mapsM toM′ by (3.5.5) and R1 mapsM′ toM, and that
the unit of L1 ⊣ R1 is an identity.

Assertion (i) follows from commutativity of colimits and part (i) of Theorem 3.4.
[Check]
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The unit of L2 ⊣ R2 is valued inM′ by part (ii) of Theorem 3.4. It follows that
the unit of the composite adjunction is valued inM, proving (ii).

For assertion (iii), we apply part (iii) of Theorem 3.4 to the κ-composition pre-
serving map R1 : (E ′,M′) → (E ,M). Since F ′ preserves maps mapping to M via
R1,1 so does the free monad on F ′, given by R2L2. It follows that the free monad
on F , given by R1R2L2L1, preservesM.

For assertion (iv), we apply part (iv) of Theorem 3.4, again to the κ-composition
preserving map R1 : (E ′,M′)→ (E ,M). We let S be the class of maps (u, v) : (A1, B1, f1)→
(A2, B2, f2) in E ′ such that

FA1
Fu //

f1

��

FA2

f2

��

B1
v // B2

is a pullback square. Note that L1 maps any map to S as in this case the vertical
maps are identities. Note also that R1 maps the naturality square of ηF

′
on (u, v)

to the vertical pasting of the naturality square of ηF on u with the above square,
which hence will be a pullback if ηF is cartesian and (u, v) ∈ S. Note finally that
F ′ preserves S using van Kampen properties of pushouts in (E ,M), the core part
being an application of Lemma 2.12. Combining everything, it follows that ηT is
cartesian. □

Lemma 3.12. Consider an adjunction

C
L //
_ D.
R
oo

Let (U, ηU ) be a pointed endofunctor on C. Assume that the following pointwise
pushout in [D,D] exists and is computed pointwise:

LR
LηUR

//

��

LUR

��

Id
ηV

// V .

This defines a pointed endofunctor (V, ηV ) on D. The categories of algebras for U
and V are related by a pullback, which is also a weak 2-pullback:

alg(V ) //

��

alg(U)

��

D R // C.

(3.9)

If U is wellpointed, then so is V .

Proof. As in [4]. □

4. Reviewing the algebraic small object argument

The purpose of this section is to review the algebraic small object argument in a
certain non-cocomplete setting. As such, it contains mostly of a review of [2]. The
setting has been chosen minimalistictly so that the assumptions needed in the next
section to lift am extension operations from the generating category of arrows to
the domain part of the category of coalgebras are satisfied.

1Note that in general F ′ will not preserve M′.
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Recall the notation from Section 2. Let E be a category with a designated class
M of morphisms. Let κ > 0 be a regular ordinal.

Definition 4.1. We say that (E ,M, κ) is adequate if the following hold:
(4.1a) (E ,M) has pullbacks.
(4.1b) (E ,M) has van Kampen κ-compositions.
(4.1c) (E ,M) has van Kampen pushouts.
(4.1d) (E ,M) has binary unions.

Note that condition (4.1a) implies that the classM is replete, i.e. given f, g ∈ E→
with f ≃ g, then f ∈ M implies g ∈ M. Recall from Remark 2.9 that all maps in
M are regular monomorphisms. This explains the terminology of binary union of
subobjects in (4.1d).

Let now u : I → E→ be a small category of arrows in E .
Definition 4.2. We say that (E ,M, κ, I, u) is adequate if the following hold:
(4.2a) The functor u is valued in arrows with κ-compact domain.
(4.2b) The functor u lifts through the inclusion Mcart → E→.
(4.2c) We have colimits of shape I/f inMcart for f ∈ E→ and they are preserved

by Mcart → E→.
(4.2d) The left Kan extension of u along itself, guaranteed to exist by the previous

condition, preservesM.
(4.2e) The colimit of the pointwise formula for the left Kan extension of u along

itself is van Kampen.

[Replace (4.2d) and (4.2e) by better conditions.]
The construction [2] of the algebraic weak factorization system free on I with

E cocomplete proceeds via stepwise reflection along the following sequence of fully
faithful functors:

AWFS(E) G1 // LAWFS(E) G2 // Cmd(E→)
G3 // Cat/E→.

Let us use this opportunity to introduce some terminology, mostly following [2]:
Mnd(E→), Cmd(E→), PtdEndo(E→), CoptdEndo(E→) denote the categories of
monads, comonads, and (co)pointed endofunctors on E→, respectively; AWFS(E)
denotes the category of algebraic weak factorization systems on E ; LAWFS(E) de-
notes the category of left halves of algebraic weak factorization systems, or equiv-
alently the category of domain-preserving comonads on E→, i.e. comonads over
the identity comonad with respect to the codomain fibration; similarly, we write
RAWFS(E) for the category of right halves of algebraic weak factorization systems,
equivalently the category of codomain-preserving monads.

Even in a non-complete setting, this construction still works without modification
for adequate (E ,M, κ, I, u). This is summarized in the following three propositions.

Proposition 4.3. Let (E ,M, κ, I, u) be adequate. Then (I, u) ∈ Cat/E→ has a re-
flection U along the forgetful functor Cmd(E→)→ Cat/E→ and U lifts through the
inclusionMcart → E→. Furthermore U preservesM and κ-transfinite compositions
of maps in M.

Proof. This is a slightly more general analogue of [2, Proposition 4.6], we only detail
the new aspects. Let u′ : I → Mcart denote the lift of u through I. By (4.2c), the
left Kan extension Lanu u

′ : E→ → Mcart exists and is computed pointwise as the
colimit over u′ with weight sending f to E→(u(−), f). Furthermore, by preservation
under I, the pointwise left Kan extension U =def Lanu u exists and is computed
as Lanu u = I ◦ Lanu u′. Comonad structure of U and freeness follow as before.
Preservation of κ-transfinite compositions follows as in the end of the proof of [2,
Proposition 4.22]. Preservation of M is guaranteed by (4.2d). □



FREE MONAD SEQUENCES AND EXTENSION OPERATIONS 16

Proposition 4.4. Let (E ,M, κ) be adequate. Let U be a comonad on E→ such
that U lifts through the inclusion Mcart → E→. Then U has a reflection V along
the forgetful functor LAWFS(E) → Cmd(E→) and V lifts through the inclusion
Mcart → E→.

If U preserves M, then so does V . If U preserves κ-transfinite compositions of
maps in M, then so does V .

Proof. This is a slightly more general analogue of [2, Proposition 4.7], we only detail
the new aspects. By (4.1c), we still have an orthogonal factorization system (L,R)
with left class pushout squares and right class maps (f, g) with f an isomorphism,
but only on the full subcategory of E→ on M. Factoring the counit of U as U →
V → Id defines its domain-preserving reflection:

• //

U

��

dom

V

��
• // •

The comonad structure of V and its freeness follow as before. Note that V lifts
throughMcart → E→ by Lemma 2.12.

If U preserves M, then so does V by Lemma 2.12. If U preserves κ-transfinite
compositions of maps in N , then so does V by commutativity of colimits. □

We briefly summarize the contents of [2, Theorem 4.14]. The category FF(E)
of functorial factorizations on E consists of sections of the composition functor
E→ ×E E→ → E→. There are two canonical monoidal structures (⊥,⊙) and (I,⊗)
on FF(E) forming a two-fold monoidal structure. Garner’s addition of the distribu-
tivity law to the theory of algebraic weak factorization systems ensures that the
diamond

AWFS(E)

ww ''

LAWFS(E)

''

RAWFS(E)

ww

FF(E)
is precisely the diamond

Bialg⊗,⊙(FF(E))

uu ))

Comon⊙(FF(E))

))

Mon⊗(FF(E))

uu

FF(E)

where

Bialg⊗,⊙(FF(E)) = Mon⊗(Comon⊙(FF(E)))
= Comon⊙(Mon⊗(FF(E)))

and all arrows are given by forgetful functors.

Proposition 4.5. Let (E ,M, κ) be adequate. Let V be a domain-preserving comonad
on E→ such that V lifts through the inclusion Mcart → E→ and preserves M and
κ-transfinite compositions of maps in M. Then V has a reflection (L,R) along



FREE MONAD SEQUENCES AND EXTENSION OPERATIONS 17

the forgetful functor AWFS(E) → LAWFS(E). Furthermore, L lifts through the
inclusion Mcart → E→ and L,R preserve M.

Proof. This is a slightly more general analogue of [2, Proposition 4.21], we only
detail the new aspects. We need to construct a reflection of V along the forgetful
functor Mon⊗(V) → V where V =def Comon⊙(FF(E)), thus construct the free
monoid on the canonically pointed object V , noting that the unit I of V is initial.
As per the proof [2, Proposition 4.18], the forgetful functor

V // FF(E)
d0◦(−)

// [E→, E→]

preserves the relevant monoidal structure, creates connected colimits, and maps
the pointed object I → V to η0 : Id → R0 where R0(f) is the codomain part of
the counit of V on f and ηf = (V (f), idY ) for f : X → Y in E . Instead of lifting
(V, (L,R)) to an object of ConfMonκp, it thus suffices to lift ([E→, E→], R0) to an
object of ConfMonκp, which will be accomplished by showing (E→,M, R0) an object
of ConfMndκp. The result then follows by Theorem 3.10.

Let us verify the conditions of Definition 3.5.

• Condition (3.5.1) is the lift of (4.1b) to the arrow category.
• Condition (3.5.2) is the lift of (4.1b) to the arrow category.
• Condition (3.5.3) is satisfied by the assumption that V is valued in Mcart.
• Condition (3.5.4) is satisfied in view of Remark 3.6 by the lift of (4.1d) to

the arrow category. Note that η is cartesian since V is valued in Mcart.
• For condition (3.5.5), note that R0 preserves M if dom ◦R0 = cod ◦V and

cod ◦R0 = cod map M to M. But V preserves M by assumptions.
• For condition (3.5.6), note that R0 preserves a κ-transfinite compositions

of maps inM if dom ◦R0 = cod ◦V and cod ◦R0 = cod preserve them. But
V preserves them by assumption.

We may thus apply Theorem 3.8. By part (ii), we have that L preserves M. By
part (iii), we have that R preservesM. By part (iv), we have that the action of L
on morphisms is valued in pullback squares. For this, we have to note that (E→,M)
has pullbacks and van Kampen pushouts lifted from (E ,M). □

Proposition 4.6. Let (E ,M, κ, I, u) be adequate. Then the algebraic weak factor-
ization system (L,R) free on I exists and is algebraically free. Furthermore, L lifts
through the inclusion Mcart → E→ and L and R preserve M.

Proof. For the existence of (L,R) and the properties of L, we combine Proposi-
tions 4.3 to 4.5. Algebraic freeness follows just like in [2]. Note that R preserves
M since L does. □

Remark 4.7. In the setting of Proposition 4.6, we furthermove have that the left
category coalg(L) → E→ lifts through E→cart → E→, and even through Mcart →
E→ if M is closed under retracts in the arrow category. To see this, recall that
copointed endofunctor coalgebras for L are functorially retracts of free L-coalgebras
and retract diagrams in the arrow category

• //

��

• //

∈M
��

•

��
• // • // •

automatically have the left square a pullback as maps in M are mono.
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5. Extension operations

5.1. Extension operations. We now define what we mean by an extension op-
eration in the algebraic context. For this, let v : F → E→ be a category of arrows
such that

F v //

cod ◦v
��

E→

cod
��

E
is a map of Grothendieck fibrations from cod ◦v to cod. Given a category B → E→
of arrows, we write Bcart → E→cart for its restriction to cartesian squares, formally
a pullback of categories. In order to forestall confusion, note that Fcart does not
denote the wide subcategory of F restricted to cartesian arrows with respect to
cod ◦ v, though it does coincide with it in case v reflects cartesian arrows.

Definition 5.1 (Extension operation). Consider a category of arrows u : A →
E→. An extension operation of F along A consists of the following data. For any
situation

X //

��

Y

A // B

(5.1)

with A → B in A and X → A in F , we functorially have Y → B in F forming
a pullback square as indicated that furthermore lifts in horizontal direction to a
morphism in F→. This gives rise to a functor F ×E A → F→. Furthermore, we
require that this restricts to a functor Fcart ×E Acart → F→

cart.

Remark 5.2. Let A1 → A2 be a morphism in Cat/E→. By functoriality, an
extension operation of F along A2 gives rise to an extension operation of F along
A1.

Remark 5.3. Using base change, an extension operation of F along A gives rise
to an extension operation of F along the retract closure A of A.

5.2. Lifting extension operations. Let (E ,M, κ, I, u) be adequate in the sense
of Definitions 4.1 and 4.2 and let F → E→ be a category of arrows. Recall the
sequence

AWFS(E) G1 // LAWFS(E) G2 // Cmd(E→)
G3 // Cat/E→ (5.2)

of forgetful functors from the last section. The free algebraic weak factorization
system on (I, u) was constructed by stepwise reflection. We will say for each of the
four stages in (5.2) what it means to have extension of F along it.

• For (I, u) ∈ Cat/E→, the notion of extension of F along I is precisely
given by an extension operation in the sense of Definition 5.1.

• For U ∈ Cmd(E→), the notion of extension of F along U is given by an
extension operation of F along (E→, U) ∈ Cat/E→.

• For V ∈ LAWFS(E) a codomain-preserving comonad, the notion of exten-
sion of F along I is given by an extension operation of F along (E→, V ) ∈
Cat/E→.

• For (L,R) ∈ AWFS(E), the notion of extension of F along (L,R) is given
by an extension operation of F along coalg(L).

Remark 5.4. Let U be a comonad on E→. Given f ∈ E→, a copointed coalgebra
structure on f exhibits f as a retract of U(f). This gives rise to a morphism
in Cat/E→ from coalg(U) to the retract closure (E→, U). Conversely, there is a
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map from (E→, U) to Coalg(U) given by free coalgebras and a forgetful map from
Coalg(U) to coalg(U). In light of Remarks 5.2 and 5.3, extension operations of F
along either of coalg(U), Coalg(U), (E→, U) are interderivable. With this, we see
for each of the four states in (5.2) that extension of F along an object is equivalent
to the existence of an extension operation of F along its eventual image in Cat/E→.

For each of the functors G1 to G3, we will respectively show in Propositions 5.5
to 5.7 that the reflection construction of Propositions 4.3 to 4.5 lifts to the level of
extension.

Proposition 5.5. Let (E ,M, κ, I, u) be adequate. Let U ∈ Cmd(E→) denote the
reflection of (I, u) along Cmd(E→)→ Cat/E→ given by Proposition 4.3.

Let v : F → E→ be a category of arrows such that v is a map of Grothendieck
fibrations from cod ◦v to cod and such that Fcart → E→cart lifts colimits of shape I/f
that are van Kampen for f ∈ E→. If F has extension along (I, u), then also along
U .

Proof. Recall from Proposition 4.3 that U = Lanu u = I ◦ Lanu u′ where u′ : I →
Mcart was the lift of u through Mcart → E→. We abbreviate us =def dom ◦ u and
ut =def cod ◦ u.

Let f : X → Y be a map in E and let va : A → dom(Uf) be an object of F . In
order to extend the latter along

U(f) : colim
u(i)→f

us(i)→ colim
u(i)→f

ut(i),

we first pull it back along us(i) → dom(Uf) to an object va(i,h)
: A(i,h) → us(i)

of F for each h : u(i) → f . We then use the given extension operation to extend
functorially in (i, h) along u(i) to produce an object vb(i,h)

: B(i,h) → ut(i) of F .
By assumption, the cartesian squares va(i,h) → va(i′,h′) get mapped to cartesian
squares vb(i,h) → vb(i′,h′).

Recalling that u is valued in Mcart, we now have a diagram of shape {• →
•}× I/f inMcart. Using (4.2c), we may take its colimit, which is also a colimit in
E→, forming a pullback square

A //

va

��

B

vb

��

dom(Uf)
Uf
// cod(Uf).

Since the colimit for dom(Uf) is van Kampen via (4.2e), the left map is the map
va we started with. The right map B → cod(Uf) is the colimit of the maps
vb(i,h) : B(i,h) → ut(i) in E→cart and thus lifts to a colimit b ∈ Fcart as indicated since
Fcart → E→cart lifts colimits of shape I/f . Note that the coprojections vb(i,j) →
vb are pullback squares since the colimit for cod(Uf) is van Kampen via (4.2e).
Functoriality of colimits then induces the required lift of the above square to a
morphism in F .

The construction is evidently functorial. To see that is maps cartesian inputs to
cartesian outputs, use the van Kampen property. □

Proposition 5.6. Let (E ,M, κ) be adequate. Let U ∈ Cmd(E→) satisfy the
assumptions of Proposition 4.4 and let V denote its associated reflection along
LAWFS(E)→ Cmd(E→).

Let v : F → E→ be a category of arrows such that v is a map of Grothendieck
fibrations from cod ◦v to cod and such that Fcart → E→cart lifts pushouts along maps
in M. If F has extension along U , then also along V .
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Proof. This is a consequence of condition (4.1c) that pushouts in E along M are
van Kampen. Recall the construction of V f : X → C from Uf : A→ B in the proof
of Proposition 4.4 where f : X → Y is a map in E :

A //

Uf

��

X

V f

��

B // C.

(5.3)

To extend vx : X
′ → X with x ∈ F along V f , we first pull it back along A→ X to

va : A
′ → A using that v : F → E→ is a Grothendieck fibration. We then use the

given extension operation to extend va along Uf to get vb : B′ → B. The extension
to C then follows since

Fcart
// E→cart

cod // E
lifts pushouts along maps in M by assumption and Corollary 2.10. The entire
construction is functorial in maps from f1 : X1 → Y1 to f2 : X2 → Y2 (which get
mapped to cartesian squares via U and V ) and vx1 : X

′
1 → X1 to vx2 : X

′
2 → X2 and

furthermore results in a cartesian square if the square vx1 → vx2 is cartesian. □

The below proof crucially uses the fine-grained functoriality of free monad se-
quences in non-cocomplete settings devloped in Section 3.

Proposition 5.7. Let (E ,M, κ) be adequate. Let V ∈ Cmd(E→) satisfy the as-
sumptions of Proposition 4.5 and let (L,R) denote its associated reflection along
AWFS(E)→ LAWFS(E→).

Let F → E→ be a category of arrows such that Fcart → E→cart lifts pushouts and α-
transfinite compositions of maps inM for limit ordinals α ≤ κ. If F has extension
along V , then also along (L,R).

Proof. In light of Remark 5.4, it will suffice to exhibit an extension operation of F
along (E→, L), or equivalently along the domain part the unit η of R.

Recall from Proposition 4.5 via functoriality of Theorem 3.10 that the monad R is
given by via Theorem 3.8 by the free monad sequence on the pointed functor (R0, η0)
on E→ where R0f is the codomain part of the counit of V and ηf = (V f, idY ) for
f : X → Y in E . Given to us is an extension operation of F along (E→, V ), or
equivalently along the domain part of the unit η0 of R0.

Let us define a new category D via the following pullback:

D U //

��

E→

dom
��

F // E→
cod

// E .

Let N denote the class of morphisms in D that map to M via U and to pullback
squares via D → F → E→. By assumptions and Corollaries 2.7 and 2.10, note that
(D,N ) has κ-compositions and pushouts and they are preserved by U : (D,N ) →
(E→,M). Lifting (4.1d), we get that (D,N ) has binary unions.

The setting (D,N ) has been designed such that an extension operation of F
along the domain part of the unit η of a pointed endofunctor F on E→ where η
is valued in M and F preserves M corresponds to a lift through U of (F, η) to a
pointed endofunctor (F̂ , η̂) on D where η̂ is valued in D (since extension operations
involve a cartesian square) and F̂ preserves N (since the action on morphisms of
an extension operation sends cartesian input to cartesian output). We are given
such a lift (R̂0, η̂0) of (R0, η0) and aim to produce a lift (R̂, η̂) of (R, η). Naturally,
this will be an instance of functoriality of free monads.
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Let us verify the remaining conditions of Definition 3.5 for (D,N , R̂0). Since η0
is cartesian, so is η̂0. Preservation by R̂0 of κ-transfinite compositions of maps in N
is inherited from R0. Thus, Theorem 3.8 gives us the free monad R̂ on D generated
by R̂0. By construction, U induces a morphism from (D,N , F0) to (E→,M, R0).
Functoriality of Theorem 3.8 hence tells us that R̂ is a lift of R to D. Thus we
derive the required extension operation for (R, η). □

Definition 5.8. Given adequate (E ,M, κ, I, u), a category v : F → E→ of arrows
is adequate if

F v //

cod ◦v
��

E→

cod
��

E
is a morphism of Grothendieck fibrations and Fcart → E→cart lifts pushouts and α-
transfinite compositions for limit ordinals α ≤ κ of maps in M and colimits of
shape I/f that are van Kampen for f ∈ E→.

Combinding Propositions 5.5 to 5.7, we derive our main theorem.

Theorem 5.9. Let (E ,M, κ, I, u) be adequate. Let (L,R) denote the algebraic
weak factorization system generated by it as per Proposition 4.6.

Let F → E→ be an adequate category of arrows. An extension operation of F
along I induces an extension operation of F along coalg(L). □

Instantiating (E ,M) to the class of monomorphisms in a Grothendieck topos,
we derive the following corollary.

Corollary 5.10. Let be given a Grothendieck topos E, a functor u : I → E→ valued
in monomorphisms and pullback squares with I small, and a functor v : F → E→
such that v : (F , cod ◦v)→ (E→, cod) is a morphism of Grothendieck fibrations over
E.

Assume that the colimit (Lanu u)(f) = colimui→f ui is van Kampen for any
f ∈ E→ and that Lanu u preserves morphisms in E→ whose domain and codomain
parts are monomorphisms. Assume that Fcart → E→cart lifts colimits that are van
Kampen.

Let (L,R) denote the algebraic weak factorization system cofibrantly generated
by I. Then an extension operation of F along I induces an extension operation of
F along coalg(L).

Proof. The topos E has pullbacks, pullbacks preserve monomorphisms (4.1a), and
monomorphisms in E are closed under binary unions (4.1d). It is well-known by
now that topoi are adhesive (monomorphisms in a topos are adhesive morphisms,
i.e. pushouts of monomorphisms are van Kampen (4.1c)). A first attempt of a con-
structive proof was given in [6], with a complete, though non-constructive proof in
[5]. To our knowledge, the first full constructive proof can be found in [3]. Similarly,
Grothendieck topoi are exhaustive (transfinite compositions of monomorphisms are
van Kampen (4.1b)). [Insert reference]

We use local presentability of E to satisfy to satisfy (4.2a). The remaining
conditions of Theorem 5.9 are satisfied by assumption. □

[Add examples and discuss the connection with classifying objects.]
[Add more relevant citations.]
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