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Abstract

In this thesis, we consider Erdős–Rényi random graphs with N ver-
tices and edge probability p

N for fixed p > 0. We examine the limiting
spectral properties of the Laplacian ∆(N) as N → ∞ at the upper
asymptotical end. Specifically, we show that the integrated density of
states σ(E) of ∆(N) has, surprisingly, logarithmically the same asymp-
totical behavior for E → ∞ as the Poissonian vertex degree limiting
distribution, i. e. that − ln(1−σ(E)) behaves as E · ln(E) for E →∞.
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1 Introduction

The topic of this thesis is rooted within spectral graph theory, a rising field of
research for the past few decades [7]. Generally, one considers certain linear
operators defined on Hilbert spaces associated to finite or infinite graphs,
hoping that crucial information about the graph is encoded in the spectral
properties of the chosen operators. Here, the operator we are interested in
is the (combinatorial) Laplacian, a natural discretization of the well-known
continuous version. The graphs we will look at have a random component in
that we consider ensembles of finite graphs as given by the Erdős–Rényi ran-
dom graph model. In this model, for each N ≥ 2 a random subgraph of the
complete graph on N vertices is chosen with each edge having independent
probability c(N) for a chosen N -dependent function c. One then takes the
asymptotical limit in the size N of the graph to get deterministic results. A
detailed description of the model and problem follows below.

The Erdős–Rényi random graph model has been proposed as a model for
certain kinds of random networks, for example the chaining of large polymer
molecules [5]. Many other networks, though, exhibit a scale-free behaviour,
incompatible with the (scaled) Poissonian vertex degree distribution of the
Erdős–Rényi model. Mathematically, the topic at hand is concretely related
to two different well-established fields:

First, there is the broad field of study of spectral properties of large ran-
dom matrices. Starting with the observation [29] of Wigner that, as the size
of the matrix grows, the spectral density of Wigner matrices, consisting of
independent and identically distributed entries up to the symmetric or Her-
mitian constraint and certain normalization conditions, converges under very
general assumptions to the density of a universal distribution, now famous
as the Wigner semicircle law because of the shape of the graph of its density,
much work has gone into finding spectral statistics which exhibit the same
kind of universality behavior and broadening the class of matrices for which
this universality holds.

For the Gaussian Unitary Ensemble (GUE), a special class of Hermitian
matrices where the entries are required to be independent and identically
Gaussian distributed, Dyson has established [8] an explicit form for the joint
distribution function of the eigenvalues, enabling him to calculate the local
eigenvalue correlation functions (informally, the distribution of the gaps of
nearby eigenvalues) in the limit. This local eigenvalue statistics, know as
the Dyson sine-kernel, having been readily generalized to the Gaussian Or-
thogonal Ensemble (GOE) and Gaussian Symplectic Ensemble (GSE), is also
expected to be universal for a much broader class of matrix ensembles, though
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there is a certain lack of tools compensating for the loss of invariance of dis-
tribution under conjugation with orthogonal, unitary or symplectic matrices,
which one has for the corresponding Gaussian ensembles.

Much recent work, culminating in a collaborative effort [10] of two differ-
ent groups, has gone into developing crucial techniques and establishing the
sine-kernel and related local eigenvalue correlation results for the Wigner ma-
trix ensemble, with, aside from the usual variance normalization condition,
the only assumpton that the distributions of the entries have subexponential
decay. Even more recent work has dealt with the broader class of generalized
Wigner matrices, where the individual entries, though still required to be
independent, do not have do be identically distributed. Using a strong local
form of the semicircle law, the previously mentioned results for Wigner ma-
trices could be shown to also hold for generalized Wigner matrix ensembles
[11, 12]. See also [9] for an up-to-date survey of the current state of affairs
in this area.

One can try to fit the adjacency matrix of a random graph as in the Erdős–
Rényi model into the general framework of random matrices, noting that the
matrix entries have independent Bernoulli distribution and at least fulfill the
basic symmetry constraint. Assuming the inverse of the edge probability
c(N) to scale slower than the size N of the graph, this makes the adjancency
matrix non-sparse, and one can indeed apply standard methods for random
matrices and establish the Wigner semicircle law for a correspondingly scaled
version of the adjancency matrix (see e.g. [16]). For c(N)N of constant order,
as is the case for the model we are considering, the adjacency matrix is too
sparse for the machinery to work and one ends up with only a weak existence
property for the spectral distribution, the density of which having as support
the full real line (see [18, 20]). For the Laplacian, things are even worse since
there is a large non-independent contribution to the matrix in the form of
its diagonal elements, which fulfill the side condition of being the negated
sum of all the other elements in the same row. Not surprisingly though, in
the case of constant edge probability, this distortion can still be managed
somewhat, and the centered and normalized Laplacian can be shown to fol-
low the Wigner semicircle law convolved with a Gaussian normal distribution
component (see [4]). In our setting of inversely proportional edge probability
and graph size, however, having to deal with the Laplacian side condition to
the matrix as well as sparsity makes application of standard methods from
the field of random matrices seem inaccessible.

Another nearby field, more directly related to mathematical physics, is the
study of operators on graphs arising in physical models aspiring to model cer-
tain properties (e.g. conductance, heat dissipation) of randomly disordered
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systems (e.g. crystals formed from two different materials, solid matter with
impurities). The random component may present itself in many forms, as an
additional random diagonal component to the graph operator, for example
as a random potential to the Laplacian in the parabolic Anderson model on
Zd or percolated subgraphs thereof [2], which leads to the generally theory
of random Schrödinger operators [6, 22], or as a random percolation process,
usually performed on a lattice such as Zd, where either bonds or sites (i.e.
vertices or edges) are randomly selected such as to form a random subgraph
of the original lattice. Regarding the latter, examining spectral properties of
the Laplacian for bond-percolation on regular infinite graphs [28, 21] bears
probably the most resemblence to our setting.

Having found certain spectral properties of the operator under considera-
tion (e.g. support of the spectrum, existence/local properties/asymptotics of
the integrated density of state, localization of eigenvectors) to show a deter-
ministic behavior, oblivious to the random process underlying the situation,
one can derive global information about the system in question, often with
direct physical ramifications. 1

Note that the primary difference between the Erdős–Rényi random graph
model and most of these physical models lies not in the fact that in the former
we consider at no point infinite graphs, but an infinite ensemble of graphs
of increasing size. The most differentiating feature is the complete lack of
geometric structure in the Erdős–Rényi case. This leads to a rather differ-
ent approach, consisting more of combinatorial reasoning than of underlying
geometrical intuition and methods from stochastic ergodicity. Incorporating
aspects of the Erdős–Rényi model into a bond-percolation setting, for exam-
ple with the probability of an additional edge between two vertices depending
algebraically on their distance, would invariably require a change of methods.

The Erdős–Rényi random graph model was introduced and first analyzed
in terms of some elemental asymptotic combinatorial properties by Erdős and
Rényi in their seminal work [13]. In fact, they considered two different kinds
of models: In the first, one considers a graph on N labeled vertices uniformly
chosen from all graphs with m(N) edges. In the second, the edges themselves
are independently chosen with probability c(N). One is then interested in
properties of the scaling limit N → ∞ of such a random graph ensemble,
where m(N) or c(N), respectively, follow a given asymptotics with respect to
N . It turns out that both models generally behave the same way if one sets
c(N) =

(
N
2

)−1
m(N). For an overview of general properties of Erdős–Rényi

1With the underlying random process being in fact responsible for the deterministic
spectral properties of the system, one could even go so far as to argue that random
microscopic disorder is a natural necessity for macroscopic stability of most systems.
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random, see also the more recent accounts [3, 17].
For reasons of technical simplicity, we choose the second model to work

with, though we are confident this does not affect our results. Also, we
restrict ourselves to the case where c(N) scales inversely with N , i.e. c(N) =
p
N

for some p. In the asymptotic limit, this is equivalent to requiring the
average vertex degree to converge to p. The most well-known property of
this model, already established in [13], is the emergence of a giant cluster
for p ≥ 1, giving rise to fundamentally different behavior patterns for the
subcritical regime p ∈]0, 1[, the critical point p = 1 and the supercritical
regime p ∈]1,∞[.

We are interested in asymptotic spectral properties of the (combinatorial)
Laplacian. In [19], the authors established that under the above circum-
stances, the integrated density of states of the Laplacian exhibits a Lifshitz
tail [23, 24, 25] with Lifshitz exponent 1

2
at the lower asymptotic end for the

subcritical regime p < 1. This thesis was originally planned to correspond-
ingly examine the upper asymptotic end of the integrated density of states in
the subcritical regime, but is was quickly noted that the methods employed
could be simplified, making them oblivious to the choice of p. In fact, it is
to be expected that the result, logarithmically identical asymptotic behavior
of the integrated density of states of the Laplacian and the vertex degree
limiting distribution, which in this case is Poissonian and has logarithmic
asymptotics −E · ln(E), holds for a much more general notion of random
graph model, the charactertic feature of which would most likely be the lack
of any substantial concept of geometric locality.

1.1 Acknowledgement

I would like to thank my advisor Prof. Dr. Peter Müller for his continued
extraordinary patience and permament readiness to supportingly discuss all
kinds of matters, whether related to this thesis or not.
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2 Terminology and definitions

2.1 Graphs and other basic notions

A graph G = (V,E) consists of a set V of vertices and a set E of edges
between them. Formally, an edge is an unordered pair of distinct vertices,
i.e. a two-element subset of V . 2 We denote an edge between vertices
u, v ∈ V by [u, v]. As said earlier, [u, v] = [v, u] denote the same edge and
there is no edge from a vertex to itself. Hence, when being given an edge
[u, v], the assumption u 6= v is always implicit.

Vertices u, v ∈ V are called adjacent if there is an edge [u, v] ∈ E between
them. A vertex u ∈ V is incident to an edge e ∈ E if there is v ∈ V such
that e = [u, v]. Similarly, two edges e, f ∈ E are called incident if there are
u, v, w ∈ V such that e = [u, v] and f = [v, w]. The set NG(v) of neighbors
of a vertex v consists of all vertices w such that v is adjacent to w. The
degree degG(v) of a vertex v ∈ V denotes the number of edges the vertex is
incident to, i.e. the cardinality of NG(v). Finally, the equivalence classes of
V under the transitive-reflexive closure of the adjacency relation are called
the clusters of G.

An example is the complete graph on an arbitrary vertex set V , which has
as edges all two-element subsets of V , i.e. an edge [u, v] ∈ E for all distinct
u, v ∈ V . All distinct vertices u, v ∈ V are adjacent, the set of neighbors of
v ∈ V is V \ {v}, and there is only one cluster, V .

When dealing with an expression f(u, v) depending on an edge [u, v],
e.g. in the context of a sum

∑
[u,v]∈E f(u, v) or a set {f(u, v) | [u, v] ∈ E}, in

order for the whole expression to be well-defined, the expression f(u, v) will
always have to be symmetric with respect to u and v, i.e. invariant under
transposition of u and v, since we identified [u, v] and [v, u]. By the same
reason, it should also be clear that there appear no distinct terms f(u, v)
and f(v, u), e.g. in the previously mentioned sum or set.

A graph morphism from a graph G1 = (V1, E1) to a graph G2 = (V2, E2) is
a mapping f : V1 → V2 which preserves the edge relation in that [f(u), f(v)] ∈
E2 for any edge [u, v] ∈ E1. The homomorphism is injective/surjective if the
mapping on the vertex sets is injective/surjective, respectively. A subgraph
is a morphism where the vertex mapping is the identity restricted to some
subset of the original vertex set. The subgraph induced by a subset U of the
vertex set V is the subgraph with vertex set U and maximal edge set F , i.e.
F = {[u, v] ∈ E | u, v ∈ U}.

2In this thesis, we will only consider simple graphs, i.e. undirected graphs without
loops or multiple edges between the same vertices.
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To a graph G with a countable set V of vertices, we associate the Hilbert
space

l2(V ) :=

{
φ : V → C

∣∣∣∣∣ ∑
v∈V

|φ(v)|2 <∞

}
of square-summable functions from V to C. The canonical inner product
〈 . , . 〉 is given by

〈ψ, φ〉 :=
∑
v∈V

ψ(v)φ(v)

for φ, ψ ∈ l2(V ).
In what follows, we will only consider graphs G with a finite set V of

vertices. The condition about square-summability in the definition of l2(V )
will then vanish, and l2(V ) becomes an ordinary finite-dimensional vector
space with an inner product. Note that we have a canonical basis {ev | v ∈ V }
of l2(V ), where

ev(u) := δuv :=

{
1 if u = v,
0 else

for u, v ∈ V .
There are a number of linear operators on l2(V ) associated to a graph

G = (V,E) which are fundamental to spectral graph theory. With respect to
the canonical basis {ev | v ∈ V } of l2(V ), we can think of them as matrices
with rows and columns indexed by vertices of V .

First, the adjacency matrix AG is given by

(AG)uv =

{
1 if [u, v] ∈ E,
0 else

for vertices u, v ∈ V . Alternatively, we may characterize AG via

〈ψ,AGφ〉 =
∑
u,v∈V,
[u,v]∈E

ψ(u)φ(v)

for φ, ψ ∈ l2(X). Clearly, since adjacency is a symmetric relation, the adja-
cency operator is self-adjoint.

Next, the degree matrix DG is simply the diagonal matrix with diagonal
entries (DG)vv = degG(v) for v ∈ V . Again, alternatively we may write

〈ψ,DGφ〉 =
∑
u∈V

degG(u) · ψ(u)φ(u) =
∑
u,v∈V,
[u,v]∈E

ψ(u)φ(u)

for φ, ψ ∈ l2(V ). Obviously, this is also a self-adjoint operator.
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Finally, the Laplacian ∆G is defined as ∆G := DG − AG. As the dif-
ference of self-adjoint operators, ∆G itself is self-adjoint. By the previous
characterizations of AG and DG, we may view ∆G as a matrix with entries

(∆G)uv :=


degG(v) if u = v,
−1 if [u, v] ∈ E,
0 else

for u, v ∈ V . Alternatively, we have

〈ψ,∆Gφ〉 = 〈ψ, (DG − AG)φ〉
= 〈ψ,DGφ〉 − 〈ψ,AGφ〉

=
∑
u,v∈V,
[u,v]∈E

ψ(u)φ(u)−
∑
u,v∈V,
[u,v]∈E

ψ(u)φ(v)

=
∑
u,v∈V,
[u,v]∈E

ψ(u) · (φ(u)− φ(v))

=
∑

[u,v]∈E

ψ(u) · (φ(u)− φ(v)) + ψ(v) · (φ(v)− φ(u))

=
∑

[u,v]∈E

(ψ(u)− φ(v)) · (φ(u)− φ(v))

for φ, ψ ∈ l2(V ).
By this last characterization, we see that

〈φ,∆Gφ〉 =
∑

[u,v]∈E

(φ(u)− φ(v)) · (φ(u)− φ(v))

=
∑

[u,v]∈E

|φ(u)− φ(v)|2 ≥ 0
(2.1)

for φ ∈ l2(V ). Hence, ∆G is non-negative 3 definite.
Let V1, . . . , Vk ⊆ V be the clusters of G and let G1, . . . , Gk be the sub-

graphs of G induced by V1, . . . , Vk, respectively. Since there are no edges from
a vertex in one cluster to a vertex in another cluster, the degree of a vertex
v ∈ Vi, with 1 ≤ i ≤ k, is the same in Gi and G, i.e. degGi(v) = degG(v).
Letting πi : l2(V )→ l2(Vi),

φ 7→ φ|Vi ,
denote the canonical projection, where φ|Vi denotes the restriction of the
function φ to the domain Vi, and ιi : l2(Vi)→ l2(V ) such that

ιi(φ)(v) :=

{
φ(v) for v ∈ Vi,

0 else
3positive
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for all v ∈ V denote the canonical embedding for 1 ≤ i ≤ k, 4 we hence see
that DGi = πi ◦DG ◦ ιi for 1 ≤ i ≤ k as well as

DG =
k∑
i=1

ιi ◦DGi ◦ πi.

Similarly, AGi = πi ◦ AG ◦ ιi for 1 ≤ i ≤ k as well as

AG =
k∑
i=1

ιi ◦ AGi ◦ πi,

and, by linearity, ∆Gi = πi ◦∆G ◦ ιi for 1 ≤ i ≤ k as well as

∆G =
k∑
i=1

ιi ◦∆Gi ◦ πi.

Phrased in terms of the usual matrix formalism, this just means that the
adjacency/degree/Laplacian matrix of a graph can be viewed as a block di-
agonal matrix with each block matrix being the adjacency/degree/Laplacian
matrix, respectively, of the subgraph induced by the corresponding cluster.

We are interested in the eigenvalues of ∆G for particular graphs G. By
our previous calculation (2.1), we see that eigenvectors with corresponding
eigenvalue zero, i.e. vectors φ ∈ l2(V ) such that equality holds in the in-
equality (2.1), must map adjacent vertices to the same value and are hence
given by vectors φ ∈ l2(V ) which map vertices of the same cluster to the
same value. The multiplicity of the eigenvalue zero, equal to the dimension
of the corresponding eigenspace, is hence given by the number of clusters of
G.

Let T be a self-adjoint operator on a finite Hilbert space H of dimension
n ∈ N := {1, 2, . . .} and let λ1 ≤ . . . ≤ λn be the eigenvalues of T , counted
with multiplicity. We define the eigenvalue counting function γT : R →
{0, 1, . . . , n} of T as

γT (E) := |{i ∈ {1, . . . , n} | λi ≤ E}|

=

{
max i∈{1,...,n},

λi≤E
(i) if E ≥ λ1,

0 else,

=

{
min i∈{1,...,n},

λi>E
(i− 1) if E < λn,

n else

4Note that πi ◦ ιi = idl2(Vi) for 1 ≤ i ≤ k and
∑k

i=1 ιi ◦ πi = idl2(V ), i.e. we have a
canonical decomposition l2(V ) =

⊕k
i=1 l

2(Vi).
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for E ∈ R. Note, since ∆G is non-negative definite, that γ∆G
(E) = 0 for

E < 0.
We will also need the Rayleigh quotient RT (φ) of a non-zero vector φ ∈ H

with respect to T , which is defined as

RT (φ) :=
〈φ, Tφ〉
〈φ, φ〉

=
〈φ, Tφ〉
|φ|2

,

where 〈 . , . 〉 denotes the inner product of the Hilbert space H. Some basic
facts concerning relations between Rayleigh quotients and eigenvalues of an
operator are provided in the appendix.

Writing U CH will denote U as a subspace of H, with dim(U) denoting
the dimension of U .

Finally, we will make use of some basic stochastic notions and standard
notation regarding measure spaces, probability measures, random variables,
(mathematical) expectation and distributions. In particular, Bn,p : Z→ [0, 1]
will denote the binomial distribution with parameters n ∈ N0 := {0, 1, . . .}
and p ∈ [0, 1], i.e.

Bn,p(k) :=

(
n

k

)
· pk · (1− p)n−k

for k ≥ 0 and Bn,p(k) := 0 for k < 0. Note that
(
n
k

)
= 0, and hence

Bn,p(k) = 0, for k > n. Further, πλ : Z → [0, 1] will denote the Poisson
distribution with real parameter λ ≥ 0, i.e.

πλ(k) :=
λk

k!
· e−λ

for k ≥ 0 and πλ(k) := 0 for k < 0. Note that π0(0) = 00

0!
· e−0 = 00 = 1.

Some facts relating the binomial distribution to the Poisson distribution are
proved in the appendix.

2.2 Erdős–Rényi random graph model

Fix p ∈]0,∞] for the remainder of this thesis, aside from the appendix. We
are interested in Erdős–Rényi random graphs on N ∈ N vertices, N > p,
with edge probability p

N
, random subgraphs of the complete graph K(N)

on N vertices 1, . . . , N where each edge is chosen with equal probability
p
N
. Formally, we construct

(
N
2

)
copies Ωi,j, for 1 ≤ i < j ≤ N , of the

discrete probability space with two elements 1 and 0 of weights p
N

and 1− p
N
,

respectively, each copy representing one edge [i, j] of K(N). Their measure
space product is canonically isomorphic to a discrete measure space Ω(N) on
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the set of subgraphs of K(N), with the events {1} and {0} of each of the
copies Ωi,j, for 1 ≤ i < j ≤ N , corresponding to the set of subgraphs of K(N)

with edge [i, j] present or absent, respectively.
Let P(N) denote the measure of this probability space Ω(N). Since each

original copy has Bernoulli distribution with parameter p
N
, the measure P(N)

on the product has corresponding binomial distribution with parameters(
N
2

)
= N(N−1)

2
and p

N
, assigning each subgraph G(N) with edge set E (N) weight

P(N)
({
G(N)

})
=
( p
N

)|E(N)| (
1− p

N

)N(N−1)
2

−|E(N)|
.

In what follows, G(N) will always denote the identical random variable on
the probability space Ω(N) and E (N) will denote its edge set. If not indicated
otherwise, graph theoretical notions as introduced in the previous sections,
such as degree or neighbor sets, will always relate to G(N) when written
without graph subscript argument.

For each edge [i, j], where 1 ≤ i, j ≤ N and i 6= j, we introduce a random
variable

gi,j :=

{
1 [i, j] ∈ E (N),
0 else,

valued 1 or 0 according to whether this edge is present or absent, respectively,
in G(N). For consisteny, we also set gi,i := 0 for 1 ≤ i ≤ N . Note that
we follow the usual abuse in notation when talking about random variables
in that we treat random variables as if they were normal variables, that is,
values instead of functions from a measure space, and silently omit the source
measure space argument. By construction of Ω(N), the gi,j, with 1 ≤ i < j ≤
N , are independent and Bernoulli distributed under P(N) with parameter p

N
.

The permutations π of the set {1, . . . , N} are in bijective correspondence
with graph automorphisms on K(N), sending vertex i to π(i), for 1 ≤ i ≤ N ,
and edge [i, j] to [π(i), π(j)], for 1 ≤ i < j ≤ N . Consequently, each such
automorphism induces a permutation of the subgraphs of K(N). Since the
(discrete) density of P(N) only depends on the number of edges of its subgraph
argument, which is invariant under each such automorphism, we hence have
a measure space automorphism jπ on Ω(N) induced by π. This means that
for any event A of Ω(N), we have

P(N)(A) =
(
P(N) ◦ jπ

)
(A) = P(N) (jπ(A)) .

In particular, for any formula φ [X1,2, X1,3, . . . , XN−1,N ] parameterized by
{0, 1}-valued variables Xi,j, where 1 ≤ i < j ≤ N , we have

P(N) ({ω | φ [g1,2(ω), g1,3(ω), . . . , gN−1,N(ω)]})
= P(N)

({
ω | φ

[
gπ(1),π(2)(ω), gπ(1),π(3)(ω), . . . , gπ(N−1),π(N)(ω)

]})
,
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or in the usual lazy notation,

P(N) (φ [g1,2, g1,3, . . . , gN−1,N ])

= P(N)
(
φ
[
gπ(1),π(2), gπ(1),π(3), . . . , gπ(N−1),π(N)

])
.

This basic fact of symmetry will be readily used in the course of this thesis,
sometimes without further mention.

For n ∈ N, we will identify l2 ({1, . . . , n}) with Cn. Instead of writing
φ ∈ l2 ({1, . . . , n}) and φ(i) for i ∈ {1, . . . , n}, we will henceforth write
φ ∈ Cn and φi for the component of φ corresponding to i. In particular, when
working with a graph with vertex set {1, . . . , N} like G(N), the usual operators
on l2 ({1, . . . , N}) associated to the graph will be viewed as operators on CN

or, more specifically, elements of CN×N , the (vector) space of matrices with
N rows and N columns.

Since G(N) itself is a random variable, the adjacency matrix A(N), degree
matrix D(N) and Laplacian ∆(N) of G(N) are all operator-valued random
variables. Note that the entries of the adjacency matrix are just the {0, 1}-
valued random variables we introduced for each edge: We have(

A(N)
)
ij

= gi,j

for 1 ≤ i, j ≤ N . Also, the degree of a vertex, appearing in the diagonal of the
degree matrix, may be written as the sum of corresponding edge variables:
For each i ∈ {1, . . . , N}, we have

(
D(N)

)
ii

= deg(i) =
∑

1≤j≤N,
j 6=i

gi,j =
N∑
j=1

gi,j.

The eigenvalues
0 = λ

(N)
1 ≤ . . . ≤ λ

(N)
N

of the Laplacian ∆(N), counted with multiplicity, are of course also random
variables by themselves. We define the expected normalized eigenvalue count-
ing function σ(N) : R→ [0, 1] as

σ(N)(E) : =
1

N
· E(N) (γ∆(N)(E))

=
1

N
· E(N)

(∣∣∣{i ∈ {1, . . . , N} ∣∣∣ λ(N)
i ≤ N

}∣∣∣) ,
where E(N) denotes the expectation with respect to P(N). Note that σ(N)(E) is
monotonically increasing and σ(N)(E) = 0 for E < 0 as ∆(N) is non-negative
definite.
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We can now define the integrated density of states of the Laplacian for
Erdős–Rényi random graphs, which is the unique right-continuous distribu-
tion function σ : R→ [0, 1] such that

σ(E) = lim
N→∞

σ(N)(E)

for all but at most countably many discontinuity points E ∈ R. The ex-
istence and uniqueness of the integrated density of states is proved in [19]
using standard moment methods. Note, as follows from the corresponding
properties of σ(N)(E), that σ is monotonically increasing and σ(E) = 0 for
E < 0.

The main result of this work is the following theorem about the nature
of the high-end asymptotics of the density of states:

Theorem 1 (Thesis result). We have

lim
E→∞

− ln (1− σ(E))

E · ln(E)
= 1.

This will be proved by finding suitable bounding functions flow, fhigh :
R+ → R such that

flow(E) ≤ 1− σ(E) ≤ fhigh(E)

for all E > 0 at which σ is continuous and then showing that

lim
E→∞

− ln (flow(E))

E · ln(E)
=
− ln (fhigh(E))

E · ln(E)
= 1.5

The establishment of the lower and upper bound will be the content of theo-
rems 2 and 3, respectively, of the following sections. Since the complement of
a countable set is still dense in R, the above bounds on the density of states
σ hold for a dense set of choices of E in R. By monotonicity of σ, the final
result about the large-value asymptoptics of σ follows.

5Here, the limits do require flow(E) and fhigh(E) to attain positive values (as required
for well-definedness of the inner expression) only for sufficiently large values of E.
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3 The lower bound
For this section, let E ≥ 1 and let Ẽ := bEc + 1 be the smallest integer
larger than E. Here and in the following, bxc denotes the largest integer not
exceeding x for x ∈ R. For the rest this section, we assume N ≥ Ẽ + 1 ≥ 3.

Let
X :=

{
1 ≤ i ≤ N | deg(i) = Ẽ

}
be the set of vertices of G(N) with degree Ẽ and let H(N) be the subgraph of
G(N) induced by the vertex set X. Consider also the set Y ⊆ X of isolated
vertices of H(N), i.e.

Y := {v ∈ X | degH(N)(v) = 0} .

Denoting U := 〈ey | y ∈ Y 〉 the subspace of CN generated by the vectors of
the canonical basis corresponding to the vertices in Y , the significance of U
is that the Rayleigh quotients of non-zero elements φ of U with respect to
D(N), A(N) and, consequently, ∆(N) can readily be computed:

Lemma 3.1. For all non-zero φ ∈ U := 〈ey | y ∈ Y 〉 ⊆ CN , we have
R∆(N)(φ) = Ẽ.

Proof. For the degree matrix, we have

RD(N)(φ) =

〈
φ,D(D)φ

〉
〈φ, φ〉

=

∑N
i=1 deg(i) · |φi|2∑N

i=1 |φi|2

Since φi is zero for i 6∈ Y :

(cont.) =

∑
y∈Y deg(y) · |φy|2∑

y∈Y |φy|2

Since deg(y) = Ẽ for all y ∈ Y ⊆ X by construction of X:

(cont.) =

∑
y∈Y Ẽ · |φy|2∑
y∈Y |φy|2

= Ẽ.

For the adjacency matrix, we have

RA(N)(φ) =

〈
φ,D(N)φ

〉
〈φ, φ〉

=

∑
1≤i,j≤N gi,j · φiφj∑N

i=1 |φi|2

13



Since φi is zero for i 6∈ Y :

(cont.) =

∑
u,v∈Y gu,v · φuφv∑

y∈Y |φy|2

Since distinct u, v ∈ Y are isolated in H(N) by construction of Y as the set
of isolated vertices of H(N):

(cont.) =

∑
u,v∈Y 0 · φuφv∑

y∈Y |φy|2
= 0.

Using linearity of the Rayleigh quotient in the matrix argument, we con-
clude

R∆(N)(φ) =

〈
φ,∆(N)φ

〉
〈φ, φ〉

=

〈
φ,
(
D(N) − A(N)

)
φ
〉

〈φ, φ〉

=

〈
φ,D(N)φ

〉
−
〈
φ,A(N)φ

〉
〈φ, φ〉

=

〈
φ,D(N)φ

〉
〈φ, φ〉

−
〈
φ,A(N)φ

〉
〈φ, φ〉

= RD(N)(φ)−RA(N)(φ)

= Ẽ − 0 = Ẽ.

Lemma 3.2. We have

1− σ(N)(E) ≥ 1

N
· E(N) (|Y |) .

Proof. Applying the min-max principle as formulated in the second equation
in the corresponding lemma A.1 in the appendix, for Y non-empty we find

λ
(N)
N−|Y |+1 = sup

VCCn,
dim(V )≥|Y |

inf
06=φ∈V

R∆(N)(φ)

Considering, in particular, the above subspace U of dimension |Y |:

(cont.) ≥ inf
06=φ∈U

R∆(N)(φ)
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And using the previous lemma 3.1:

(cont.) = inf
0 6=φ∈U

Ẽ = Ẽ > E.

Since E < λ
(N)
N−|Y |+1 ≤ . . . ≤ λ

(N)
N , we hence have found |Y | eigenvalues of

∆(N) that are larger than E. Note that this final conclusion also holds for
the case Y = ∅.

Finishing the proof of the lemma,

1− σ(N)(E) = 1− 1

N
· E(N) (|{i ∈ {1, . . . , N} | λi ≤ E}|)

=
1

N
· E(N) (N − |{i ∈ {1, . . . , N} | λi ≤ E}|)

=
1

N
· E(N) (|{i ∈ {1, . . . , N} | λi > E}|)

Plugging in our newly found lower bound for the size of the outer set:

(cont.) ≥ 1

N
· E(N) (|Y |)

What remains is to suitably estimate the size of Y .

Lemma 3.3. We have

E(N) (|X|) = N ·BN−1, p
N

(
Ẽ
)
.

Proof. We have, being particularly explicit,

E(N) (|X|) = E(N)

(
N∑
i=1

{
1 if deg(i) = Ẽ,
0 else

)

=
N∑
i=1

E(N)

({
1 if deg(i) = Ẽ,
0 else

)

=
N∑
i=1

P(N)
(

deg(i) = Ẽ
)
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Applying the automorphism of Ω(N) corresponding to the automorphism of
K(N) swapping vertices 1 and i, i. e. exploiting symmetry:

(cont.) = N · P(N)
(

deg(1) = Ẽ
)

= N · P(N)

(
N∑
i=2

g1,i = Ẽ

)

Recognizing that, with respect to P(N), the sum
∑N

i=2 g1,i of N − 1 indepen-
dent Bernoulli distributed random variables with parameter p

N
is binomially

distributed with parameters N − 1 and p
N
:

(cont.) = N ·BN−1, p
N

(
Ẽ
)
.

Let F (N) denote the set of edges of H(N).

Lemma 3.4. We have

E(N)
(∣∣F (N)

∣∣) ≤ N · p
2
·BN−2, p

N

(
Ẽ − 1

)2

.

Proof. We have

E(N)
(∣∣F (N)

∣∣) =
∑

1≤u<v≤N

P(N)
(

deg(u) = deg(v) = Ẽ, [u, v] ∈ E (N)
)

Using the automorphism of Ω(N) corresponding to the automorphism of K(N)

swapping vertices u and v with 1 and 2, respectively:

(cont.) =

(
N

2

)
· P(N)

(
deg(1) = deg(2) = Ẽ, g1,2 ∈ E (N)

)

=

(
N

2

)
· P(N)

 ∑
1≤i≤N,
i 6=1

g1,i =
∑

1≤i≤N,
i6=2

g2,i = Ẽ, g1,2 = 1


=

(
N

2

)
· P(N)

(
g1,2 = 1,

N∑
i=3

g1,i = Ẽ − 1,
N∑
i=3

g2,i = Ẽ − 1

)
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Utilizing the independence of gi,j for 1 ≤ i < j ≤ N :

(cont.) =

(
N

2

)
· P(N) (g1,2 = 1)

· P(N)

(
N∑
i=3

g1,i = Ẽ − 1

)
· P(N)

(
N∑
i=3

g2,i = Ẽ − 1

)

again using the automorphism of K(N) swapping vertices 1 and 2:

(cont.) =

(
N

2

)
· P(N) (g1,2 = 1) · P(N)

(
N∑
i=3

g1,i = Ẽ − 1

)2

Noting that
∑N

i=3 g1,i is binomially distributed with parameters N − 2 and
p
N
:

(cont.) =
N(N − 1)

2
· p
N
·BN−2, p

N

(
Ẽ − 1

)2

≤ N · p
2
·BN−2, p

N

(
Ẽ − 1

)2

.

The previous two lemmata give us the means to conclude:

Lemma 3.5. We have

E(N) (|Y |) ≥ N ·
(
BN−1, p

N

(
Ẽ
)
− p ·BN−2, p

N

(
Ẽ − 1

)2
)
.

Proof. Since every vertex in X\Y must be incident to at least one edge and
every edge is incident to exactly two vertices, we know that |X\Y | ≤ 2

∣∣F (N)
∣∣.

Hence,

E(N) (|Y |) = E(N) (|X| − |X\Y |)
= E(N) (|X|)− E(N) (|X\Y |)
≥ E(N) (|X|)− 2 · E(N)

(∣∣F (N)
∣∣)

Applying lemmata 3.3 and 3.4:

(cont.) ≥ N ·BN−1, p
N

(
Ẽ
)
− 2 ·N · p

2
·BN−2, p

N

(
Ẽ − 1

)2

= N ·
(
BN−1, p

N

(
Ẽ
)
− p ·BN−2, p

N

(
Ẽ − 1

)2
)
.
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Combining the previous result with lemma 3.2 yields the lower bound we
need:

Lemma 3.6. We have 1− σ(N)(E) ≥ f
(N)
low (E) with

f
(N)
low (E) := BN−1, p

N

(
Ẽ
)
− p ·BN−2, p

N

(
Ẽ − 1

)2

.

We can now observe what happens when taking the limit N → ∞. As-
suming E to be a continuity point of σ, we have limN σ

(N)(E) = σ(N).
Corollary A.6 in the appendix shows that

lim
N
BN−1, p

N

(
Ẽ
)

= πp

(
Ẽ
)

and

lim
N
BN−2, p

N

(
Ẽ − 1

)
= πp

(
Ẽ − 1

)
=

pẼ−1(
Ẽ − 1

)
!
· e−p

=
Ẽ

p
· p

Ẽ

Ẽ!
· e−p =

Ẽ

p
· πp

(
Ẽ
)
.

We hence finally deduce

1− σ(E) = lim
N

1− σ(N)(E)

≥ lim
N
BN−1, p

N

(
Ẽ
)
− p ·BN−2, p

N

(
Ẽ − 1

)2

= πp

(
Ẽ
)
− p ·

(
Ẽ

p
· πp

(
Ẽ
))2

= πp

(
Ẽ
)
− Ẽ2

p
· πp

(
Ẽ
)2

= πp

(
Ẽ
)
·

(
1− Ẽ2

p
· πp

(
Ẽ
))

.

Here, as usual, the existence of the respective limits follows from a backwards
reading.

We can now state

Theorem 2. For E > 0 a continuitiy point of σ, we have

1− σ(E) ≥ flow(E)
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with

flow(E) := πp

(
Ẽ
)
·

(
1− Ẽ2

p
· πp

(
Ẽ
))

,

where Ẽ := bEc + 1, for E ≥ 1 and flow(E) := 1 − σ(E) for 0 < E < 1.
Also,

lim
E→∞

− ln (flow(E))

E · ln(E)
= 1.

Proof. It remains to prove the last statement. First note that, for E > 2, i.e.
Ẽ ≥ 3,

Ẽ2

p
· πp

(
Ẽ
)

=
Ẽ2

p
· p

Ẽ

Ẽ!
· e−p ≤ 5p2

Ẽ
· p(Ẽ−3)(
Ẽ − 3

)
!
· e−p =

5p2

Ẽ
· πp

(
Ẽ − 3

)
︸ ︷︷ ︸

≤1

since πp is a discrete probability density function, and hence

lim
E→∞

Ẽ2

p
· πp

(
Ẽ
)

= 0,

i. e.

lim
E→∞

ln

(
1− Ẽ2

p
· πp

(
Ẽ
))

= 0. (3.1)

Next,

lim
E→∞

ln
(
πp

(
Ẽ
))

E · ln(E)
= lim

E→∞

ln
(
pẼ

Ẽ!
· e−p

)
E · ln(E)

= lim
E→∞

−p+ Ẽ · ln(p)− ln
(
Ẽ!
)

E · ln(E)
= −1

(3.2)

by corollary A.10.
Now,

lim
E→∞

− ln (flow(E))

E · ln(E)
= lim

E→∞

− ln
(
πp

(
Ẽ
)
·
(

1− Ẽ2

p
· πp

(
Ẽ
)))

E · ln(E)

By (3.1) and (3.2):

(cont.) = lim
E→∞

−
ln
(
πp

(
Ẽ
))

E · ln(E)
−

ln
(

1− Ẽ2

p
· πp

(
Ẽ
))

E · ln(E)

= −(−1)− 0 = 1.
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4 The upper bound

4.1 The general idea

For this section, let E ≥ 5 be a continuity point of σ. Our way of finding a
bound to the number of eigenvalues of the Laplacian ∆(N) of G(N) larger than
E will be the following: We will modify G(N) in such a way that the resulting
graph will have a Laplacian with no eigenvalue exceeding E. The amount
of modification, measured as the number of edges inserted or removed, will
then serve as an upper bound to the number of eigenvalues of the original
Laplacian ∆(N) larger than E. Specifically, we have the following

Lemma 4.1. Let G and H be subgraphs of K(n) for some n ∈ N, denoting
their sets of edges by E and F , respectively. For sets X, Y , let X∆Y :=
X\Y ∪ Y \X denote the symmetric difference of X and Y . Letting γG and
γH denote the eigenvalue counting functions of the Laplacians ∆G and ∆H

of G and H, respectively, we have |γG − γH |∞ ≤ |E∆F |, that is,

|γG(E)− γH(E)| ≤ |E∆F |

for all E ∈ R.

Proof. For u, v ∈ {1, . . . , n} with u 6= v, let B(u,v) ∈ Cn×n denote the matrix
given by

B(u,v)
uu = B(u,v)

vv = 1,

B(u,v)
uv = B(u,v)

vu = −1,

and B
(u,v)
ij = 0 for all i, j ∈ {1, . . . , n} distinct from u and v. Note that,

alternatively, B(u,v) may be characterized by〈
ψ,B(u,v)φ

〉
= 1 · ψuφu + 1 · ψvψv + (−1) · ψuφv + (−1) · ψvφu
= (ψu − ψv)(φu − φv)
= 〈ψ, eu − ev〉 · 〈eu − ev, φ〉

for all φ, ψ ∈ Cn, and is hence of rank 1.
Note that, by our earlier characterization of the Laplacian, we have

〈ψ,∆Gφ〉 =
∑

[u,v]∈E

(ψu − ψv)(φu − φv)

=
∑

[u,v]∈E

〈
ψ,B(u,v)φ

〉
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for φ, ψ ∈ Cn, and hence

∆G =
∑

[u,v]∈E

B(u,v).

Similarly,
∆H =

∑
[u,v]∈F

B(u,v).

Further,

∆G −∆H =

 ∑
[u,v]∈E

B(u,v)

−
 ∑

[u,v]∈F

B(u,v)


=

 ∑
[u,v]∈E\F

B(u,v)

−
 ∑

[u,v]∈F\E

B(u,v)

 .

It follows that

rnk (∆G −∆H) = rnk

 ∑
[u,v]∈E\F

B(u,v)

−
 ∑

[u,v]∈F\E

B(u,v)


≤ rnk

 ∑
[u,v]∈E\F

B(u,v)

+ rnk

 ∑
[u,v]∈F\E

B(u,v)


≤

 ∑
[u,v]∈E\F

rnk
(
B(u,v)

)+

 ∑
[u,v]∈F\E

rnk
(
B(u,v)

)
=

 ∑
[u,v]∈E\F

1

+

 ∑
[u,v]∈F\E

1


= |E\F |+ |F\E|
= |E∆F | ,

where rnk(T ) denotes the rank of the matrix T .
The matrices ∆G and ∆H hence differ by a matrix of rank at most |E∆F |.

We can now apply lemma A.2 of the appendix and conclude |γG − γH | ≤
|E∆F |, i.e.

|γG(E)− γH(E)| ≤ |E∆F |

for all E ∈ R.
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But in what way must we modify G(N) such that all of its eigenvalues
do not exceed a predetermined bound? In other words, what is an effec-
tive bound to the eigenvalues of the Laplacian of a graph, and how many
single-edge surgeries do we have to perform to arrive at a graph fulfilling the
corresponding bound? There are many inequalities for estimating the largest
eigenvalue of the Laplacian, differing in their approximation qualities. It
turns out that a result of Merris [26] is appropriate for our purposes, which
is stated in the appendix as lemma A.4. Phrased in a way more directly
related to our sketch of proof, we can reformulate it as follows:

Corollary 4.2. Let x > 0 be given. Let n ∈ N and G be a graph with vertex
set {1, . . . , n} and edge set E. If, for all vertices v of G, we have

deg(v) + mdeg(v) ≤ x,

where

mdeg(v) =

{
1

deg(v)
·
∑

1≤u≤n,
[u,v]∈E

deg(u) if deg(v) > 0,

0 else

for 1 ≤ v ≤ n, then the Laplacian ∆G has no eigenvalues larger than x.

We could naively try to iteratively remove edges from vertices v violating
the inequality deg(v)+mdeg(v) ≤ E, knowing that at the end we must arrive
at a suitably modified graph. This is because there are only finitely many
edges to be removed and the graph with no edges, i.e. only isolated vertices,
certainly fulfills the eigenvalue bound.

But the problem lies in establishing a fitting estimate on the number of
single-edge surgeries having to be performed. Surely, being given a vertex
v such that the above inequality is violated, we could remove ddeg(v) +
mdeg(v)−Ee edges incident to v, where dxe denotes the smallest integer at
least as large as x for x ∈ R. Iteratively choosing the edge with the vertex on
the other side having maximal degree of all neighboring vertices would ensure
that the average degree of neighboring vertices of v would not increase. At
the end, the inequality deg(v) + mdeg(v) ≤ E would be satisfied for the
new graph and we would have a good bound on the number of single-edge
surgeries performed for the vertex v.

But what about those vertices u which were adjacent to v prior to the
surgery, but have as neighbor v no longer? Since the set of neighbors of u
has been altered without paying attention to u, the value of mdeg(u), and
hence of ddeg(u) + mdeg(u)− Ee, the sign of which is directly controlling
the validity of deg(u) + mdeg(u) ≤ E, could have changed arbitrarily.

So we must find a way to perform our single-edge surgeries when working
on decreasing the value of deg(v) + mdeg(v) for a given vertex v while at the
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same time making sure that the value of deg(u) + mdeg(u) for other vertices
u does not increase either. A simple approach goes as follows:

As a first step, we add a large enough supply of new isolated vertices to the
graph. This does only increase the multiplicity of the eigenvalue zero of the
Laplacian. We follow the outlined approach in that for a chosen vertex v with
deg(v) + mdeg(v) larger than E, we iteratively remove the edge connecting
v to another vertex u of maximal degree of all neighbors. But following each
such step, we add a new edge connecting u to one of our previously added
isolated vertices. Though this increases deg(u) by one, it has previously
been decreased by one. Considering mdeg(u), the set of neighbors of u has
changed in that v has been removed and a new vertex of (now) degree one has
been added. Surely, this can only decrease the value of mdeg(u). In effect,
using 2 ddeg(v) + mdeg(v)− Ee single-edge surgeries, we modified the graph
such that deg(v) + mdeg(v) ≤ E is now valid, while ensuring that the same
operation for each other vertex will not require more single-edge surgeries
than if we had chosen this vertex to begin with. Iterating over all vertices
from 1 to N , we arrive at a graph fulfilling the eigenvalue bound with a total
of

2 ·
N∑
v=1

Ξ (ddeg(v) + mdeg(v)− Ee)

single-edge surgeries performed, where

Ξ(x) =

{
x if x ≥ 0,
0 else

for x ∈ R.

4.2 The exact construction

Formally, for each vertex 1 ≤ v ≤ N , we define a set Fv of edges of G(N)

incident to v to be removed as follows: If deg(v) + mdeg(v) ≤ E, set

Fv := ∅.

Otherwise, the number k := ddeg(v) + mdeg(v)− Ee is positive. Let d :=
deg(v) and consider the neighboring vertices w1, . . . , wd of v, ordered such
that deg(w1) ≥ . . . ≥ deg(wd). Set

Fv :=
{

[v, w1] , . . . ,
[
v, wmin(k,d)

]}
.

Note that, alternatively, we may have defined

Fv := {[v, w1] , . . . , [v, wm]} (4.1)
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with
m := min (Ξ (ddeg(v) + mdeg(v)− Ee) , deg(v)) = |Fv| (4.2)

and no extra case distinction.
Now consider the union F :=

⋃N
i=1 Fv of all edges to be removed. For

each vertex 1 ≤ v ≤ N , we have to compensate for the edges

Gv := {[v, w] ∈ F | 1 ≤ w ≤ N, [v, w] 6∈ Fv} (4.3)

of the removal set F incident to v not coming from Fv. Introducing our
supply of isolated vertices, we construct a modified graph G̃(N) with vertices

1, . . . , N,N + 1, . . . , N +
N∑
v=1

|Gv|︸ ︷︷ ︸
=:M

,

but the same set E (N) of edges. In effect, we have added
∑N

v=1 |Gv| clusters
of size one. By what was said in the introduction of graph operators, the
Laplacian ∆̃(N) of G̃(N) decomposes into the sum of the original Laplacian
∆(N) and

∑N
v=1 |Gv| times the Laplacian of a graph with one vertex and no

edges, which is just the zero operator. The non-zero eigenvalues of ∆̃(N) are
hence the same as those of ∆(N).

Let z1 := N and zv+1 := zv + |Gv| for 1 ≤ v ≤ N (note that zN+1 = M).
To compensate for the forthcoming loss of the edges Gv, where 1 ≤ v ≤
N , which might increase mdeg(v) in unintended ways, we will connect v to
correspondingly many isolated vertices of our newly added supply. Let

Hv := {[v, zv + j] | 1 ≤ j ≤ |Gv|} (4.4)

be the set of edges which will connect v to previously isolated vertices. When
adding the union H :=

⋃N
v=1Hv to the edge set of G̃(N), this will ensure each

of the supply vertices will gain only one neighbor.
Finally, let H(N) be the graph with vertices 1, . . . ,M and edge set

F (N) :=
(
E (N)\F

)
∪H

(note that F ⊆ E (N) and E (N), H are disjoint). Let us check that H(N) indeed
fulfills the eigenvalue bound for E, i.e. that degH(N)(v) + mdegH(N)(v) ≤ E
for all 1 ≤ v ≤ M . Here and in the following series of lemmata, we will
use subscripts to indicate relative to which graphs our notions are to be
understood.

Lemma 4.3. For N + 1 ≤ v ≤M , we have degH(N)(v) = 1 and [u, v] ∈ F (N)

for some unique u ∈ {1, . . . , N}.
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Proof. Just note that, since F (N) =
(
E (N)\F

)
∪H and E (N) does not contain

edges incident to vertices from {N + 1, . . . ,M},{
[u, v] ∈ F (N) | 1 ≤ u ≤M

}
= {[u, v] ∈ H | 1 ≤ u ≤M}

=
N⋃
u=1

{[u, v] ∈ Hu | zv < v ≤ zv+1} .

Since N = z1 ≤ . . . ≤ zN+1 = M , there is a unique 1 ≤ u ≤ N such that
zu < v ≤ zu+1. This means that the above union contains exactly element,
namely [u, v], and it follows that degH(N)(v) = 1.

Lemma 4.4. For 1 ≤ v ≤ N , we have

degH(N)(v) ≤ degG(N)(v).

Specifically, degH(N)(v) = degG(N)(v)− |Fv|.

Proof. Since

{[v, w] ∈ F | 1 ≤ w ≤M} = {[v, w] ∈ F | 1 ≤ w ≤ N, [v, w] ∈ Fv}
∪ {[v, w] ∈ F | 1 ≤ w ≤ N, [v, w] 6∈ Fv}

= Fv ∪Gv,

where all unions are disjoint, we have removed |Fv| + |Gv| edges incident to
v. The edges incident to v we added are given by

{[v, w] ∈ H | 1 ≤ w ≤M} = Hv

= {[v, zv + j] | 1 ≤ j ≤ |Gv|}

and have a count of |Gv|. In total, the degree of v has changed by

− (|Fv|+ |Gv|) + |Gv| = − |Fv| ,

i.e. degH(N)(v) = degG(N)(v)− |Fv|.

Lemma 4.5. For 1 ≤ v ≤ N , we have

mdegH(N)(v) ≤ mdegG(N)(v).

Proof. First note that for degG(N)(v) = 0 we must also have degH(N)(v) = 0
by the previous lemma, and hence mdegH(N)(v) = mdegG(N)(v) = 0.

Let d := degG(N)(v) > 0 and let w1, . . . , wd be the neighbors of v in G(N),
ordered such that degG(N)(w1) ≥ . . . ≥ degG(N)(wd). Recall that

Fv = {[v, w1] , . . . , [v, wm]}
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with
m = min (Ξ (ddegG(N)(v) + mdegG(N)(v)− Ee) , d) .

Let k := |Gv| and 1 ≤ u1, . . . , uk ≤ N such that Gv = {[v, u1] , . . . , [v, uk]}.
Since F (N) =

(
E (N)\F

)
∪ H and by the proof of the previous lemma, the

neighbors of v in H(N) are now given by

NH(N)(v) = ({wm+1, . . . , wd} \ {u1, . . . , uk}) ∪ {zv + 1, . . . , zv + k} , (4.5)

where {u1, . . . , uk} ⊆ {wm+1, . . . , wd} since Fv and Gv are disjoint.
Note that if m = d, we must have k = 0. Then, again, NH(N)(v) = ∅, i.e.

degH(N)(v) = 0 and mdegH(N)(v) = 0 ≤ mdegG(N)(v).
Now assume m < d. First note that by the degree ordering of w1, . . . , wd,

we have degG(N)(wi) > degG(N)(wj) for 1 ≤ i ≤ m and m + 1 ≤ j ≤ d.
Summing over all such i and j, we get

(d−m) (degG(N)(w1) + . . .+ degG(N)(wm))

≥ m (degG(N)(wm+1) + . . .+ degG(N)(wd)) .

Adding (d−m) (degG(N)(wm+1) + . . .+ degG(N)(wd)) to both sides, we derive

(d−m) (degG(N)(w1) + . . .+ degG(N)(wd))

≥ d (degG(N)(wm+1) + . . .+ degG(N)(wd)) .

Dividing by (d−m)d > 0 now gives

mdegG(N)(v) =
degG(N)(w1) + . . .+ degG(N)(wd)

d

≥
degG(N)(wm+1) + . . .+ degG(N)(wd)

d−m

Since degH(N)(zv + i) = 1 ≤ degG(N)(ui) for i ∈ {1, . . . , k} by lemma 4.3 and
noting that v ∈ NG(N)(ui):

(cont.) ≥ 1

d−m
·

((
d∑

i=m+1

degG(N)(wi)

)

+

(
k∑
i=1

(degH(N)(zv + i)− degG(N)(ui))

))

=
1

d−m
·

 ∑
r∈{wm+1,...,wd}\{u1,...,uk}

degG(N)(r)


+

(
k∑
i=1

degH(N)(zv + i)

))
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And by the previous lemma 4.4:

(cont.) ≥ 1

d−m
·

 ∑
r∈{wm+1,...,wd}\{u1,...,uk}

degH(N)(r)


+

(
k∑
i=1

degH(N)(zv + i)

))

By (4.5):

(cont.) =
1

d−m
·

∑
r∈NH(N) (v)

degH(N)(r)

Noting that d−m = degG(N)(v)− |Fv| = degH(N)(v), for example by lemma
4.4:

(cont.) = mdegH(N)(v).

Lemma 4.6. For 1 ≤ v ≤ N , we have

degH(N)(v) + mdegH(N)(v) ≤ E.

Proof. Recall that

|Fv| = min (Ξ (ddegG(N)(v) + mdegG(N)(v)− Ee) , degG(N)(v))

and, by lemma 4.4,

degH(N)(v) = degG(N)(v)− |Fv| .

If |Fv| = degG(N)(v), then degH(N)(v) = 0 and hence

degH(N)(v) + mdegH(N)(v) = 0 ≤ E.

Otherwise,

|Fv| = Ξ (ddegG(N)(v) + mdegG(N)(v)− Ee)
≥ ddegG(N)(v) + mdegG(N)(v)− Ee
≥ degG(N)(v) + mdegG(N)(v)− E,
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so

degH(N)(v) = degG(N)(v)− |Fv|
≤ degG(N)(v)− (degG(N)(v) + mdegG(N)(v)− E)

= E −mdegG(N)(v)

≤ E −mdegH(N)(v),

where the last inequality follows from lemma 4.5. We conclude

degH(N)(v) + mdegH(N)(v) ≤ (E −mdegH(N)(v)) + mdegH(N)(v) = E.

Lemma 4.7. For N + 1 ≤ v ≤M , we have

degH(N)(v) + mdegH(N)(v) ≤ E.

Proof. By lemma 4.3, degH(N)(v) = 1 and there is a unique u ∈ {1, . . . , N}
such that [u, v] ∈ F (N). This means

mdegH(N)(v) =
degH(N)(u)

1
= degH(N)(u).

Since v ∈ NH(N)(u), we have degH(N)(u) ≥ 1 and

mdegH(N)(u) =

∑
w∈N(u) degH(N)(w)

degH(N)(u)

≥
∑

w∈N(u) 1

degH(N)(u)
= 1

because u ∈ NH(N)(w) and thus degH(N)(w) ≥ 1 for all w ∈ NH(N)(u). It
follows that

degH(N)(v) + mdegH(N)(v) = 1 + degH(N)(u)

≤ mdegH(N)(u) + degH(N)(u) ≤ E

by lemma 4.6.

Lemmata 4.7 and 4.6 prove that H(N) indeed fulfills the conditions of
corollary 4.2, so we can conclude:

Lemma 4.8. The Laplacian ∆
(N)
H of H(H) has no eigenvalues larger than E,

i.e.
γH(H)(E) = M,

where γH(H) denotes the eigenvalue counting function of ∆
(N)
H .
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We can now turn to the application of lemma 4.1 to the graphs G̃(N) and
H(N). The symmetric difference of the edge sets of G̃(N) and H(N), i.e. of
the sets E (N) and

(
E (N)\F

)
∪ H, is just F ∪ H (recall that F ⊆ E (N) and

H ∩ E (N) = ∅). Its size can readily be estimated:
First note that for distinct vertices u, v ∈ {1, . . . , N}, the sets Gu and Gv

are disjoint: Since all edges in Gu are incident to u and all edges in Gv are
incident to v, we would otherwise have [u, v] ∈ Gu, Gv. By definition (4.3)
of Gu and Gv, this would mean [u, v] 6∈ Fu, Fv as well as [u, v] ∈ F . Since
F =

⋃N
w=1 Fw, this would mean [u, v] ∈ Fw for a vertex 1 ≤ w ≤ N distinct

from u and v. Since all edges in Fw are incident to w, this is a contradition.
Now, since

|G| =

∣∣∣∣∣
N⋃
v=1

Gv

∣∣∣∣∣ =
N∑
v=1

|Gv| ,

|H| =

∣∣∣∣∣
N⋃
v=1

Hv

∣∣∣∣∣ =
N∑
v=1

|Hv|

and |Gv| = |Hv| for all 1 ≤ v ≤ N by (4.4), we have |H| = |G|. Since G is a
subset of F , this means |H| ≤ |F |. We conclude∣∣E (N)∆F (N)

∣∣ = |F ∪H| ≤ 2 |F | .

Furthermore, we have

|F | =

∣∣∣∣∣
N⋃
v=1

Fv

∣∣∣∣∣ ≤
N∑
v=1

|Fv|

(4.2)
=

N∑
v=1

min (Ξ (ddeg(v) + mdeg(v)− Ee) , deg(v))

≤
N∑
v=1

Ξ (ddeg(v) + mdeg(v)− Ee) .

Recalling the notions of the eigenvalue counting functions γG(N) , γG̃(N) and
γH(N) of the Laplacians of G(N), G̃(N) and H(N), respectively, we already ar-
gued that the eigenvalues of the Laplacians ∆(N) and ∆̃(N) of G(N) and G̃(N),
respectively, differ only in their multiplicity of the eigenvalue zero. This
means that

N − γG(N)(E) = M − γG̃(N)(E)

since E > 0. The previously mentioned lemma 4.1 tells us that∣∣γH(N)(E)− γG̃(N)(E)
∣∣ ≤ ∣∣E (N)∆F (N)

∣∣ ≤ 2 |F | .
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But γH(N)(E) = M , by lemma 4.8, and γG̃(N)(E) ≤M , so

M − γG̃(N)(E) ≤ 2 |F | .

We conclude
N − γG(N)(E) ≤ 2 |F | .

Considering now the expected normalized eigenvalue counting function
σ(N) of the Laplacian ∆(N) of G(N), we have

1− σ(N)(E) =
1

N
· E(N) (N − γG(N)(E))

≤ 1

N
· E(N) (2 |F |)

≤ 1

N
· E(N)

(
2 ·

N∑
v=1

Ξ (ddeg(v) + mdeg(v)− Ee)

)

Invoking the symmetry corresponding to transposition of the vertices 1 and
v:

(cont.) = 2 · E(N) (Ξ (ddeg(1) + mdeg(1)− Ee)) .

4.3 Establishing the bounding value

Conditioning over the degree of vertex 1, we continue

1− σ(N)(E) ≤ 2 · E(N) (Ξ (ddeg(1) + mdeg(1)− Ee))

= 2 ·
N−1∑
k=0

P(N) (deg(1) = k)

· E(N) (Ξ (dk + mdeg(1)− Ee) | deg(1) = k)

≤ 2 ·
N−1∑
k=1

BN−1, p
N

(k)

· E(N) (Ξ (mdeg(1) + (k − bEc+ 1)) | deg(1) = k) ,

(4.6)

where we used that deg(1) =
∑N

v=2 g1,v has binomial distribution with pa-
rameters N − 1 and p

N
.

Focussing on the expectation part, we further condition over the neighbors
of vertex 1 and write

E(N) (Ξ (mdeg(1) + (k − bEc+ 1)) | deg(1) = k)

= E(N) (Ξ (mdeg(1) + (k − bEc+ 1)) | N(1) = {2, . . . , k + 1}) ,
(4.7)
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where we used the symmetry induced by the permutation of vertices swapping
v1, . . . , vk with 2, . . . , k + 1, respectively, noting that each particular set of
neighboring vertices of cardinality k is, by symmetry, equally likely, and that
the inner term, in particular mdeg(1), of the expectation is invariant under
this symmetry.

Let us now turn our attention to mdeg(1). Using our edge variable nota-
tion, we can express mdeg(1) under the condition that N(1) = {2, . . . , k + 1}
as

mdeg(1) =
1

k
·
k+1∑
u=2

deg(u) =
1

k
·
k+1∑
u=2

N∑
v=1

gu,v

=
1

k
·
k+1∑
u=2

(
1 +

N∑
v=2

gu,v

)
= 1 +

1

k
·
k+1∑
u=2

N∑
v=2

gu,v

=1 +
1

k
·

2

( ∑
2≤u<v≤k+1

gu,v

)
︸ ︷︷ ︸

=:X

+

( ∑
2≤u≤k+1<v≤N

gu,v

)
︸ ︷︷ ︸

=:Y

 .

(4.8)

By our introductory remarks, X, Y,N(1) are independent as random vari-
ables. As the sum of independent random variables of Bernoulli distribution
with parameter p

N
, we see that X has binomial distribution with parameters(

k
2

)
and p

N
while Y has binomial distribution with parameters k(N − k − 1)

and p
N
.

Using (4.7) and (4.8), we can now write the initial inequality (4.6) of this
subsection as

1− σ(N)(E)

≤ 2 ·
N−1∑
k=1

BN−1, p
N

(k) · E(N)

(
Ξ

(
2X + Y

k
+ (k − bEc+ 2)

))
.

(4.9)

We would like to take limits N →∞ at this point, but to do so in a meaning-
ful way, we need to be able to exchange summation and taking of the limit
on the right-hand side. For this to be valid, we need to prove that the sum
is uniform in N , i.e. give for each summand a bound independent of N , with
the sum of the bounds still convergent.

Lemma 4.9. The sum
N−1∑
k=1

BN−1, p
N

(k) · E(N)

(
Ξ

(
2X + Y

k
+ (k − bEc+ 2)

))
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is uniform in N .

Proof. For 1 ≤ k ≤ N − 1, we have

BN−1, p
N

(k) =

(
N − 1

k

)
·
( p
N

)k
·
(

1− p

N

)N−1−k

≤ Nk

k!
· p

k

Nk
=
pk

k!

and, since E ≥ 2,

E(N)

(
Ξ

(
2X + Y

k
+ (k − bEc+ 2)

))
≤ E(N) (Ξ (2X + Y + k))

= E(N) (2X + Y + k)

= 2 · E(N)(X) + E(N)(Y ) + k

Knowing the expectation of a random variable of binomial distribution with
parameters n and p is just np:

(cont.) = 2 · p
N
·
(
k

2

)
+

p

N
· k(N − k − 1) + k

≤ pk2 + pk + k ≤ 2(1 + p)k2.

We use this to establish an N -independent bound bk for each summand,
writing

BN−1, p
N

(k) · E(N) (Ξ (2X + Y + (k − bEc+ 2)))

≤ pk

k!
·
(
2(1 + p)k2

)
≤

{
2p(1 + p) if k = 1,

pk−2

(k−2)!
· 4(1 + p)p2 else =: bk.

The sum of the bounds does still converge:

∞∑
k=1

bk = b1 + 4(1 + p)p2 ·
∞∑
k=2

pk−2

(k − 2)!

= b1 + 4(1 + p)p2 ·
∞∑
k=0

pk

k!
= 2p(1 + p) + 4(1 + p)p2 · ep
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Now we can write, recalling that we assumed E to be continuity point of
σ,

1− σ(E) = lim
N

1− σ(N)(E) (4.10)

(4.9)

≤ lim
N

2 ·
N−1∑
k=1

BN−1, p
N

(k)

· E(N)

(
Ξ

(
2X + Y

k
+ (k − bEc+ 2)

))
By the previous lemma:

(cont.) = 2 ·
∞∑
k=1

lim
N,
N>k

BN−1, p
N

(k)

· E(N)

(
Ξ

(
2X + Y

k
+ (k − bEc+ 2)

))
= 2 ·

∞∑
k=1

(
lim
N,
N>k

BN−1, p
N

(k)

)

·

(
lim
N,
N>k

E(N)

(
Ξ

(
2X + Y

k
+ (k − bEc+ 2)

)))
.

Of course, the validity of these claims still hinges on the fact that all of the
mentioned limits exist. As usual, this will follow from a backwards reading.
By corollary A.6 in the appendix, we have

lim
N,
N>k

BN−1, p
N

(k) = πp(k). (4.11)

As for the other limit,

E(N)

(
Ξ

(
2X + Y

k
+ (k − bEc+ 2)

))
=
∑
x,y≥0

B(k2),
p
N

(x) ·Bk(N−k−1), p
N

(y) ·
(

Ξ

(
2x+ y

k
+ (k − bEc+ 2)

))
.

(4.12)

Lemma 4.10. The sum∑
x,y≥0

B(k2),
p
N

(x) ·Bk(N−k−1), p
N

(y) ·
(

Ξ

(
2x+ y

k
+ (k − bEc+ 2)

))
is uniform in N > k.
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Proof. For x ≥ 0, we have

B(k2),
p
N

(x) =

(k(k−1)
2

x

)
·
( p
N

)x
·
(

1− p

N

) k(k−1)
2
−x

≤ 1

x!
·
(
k(k − 1)

2

)x
· p

x

Nx
≤ 1

x!
·
(
pk2

2

)x
.

For y ≥ 0, we have

Bk(N−k−1), p
N

(y) =

(
k(N − k − 1)

y

)
·
( p
N

)y
·
(

1− p

N

)k(N−k−1)−y

≤ (kN)y

y!
· p

y

Ny
≤ 1

y!
· (pk)y.

In total, for x, y ≥ 0, we have

B(k2),
p
N

(x) ·Bk(N−k−1), p
N

(y) ·
(

Ξ

(
2x+ y

k
+ (k − bEc+ 2)

))
≤
(

1

x!
·
(
pk2

2

)x)
·
(

1

y!
· (pk)y

)
· (2x+ y + k) =: bx,y.

The sum of the bounds does still converge:∑
x,y≥0

bx,y = 2 ·

(
∞∑
x=0

1

x!
·
(
pk2

2

)x
· x

)
·

(
∞∑
y=0

1

y!
· (pk)y

)

+

(
∞∑
x=0

1

x!
·
(
pk2

2

)x)
·

(
∞∑
y=0

1

y!
· (pk)y · y

)

+ k ·

(
∞∑
x=0

1

x!
·
(
pk2

2

)x)
·

(
∞∑
y=0

1

y!
· (pk)y

)

= pk2 ·

(
∞∑
x=0

1

x!
·
(
pk2

2

)x)
·

(
∞∑
y=0

1

y!
· (pk)y

)

+ pk ·

(
∞∑
x=0

1

x!
·
(
pk2

2

)x)
·

(
∞∑
y=0

1

y!
· (pk)y

)

+ k ·

(
∞∑
x=0

1

x!
·
(
pk2

2

)x)
·

(
∞∑
y=0

1

y!
· (pk)y

)

≤ 3(1 + p)k2 · e
pk2

2 · epk.
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We can continue (4.12), writing

lim
N,
N>k

E(N)

(
Ξ

(
2x+ y

k
+ (k − bEc+ 2)

))
(4.13)

= lim
N,
N>k

∑
x,y≥0

B(k2),
p
N

(x) ·Bk(N−k−1), p
N

(y)

· Ξ
(

2x+ y

k
+ (k − bEc+ 2)

)
=
∑
x,y≥0

lim
N,
N>k

B(k2),
p
N

(x) ·Bk(N−k−1), p
N

(y)

· Ξ
(

2x+ y

k
+ (k − bEc+ 2)

)
=
∑
x,y≥0

(
lim
N,
N>k

B(k2),
p
N

(x)

)
·

(
lim
N,
N>k

Bk(N−k−1), p
N

(y)

)

· Ξ
(

2x+ y

k
+ (k − bEc+ 2)

)

Applying lemma A.5, noting that lim N,
N>k

p
N
·
(
k
2

)
= 0 and lim N,

N>k

p
N
· k(N −

k − 1) = kp:

(cont.) =
∑
x,y≥0

π0(x) · πkp(y) · Ξ
(

2x+ y

k
+ (k − bEc+ 2)

)

=
∞∑
y=0

πkp(y) · Ξ
(y
k

+ (k − bEc+ 2)
)

since π0(x) = δx0.
We incorporate (4.11) and (4.13) into (4.10), totalling

1− σ(E) ≤ 2 ·
∞∑
k=1

πp(k) ·
∞∑
y=0

πkp(y) · Ξ
(y
k

+ (k − bEc+ 2)
)
. (4.14)

4.4 Evaluating the bounding value

We simplify this bound in a series of steps. Our first goal is to get rid of the
Ξ-term:

1− σ(E) (4.15)
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≤ 2 ·
∞∑
k=1

πp(k) ·
∞∑
y=0

πkp(y) · Ξ
(y
k

+ (k − bEc+ 2)
)

= 2 ·
∞∑
k=1

πp(k) ·
∞∑

y=k(bEc−2−k)+1

πkp(y) ·
(y
k

+ (k − bEc+ 2)
)

Noting that y
k
≤ y and k − bEc+ 2 ≤ k:

(cont.) ≤ 2 ·
∞∑
k=1

πp(k) ·
∞∑

y=k(bEc−2−k)+1

πkp(y) · (y + k)

= 2 ·
∞∑
k=1

πp(k) ·
∞∑

y=k(bEc−2−k)+1

πkp(y) · k
(y
k

+ 1
)

= 2 ·
∞∑
k=1

(k · πp(k)) ·
N∑

y=k(bEc−2−k)+1

((y
k
· πkp(y)

)
+ πkp(y)

)

We relieve us of the factors k and y
k
as follows: For the first parenthesized

term, we have

k · πp(k) = k · p
k

k!
· e−p = p · pk−1

(k − 1)!
· e−p = p · πp(k − 1)

(note that k ≥ 1), and for the second, we have

y

k
· πkp(y) =

y

k
· (kp)y

y!
· e−kp = p · (kp)y−1

(y − 1)!
· e−kp = p · πkp(y − 1)

if y ≥ 1 and y
k
· πkp(y) = 0 = p · πkp(y − 1) if y ≤ 0. With this, we can

continue our calculation (4.15) and simplify

1− σ(E)

≤ 2 ·
∞∑
k=1

(p · πp(k − 1)) ·
∞∑

y=k(bEc−2−k)+1

((p · πkp(y − 1)) + πkp(y)) .
(4.16)
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The second sum can be bounded in a straightforward way writing

∞∑
y=k(bEc−2−k)+1

(p · πkp(y − 1) + πkp(y))

= p ·

 ∞∑
y=k(bEc−2−k)+1

πkp(y − 1)

+

 ∞∑
y=k(bEc−2−k)+1

πkp(y)


≤ p ·

 ∞∑
y=k(bEc−2−k)

πkp(y)

+

 ∞∑
y=k(bEc−2−k)

πkp(y)


= (1 + p) ·

∞∑
y=k(bEc−2−k)

πkp(y).

Using this, the bound (4.16) turns into

1− σ(E)

≤ 2p(1 + p) ·
∞∑
k=1

πp(k − 1) ·
∞∑

y=k(bEc−2−k)

πkp(y)

= 2p(1 + p) ·
∞∑
k=0

πp(k) ·
∞∑

y=(k+1)(bEc−3−k)

π(k+1)p(y).

(4.17)

Let us take a step back and think about how we should proceed bounding
this term. Recalling how we arrived at this term from our starting point

1− σ(E) ≤ 2 · E(N) (Ξ (ddeg(1) + mdeg(1)− Ee)) ,

the outer sum and the factor πp(k) roughly correspond to vertex 1 having de-
gree 1+k while the the inner sum and the term π(k+1)p(y) roughly correspond
to the average degree mdeg(1) of the neighboring vertices being 1 + y

k
.

For k near E, corresponding to dominating deg(1) in the sum deg(1) +
mdeg(1), the factor in the outer sum alone is enough to guarantee a bound
of logarithmical asymptotics

πp(bEc) =
pbEc

bEc!
· e−p ∼ 1

bEc!
∼ 1

E · ln(E)
.

If the difference E − k is substantial with respect to E, we have to take
into account, or even rely on, the inner sum being small enough, which cor-
responds to larger values of mdeg(1). Even if there are just more then a
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few, say of the order of ln(E), many neighbors of 1, larger values of mdeg(1)
become extremely unlikely: The degree of a neighbor minus one being asymp-
totically Poisson distributed with mean p, their mean is a random variable
having as limit distribution a downscaled Poisson distribution with parame-
ter deg(1) · p (note that the mean is still p). Lastly, if there are only a few,
say deg(1) < ln(E), neighbors of 1, then mdeg(1) would have to attain values
near E in order for deg(1) + mdeg(1) ≤ E to be violated. But this, even for
just one neighbor, is as unlikely as deg(1) itself being that large.

This suggests the following decomposition of the outer sum (note that
bEc − bln(E)c − 3 ≥ 0 since E ≥ 4) in (4.17):

∞∑
k=0

πp(k) ·
∞∑

y=(k+1)(bEc−3−k)

π(k+1)p(y)

=

bEc−bln(E)c−4∑
k=0

πp(k) ·
∞∑

y=(k+1)(bEc−3−k)

π(k+1)p(y)


+

 ∞∑
k=bEc−bln(E)c−3

πp(k) ·
∞∑

y=(k+1)(bEc−3−k)

π(k+1)p(y)


In the first summand, we do away with the factor πp(k) ≤ 1, while in the
second summand, we disregard the entire second sum, noting that, π(k+1)p

being a discrete probability density function, it is bounded by 1 from above:

(cont.) ≤

bEc−bln(E)c−4∑
k=0

∞∑
y=(k+1)(bEc−3−k)

π(k+1)p(y)


+

 ∞∑
k=bEc−bln(E)c−3

πp(k)


Splitting the first summand further (note that 0 < bln(E)c ≤ bEc−bln(E)c−
3 since E ≥ 5):

(cont.) =

bln(E)c−1∑
k=0

∞∑
y=(k+1)(bEc−3−k)

π(k+1)p(y)︸ ︷︷ ︸
=:P

+

bEc−bln(E)c−4∑
k=bln(E)c

∞∑
y=(k+1)(bEc−3−k)

π(k+1)p(y)︸ ︷︷ ︸
=:Q
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+
∞∑

k=bEc−bln(E)c−3

πp(k)︸ ︷︷ ︸
=:R

,

i.e.
1− σ(E) ≤ 2p(1 + p) (P +Q+R) . (4.18)

In the following, we will make heavy use of some well-known helpful facts,
which for convenience are proved in the appendix and summarized here:

Lemma A.7. For λ ≥ 0 and u ∈ N, we have

∞∑
v=u

πλ(v) ≤ λu

u!
.

Lemma A.8. For u ∈ N, we have

u! ≥ eu·(ln(u)−1).

We proceed bounding each of P,Q,R separately:

Lemma 4.11. There is a function fP in E depending only on p such that

P ≤ e−E·ln(E)·(1+fP (E))

for all E ≥ 4 and limE→∞ fP (E) = 0.

Proof. Observe that, for 0 ≤ k ≤ bln(E)c − 1, we have

(k + 1) (bEc − 3− k) = k (bEc − 3− k) + (bEc − 3− k)

= k (bEc − 4− k) + (bEc − 3)

≥ bEc − 3

since bEc − 4− k ≥ bEc − 3− bln(E)c ≥ 0. It follows that

P =

bln(E)c−1∑
k=0

∞∑
y=(k+1)(bEc−3−k)

π(k+1)p(y)

≤
bln(E)c−1∑

k=0

∞∑
y=bEc−3

π(k+1)p(y)
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By lemma A.7:

≤
bln(E)c−1∑

k=0

((k + 1)p)bEc−3

(bEc − 3)!

≤
bln(E)c−1∑

k=0

(p · ln(E))bEc−3

(bEc − 3)!

= bln(E)c · (p · ln(E))bEc−3

(bEc − 3)!

≤ (bEc+ 1)4 · ((1 + p) · ln(E))E · 1

(bEc+ 1)!

Applying lemma A.8:

(cont.) ≤ (bEc+ 1)4 · ((1 + p) · ln(E))E · e−(bEc+1)·(ln(bEc+1)−1)

≤16E4 · ((1 + p) · ln(E))E · eE+1 · e−E·ln(E)

= exp (ln(16) + 4 · ln(E) + (E + 1)

+E · (ln(1 + p) + ln(ln(E)))− E · ln(E))

= exp (−E · ln(E) · (1 + fP (E)))

with

fP (E) := − ln(16) + 4 · ln(E) + (E + 1) + E · ln(1 + p) + E · ln(ln(E))

E · ln(E)
.

Now note that limE→∞ fP (E) = 0.

Lemma 4.12. There is a function fQ in E depending only on p such that

Q ≤ e−E·ln(E)·(1+fQ(E))

for all E ≥ 5 and limE→∞ fQ(E) = 0.

Proof. Consider arbitrary [ln(E)] ≤ k ≤ bEc − bln(E)c − 4 and set x :=
k − bln(E)c. Observe that 0 ≤ x ≤ bEc − 2 bln(E)c − 4. We have

(k + 1) (bEc − 3− k)

= (bln(E)c+ (1 + x))(bEc − bln(E)c − 2− (1 + x))

= bln(E)c · (bEc − bln(E)c − 2) + (1 + x)︸ ︷︷ ︸
≥1

· (bEc − 2 bln(E)c − 3− x)︸ ︷︷ ︸
≥1

≥ bln(E)c · (bEc − bln(E)c − 2) =: v.
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Note that v ≥ ln(E) ≥ 1 since E ≥ 5. It follows that

Q =

bEc−bln(E)c−4∑
k=bln(E)c

∞∑
y=(k+1)(bEc−3−k)

π(k+1)p(y)

≤
bEc−bln(E)c−4∑
k=bln(E)c

∞∑
y=v

π(k+1)p(y)

By lemma A.7:

(cont.) ≤
bEc−bln(E)c−4∑
k=bln(E)c

((k + 1)p)v

v!

≤
bEc−bln(E)c−4∑
k=bln(E)c

(Ep)v

v!
≤ E · (Ep)v

v!

Applying lemma A.8:

(cont.) ≤ E · (Ep)v · e−v·(ln(v)−1)

= exp

ln(E)︸ ︷︷ ︸
≤v

−v · (ln(v)− ln(E)− ln(p)− 1)

 .

≤ exp (−v · (ln(v)− ln(E)− ln(p)− 2)) .

≤ exp (−E · ln(E) · (1 + fQ(E))) .

with
fQ(E) := −1 +

v ·min (1, ln(v)− ln(E)− ln(p)− 2)

E · ln(E)
.

Now note that

ln(v) = ln(bEc − bln(E)c − 2) + ln(bln(E)c) ≥ ln(E) + ln(p) + 3

for sufficiently large E because

lim
E→∞

ln (bEc − bln(E)c − 2)− ln(E) = lim
E→∞

ln

(
bEc − bln(E)c − 2

E

)
= ln

(
lim
E→∞

bEc − bln(E)c − 2

E

)
= ln(1) = 0,
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hence
lim
E→∞

min (1, ln(v)− ln(E)− ln(p)− 2) = 1.

Also note that

lim
E→∞

v

E · ln(E)
= lim

E→∞

bln(E)c · (bEc − bln(E)c − 2)

E · ln(E)

=

(
lim
E→∞

bEc − bln(E)c − 2

E

)
·
(

lim
E→∞

bln(E)c
ln(E)

)
= 1 · 1 = 1,

and therefore

lim
E→∞

fQ(E) = lim
E→∞

−1 +
v ·min (1, ln(v)− ln(E)− ln(p)− 2)

E · ln(E)

= −1 +

(
lim
E→∞

v

E · ln(E)

)
·
(

lim
E→∞

min (1, ln(v)− ln(E)− ln(p)− 2)
)

= −1 + 1 · 1 = 0.

Lemma 4.13. There is a function fR in E depending only on p such that

R ≤ e−E·ln(E)·(1+fR(E))

for all E ≥ 4 and limE→∞ fR(E) = 0.

Proof. Abbreviate u := bEc − bln(E)c − 3 ≥ 0. We have

Q =
∞∑

k=bEc−bln(E)c−3

πp(k) =
∞∑
k=u

πp(k)

By lemma A.7:

(cont.) ≤ pu

u!

Applying lemma A.8:

(cont.) ≤ pu · e−u·(ln(u)−1)

= exp (−u · (ln(u)− ln(p)− 1))

= exp (−E · ln(E) · (1 + fR(E)))
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with

fR(E) := −1 +
u · (ln(u)− ln(p)− 1)

E · ln(E)
.

Now note that

lim
E→∞

u

E
= lim

E→∞

bEc − bln(E)c − 3

E
= 1,

hence also

lim
E→∞

ln(u)− ln(E) = lim
E→∞

ln
( u
E

)
= ln

(
lim
E→∞

u

E

)
= ln(1) = 0

and

lim
E→∞

ln(u)

ln(E)
= lim

E→∞
1 +

ln(u)− ln(E)

ln(E)
= 1.

Therefore,

lim
E→∞

fR(E) = lim
E→∞

−1 +
u · (ln(u)− ln(p)− 1)

E · ln(E)

= −1 +
(

lim
E→∞

u

E

)
·
((

lim
E→∞

ln(u)

ln(E)

)
+

(
lim
E→∞

ln(p)− 1

ln(E)

))
= −1 + 1 · (1 + 0) = 0.

Let f := min(fP , fQ, fR), i.e.

f(E) := min(fP (E), fQ(E), fR(E))

pointwise for all E ≥ 5. Of course, we still have limE→∞ f(E) = 0. Contin-
uing where we left off in (4.18),

1− σ(E) ≤ 2p(p+ 1)(P +Q+R)

≤ 2p(p+ 1) ·
(
e−E·ln(E)·(1+fP (E))

+ e−E·ln(E)·(1+fQ(E)) + e−E·ln(E)·(1+fR(E))
)

≤ 2p(p+ 1) ·
(
e−E·ln(E)·(1+f(E))

+ e−E·ln(E)·(1+f(E)) + e−E·ln(E)·(1+f(E))
)

= 6p(p+ 1) · e−E·ln(E)·(1+f(E)).

This finally gives us
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Theorem 3. For E > 0 a continuity point of σ, we have

1− σ(E) ≤ fhigh(E)

with fhigh : R+ → R defined as

fhigh(E) := 6p(p+ 1) · e−E·ln(E)·(1+f(E)),

where f : R+ → R is a certain function such that limE→∞ f(E) = 0, for
E ≥ 5 and fhigh(E) := 1− σ(E) for 0 < E < 5. Also,

lim
E→∞

− ln (fhigh(E))

E · ln(E)
= 1.

Proof. We only need to prove the last part. But this is just a reformulation
of the asymptotic properties of fhigh:

lim
E→∞

− ln (fhigh(E))

E · ln(E)
= lim

E→∞

− ln
(
6p(p+ 1) · e−E·ln(E)·(1+f(E))

)
E · ln(E)

= lim
E→∞

− ln(6p(p+ 1)) + E · ln(E) · (1 + f(E))

E · ln(E)

= 1 +

(
lim
E→∞

− ln(6p(p+ 1))

E · ln(E)

)
+
(

lim
E→∞

f(E)
)

= 1.
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A Appendix
All of the lemmata in this section are well-known results. For convenience
and completeness of the thesis, and since in most cases we only need a sim-
plified version of the original result, we prove them anyway. For details,
generalizations and/or further information, we provide individual references.

For generalizations of the following lemma and its consequence lemma
A.2 to the infinite-dimensional case, see Reed-Simon [27].

Lemma A.1 (Min-max principle, variational characterization of eigenval-
ues). Given n ∈ N and a self-adjoint matrix M ∈ Cn×n, let λ1 ≤ . . . ≤ λn
denote the eigenvalues of M , counted with multiplicity. For k = 1, . . . , n, we
have the following variational eigenvalue characterizations:

weλk = inf
UCCn,

dim(U)≥k

sup
06=φ∈U

RM(φ)

λn−k+1 = sup
UCCn,

dim(U)≥k

inf
06=φ∈U

RM(φ)

Here, U C Cn denotes U as a vector subspace of Cn and

RM(φ) :=
〈φ,Mφ〉
〈φ, φ〉

is the Rayleigh quotient of 0 6= φ ∈ C with respect to M .

Proof. First note that the claim of the lemma corresponding to the second
equation is equivalent to the claim corresponding to the first equation after
replacing M by −M and multiplying the equation by −1. By symmetry, we
hence only have to prove the claim corresponding to the first equation.

Since M is self-adjoint, there is an orthonormal base ψ1, . . . , ψn where
ψi is eigenvector with eigenvalue λi. For all 1 ≤ u ≤ v ≤ n and non-
zero φ ∈ 〈ψu, . . . , ψv〉, the subspace of Cn generated by ψu, . . . , ψv, there
are αu, . . . , αv ∈ C not all zero such that φ = αuψu + . . . + αvψv. By
orthonormality of ψ1, . . . , ψn, we have

RM(φ) =
|αu|2 λu + . . .+ |αv|2 λv
|αu|2 + . . .+ |αv|2

and, since λu ≤ . . . ≤ λv,

RM(φ) ≥ |αu|
2 λu + . . .+ |αv|2 λu
|αu|2 + . . .+ |αv|2

= λu, (A.1)

RM(φ) ≤ |αu|
2 λv + . . .+ |αv|2 λv
|αu|2 + . . .+ |αv|2

= λv. (A.2)
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Let k ∈ N be given. Note that for any U C Cn with dim(U) ≥ k, we have

dim (U ∩ 〈ψk, . . . , ψn〉) = dim(U) + dim (〈ψk, . . . , ψn〉)
− dim (U + 〈ψk, . . . , ψn〉)

≥ k + (n− k + 1)− n = 1.

There hence must be a non-zero φ ∈ U which also lies in 〈ψk, . . . , ψn〉. By
(A.1), RM(φ) ≥ λk. This proves

λk ≤ inf
UCCn,

dim(U)≥k

sup
0 6=φ∈U

RM(φ).

Let U := 〈ψ1, . . . , ψk〉. Then, by (A.2), all non-zero φ ∈ U satisfy
RM(φ) ≤ λk. But this means

λk ≥ inf
UCCn,

dim(U)≥k

sup
0 6=φ∈U

RM(φ).

Lemma A.2. Let n ∈ N and A,B be symmetric matrices in Cn×n. Let
λ1 ≤ . . . ≤ λn and µ1 ≤ . . . ≤ µn denote the eigenvalues of A and A +
B, respectively. Let γA, γA+B : R → [0, 1] denote the eigenvalue counting
functions for A and A+B, given by

γA(E) = |{i ∈ {1, . . . , n} | λi ≤ E}| ,
γA+B(E) = |{i ∈ {1, . . . , n} | µi ≤ E}| ,

for E ∈ R. Let finally k := rnk(B) denote the rank of B, that is, the
dimension of im(B). Then, |σA − σA+B|∞ ≤ k, that is,

|γA(E)− γA+B(E)| ≤ k

for all E ∈ R.

Proof. Fix E ∈ R. Note that it is sufficient to prove γA(E) − γA+B(E) ≤ k
as the inequality γA+B(E)− γA(E) ≤ k follows from this by replacing A by
A+B and B by −B after noting that rnk(B) = rnk(−B).

We have dim(ker(B)) = n− dim(im(B)) = n− k. Let i ∈ {1, . . . , n− k}.
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By the variational characterization of eigenvalues (see the previous lemma),

λi+k = inf
UCCn,

dim(U)≥i+k

sup
06=φ∈U

RA(φ)

≥ inf
UCCn,

dim(U)≥i+k

sup
06=φ∈U∩ker(B)

RA(φ)

= inf
UCCn,

dim(U)≥i+k

sup
06=φ∈U∩ker(B)

RA+B(φ)

≥ inf
UCCn,

dim(U∩ker(B))≥i

sup
06=φ∈U∩ker(B)

RA+B(φ)

≥ inf
VCCn,

dim(V )≥i

sup
06=φ∈V

RA+B(φ) = µi,

(A.3)

where the third line follows from the fact that RA and RA+B are identical on
ker(B) and the fourth line holds because

dim(U)− dim (U ∩ ker(B)) = dim(U + ker(B))− dim(ker(B))

≤ n− (n− k) = k.

Also note that the supremum over non-zero elements of dim(U ∩ ker(B)) in
the above is well-defined since

dim (U ∩ ker(B)) = dim(U) + dim (ker(B))− dim (U + ker(B))

≥ (k + 1) + (n− k)− n = 1.

We now have

γA(E) = |{i ∈ {1, . . . , n} | λi} ≤ E|
≤ k + |{i ∈ {1, . . . , n− k} | λi+k} ≤ E|
(A.3)

≤ k + |{i ∈ {1, . . . , n− k} | µi} ≤ E|
≤ k + |{i ∈ {1, . . . , n} | µi} ≤ E|
= k + γA+B(E),

proving γA(E)− γA+B(E) ≤ k.

The next lemma and its general forms were first established by Gershgorin
[15]. We only need it to prove lemma A.4.

Lemma A.3 (Gershgorin circle theorem). Let n ∈ N and M ∈ Cn×n be an
arbitrary matrix. Let λmax ∈ R denote the largest eigenvalue of M . Then,

λmax ≤ max
1≤i≤n

n∑
j=1

|Mij| .
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Proof. Let 0 6= ψ ∈ Cn be an eigenvector of M corresponding to the eigen-
value λmax. Choose k ∈ {1, . . . , n} such that |ψk| is maximal, that is,
|ψj| ≤ |ψk| for all j ∈ {1, . . . , n}. Note that ψk 6= 0. We have Mψ = λmaxψ.
In particular,

λmaxψk =
n∑
j=1

Mkjψj,

and hence

λmax =
n∑
j=1

Mkj ·
ψj
ψk
≤

n∑
j=1

|Mkj| ·
|ψj|
|ψk|︸︷︷︸
≤1

≤
n∑
j=1

|Mkj| ≤ max
1≤i≤n

n∑
j=1

|Mij| .

This result was discovered by Merris [26]:

Lemma A.4 (Upper bound to Laplacian eigenvalues). Let n ∈ N and G be
a subgraph of K(n) with edge set E. Let D ∈ Cn×n denote the degree matrix,
A ∈ Cn×n the adjacency matrix, and ∆ = D − A the Laplacian of G. For
1 ≤ i ≤ n, let further deg(i) denote the degree of vertex i in G and mdeg(i)
denote the mean degree of all neighbouring vertices of i in G if there are any,
and zero otherwise:

mdeg(i) =

{
1

deg(i)
·
∑

1≤j≤n,
[i,j]∈E

deg(j) if deg(i) > 0,

0 else.

Let λmax denote the maximal eigenvalue of ∆. Then,

λmax ≤ max
1≤i≤n

deg(i) + mdeg(i).

Proof. Consider the diagonal matrix D̃ ∈ Cn×n with diagonal elements

D̃ii =

{
deg(i) if deg(i) > 0,

1 else,

for i = 1, . . . , n, which differs from D in only those entries corresponding to
isolated vertices. Note that this makes D̃ invertible:

D̃−1
ii =

{ 1
deg(i)

if deg(i) > 0,
1 else.
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Now apply the previous lemma to the matrix D̃−1∆D̃, which is conjugated
to ∆ and hence has the same eigenvalues:

λmax ≤ max
1≤i≤n

n∑
j=1

∣∣∣(D̃−1∆D̃
)∣∣∣

ij

= max
1≤i≤n

n∑
j=1

∣∣∣∣∣ ∑
1≤r,s≤n

D̃−1
ir ·∆rs · D̃sj

∣∣∣∣∣
= max

1≤i≤n

{ ∑n
j=1

∣∣∣ 1
deg(i)

·∆ij · deg(j)
∣∣∣ if deg(i) > 0,∑n

j=1 |1 ·∆ij · 1| else,

= max
1≤i≤n

{ 1
deg(i)

·
∑n

j=1 |∆ij · deg(j)| if deg(i) > 0,∑n
j=1 ∆ij else,

= max
1≤i≤n


1

deg(i)
· (|deg(i) · deg(i)| if deg(i) > 0,

+
∑

1≤j≤n,
[i,j]∈E

|(−1) · deg(j)|
)

0 else,

≤ max
1≤i≤n

{
deg(i) + 1

deg(i)
·
∣∣∣∑ 1≤j≤n,

[i,j]∈E
deg(j)

∣∣∣ if deg(i) > 0,
0 else,

= max
1≤i≤n

deg(i) + mdeg(i).

The next propositions, lemma A.5 and corollary A.6, are basic stochastic
results. They should be found in most introductory textbooks, e.g. [14].

Lemma A.5. For p ∈ [0, 1] and n ∈ N, let

Bn,p(k) :=

(
n

k

)
pk (1− p)n−k

for k ∈ N0 and Bn,p(k) := 0 for k ∈ Z\N0 denote the binomial distribution
with parameters n and p (note that

(
n
k

)
= 0 for k > n). For λ ≥ 0 real, let

πλ(k) :=
λk

k!
· e−λ

for k ∈ N0 and πλ(k) := 0 for k ∈ Z\N0 denote the Poisson distribution
with parameter λ. For λ ≥ 0 and any sequence (pn)n∈N ∈]0, 1]N such that
limn npn = λ, we then have

lim
n
Bn,pn(k) = πλ(k)
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for every k ∈ Z.

Proof. Fix k ∈ N. Regarding the existence of the respective limits, the
following string of equations is to be read backwards:

lim
n
Bn,pn(k) = lim

n

(
n

k

)
pkn (1− pn)n−k

= lim
n

∏k−1
i=0 (n− i)
k!

· pkn (1− pn)n−k

= lim
n

1

k!
· (npn)k · (1− pn)n ·

(
k−1∏
i=0

(
1− i

n

))
· (1− pn)−k

=
1

k!
· (lim

n
npn)k ·

(
lim
n

(1− pn)n
)

·

(
k−1∏
i=0

lim
n

1− i

n

)
·
(

lim
n

1− pn
)−k

(A.4)
=

1

k!
· λk · e−λ ·

(
k−1∏
i=0

1

)
· 1−k

=
λk

k!
· e−λ = πλ(k).

Here we have used that limn npn = λ implies limn pn = 0. For n → ∞ we
hence also have p−1

n → ∞. The non-trivial limes of (1− pn)n can then be
evaluated by noting that

lim
n

(1− pn)n = lim
n

((
1− 1

p−1
n

)p−1
n

)npn

=

(
lim
n

(
1− 1

p−1
n

)p−1
n

)limn npn

=

(
1

e

)λ
= e−λ

(A.4)

since limx→∞
(
1− 1

x

)x
= 1

e
.

From this, we immediately deduce

Corollary A.6. For any b ∈ Z and c > 0, we have

lim
n→∞,
n>c

Bn+b, c
n
(k) = πc(k)

for all k ∈ Z.
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Proof. Just note that

lim
n→∞,
n>c

Bn+b, c
n
(k) = lim

n→∞,
n>c+b

Bn, c
n−b

= πc(k),

where the last equation follows from the previous lemma (with finitely many
starting terms of the sequence missing not affecting the limit behaviour):
Setting pn := c

n−b , we have

lim
n→∞,
n>c+b

npn = lim
n→∞,
n>c+b

n · c

n− b
= lim

n→∞,
n>c+b

c ·
(

1 +
b

n− b

)
= c.

The next lemma is a plain basic estimate which should need no extra
reference.

Lemma A.7. For λ ≥ 0 and u ∈ N, we have

∞∑
v=u

πλ(v) ≤ λu

u!
.

Proof. We have

∞∑
v=u

πλ(v) =
∞∑
v=u

λv

v!
· e−λ

=
λu

u!
· e−λ ·

∞∑
v=u

λv−u∏v
k=u+1 k

=
λu

u!
· e−λ ·

∞∑
v=0

λv∏v
k=1(k + u)

≤ λu

u!
· e−λ ·

∞∑
v=0

λv

v!

=
λu

u!
· e−λ · eλ =

λu

u!
.

Finally, the remaining lemmata A.8, A.9 and corollary A.10 constitute a
simplified version of the general Stirling’s formula, see e.g. [1, p. 257].

Lemma A.8. For u ∈ N, we have u! ≥ eu·(ln(u)−1).
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Proof. We have

ln(u!) =
u∑
v=1

ln(v) =
u∑
v=2

ln(v)

=

∫ u

x=1

ln(dxe)dx ≥
∫ u

x=1

ln(x)dx

= [x · (ln(x)− 1)]u1
= (u · (ln(u)− 1))− (1 · (ln(1)− 1)) ≥ u · (ln(u)− 1),

hence u! ≥ eu·(ln(u)−1) by monotonicity of exp.
Lemma A.9. For u ∈ N, we have u! ≤ e(u+1)·(ln(u+1)−1)+1.
Proof. In complete anology with the previous proof, we have

ln(u!) =
u∑
v=1

ln(v) =

∫ u+1

x=1

ln(bxc)dx

≤
∫ u+1

x=1

ln(x)dx = [x · (ln(x)− 1)]u+1
1

= ((u+ 1) · (ln(u+ 1)− 1))− (1 · (ln(1)− 1))

= (u+ 1) · (ln(u+ 1)− 1) + 1,

hence u! ≤ e(u+1)·(ln(u+1)−1)+1 by monotonicity of exp.
Corollary A.10. We have

lim
u

ln(u!)

u · ln(u)
= 1.

Proof. By the previous two lemmata,
u · (ln(u)− 1)

u · ln(u)
≤ ln(u!)

u · ln(u)
≤ (u+ 1) · (ln(u+ 1)− 1) + 1

u · ln(u)
.

But
lim
u

u

u
= lim

u

u+ 1

u
= 1

and
lim
u

ln(u)− 1

ln(u)
= lim

u

ln(u+ 1)− 1

ln(u)
= 1

as well as
lim
u

1

u · ln(u)
= 0,

so
lim
u

ln(u!)

u · ln(u)
= 1.
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