
COALGEBRA MODELS OF TYPE THEORY

The goal of this note is to present a type-theoretic analogue of the well-known
construction of the topos of coalgebras for a left exact comonad on a topos. As a
particular instance, we recover the recent presheaf translation [Péd20] of Pédrot.

We take categories with families (cwfs) as our notion of model of type theory.
We take their basic theory for granted.

1. The model construction

Definition 1.1. A comonad pseudomorphism on a cwf ℰ is a comonad 𝑁 on the
category ℰ whose underlying functor extends to a pseudomorphism of cwfs. □

The notion of pseudomorphism is an approximation to the notion of left exact
functor. We only have preservation of pullbacks along context projections. Thus,
the notion of comonad pseudomorphism is an approximation to the notion of left
exact comonad.

Definition 1.2 (Cwf of coalgebras). Let 𝑁 be a comonad pseudomorphism on a
cwf ℰ. The category Coalg(𝑁) of coalgebras of 𝑁 extends to a cwa as follows:

• The terminal context is given by the unique coalgebra on 1, using that 𝑁
preserves terminal objects.

• A type over 𝑢∶ 𝑋 → 𝑁𝑋 is given by a “coalgebra fibration”, i.e. a type
𝑌 ∈ Ty(𝑋) together with a coalgebra structure 𝑣 ∶ 𝑋.𝑌 → 𝑁(𝑋.𝑌 ) on the
context extension 𝑋.𝑌 such that the context projection 𝑝 ∶ 𝑋.𝑌 → 𝑋 forms
a morphism of coalgebras:

𝑋.𝑌 𝑣 / /

𝑝
����

𝑁(𝑋.𝑌 )
𝑁𝑝
����

𝑋 𝑢 // 𝑁𝑋.
The extension of this type is given by the coalgebra 𝑣 ∶ 𝑋.𝑌 → 𝑁(𝑋.𝑌 ).

• Substitution of types is given by substitution of types in 𝐸, using that 𝑁
preserves pullbacks along context projections. The resulting morphism of
comprehensions (context extensions) in Coalg(𝑁) is cartesian as required.

Using the equivalence between cwas and cwfs, we also have Coalg(𝑁) as a cwf. □
Remark 1.3. It is possible to give Definition 1.2 more directly in the style of cwfs
using the action of the comonad (𝑁, 𝜀, 𝜈) on types and terms.

• A type over 𝑢∶ 𝑋 → 𝑁𝑋 consists of 𝑌 ∈ Ty(𝑋) with a map 𝑣 ∶ 𝑌 → 𝑁𝑌 [𝑢]
in the fibrant slice over 𝑋 such that 𝜀𝑌 [𝑢] ∘ 𝑣 = id and 𝜈𝑌 [𝑢] ∘ 𝑣 = 𝑁𝑣[𝑢] ∘ 𝑣.
Here, 𝜀𝑌 ∶ 𝑁𝑌 → 𝑌 [𝜀𝑋] and 𝜈𝑌 ∶ 𝑁𝑌 → 𝑁2𝑌 [𝜈𝑋] denote the “relative
counit” and “relative comultiplication” at 𝑌 in the fibrant slice over 𝑁𝑋,
obtained from 𝜀𝑋.𝑌 and 𝜈𝑋.𝑉 over 𝜀𝑋 and 𝜈𝑋, respectively.

• A term of this type consists of 𝑡 ∈ Tm(𝑋, 𝑌 ) such that 𝑣 ∘ 𝑡 = 𝑁𝑡[𝑢] (here,
we see terms as maps in the fibrant slice with source the empty telescope).

All the operations can be developed in this style (all fairly elementary). □
Definition 1.4 (Cwf structures on 𝒟 ↓ 𝐹 ). Let 𝐹 ∶ 𝒞 → 𝒟 be a pseudomorphism
of cwfs. Then there a two important cwf structures on the comma category 𝒟 ↓ 𝐹 ,
with different notions of types over a context (𝑋0 ∈ 𝒞, 𝑋1 ∈ 𝒟, 𝑢∶ 𝑋1 → 𝐹𝑋0):

1



COALGEBRA MODELS OF TYPE THEORY 2

• the levelwise structure (ℰ ↓ 𝑁)lvl, in which a type is a triple (𝑌0, 𝑌1, 𝑣) of
types 𝑌0 ∈ Ty(𝑋0) and 𝑌1 ∈ Ty(𝑋1) and a map 𝑣 ∶ 𝑋1.𝑌1 → 𝐹𝑋0.𝐹𝑌0 over
𝑢 (i.e. a map 𝑌1 → 𝐹𝑌0[𝑢] in the fibrant slice over 𝑋1),

• the Reedy structure (ℰ ↓ 𝑁)rd, in which a type is a pair (𝑌0, 𝑌1) of types
𝑌0 ∈ Ty(𝑋) and 𝑌1 ∈ Ty(𝑋.𝑁𝑌0[𝑢]).

We have a pseudomorphism of cwf structures (ℰ ↓ 𝑁)rd → (ℰ ↓ 𝑁)lvl. This is an
actual morphism if we use telescopes as types in 𝒟. It is essentially surjective on
types up to identity types in 𝒟, stably under substitution.

The Reedy structure corresponds to the gluing construction [KHS19], there pre-
sented with a slightly different category of contexts. The Reedy structure is well
adapted to interpret type formers found in 𝒞 and 𝒟, the levelwise structure is
generally not. Of note, we have dependent products of Reedy types with levelwise
domain type. □

Lemma 1.5. Let 𝑁 be a comonad pseudomorphism on a cwf ℰ. We have a fully
faithful functor Coalg(𝑁) → ℰ ↓ 𝑁 . This extends to a cwf morphism that is bijective
on terms. Here, we use the levelwise cwf structure on ℰ ↓ 𝑁 .

Proof. The first statement is folklore and probably more known in the dual situ-
ation of monads. The functor sends a coalgebra (𝑋, 𝑢∶ 𝑋 → 𝑁𝑋) to the object
(𝑋, 𝑋, 𝑢∶ 𝑋 → 𝑁𝑋) of the comma category. It is easy to see that this is fully
faithful.

Let us extend this functor to a cwf morphism. We send a type (𝑌 , 𝑣) over
(𝑋, 𝑢) to the type (𝑌 , 𝑌 , 𝑣) over (𝑋, 𝑋, 𝑢∶ 𝑋 → 𝑁𝑋). This is evidently stable
under substitution and it is clear that context extension is preserved strictly and
naturally.

Under the equivalence of cwas and cwfs, this suffices to construct the desired cwf
morphism. Alternatively, we could have given just as directly the action on terms
and associated operations. Finally, the cwf morphism is bijective on terms because
the underlying functor is fully faithful. □

Definition 1.6 (Right adjoint on types). Let 𝐿∶ 𝒞 → 𝒟 be a pseudomorphism of
cwfs. A right adjoint on types 𝑅 consists of the following operations, natural in
Γ ∈ 𝒞:

• for 𝐴 ∈ Ty𝒟(𝐿Γ), a type 𝑅𝐴 ∈ Ty𝒞(Γ),
• for 𝑡 ∈ Tm𝒟(𝐿Γ, 𝐴), a term 𝑅𝑡 ∈ Tm𝓒(Γ, 𝑅𝐴),

such that the action on terms is invertible. □

Recall the “stacking” monoidal structure on cwf structures on a category 𝒞.
Given two such cwf structures 𝑆 and 𝑇 , their monoidal product 𝑆 • 𝑇 has types
Ty𝑆•𝑇 (𝑋) given by pairs (𝐴𝑆, 𝐴𝑇 ) where 𝐴𝑆 ∈ Ty𝑆(𝑋) and 𝐴𝑇 ∈ Ty𝑇 (𝑋.𝐴𝑆). The
extension of 𝑋 by (𝐴𝑆, 𝐴𝑇 ) is given by 𝑋.𝐴𝑆.𝐴𝑇 . Let ⊤ denote the unit of this
monoidal structure.

Lemma 1.7. Let 𝐿∶ 𝒞 → 𝒟 be a functor.
(i) The pseudomorphism 𝐿∶ (𝒞, ⊤) → (𝒟, ⊤) of cwfs has a right adjoint on

types.
(ii) Given extensions of 𝐿 to pseudomorphisms 𝐿∶ (𝒞, 𝑆𝒞) → (𝒞, 𝑆𝒟) and

𝐿∶ (𝒞, 𝑆𝒞) → (𝒞, 𝑆𝒟) of cwfs with right adjoints on types, the induced
pseudomorphism 𝐿∶ (𝒞, 𝑆𝒞 •𝑇𝒞) → (𝒟, 𝑆𝒟 •𝑇𝒟) of cwfs has a right adjoint
on types.

Furthermore, these constructions are suitably functorial.

Proof. The right adjoint on types in item (i) is uniquely determined.
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For item (ii), consider 𝑋 ∈ 𝒞 with (𝐵𝑆, 𝐵𝑇 ) ∈ Ty𝑆•𝑇 (𝐿𝑋), i.e. 𝐵𝑆 ∈ Ty𝑆(𝐿𝑋)
and 𝐵𝑇 ∈ Ty𝑇 (𝐿𝑋.𝐵𝑆). We have 𝑅𝐵𝑆 ∈ Ty𝑆(𝑋). In context 𝑋.𝑅𝐵1, we
have a term of type 𝑅𝐵1[𝑝] = 𝑅(𝐵1[𝐿𝑝]). Using the dependent right adjoint,
this gives a term of type 𝐵1[𝐿𝑝] in context 𝐿(𝑋.𝑅𝐵1). This induces a mor-
phism 𝑓 ∶ 𝐿(𝑋.𝑅𝐵1) → 𝐿𝑋.𝐵1 over 𝐿𝑋, which we may think of as the relative
counit at 𝐵1 over 𝐿𝑋. This gives us 𝑅(𝐵𝑇 [𝑓]) ∈ Ty(𝑋.𝑅𝐵1). We now define
𝑅(𝐵𝑆, 𝐵𝑇 ) = (𝑅𝐵𝑆, 𝑅(𝐵𝑇 [𝑓])).

Let (𝑏𝑆, 𝑏𝑇 ) be a term of (𝐵𝑆, 𝐵𝑇 ). This means 𝑏𝑆 ∈ Tm(𝐿𝑋, 𝐵𝑆) and 𝑏𝑇 ∈
Tm(𝐿𝑋, 𝐵𝑡[id𝑋, 𝑏𝑆]).

We get 𝑅𝑏𝑆 ∈ Tm(𝑋, 𝑅𝐵𝑆) and 𝑅𝑏𝑇 ∈ Tm(𝑋, 𝑅(𝐵𝑡[id𝑋, 𝑏𝑆])). We need Tm(𝑋, 𝑅(𝐵𝑇 [𝑓])[id, 𝑅𝑏𝑆]).
But 𝑅(𝐵𝑇 [𝑓])[id, 𝑅𝑏𝑆] = 𝑅(𝐵𝑇 [𝑓][𝐿(id, 𝑅𝑏𝑆)]). □

Given a cwf (𝒞, Ty), we have the induced cwf structure Ty∗ of telescpes on 𝒞.
This is the free monoid on Ty in the monoidal category of cwf structures of 𝒞, with
monoidal product given by “stacking” of cwf structures. Telescope formation forms
a monad on cwfs that lives over the identity monad on categories. It also forms a
2-monad on the 2-category of cwfs (where the 1-arrows are pseudomorphisms).

Lemma 1.8. Telescope formation extends to a monad on the category of pseudo-
morphisms of cwfs with right adjoint.

Proof. □

Let 𝐿∶ (𝒞, Ty𝒞) → (𝒟, Ty𝒟) be a pseudomorphism of cwfs with a right adjoint
on types 𝑅. Consider the induced pseudomorphism 𝐿∗ ∶ (𝒞, Ty∗

𝒞) → (𝒟, Ty∗
𝒟). We

have to define a right adjoint on types 𝑅∗ of 𝐿∗.
Let 𝑋 ∈ 𝒞 and [𝐵1, …, 𝐵𝑛] ∈ Ty∗

𝒟(𝐿𝑋).
Lemma 1.9. Let 𝐿∶ 𝒞 → 𝒟 be a pseudomorphism of cwfs with a right adjoint on
types 𝑅. Then the induced functor 𝐿∶ 𝒞fib → 𝒟fib has a right adjoint.

Proof. We have to show that 𝐿 ↓ [𝐵1, …, 𝐵𝑛] has an initial object.
□

Definition 1.10 (Cwf structure created by right adjoint on types). Let 𝐿∶ 𝒞 → 𝒟
be a pseudomorphism of cwfs with a right adjoint on types 𝑅. Then the cwf
structure 𝒞′ created by 𝐿 on 𝒞 is defined as follows. We again view cwfs under the
cwa lens to simplify the exposition.

The types of 𝒞′ are defined as created by 𝐿. To define the cwf structure on 𝒞′

and make 𝒞′ → 𝒞 into a morphism of cwf structures is equivalent to just give the
action of types of 𝒞′ → 𝒞. Given Γ ∈ 𝒞, we send 𝐴 ∈ Ty(𝐿Γ) to 𝑅𝐴 ∈ Ty(Γ). This
is evidently stable under substitution.

Almost by construction, 𝐹 lifts to an oplax cwf morphism 𝒞′ → 𝒟 bijective
on types. The oplax action on context extension comes from the comparison map
𝐿(Γ.𝑅𝐴) → 𝐿Γ.𝐴 over 𝐿Γ. □
Lemma 1.11. Let 𝐿∶ 𝒞 → 𝒟 be a pseudomorphism of cwfs with a right adjoint on
types 𝑅. Then the cwf structure 𝒞′ created by 𝐿 has function types.

Proof. The input data for a function type in 𝒞′ consists of Γ ∈ 𝒞 and 𝐴, 𝐵 ∈
Ty(𝐿Γ). Then 𝑅𝐴 ∈ Ty(Γ) and 𝐿𝑅𝐴 ∈ Ty(𝐿Γ). We define the function type
hom(𝐴, 𝐵) ∈ Ty(Γ) in 𝒞′ as the function type hom(𝐿𝑅𝐴, 𝐵) in context 𝐿Γ in 𝒟.
Terms in 𝒞′ of this function type are by definition terms of 𝑅(hom(𝐿𝑅𝐴, 𝐵)) in
𝓒, which correspond to terms of hom(𝐿𝑅𝐴, 𝐵) in 𝒟, which in turn correspond to
terms of 𝐵[𝑝] in context 𝐿Γ.𝐿𝑅𝐴 in 𝒟.

Want: terms of type 𝑅𝐵[𝑝] in context Γ.𝑅𝐴. Want: terms of type 𝐵[𝑝] in
context 𝐿(Γ.𝑅𝐴).
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The input data for a dependent product in 𝒞′ consists of Γ ∈ 𝒞, 𝐴 ∈ Ty(𝐿Γ),
and 𝐵 ∈ Ty(𝐿(Γ.𝑅𝐴)).

LΓ.LRA → L(Γ.RA)?
Let 𝐵′ ∈ Ty(𝐿Γ.𝐿𝑅𝐴) denote the substitution of 𝐵 along the coherence isomor-

phism for context extension. We define the dependent product Π(𝐴, 𝐵) ∈ Ty(Γ) in
𝒞′ as the dependent product Π(𝐿𝑅𝐴, 𝐵′) in context 𝐿Γ in 𝒟. Terms in 𝒞′ of this
dependent product □
Lemma 1.12. Let 𝑁 be a good comonad pseudomorphism on a cwf ℰ in the sense
of ??. Then the cwf structure Coalg(𝑁)rd created by 𝐿 has dependent products.
Proof. Fix a context

□

2. Example: Pédrot’s presheaf translation

Definition 2.1. Given a cwf 𝒞 and context Γ ∈ 𝒞, we have the cwf [Γ, 𝒞] of
Γ-indexed types. It is simply the fibrant slice over Γ, so another notation for it
would be (𝒞/Γ)fib. Its underlying category is the full subcategory of 𝒞/Γ on fibrant
objects, i.e. types over Γ. □

If one wants to be generous and work around dependent sums in 𝒞, one could
also let the contexts be telescopes over Γ.
Definition 2.2. Let 𝒞 be a cwf. A Reedy fibrant internal category in 𝒞 is a category
object whose underlying graph is Reedy fibrant, i.e. presented by 𝐶0 ∈ Ty(1) and
𝐶1 ∈ Ty(1.𝐶0.𝐶0). □

We also write 𝑠, 𝑡 ∶ 𝐶1 → 𝐶0 for the category object. Here, 𝐶0 stands for 1.𝐶0
and 𝐶1 stands for 1.𝐶0.𝐶0.𝐶1. Source and target maps are given by projection to
the first and second component, respectively.
Remark 2.3. Recall that categories may be characterized as monads in the bicat-
egory of spans. The internal variant of this says that category objects in a category
𝒞 with pullbacks are monads in the bicategory of spans in 𝒞. For a cwf 𝒞, we only
have pullbacks along context projections of types, so we compensate by adding
Reedy fibrancy (technically, the weaker requirement of the source and target maps
being fibrations, i.e. presented by types, seems sufficient). Then a Reedy fibrant
internal category is a monad in the bicategory of Reedy fibrancy spans in 𝒞. □
Lemma 2.4. Let 𝐶 be a Reedy fibrant internal category in a cwf 𝒞. We have an
induced comonad (𝑁, 𝜀, 𝜈) on [𝐶0, 𝒞] that forms a pseudomorphism of cwfs.
Proof. Any Reedy fibrant span

𝑆
𝑓
������
��
�� 𝑔

�� ��
??

??
??

𝐴 𝐵
induces a pseudomorphism

[𝐴, 𝒞]
Δ𝑓

// [𝑆, 𝒞]
Π𝑔

// [𝐵, 𝒞].
This construction is contravariantly functorial: a morphism

𝑆0𝑓0
yyyysss

sss
𝑔0

%% %%KK
KKK

K

ℎ

��

𝐴 𝐵

𝑆1
𝑓1

eeeeKKKKKK 𝑔1

99 99ssssss
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of spans over 𝐴 and 𝐵 induces a natural transformation

Π𝑔1
Δ𝑓1

// Π𝑔0
Δ𝑓0

.

The desired pseudomorphism 𝑁 is given by this construction applied to the span
of the category object:

[𝐶0, 𝒞] Δ𝑡 // [𝐶1, 𝒞] Π𝑠 // [𝐶0, 𝒞].

The monad structure on 𝐶 in the bicategory of Reedy fibrant spans induces the
comonad structure on 𝑁 . □

Remark 2.5. Note that the comonad 𝑁 constructed in Lemma 2.4 is right adjoint
to the monad pseudomorphism 𝑇 given by the composite

[𝐶0, 𝒞] Δ𝑠 // [𝐶1, 𝒞] Σ𝑡 // [𝐶0, 𝒞].

This is a cartesian monad. In particular, the diagram

Id 𝜂
// 𝑇

𝜂𝑇
//

𝑇 𝜂
// 𝑇 2𝜇oo

is a coreflexive equalizer (this is equivalent to

Id 𝜂
//

𝜂
��

𝑇
𝑇 𝜂
��

𝑇 𝜂𝑇
// 𝑇 2

(2.1)

being a pullback). □

Lemma 2.6. The pseudomorphism 𝐿∶ Coalg(𝑁) → (ℰ ↓ 𝑁)rd has a right adjoint
on types.

Proof. Let (𝑋, 𝑢∶ 𝑋 → 𝑁𝑋) be a coalgebra. Let (𝑌0, 𝑌1) be a type over (𝑋, 𝑋, 𝑢∶ 𝑋 →
𝑁𝑋) in the Reedy cwf structure on ℰ ↓ 𝑁 . Recall this means 𝑌0 ∈ Ty(𝑋) and
𝑌1 ∈ Ty(𝑋.𝑁𝑌0[𝑢]). We define 𝑅(𝑌0, 𝑅1) = (𝑌 ′, 𝑣 ∶ 𝑋.𝑌 → 𝑁(𝑋.𝑌 )) as follows.
Let 𝑌 ′ ∈ Ty(𝑋) be the dependent sum of 𝑁𝑌0[𝑢] and the base change of 𝑁𝑌1 along
a coherence isomorphism, 𝑢, and the local comultiplication at 𝑌0 (over the given
coalgebra) such that it becomes a type over 𝑋.𝑁𝑌0[𝑢]. Then 𝑣 can be defined in a
canonical way. This is stable under substitution.

Given a term (𝑡0, 𝑡1) of type (𝑌0, 𝑌1), we define 𝑅(𝑡0, 𝑡1) as the pairing of 𝑁𝑡0[𝑢]
and 𝑁𝑡1[𝑢]. This is also stable under substitution.

It is mechanical to verify the properties of a right adjoint on types. □

Proof. Consider the following endofunctor 𝐾 on ℰ ↓ 𝑁 . An object 𝑍 = (𝑋0, 𝑋1, 𝑓 ∶ 𝑋1 →
𝑁𝑋0) is sent to the object 𝐾𝑍 = (𝑋1, 𝑋2, 𝑔 ∶ 𝑋2 → 𝑁𝑋1) where

𝑋2
𝑔

//

𝑞
��

_�
𝑁𝑋1

𝑁𝑓
��

𝑁𝑋0
𝜈𝑋0 // 𝑁2𝑋0.

The functorial action is given by naturality of 𝜈 and functoriality of pullbacks. This
endofunctor has a canonical copointing 𝑐, with 𝑐𝑍 = (𝜀𝑋0

∘ 𝑓, 𝜀𝑋1
∘ 𝑔). For this,
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note that the diagram

𝑋2
𝑔

//

𝑔
��

𝑁𝑋1
𝜀𝑋1 // 𝑋1

𝑓
��

𝑁𝑋1
𝑁𝑓

// 𝑁2𝑋0
𝑁𝜀𝑋0 // 𝑁𝑋0

commutes: both composites reduce to 𝑞. Naturality of the copointing follows from
naturality of 𝜀.

Is this functor wellcopointed? For this, we need 𝑐𝐾𝑍 = 𝐾𝑐𝑍. Write 𝐾2𝑍 =
(𝑋2, 𝑋3, ℎ ∶ 𝑋3 → 𝑁𝑋2) where

𝑋3
ℎ //

𝑟
��

_�
𝑁𝑋2

𝑁𝑔
��

𝑁𝑋1
𝜈𝑋1 // 𝑁2𝑋1.

Then 𝑐𝐾𝑍 = (𝜀𝑋1
∘ 𝑔, 𝜀𝑋2

∘ ℎ) and 𝐾𝑐𝑍 = (𝜀𝑋1
∘ 𝑔, 𝑠) where 𝑠 is the map induced

as follows:

𝑋3
ℎ //

𝑟

��

_�
𝑠

##

𝑁𝑋2

𝑁𝑔

��

𝑁(𝜀𝑋1 ∘𝑔)

$$I
II

II
II

II

𝑋2
𝑔

//

𝑞

��

_�
𝑁𝑋1

𝑁𝑓

��

𝑁𝑋1
𝜈𝑋1 //

𝑁(𝜀𝑋0 ∘𝑓)
""F

FF
FF

FF
FF

𝑁2𝑋1

𝑁2(𝜀𝑋0 ∘𝑓) ##H
HH

HH
HH

HH

𝑁𝑋0 𝜈𝑋0
/ / 𝑁2𝑋0.

For 𝑐𝐾𝑍 = 𝐾𝑐𝑍, we need 𝑠 = 𝜀𝑋2
∘ ℎ. This means:

𝑁(𝜀𝑋1
∘ 𝑔) ∘ ℎ = 𝑔 ∘ 𝜀𝑋2

∘ ℎ
𝑁(𝜀𝑋0

∘ 𝑓) ∘ 𝑟 = 𝑞 ∘ 𝜀𝑋2
∘ ℎ.

For the first equation, we have

𝑁(𝜀𝑋1
∘ 𝑔) ∘ ℎ = 𝑁𝜀𝑋1

∘ 𝑁𝑔 ∘ ℎ
= 𝑁𝜀𝑋1

∘ 𝜈𝑋1
∘ 𝑟

= 𝑟

and

𝑔 ∘ 𝜀𝑋2
∘ ℎ = 𝜀𝑁𝑋1

∘ 𝑁𝑔 ∘ ℎ
= 𝜀𝑁𝑋1

∘ 𝜈𝑋1
∘ 𝑟

= 𝑟.
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For the second equation, we have

𝑁(𝜀𝑋0
∘ 𝑓) ∘ 𝑟 = 𝑁𝜀𝑋0

∘ 𝑁𝑓 ∘ 𝑟
= 𝑁𝜀𝑋0

∘ 𝑁𝑓 ∘ 𝜀𝑁𝑋1
∘ 𝜈𝑋1

∘ 𝑟
= 𝑁𝜀𝑋0

∘ 𝑁𝑓 ∘ 𝜀𝑁𝑋1
∘ 𝑁𝑔 ∘ ℎ

= 𝑁𝜀𝑋0
∘ 𝑁𝑓 ∘ 𝑔 ∘ 𝜀𝑋2

∘ ℎ
= 𝑁𝜀𝑋0

∘ 𝜈𝑋0
∘ 𝑞 ∘ 𝜀𝑋2

∘ ℎ
= 𝑞 ∘ 𝜀𝑋2

∘ ℎ.

Since 𝐾 is wellpointed, an algebra for it is simply an object 𝑍 as before such 𝑐𝑍
is invertible. This means that 𝜀𝑋0

∘ 𝑓 and 𝜀𝑋1
∘ 𝑔 are invertible.

□

Proof. Let (𝑋0, 𝑋1, 𝑓 ∶ 𝑋1 → 𝑁𝑋0) be an object of ℰ ↓ 𝑁 . We claim that its
coreflection in Coalg(𝑁) is given by (𝑌 , 𝑢) where 𝑌 is given by the pullback

𝑌 𝑝
//

𝑞
��

_�
𝑁𝑋1

𝑁𝑓
��

𝑁𝑋0
𝜈𝑋0 // 𝑁2𝑋0

and 𝑢∶ 𝑌 → 𝑁𝑌 is the induced map in the diagram

𝑌 𝑝
//

𝑞

��

##

_�
𝑁𝑋1

𝑁𝑓

��

𝜈𝑋1

$$H
HHH

HHH
HH

𝑁𝑌 //

��

_�
𝑁2𝑋1

𝑁2𝑓

��

𝑁𝑋0
𝜈𝑋0 //

𝜈𝑋0 ##G
GG

GG
GG

G
𝑁2𝑋0

𝜈𝑁𝑋0 ##H
HH

HH
HH

HH

𝑁2𝑋0 𝑁𝜈𝑋0

// 𝑁3𝑋0.

□

Proof. This is a consequence of the properties examined in Remark 2.5. In partic-
ular, from (2.1) it follows that we have the following pullback:

𝑁 𝜈 //

𝜈
��

𝑁2

𝑁𝜈
��

𝑁2 𝜈𝑁 // 𝑁3.

(2.2)

[The following is the categorical argument. Relativize so that it works with
types.] Via Lemma 1.5, we may see coalgebras of 𝑁 as fully faithfully embedded
in ℰ ↓ 𝑁 via 𝐿. Our goal is to construct a cofree coalgebra on any object of ℰ ↓ 𝑁 .
For this, we follow the well-known categorical construction [Kel80]. Coalgebras for
𝑁 may be identified with copointed endofunctor coalgebras for the well-copointed
endofunctor 𝐾 on ℰ ↓ 𝑁 sending (𝑋0, 𝑋1, 𝑓0 ∶ 𝑋1 → 𝑁𝑋0) to (𝑋1, 𝑋2, 𝑓1 ∶ 𝑋2 →
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𝑁𝑋1) where

𝑋2
𝑓1 //

��

_�
𝑁𝑋1

𝑁𝑓0
��

𝑁𝑋0
𝜈𝑋0 // 𝑁2𝑋0.

Thus, our goal becomes to construct cofree coalgebras for 𝐾. Since it is well-
copointed, these are given by iteratively applying 𝐾 and taking cosequential limits
at limit ordinals. However, from (2.2) being a pullback, it can be seen that this
process stabilizes already after two steps. Thus, no infinite limits are required.

Let 𝑍𝑛 = (𝑋𝑛, 𝑋𝑛+1, 𝑓𝑛 ∶ 𝑋𝑛+1 → 𝑁𝑋𝑛) be the result of 𝑛-many times applying
𝐾 to the starting object (𝑋0, 𝑋1, 𝑓0 ∶ 𝑋1 → 𝑁𝑋0). We argue that the transition
map 𝑍3 → 𝑍2 is invertible.

We use that 𝑁 preserves pullbacks to illuminate the construction of 𝑋3:

𝑋3
𝑓2 //

��

_�
𝑁𝑋2 //

𝑁𝑓1
��

_�
𝑁2𝑋0

𝑁𝜈𝑋0
��

𝑁𝑋1
𝜈𝑋1 // 𝑁2𝑋1

𝑁2𝑓0 // 𝑁3𝑋0.

Rewriting the bottom map using naturality of 𝜈 and using the pullback square (2.2),
we have

𝑋3 //

��

_�
𝑁𝑋0

𝜈𝑋0 //

𝜈𝑋0
��

_�
𝑁2𝑋0

𝑁𝜈𝑋0
��

𝑁𝑋1
𝑁𝑓0 // 𝑁2𝑋0

𝜈𝑁𝑋0 // 𝑁3𝑋0.
This is equivalent to just 𝜀𝑋2

∘𝑓2 being invertible (it then follows that also 𝜀𝑋3
∘𝑓3

is invertible; these two maps make up 𝑍3 → 𝑍2). □

From 𝒞, we may build the intermediate cwf [𝐶0, 𝒞] of 𝐶0-indexed types. Its
underlying category is the full subcategory of 𝒞/1.𝐶0 on fibrant objects, i.e. types
over 1.𝐶0. The rest of its structure is completely inherited from 𝒞.

Lemma 2.7. Let (𝑁, 𝜀, 𝜈) be a comonad. Then the following is an (absolute?)
pullback square:

𝑁 𝜈 //

𝜈
��

𝑁2

𝑁𝜈
��

𝑁2 𝜈𝑁 // 𝑁3.

(2.3)

Proof. We may equivalently show that

𝑁 𝜈 // 𝑁2
𝜈𝑁

//

𝑁𝜈 // 𝑁3𝑁𝜀𝑁oo

is a coreflexive equalizer. □
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