
SOME MORE NOTES ON DIRECTED UNIVALENCE IN THE

BISIMPLICIAL SET MODEL (UNFINISHED)

CHRISTIAN SATTLER

1. Directed univalence for discrete types

Recall that bisimplicial sets are indexed by two simplex category variables, the first in the
categorical direction and the second in the spacial diretion, By a fibration or weak equivalence in
bisimplicial sets, we always refer to the Reedy model structure in the categorical direction with
respect to the Kan model structure in the spacial direction.

1.1. Classifier for covariant fibrations. Let Ucov be the universe of covariant fibrations. As
a bisimplicial groupoid, it is defined on representable ([m], [n]) as the groupoid of maps into
∆m�∆n that are covariant fibrations:

• Reedy fibrations in the spacial direction with respect to the covariant model structure
on simplicial sets (that has inner and left outer horns as generating trivial cofibrations)
in the categorical direction,

• and Reedy fibrations in the categorical direction with respect to the Kan model structure
in the spacial direction,

One then takes a cofibrant replacement as sketched by Shulman or uses the technique of Hofmann-
Streicher to represent it by a bisimplicial set.

There is an evident inclusion Ucov → U . The universal covariant fibration Ũcov � Ucov is defined
by pulling back the universal fibration Ũ → U . To note that Ũcov � Ucov is actually a covariant
fibration, we observe that the class of covariant fibrations is local (in the sense of Cisinski) as
the corresponding weak factorization system has generators with representable codomain:

• im �̂ hnl with m ≥ 0 and 0 ≤ k < m and 0 ≤ l ≤ n, n > 0,

• and hmk �̂ in with 0 ≤ k < m and n ≥ 0,

Note that another profitable set of generators is as follows:

• im,n ×̂ δk with m,n ≥ 0 and k ∈ {0, 1},
• and im,n ×̂ γ0 with m,n ≥ 0.

Here, we have δk = ∆0�h1
k the endpoint inclusions for the spacial interval and γk = h1

k�∆0 the
endpoint inclusions for the categorical “directed” interval for k ∈ {0, 1}. Note that the special
interval acts as an interval object for the notion of homotopy. It follows that a fibration p is an
inner fibration exactly if the pullback exponential êxp(γ0, p) is a trivial fibration.

In Riehl-Shulman type theory, recall that given X : U and C : X → U , we have defined

isCov(C) =def

∏
f :homX(x,y)

∏
u:C(x)

isContr
( ∑
v:C(y)

homC(f)(u, v)
)
.

Lemma 1.1. Let Y � X be a fibration between fibrant objects, classified by a map C : X → U .
Then Y � X is a covariant fibration exactly if, in Riehl-Shulman type theory, the global type
isCov(C) is inhabited.
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Proof. A section to isCov(C) corresponds to a section to the map∑
f :homX(x,y)

∑
u:C(x)

isContr
( ∑
v:C(y)

homC(f)(u, v)
)
→

∑
f :homX(x,y)

C(x).

Recall the equivalence between contractibility of types and trivial fibrations in a type-theoretic
model category in the sense of Shulman. So a section to the previous display exists if and only
if the projection

[f : homX(x, y), u : C(x), v : C(y),m : homC(f)(u, v)]→ [f : homX(x, y), u : C(x)]

is a trivial fibration (the square brackets abbreviate iterated dependent sums). Recall that Y is
the dependent sum of X and C. By the definition of hom-types of type families, the domain is
isomorphic to the hom-type of the dependent sum Y . Recall further that hom-types are given by
pullback exponentials with the boundary inclusion of the directed interval. Taking into account
the dependent sums over endpoints, the previous display is isomorphic to the pullback exponential
of Y � X with the left endpoint inclusion γ0 : {(0, 0)} → ∆1,0 of the directed interval. Now
recall that the pullback exponential of Y � X with γ0 is a trivial fibration exactly if Y � X is
a covariant fibration. �

We could have used Theorem 8.5 of the Riehl-Shulman paper to shorten the above proof.

Lemma 1.2. Consider a weak equivalence of fibrations

Y0 ∼
f

//

�� ��

Y1

����

X.

If Y0 � X is covariant, then so is Y1 � X.

Proof. Suppose we are given a covariant lifting problem against Y1 � X. We use the homotopy
inverse to f to transport it to a covariant lifting problem against Y0 → X, and then use f
to transport the diagonal filler there back to a diagonal filler for the original lifting problem
against Y1 → X that makes the lower right triangle commute strictly and the upper left triangle
commute up to homotopy relative to X. Since Y0 � X is a fibration, we can then correct the
diagonal filler to one that solves the lifting problem strictly. �

Note that in case X is fibrant, we can deduce Lemma 1.2 from Lemma 1.1 using (standard)
univalence for U or alternatively, without appealing to univalence, perform internal reasoning
analogous to the steps of the proof of Lemma 1.2 (but working with contractibility of solution
spaces of lifting problems instead of just ordinary lifts).

Fibrancy of the classifier.

Lemma 1.3. The canonical map Ucov → U is a fibration.

Proof. We consider a lifting problem of im,n ×̂ δk against Ucov → U with m,n ≥ 0 and k ∈ {0, 1}.
After unfolding, the problem becomes as follows. Given a pullback square

X ′ //

����

X

����

∆m,n +∂∆n,n ∂∆n,n ×∆1

im,n×̂δk
// ∆m,n ×∆0,1.
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where the vertical maps are fibrations, if the left fibration is covariant, then so is the right. We
introduce a further pullback along the composite

∆m,n ×∆0,1 // ∆m,n // ∆m,n +∂∆n,n ∂∆n,n ×∆1

and obtain the diagram

X ′′ //

����

X ′ //

����

X

����

∆m,n ×∆0,1 // ∆m,n +∂∆n,n ∂∆n,n ×∆1

im,n×̂δk
// ∆m,n ×∆0,1.

As a pullback of the middle vertical map, note that X ′′ � ∆m,n is a covariant fibration. Now
observe that X and X ′′ are homotopy equivalent over ∆m,n × ∆0,1. By Lemma 1.2, it follows
that X � ∆m,n ×∆0,1 is a covariant fibration. �

Corollary 1.4. We have that Ucov is fibrant.

Covariant directed univalence. Having shown Ucov fibrant in Corollary 1.4, we can use the

internal characterization of the covariant fibration Ũcov → Ucov given by Lemma 1.1. Let us write

i : Ucov → U for the inclusion constructed earlier, which classifies Ũcov → Ucov. We obtain that
isCov(Ucov, i) is inhabited.

Given discrete types A,B : U let us write

CovSpan(A,B) =def

∑
S:A×B→U

∏
a:A

isContr
(∑
b:B

S(a, b)
)

for a representation of the type of spans whose left leg is invertible.
Suppose we are given X : U and C : X → U with h : isCov(X,C). For x, y : X, we have a

map

homX(x, y)→ CovSpan(C(x), C(y))

sending f to the span whose summit is S(u, v) =def homC(f)(u, v) as detailed in the Riehl-
Shulman paper.

Note that CovSpan(A,B) is equivalent to the type A→ B. Thus, we also obtain a map

homX(x, y)→ (C(x)→ C(y))

for x, y : X, or equivalently a map

X2 →
∑

u:C(X)

∑
v:C(Y )

(C(x)→ C(y)).

Lemma 1.5 (Covariant directed univalence). In bisimplicial sets, the map

x, y : Ucov ` homUcov(x, y)→ (i(x)→ i(y))

is an equivalence.

Proof. Let us define

CovSpan =def

∑
A,B:U

isDisc(A)× isDisc(B)× CovSpan(A,B).

By taking dependent sums over x and y and 2-out-of-3 for equivalences, it will suffices to show
that the map

U2
cov → CovSpan

is an equivalence, which will be technically more convent.
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Let us define a map in the other direction. Taking an exponential transpose, it will be defined
as the classifying map of a covariant fibration F � 2× CovSpan. We define it by the pushout

[(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)] // //
��

��

[(x, y, S) : CovSpan, v : i(y)]
��

��

��

2× [(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)] //

// //

F

((

2× CovSpan

where the outer vertical maps select the left endpoint of 2.

We claim that the map F → 2× CovSpan is a fibration. Consider a lifting problem

∆m�Λnl ∪ ∂∆m�∆n //
��

im�̂hn
l

��

F

��

∆m�∆n
〈f,g〉

// 2× CovSpan

(1.1)

with m ≥ 0 and 0 ≤ l ≤ n, n ≥ 1. We perform a case distinction based on the map f : ∆m�∆n →
2, which corresponds to a map f : [m]→ [1]. Write f = ![a]→[0] ? ![b]→[0] with a, b ≥ −1.

If a = −1, then f lifts through the right endpoint {1} : [0]→ [1] and the lifting problem (1.1)
factors via a lifting problem

∆m�Λnl ∪ ∂∆m�∆n //
��

im�̂hn
l

��

[(x, y, S) : CovSpan, v : i(y)]

��

∆m�∆n // CovSpan,

which has a solution since the right side is a pullback of the universal fibration Ũ → U .
The case b = −1 works analogously.
If a ≥ 1, then the domain ∆m�Λnl ∪∂∆m�∆n of the left map writes as a union of representa-

bles over 2 none of which factor via the right endpoint γ1 : 1→ 2. The lifting problem (1.1) then
factors via a lifting problem

∆m�Λnl ∪ ∂∆m�∆n //
��

im�̂hn
l

��

2× [(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)]

����

∆m�∆n // 2× CovSpan,

which has a solution since the right-hand side is given by a type, hence is a fibration.
It remains to consider the case a = 0 with b ≥ 0. In that case, we also construct and solve a

lifting problem as in the last paragraph, for which we need a lift

2× [(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)]

��

∆m�Λnl ∪ ∂∆m�∆n //

t

22

F .

Recall that the left object is a union of the subobjects ∆{0,...,â,...,m}�∆n for 0 ≤ a ≤ m and
∆m�∆{0,...,b,...,n} for 0 ≤ b ≤ n with b 6= l. Since a = 0, the only subobject whose map to 2
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factors via γ1 is ∆{1,...,m}�∆n. From the pushout defining F , we thus are able to define t on
the remaining subobjects, which we will denote

t′ : D → 2× [(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)].

Now observe that D � ∆m�Λnl ∪ ∂∆m�∆n is a pushout of

im−1 �̂ hnl : ∆m−1�Λnl ∪ ∂∆m−1�∆n → ∆m−1�∆n

(here we use b ≥ 0 to get m ≥ 1) where the induced map ∆m−1�∆n → 2 factors via γ1. The
extension problem

D
t′ //

��

2× [(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)]

��

∆m�Λnl ∪ ∂∆m�∆n //

t

22

F

is thus solved by a lift in

∆m−1�Λnl ∪ ∂∆m−1�∆n //

im−1�̂hn
l

��

[(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)]

����

∆m−1�∆n //

22

[(x, y, S) : CovSpan, v : i(y)]

which exists because the right map is a context projection, hence also a fibration.

We now claim that the map F → 2 × CovSpan is a covariant fibration. Consider a lifting
problem

Λnk�∆n ∪∆m�∂∆n //
��

hm
k �̂in

��

F

��

∆m�∆n
〈f,g〉

// 2× CovSpan

(1.2)

with 0 ≤ k < n and m ≥ 0. Similar to before, we perform a case distinction based on the map
f : ∆m�∆n → 2, which corresponds to a map f : [m] → [1] we write f = ![a]→[0] ? ![b]→[0] with
a, b ≥ −1.

The cases a = −1, b = −1, and a ≥ 1 work exactly as before. Once again, we are led to
consider the case a = 0 with b ≥ 0. Again, we try to construct a lift t as in

2× [(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)]

��

Λnk�∆n ∪∆m�∂∆n //

t

22

F ,

which then enables us to factor the original lifting problem via one against the fibration

2× [(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)]

����

2× CovSpan.

To construct t, we write the domain of the left map in (1.2) as a union of the subobjects
∆{0,...,â,...,m}�∆n for 0 ≤ a ≤ m with a 6= k and ∆m�∆{0,...,b,...,n} for 0 ≤ b ≤ n. As before, from
the pushout defining F , we are able to define t on all these subobjects except for ∆{1,...,m}�∆n

and denote their union D. Note that this critical subobject is only present if k ≥ 0, i.e. we
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are filling an inner horn, necessitating m ≥ 2 Now observe that D � ∆m�Λnl ∪ ∂∆m�∆n is a
pushout of

hm−1
k−1 �̂ in−1 : Λm−1

k−1 �∆n ∪ ∂∆m−1�∂∆n → ∆m−1�∆n

(note that m − 1 ≥ 1) where the induced map ∆m−1�∆n → 2 factors via γ1. Thus, as before,
we are able to complete the definition of t by using a lifting problem

Λm−1
k−1 �∆n ∪ ∂∆m−1�∂∆n //

hm−1
k−1 �̂in−1

��

[(x, y, S) : CovSpan, u : i(x), v : i(y), w : S(u, v)]

����

∆m−1�∆n //

22

[(x, y, S) : CovSpan, v : i(y)].

This finishes the definition of the inverse map CovSpan→ U2
cov.

�
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This is a follow-up on some aspects in Emily’s notes. We extend the definition of span2arr
from a map on points to a map of bisimplicial sets. Questions remain.

2. The map arr2span

Let us work in the bisimplicial model. By interpreting a certain expression in Riehl-Shulman
type theory, we have a map

arr2span: U2 →
∑

A,B,S:U
(S → A×B).

3. The map span2arr

Let us define a map

span2arr :
∑

A,B,S:U
(S → A×B)→ U2

in the other direction. This is given by the exponential transpose of a map

2×
∑

A,B,S:U
(S → A×B)→ U .

This is given by the classifying map for a Reedy fibration

Z � 2×
∑

A,B,S:U
(S → A×B) (3.1)

with small fibers. Abbreviating

X =def [A : U , B : U , S : U , f : S → A, g : S → B] =def

∑
A,B,S:U

(S → A×B),

we construct the pushout

X.El(S) +X.El(S) // //

X.f+X.g

��

2×X.El(S)

��

��

X.El(A) +X.El(B) // //

..

Y

&&

2×X
and replace the induced map to 2×X by a Reedy fibration:

Y //
��

∼
��

2×X

Z

<< <<

(3.2)

where Y → Z is a Reedy trivial cofibration.
One can observe that Y → 2×X has small fibers (relative to the set universe used to construct

U). Unfortunately, the bisimplicial set 2×X is not small, so using the standard construction of
the Reedy fibration replacement Z → 2 × X, we do not get small fibers. But this we need to
construct the classifying map (3.1).

So we have to use a special construction for this fibration replacement. Maybe we can adapt
the construction of fibrant higher inductive types in cubical type theory, where a fiberwise fibrant
replacement, which preserves smallness, becomes a fibration? Let us put aside this problem for
now.
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4. The composition of arr2span followed by span2arr

In the ideal case, we would have that the composite

span2arr ◦ arr2span: U2 → U2

is homotopic to the identity. Let us first see how far we get trying to show this. So we aim to
construct a homotopy

I × 2× U2 → U

where I denotes the representable ∆1�∆0, the interval in the space direction of bisimplicial sets.
This will be given by the classifying map of a type

H � I × 2× U2

with small fibers. Let us abbreviate

[t, F ] =def [t : 2, F : U2] =def 2× U2.

On one endpoint of I, H should be given by a certain Reedy fibration replacement Z ′ � 2× [t, F ]
of Y ′ → 2× [t, F ] in

[t, F ].El(Π2F ) + [t, F ].Π2(El ◦F ) // //

X.f+X.g

��

2× [t, F ].Π2(El ◦F )

��

��

[t, F ].El(F (0)) + [t, F ].El(F (1)) // //

..

Y ′

((

2× [t, F ],

given as a pullback of the chosen Reedy fibration replacement in (3.2). On the other endpoint
of I, H should be given by [t, F ].El(F (t)) � [t, F ], the type classified by ev : 2× U2 → U .

Since U is univalent, it suffices to give a homotopy equivalence between the two types

Z ′

�� ��

∼ // [t, F ].El(F (t))

����

[t, F ].

Like Emily detailed, we have a map from Y ′ to [t, F ].El(F (t)). We would like to lift this through
Y ′ → Z ′, for which we would need that it is Reedy trivial cofibration. But we only know that it
is a pullback of the Reedy trivial cofibration Y → Z along the map [t, F ]→ 2×X, which is not
a Reedy fibration.

We can try to define a map from [t, F ].El(F (t)) to Y ′ as follows. Suppose we are given
x ∈ [t, F ].El(F (t))m,n. The first component of x is t(x) ∈ 2m,n ' ∆([m], [1]). If this is
const(0) ∈ ∆([m], [1]) or const(1) ∈ ∆([m], [1]), we map x to an element of [t, F ].El(F (0)) +
[t, F ].El(F (1))m,n. Otherwise, we map it to an element f of [t, F ].Π2(El ◦F )m,n. How?
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