
COMPARING FIBRATIONS IN CARTESIAN CUBICAL SETS

1. Basic setting

1.1. The category. We do some elementary analysis of presheaves over the cartesian cube
category □. This is the subcategory of posets with objects of the form [1]𝐼 with 𝐼 finite and
maps 𝑓 ∶ [1]𝐽 → [1]𝐼 of the form

𝑓(𝑥)𝑖 = {𝑥𝑗 if 𝑢(𝑖) = 𝜏2(𝑗),
𝑘 if 𝑢(𝑖) = 𝜏1(𝑘) (1.1)

for 𝑥 ∈ [1]𝐽 and 𝑖 ∈ 𝐼 , given some 𝑢∶ 𝐼 → {0, 1} + 𝐽 . (So it is also the opposite of the Kleisli
category of the monad 2 + (−) on Set.) Note that the inclusion □ → Poset creates finite
products.

1.2. Fibrations. The notion of fibration in the cartesian cubical model of type theory is as
follows. For distinction, we call it cartesian fibraton.

Definition 1.1. A cartesian fibration structure on a map 𝑌 → 𝑋 consists of:
• for any [1]𝐼 ∈ □, 𝑗 ∈ 𝕀([1]𝐼) 𝜑 ∈ Ω([1]𝐼), 𝑢∶ □𝐼⊔{𝑖} → 𝑋, 𝑣 ∶ ⌜(𝑖 = 𝑗) ∨ 𝜑⌝ → 𝑌 making

the diagram
□𝐼 𝑣 //

[id,𝑖]
��

𝑌

��

□𝐼 × 𝕀 𝑢 //

<<

𝑋
commute, a diagonal filler 𝑑𝐼,𝑖,𝜑,𝑢,𝑣 as indicated.

• for any (𝐼, 𝑖, 𝜑, 𝑢, 𝑣) and (𝐼′, 𝑖′, 𝜑′, 𝑢′, 𝑣′) as above and a map 𝑓 ∶ 𝐼′ → 𝐼 such that 𝑗′ = 𝑗𝑓 ,
𝜑′ = 𝜑𝑓 , 𝑢′ = 𝑢(𝑓 × 𝕀), 𝑣′ = 𝑣(𝑓 × 𝕀), coherence of diagonals fillers 𝑑𝐼,𝑖,𝜑,𝑢,𝑣 and
𝑑𝐼′,𝑖′,𝜑′,𝑢′,𝑣′ as indicated below:

□𝐼′ 𝑓×𝕀
//

[id,𝑖′]
��

□𝐼 𝑣 //

[id,𝑖]

��

𝑌

��

□𝐼′ × 𝕀 𝑓×𝕀
//

55

□𝐼 × 𝕀 𝑢 //

<<

𝑋.

We call 𝑌 → 𝑋 a cartesian fibration if it admits a fibration structure.

Using the language of extensional type theory in □̂, we may write 𝑌 as a type over 𝑋. The
above definition of a cartesian fibration structure then arises as the semantic unfolding of the set
of terms of the type

(𝑗 ∶ 𝕀) × (𝜑 ∶ Ω) × (𝑢 ∶ 𝑋𝕀) × (𝑣 ∶ (𝑖 ∶ 𝕀) → ⌜(𝑖 = 𝑗) ∨ 𝜑⌝ → 𝑌 (𝑢(𝑖)))
⊢ (𝑖 ∶ 𝕀) → ((𝑑 ∶ 𝑌 (𝑢(𝑖))) × ((𝑥 ∶ ⌜(𝑖 = 𝑗) ∨ 𝜑⌝) → 𝑑 = 𝑣(𝑖, 𝑥))),

which may be seen as justifying the above definition of cartesian fibration structure from the
syntactical point of view of cartesian cubical type theory.
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After exponential transposition and separation of the equational constraint on 𝑑, we see that
a term as above corresponds to a diagonal lift as below:

(𝑗 ∶ 𝕀) × (𝜑 ∶ Ω) × (𝑢 ∶ 𝑋𝕀) × (𝑣 ∶ (𝑖 ∶ 𝕀) → ⌜(𝑖 = 𝑗) ∨ 𝜑⌝ → 𝑌 (𝑢(𝑖))) × (𝑖 ∶ 𝕀) × ⌜(𝑖 = 𝑗) ∨ 𝜑⌝ //

��

𝑌

��

(𝑗 ∶ 𝕀) × (𝜑 ∶ Ω) × (𝑢 ∶ 𝑋𝕀) × (𝑣 ∶ (𝑖 ∶ 𝕀) → ⌜(𝑖 = 𝑗) ∨ 𝜑⌝ → 𝑌 (𝑢(𝑖))) × (𝑖 ∶ 𝕀) 𝜆(𝑗,𝜑,𝑢,𝑣𝑖).𝑢(𝑖)
//

𝑑

22

𝑋.
(1.2)

We call this the universal lifting problem for the map 𝑌 → 𝑋. It demonstrates that (as usual
in these situations), cartesian fibration structures as defined as a coherent families of diagonal
fillers are in fact in bijection with certain diagonal fillers of a single lifting problem of the same
shape.

Lemma 1.2. A map 𝑌 → 𝑋 is a cartesian fibration exactly if it lifts against all unions

𝐵 +𝐴 𝐴 × 𝕀

��

𝐵 × 𝕀
of [id, 𝑘] ∶ 𝐵 → 𝐵 × 𝕀 and 𝑚 × 𝕀 where 𝐵 ∈ □̂, 𝑘 ∶ 𝐵 → 𝕀, and 𝑚∶ 𝐴 → 𝐵 is mono.

Proof. For the direction from right to left, observe that the left map of the universal lifting
problem (1.2) is the union of [id, 𝑘] ∶ 𝐴 → 𝐴 × 𝕀 and 𝑚 × 𝕀 with

𝐴 =def (𝑗 ∶ 𝕀) × (𝑢 ∶ 𝑋𝕀) × (𝑣 ∶ (𝑖 ∶ 𝕀) → ⌜(𝑖 = 𝑗) ⌝ → 𝑌 (𝑢(𝑖))),
𝐵 =def (𝑗 ∶ 𝕀) × (𝜑 ∶ Ω) × (𝑢 ∶ 𝑋𝕀) × (𝑣 ∶ (𝑖 ∶ 𝕀) → ⌜(𝑖 = 𝑗) ∨ 𝜑⌝ → 𝑌 (𝑢(𝑖))),

𝑚(𝑗, 𝑢, 𝑣) =def (𝑗, ⊤, 𝑢, 𝑣), and 𝑘(𝑗, 𝜑, 𝑢, 𝑣) =def 𝑗.
For the direction from left to right, note that any lifting problem

𝐵 +𝐴 𝐴 × 𝕀 𝑣 //

��

𝑌

��

𝐵 × 𝕀 𝑢 // 𝑋
factors through the universal lifting problem (1.2) via the map

𝐵 → (𝑗 ∶ 𝕀) × (𝜑 ∶ Ω) × (𝑢 ∶ 𝑋𝕀) × (𝑣 ∶ (𝑖 ∶ 𝕀) → ⌜(𝑖 = 𝑗) ∨ 𝜑⌝ → 𝑌 (𝑢(𝑖)))
sending 𝑏 to (𝑘(𝑏), 𝑚−1(𝑏), 𝜆𝑖.𝑢(𝑏, 𝑖), 𝜆𝑖.[𝜆𝑝.𝑣(𝜏1(𝑏)), 𝜆𝑥.𝑣(𝜏2(𝑏))]). □

Let 𝑑 be the unit of the adjunction 𝕀! ⊣ 𝕀∗ at the terminal object, i.e. the diagonal 𝕀 → 𝕀 × 𝕀
seen as a map in □̂/𝕀 as below:

𝕀 ⟨id,id⟩
//

id
��
<<

<<
<<

<<
𝕀 × 𝕀

𝜋1
}}||
||
||
||
|

𝕀.
Lemma 1.3. Consider a monomorphism 𝑚∶ 𝐴 → 𝐵, a map 𝑘 ∶ 𝐵 → 𝕀, and a map 𝑝 ∶ 𝑌 → 𝑋
in □̂. The following are equivalent:

(i) the map 𝐵 +𝐴 𝐴 × 𝕀 → 𝐵 × 𝕀 of Lemma 1.2 lifts against 𝑝,
(ii) the pushout product 𝑚 ×̂ 𝑑 lifts against the image 𝕀∗𝑝 of 𝑌 → 𝑋 in □̂/𝕀,

(iii) the mono 𝑚 lifts against the pullback exponential ̂exp(𝑑, 𝕀∗𝑝) in □̂/𝕀.
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Proof. The pushout product 𝑚 ×̂ 𝑑 in □̂/𝕀 evaluates to the dotted map in

(𝐴, 𝑘′) ⟨id,𝑘′⟩
//

𝑚
��

(𝐴 × 𝕀, 𝑘′𝜋1)

��
𝑚×𝐴

��

(𝐵, 𝑘) //

⟨id,𝑘⟩ //

∙
𝑚×̂𝑑

''

(𝐵 × 𝕀, 𝑘𝜋1).
By adjunction, lifting problems of 𝑚 ×̂ 𝑑 against 𝐼∗𝑝 correspond to lifting problems from the
underlying map of 𝑚 ×̂ 𝑑 against 𝑝. Since 𝕀! creates pushouts, we see from the above diagram
that the underlying map of 𝑚 ×̂ 𝑑 is precisely the map 𝐵 +𝐴 𝐴 × 𝕀 of Lemma 1.2 induced by
𝑚∶ 𝐴 → 𝐵 and 𝑘 ∶ 𝐵 → 𝕀. This shows the equivalence between (i) and (ii).

The equivalence between (ii) and (iii) is standard Leibniz adjunction nonsense. □

A map in □̂ (and its slices) is called a trivial fibration if it lifts against all monomorphisms.

Corollary 1.4. A map 𝑌 → 𝑋 is a cartesian fibration exactly if ̂exp(𝑑, 𝕀∗𝑝) is a trivial fibration
in □̂/𝕀. □

Corollary 1.5. In the condition of Lemma 1.2, it suffices to restrict to the case where 𝑚∶ 𝐴 → 𝐵
is a map 𝜕([1]𝐼)/𝐺 → □𝐼/𝐺 of the cellular model. □

We write ℱ for the class of cartesian fibrations.

Corollary 1.6. The wfs ( ℱ⋔ , ℱ) is cofibrantly generated. □

1.3. Model structures. Let ℳ denote the class of all monomorphisms. The existence of fibrant
dependent products and a fibrant universe for cartesian fibrations gives us a model structure
(ℳ, 𝒲, ℱ) for a certain class of weak equivalences 𝒲. By Corollary 1.6, this is a Cisinski model
structure. Using Cisinski’s methods, we can also generate this model structure from the interval
object 𝕀 and the class of anodyne extensions ℱ⋔ ; this will give the same cofibrations and fibrant
objects, by Joyal’s argument hence be the same model structure, also showing it to be complete
in Cisinski’s sense.

Let (ℳ, 𝒲min, ℱmin) denote the minimal Cisinski model structure on the interval object 𝕀
(with anodyne extensions generated by {𝛿0, 𝛿1} ×̂ ℳ). Note that ℱ ⊆ ℱmin, hence 𝒲min ⊆ 𝒲.

Lemma 1.7. We have ℳ ∩ 𝒲 ⊆ 𝒲min.

Proof. Recall from Lemma 1.3 that ℳ∩𝒲 is generated by 𝕀!(𝑚×̂𝑑) with 𝑚 mono in □̂/𝕀. It will
thus suffice to show that (the underlying map of) 𝑚×̂𝑑 belongs to 𝒲min. This follows from closure
of ℳ ∩ 𝒲min under pushout and 2-out-of-3 for 𝒲min if we can show that the monomorphism
𝑋 × 𝑑 belongs to 𝒲min for 𝑋 ∈ □̂/𝕀. Note that 𝑑 has a section 𝜋1 ∶ (𝕀 × 𝕀, 𝜋1) → (𝕀, id). By
2-out-of-3, it will suffice to show that 𝑋 × 𝜋1 ∈ 𝒲min, i.e. that 𝜋1 ∶ 𝑋 × 𝕀 → 𝑋 belongs to 𝒲min.
This is the case as it has the anydone extension 𝑋 × 𝛿0 as section. □

Corollary 1.8. We have (ℳ, 𝒲min, ℱmin) = (ℳ, 𝒲, ℱ).
Proof. Since ℳ ∩ 𝒲 ⊆ ℳ ∩ 𝒲min, we have ℱmin ⊆ ℱ, i.e. ℱmin = ℱ. Since the classes of
cofibrations and fibrations coincide, the model structures must be equal. □

In particular, the minimal Cisinski model structure on the interval object 𝕀 is complete in
Cisinski’s sense.
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