
FROM FIBRATIONS IN SEMISIMPLICIAL SETS
TO UNIFORM FIBRATIONS IN SYMMETRIC SIMPLICIAL

SETS

Abstract. In this constructive note, we show that a (trivial) Kan fibration
between Kan fibrant objects with levelwise decidable equality in semisimpli-
cial sets gives rise via right Kan extension to a uniform (trivial) fibration in
(symmetric) simplicial sets.

1. Introduction

For a constructive proof of homotopy canonicity of homotopy type theory, we
desire a glueing functor valued in a constructive model. Examples of constructive
models are provided by the CCHM model construction, developed in [CCHM18]
for the particular case of de Morgan cubical sets, but having instances more gener-
ally in presheaf categories with an interval object with connections and an object
of cofibrant propositions satisfying the axioms of [OP17] in which product with
the interval preserves representables. Note that simplicial sets fail to validate these
assumptions for the standard choice of Δ1 as the interval, but only because the sim-
plex category is not closed under product with [1]. We remedy this by switching
to the symmetric simplex category, and obtain a constructive model of homotopy
type theory in symmetric simplicial sets (with the CCHM parameters of the interval
given by Δ1 and the cofibrant propositions given by decidable sieves).1 Interest-
ingly, the homotopy theory of this model does not give standard homotopy types,
but this does not appear to be an obstacle to the use of the model for homotopy
canonicity.

It remains to establish the glueing functor. As in the classical proof of homotopy
canonicity, the source model will be homotopical semisimplicial diagrams in the
initial model ℳ, and the first factor of the glueing functor will be the semisimplicial
global sections functor Γ, which sends (contractible) context projections to (trivial)
Kan fibrations in semisimplicial sets. Also as before, ℳ is contextual, so Γ is
valued in Kan complexes. By a normalization argument (itself proceeding via a
glueing construction), equality of morphisms in ℳ is decidable. This implies that
Γ is valued in semisimplicial sets with levelwise decidable equality. With these
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1This is equivalent to the CCHM model in Boolean cubical sets.
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observations, we construct the remaining part of the glueing functor as follows:

(trivial) fibration between fibrant
objects with levelwise decidable

equality_
Propositions 3.3 and 3.4
��

Semisimplicial sets

Ran
��

degeneracy-uniform (trivial) fibration
_

Propositions 3.5 and 3.7
��

Simplicial sets

uniform (trivial) fibration
_

Propositions 3.8 and 3.9
��

Simplicial sets

Ran
��

uniform (trivial) fibration Symmetric simplicial sets

The main subtlety lies in the first step. Intuitively, a degeneracy-uniform fibra-
tion in simplicial sets is a map with specified lifts against horn inclusions that are
degenerate whenever the lifting problem allows it. As already used in the classical
homotopy canonicity proof, a fibration 𝑌 → 𝑋 between fibrant objects in semisim-
plicial sets gives rise to a fibration 𝑖∗𝑌 → 𝑖∗𝑋 in simplicial sets via right Kan
extension along the inclusion 𝑖 ∶ Δ+ → Δ from the semisimplex to the simplex cat-
egory. In order to convert this to a degeneracy-uniform fibration, one would like to
perform case distinction in a given lifting problem of Λ𝑛

𝑘 → Δ𝑛 against 𝑖∗𝑌 → 𝑖∗𝑋
on whether a degenerate lift is possible and use it if the answer is positive. This in-
volves testing a finite number of elements of 𝑖∗𝑋 and 𝑖∗𝑌 for degeneracy. However,
transposing this to semisimplicial sets, an 𝑛-simplex of 𝑖∗𝑋 consists of a countably
infinite family of elements of 𝑋 indexed over Δ+ ↓ [𝑛], and even with the assump-
tion that 𝑋 has levelwise decidable equality we cannot in general test if such a
family factors via Δ+ ↓ [𝑛] → Δ+ ↓ [𝑘] for a degeneracy map [𝑛] → [𝑘].

The solution lies in the realization that the transposed diagonal filler 𝑖∗Δ𝑛 → 𝑌 is
similarly a countably infinite family of elements of 𝑌 . Decomposing 𝑖∗Λ𝑛

𝑘 → 𝑖∗Δ𝑛

into a countably infinite sequence of maps with finite complement that each lift
against fibrations between fibrant objects, we construct the diagonal filler step by
step, at each stage making a case distinction testing if the truncation to some finite
dimension of the original lifting problem in semisimplicial sets admits a degenerate
lift, and if so, use it. In this fashion, the degeneracy check (which in total involves
infinitely many equality checks) is interleaved in a corecursive fashion with the
construction of the diagonal filler.

2. Preliminaries

An injection 𝐴 → 𝐵 is decidable if it is complemented, i.e. there is 𝐴 → 𝐵 such
that 𝐴 + 𝐴 → 𝐵 is iso. A set 𝐴 has decidable equality if the diagonal inclusion
𝐴 → 𝐴 × 𝐴 is decidable.

Two objects in a category with maps back and forth between them are logically
equivalent.

Given a category 𝒞, we write 𝒞 for the category of presheaves over 𝒞. Given a
functor 𝐹 ∶ 𝒞 → 𝒟, we have an adjoint triple

𝒞

𝐹!

""

𝐹∗

==⊥

⊥
𝒟𝐹 ∗oo
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where 𝐹 ∗ denotes restriction along 𝐹 .
We use the algebraic lifting notation of [Gar09]. Given a category 𝒞 with a

category 𝑢∶ 𝐼 → 𝒞→ of arrows in 𝒞, we write 𝐼⋔ for the category of maps 𝑝 ∈ 𝒞→

equipped with a right lifting operation 𝐼 ⋔ 𝑝, i.e. a family of lifts
∙ //

𝑢(𝑖)
��

∙
𝑝
��∙ //

??

∙
against arrows given by 𝑖 ∈ 𝐼 such that the provided lifts are coherent with respect
to the morphisms of 𝐼 . In the special case that 𝐼 is discrete, we obtain a category
𝐼⋔ of maps in 𝒞 equipped with lifts against the family of arrows 𝐼 . We stress that,
in contrast to the classical use in homotopy theory of 𝐼⋔ as a subclass of maps of 𝒞
with a lifting property, the objects of 𝐼⋔ include the lifts as data. All our notions of
fibrations are defined using the algebraic right lifting closure operation, hence for
us being a fibration is always structure on the underlying map rather than just a
property. Whenever we write that some map is a fibration, we mean that we have
a fibration structure on that map. With this convention, there will never be any
need for non-constructive choice in our development.

2.1. Simplicial sets. We write Δ for the simplex category, a skeleton of the cat-
egory of non-empty finite total orders. The objects of Δ are written [𝑛] = {0 <
… < 𝑛} for 𝑛 ≥ 0. The category of simplicial sets is Δ̂. The representable on [𝑛]
is written Δ𝑛. We have the familiar Reedy factorization system of face maps and
degeneracy maps on Δ; this makes Δ into an elegant Reedy category [BR13].

Given 𝑛 ∈ {0, 1, …, ∞}, we write Sk𝑛 for the skeleton idempotent comonad,
taken to be the identity for 𝑛 = ∞. We also use this notation for the skeleton in
semisimplicial sets and symmetric simplicial sets below.

2.1.1. (Trivial) fibrations. Let 𝐼 be the set of boundary inclusions 𝜕Δ𝑛 → Δ𝑛. A
trivial fibration is an element of 𝐼⋔. Let 𝐽 be the set of horn inclusions Λ𝑛

𝑘 → Δ𝑛.
A fibration is an element of 𝐽⋔.

2.1.2. Uniform (trivial) fibrations. Let 𝐼uniform be the subcategory of arrows whose
objects are levelwise decidable inclusions into a representable and whose morphisms
are pullback squares. A uniform trivial fibration is an element of 𝐼⋔

uniform. Let

𝐽uniform = {{𝑘} ↪ Δ1 ∣ 𝑘 = 0, 1} ×̂ 𝐼uniform.
A uniform fibration is an element of 𝐽⋔

uniform.
Let ℳdec be the subcategory of levelwise decidable inclusions. Then the set of

uniform trivial fibration structures on a map 𝑝 is logically equivalent to ℳdec ⋔ 𝑝,
and similarly the set of uniform fibration structures on 𝑝 is logically equivalent to
{{𝑘} ↪ Δ1 ∣ 𝑘 = 0, 1} ×̂ ℳdec ⋔ 𝑝 (see for example [GS17]).

2.1.3. Degeneracy-uniform (trivial) fibrations. Let 𝐼deg be the subcategory of ar-
rows whose objects are boundary inclusions 𝜕Δ𝑛 → Δ𝑛 and identities Δ𝑛 → Δ𝑛

and whose non-identity morphisms are of the form

𝜕Δ𝑛 //

��

Δ𝑚

id
��

Δ𝑛 deg.
// Δ𝑚

where the bottom map is a non-invertible degeneracy map. A degeneracy-uniform
trivial fibration is an element of 𝐼⋔

deg. Let 𝐽deg be the subcategory of arrows whose
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objects are horn inclusions Λ𝑛
𝑘 → Δ𝑛 and identities Δ𝑛 → Δ𝑛 and whose non-

identity morphisms are of the form

Λ𝑛
𝑘 //

��

Δ𝑚

id
��

Δ𝑛 deg.
// Δ𝑚

where the bottom map is a non-invertible degeneracy map. A degeneracy-uniform
fibration is an element of 𝐽⋔

deg. Note that a degeneracy-uniform (trivial) fibration is
a (trivial) fibration that satisfies additional properties on the given lifts. Also note
that the top map in the above two diagrams is epi.

2.2. Semisimplicial sets. We write Δ+ for the semisimplex category, the wide
subcategory of Δ of monomorphisms. The category of semisimplicial sets is Δ̂+.
We write 𝑖 ∶ Δ+ → Δ for the evident inclusion.

A semisimplicial set 𝐴 is called finite if its set of elements is finite. In that case,
its dimension is the maximal 𝑛 such that 𝐴𝑛 is inhabited (or −1 if none is).

Let 𝐼 be the set of boundary inclusions 𝜕Δ𝑛 → Δ𝑛. A trivial fibration is an
element of 𝐼⋔. Let 𝐽 be the set of horn inclusions Λ𝑛

𝑘 → Δ𝑛. A fibration is an
element of 𝐽⋔. Note that 𝐼 = 𝑖!𝐼 and 𝐽 = 𝑖!𝐽 , so 𝑖∗ preserves (trivial) fibrations.

2.3. Symmetric simplicial sets. We write Δsym for the symmetric simplex cat-
egory, a skeleton of the category of non-empty finite sets. The objects of Δsym are
written [𝑛] = {0, …, 𝑛} for 𝑛 ≥ 0. The category of symmetric simplicial sets is Δ̂sym.
The representable on [𝑛] is written Δ𝑛.

We have an evident inclusion 𝑗 ∶ Δ → Δsym that forgets the ordering of a non-
empty finite total order. Note that 𝑗∗Δ𝑛 is 0-coskeletal on points 0, …, 𝑛. Following
standard convention, we also denote it 𝐸[𝑛].

Uniform (trivial) fibrations in symmetric simplicial sets are defined just as in
simplicial sets. In detail, let 𝐼uniform be the subcategory of arrows whose objects
are levelwise decidable inclusions into a representable and whose morphisms are
pullback squares. A uniform trivial fibration is an element of 𝐼⋔

uniform. Let

𝐽uniform = {{𝑘} ↪ Δ1 ∣ 𝑘 = 0, 1} ×̂ 𝐼uniform.
A uniform fibration is an element of 𝐽⋔

uniform.
Let ℳdec be the subcategory of levelwise decidable inclusions. As for simplicial

sets, uniform trivial fibration structures on a map 𝑝 are logically equivalent to
ℳdec ⋔ 𝑝, and uniform fibration structures on 𝑝 are logically equivalent to {{𝑘} ↪
Δ1 ∣ 𝑘 = 0, 1} ×̂ ℳdec ⋔ 𝑝.

3. Statements

Lemma 3.1. For 𝑛 ≥ 0, the map 𝑖∗𝜕Δ𝑛 → 𝑖∗Δ𝑛 is a relative cell complex of height
𝜔 of maps, between finite semisimplicial sets, that lift against trivial fibrations.

Proof. The map in question is levelwise a decidable inclusion and its target 𝑖∗Δ𝑛

has finitely many elements at every level. Thus, the map presents as a relative cell
complex of countably many boundary inclusions. □

Lemma 3.2. For 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛, the map 𝑖∗Λ𝑛
𝑘 → 𝑖∗Δ𝑛 is a relative cell

complex of height 𝜔 of maps, between finite semisimplicial sets, that lift against
fibrations between fibrant objects.
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Proof. Given 𝑓 ∶ [𝑚] → [𝑛], let 𝐴𝑓 denote the subobject of 𝑖∗Δ𝑛 given by the union
of 𝑖∗Λ𝑛

𝑘 with the image of 𝑓 ∶ Δ𝑚 → 𝑖∗Δ𝑛. This defines a diagram 𝐴 of subobjects
of 𝑖∗Δ𝑛 over 𝑖∗Λ𝑛

𝑘 indexed over Δ+ ↓ [𝑛]. Let 𝒞 be the full subcategory of Δ+ ↓ [𝑛]
on those objects 𝑓 ∶ [𝑚] → [𝑛] for which 𝑓−1(𝑘) is of odd cardinality. Note that 𝒞
inherits from Δ+ the structure of a direct category of height 𝜔 and has finite width
(finitely many objects of each degree). Using standard Reedy technology, our goal
will thus be proven once we verify that the latching object inclusions

𝐿𝑓(𝐴|𝒞) → 𝐴𝑓 (3.1)
for 𝑓 ∈ 𝒞 are pushouts of maps, between finite semisimplicial sets, that lift against
fibrations between fibrant objects.

Let 𝑓 ∈ 𝒞 with 𝑓 ∶ [𝑚] → [𝑛]. In the augmented simplex category, we have
a unique decomposition 𝑓 = 𝑔1 ⋆ ! ⋆ 𝑔2 with 𝑔1 ∶ [𝑛1] → [𝑘 − 1], ! ∶ [𝑣] → [0],
𝑔2 ∶ [𝑛2] → [𝑛 − 𝑘 − 1] where 𝑣 is even. We may suppose 𝑔1 and 𝑔2 are epi for
otherwise the inclusion 𝑖∗Λ𝑛

𝑘 → 𝐴𝑓 is invertible and hence so is (3.1). By in-
specting which elements of 𝑖∗Δ𝑛 are present in 𝐴𝑓 but not in 𝐿𝑓(𝐴|𝒞), we observe
that (3.1) is a pushout of the map ℎ given by the pushout join, computed in aug-
mented semisimplicial sets, of 𝜕Δ𝑛1 → Δ𝑛1 , Sk𝑣(1) → Sk𝑣−2(1), and 𝜕Δ𝑛2 → Δ𝑛2 .
Observe that ℎ has finite source and target.

• If 𝑣 = 0, then ℎ is the horn inclusion Λ𝑚
𝑛1

→ Δ𝑚, thus lifts against fibrations
by definition.

• If 𝑣 ≠ 0, we may describe ℎ as the pushout join in semisimplicial sets
of 𝜕Δ𝑛1 → Δ𝑛1 , Sk𝑣(1) → Sk𝑣−2(1), and 𝜕Δ𝑛2 → Δ𝑛2 where the first
and last argument is omitted if 𝑛1 = −1 or 𝑛2 = −1, respectively. We
now work with cofibrations and weak equivalences in semisimplicial sets as
in [Sat18]. Clearly Sk𝑣(1) → Sk𝑣−2(1) is a cofibration. Since 𝑣 is even, it is
a weak equivalence by [Sat18, Lemma 3.62]. By the second part of [Sat18,
Corollary 3.51], the pushout join ℎ is then also a cofibration and weak equiv-
alence, By [Sat18, Corollary 3.26], it then lifts against fibrations between
fibrant objects. □

Proposition 3.3. Let 𝑌 → 𝑋 be a trivial fibration in semisimplicial sets between
objects with levelwise decidable equality. Then 𝑖∗𝑌 → 𝑖∗𝑋 is a degeneracy-uniform
trivial fibration in simplicial sets.

Proof. Under the adjunction 𝑖∗ ⊣ 𝑖∗, we have to construct a diagonal filler in any
commuting square

𝑖∗𝜕Δ𝑛 //

��

𝑌

��

𝑖∗Δ𝑛 //

;;

𝑋
(3.2)

as indicated such that whenever the horizontal maps factor as in

𝑖∗𝜕Δ𝑛 //

��

𝑖∗Δ𝑘 //

��

𝑌

��

𝑖∗Δ𝑛 //

55

𝑖∗Δ𝑘 //

=={{{{{{{{
𝑋

(3.3)

for a non-identity degeneracy maps 𝑠∶ [𝑛] → [𝑘], the constructed filler coheres with
the trivial filler in the right square.

Let 𝐿𝑛Δ denote the latching category of Δ at level 𝑛, the full subcategory of
Δ\[𝑛] restricted to non-invertible degeneracy maps [𝑛] → [𝑘]. Note that 𝐿𝑛Δ forms
a finite poset (of quotient maps) and has binary coproducts, which are computed
as pushouts of spans of degeneracy maps in Δ and preserved by Yoneda.
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Given 𝑚 ∈ {0, 1, …, ∞} and 𝑠∶ [𝑛] → [𝑘] in 𝐿𝑛Δ, we say that 𝑠 witnesses de-
generacy at level 𝑚 if the given lifting problem (3.2) with left map restricted to
𝑚-skeleta factors as follows:

Sk𝑚(𝑖∗𝜕Δ𝑛) ))

epi
//

��

Sk𝑚(𝑖∗Δ𝑘) //

≃
��

𝑌

��

Sk𝑚(𝑖∗Δ𝑛) 55
epi

// Sk𝑚(𝑖∗Δ𝑘) // 𝑋.

(3.4)

Those 𝑠∶ [𝑛] → [𝑘] witnessing degeneracy at level 𝑚 form a finite subposet of 𝐿𝑛Δ.
Observe that it is downwards closed. We say there is degeneracy at level 𝑚 if it is
inhabited. Note that if there is degeneracy at level 𝑚, then also at all lower levels.

Note that for a pushout

[𝑛] //

��

[𝑘1]

��

[𝑘2] // [𝑘3]
_�

(3.5)

of a span of non-invertible degeneracy maps in Δ, the induced square

𝜕Δ𝑛 //

��

Δ𝑘1

��

Δ𝑘2 // Δ𝑘3

_�
(3.6)

of epimorphisms in simplicial sets is also a pushout (just observe that the skeleton
functor Sk𝑛−1 in simplicial sets preserves pushouts). Since Sk𝑚 and 𝑖∗ preserve
pushouts, the subposet of objects of 𝐿𝑛Δ witnessing degeneracy at level 𝑚 is thus
closed under binary coproducts. If it is inhabited, it hence is connected. If there is
degeneracy at level 𝑚, we then obtain from invertibility of the middle vertical map
in (3.4) a diagonal filler

Sk𝑚(𝑖∗𝜕Δ𝑛) //

��

𝑌

��

Sk𝑚(𝑖∗Δ𝑛) //

::

𝑋.

(3.7)

that does not depend on the choice of witnessing degeneracy 𝑠. Furthermore, this
diagonal filler coheres with the corresponding one at any level lower than 𝑚 (in
particular also with the solid composite diagonal filler in the situation of (3.3)).

For 𝑚 ≥ 0 not ∞, note that Sk𝑚(𝑖∗Δ𝑛) and Sk𝑚(𝑖∗𝜕Δ𝑛) are finite. Since 𝑋 and
𝑌 have levelwise decidable equality by assumption, the factorization problem (3.4)
is decidable for any 𝑠 in 𝐿𝑛Δ. Since 𝐿𝑛Δ is finite, degeneracy at level 𝑚 is decidable.

As per Lemma 3.1, let

𝐴0 // 𝐴1 // …

be a presentation of the left map in (3.2) an 𝜔-cell complex of maps 𝐴𝑖 → 𝐴𝑖+1 that
are pushouts of maps 𝑆𝑖 → 𝑇𝑖, between finite semisimplicial sets, that lift against
trivial fibrations. Let 𝑣(𝑖) denote the maximal dimension of 𝑇0, …, 𝑇𝑖−1 (and −1 if
𝑖 = 0). By induction on 𝑖 ≥ 0, we construct a family of maps 𝐴𝑖 → 𝑌 fitting into
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diagrams

𝐴𝑖 //

��

𝑌

��

𝑖∗Δ𝑛 // 𝑋,

𝐴𝑗 //

��

𝑌

𝐴𝑖

??

for 𝑗 < 𝑖 such that if there is degeneracy at level 𝑚 ≥ 𝑣(𝑖), then the diagram

Sk𝑚(𝐴𝑖) //

��

Sk𝑚(𝑖∗Δ𝑛)

��

𝐴𝑖 // 𝑌

(3.8)

(with right map given by the diagonal filler of (3.7)) commutes; we call the latter
condition degeneracy-uniformity at stage 𝑖.

The base case 𝑖 = 0 is given by the top map of (3.2) with degeneracy-uniformity
given by the upper left triangle of (3.7). In the induction step, we have to produce
a diagonal filler

𝑆𝑖 //

��

𝐴𝑖 //

��

𝑌

��

𝑇𝑖 //

66

𝐴𝑖+1 //

_�
𝑋

(3.9)

such that the induced map 𝐴𝑖+1 → 𝑌 satisfies degeneracy-uniformity at stage 𝑖+1.
We test for degeneracy at level 𝑣(𝑖 + 1). If there is none, we construct the diagonal
filler in (3.9) using the provided lift of 𝑆𝑖 → 𝑇𝑖 against the trivial fibration 𝑌 → 𝑋,
and degeneracy-uniformity holds vacuously. If there is, we define the diagonal filler
in (3.9) as the composite

𝑇𝑖 // Sk𝑣(𝑖+1)(𝑖∗Δ𝑛) // 𝑌 .

The upper triangle in (3.9) commutes by degeneracy-uniformity (3.8) at stage 𝑖
with 𝑚 = 𝑣(𝑖 + 1). The lower triangle in (3.9) commutes by the lower triangle
of (3.7). Verifying degeneracy-uniformity at stage 𝑖 + 1 and level 𝑚 ≥ 𝑣(𝑖 + 1),
we use the presentation of Sk𝑚(𝐴𝑖+1) as a pushout of Sk𝑚(𝐴𝑖) and 𝑇𝑖 to reduce
the claim for the first coprojection to degeneracy-uniformity at stage 𝑖 and level
𝑚 ≥ 𝑣(𝑖) and for the second coprojection to the remark after (3.7) on coherence of
that diagonal filler between different levels.

The family of maps 𝐴𝑖 → 𝑌 finally assembles to a diagonal filler in (3.2). For
degeneracy-uniformity, we observe that coherence of diagonal fillers in the situation
of (3.3) (where we have degeneracy at level 𝑚 = ∞) restricted to 𝐴𝑖 of is precisely
the degeneracy-uniformity condition at stage 𝑖 and level 𝑚 = ∞. □

Proposition 3.4. Let 𝑌 → 𝑋 be a fibration in semisimplicial sets between fibrant
objects with levelwise decidable equality. Then 𝑖∗𝑌 → 𝑖∗𝑋 is a degeneracy-uniform
fibration in simplicial sets.

Proof. This is a verbatim copy of the proof of Proposition 3.3 with the following
modifications.

• We lift against a horn Λ𝑛
𝑡 → Δ𝑛 instead of a boundary inclusion 𝜕Δ𝑛 → Δ𝑛.

• The use of Lemma 3.1 is replaced by a use of Lemma 3.2, making use of
the extra assumption that 𝑋 and 𝑌 are fibrant.
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• For a non-invertible degeneracy map 𝑠∶ [𝑛] → [𝑘], the induced map Λ𝑛
𝑡 →

Δ𝑘 is epi since 𝑠 has at least two face map sections and there is only one
face missing in Λ𝑛

𝑡 .
• We argue manually that the square

Λ𝑛
𝑡 //

��

Δ𝑘1

��

Δ𝑘2 // Δ𝑘3

_�

replacing (3.6) is a pushout in the situation of the pushout (3.5) of a span of
non-invertible degeneracy maps. [Do more abstractly or cite.] By pushout
pasting, it suffices to show this when [𝑛] → [𝑘1] and [𝑛] → [𝑘2] are gen-
erating degeneracies 𝑠𝑎 and 𝑠𝑏, respectively. The case 𝑎 = 𝑏 is trivial, so
let us without loss of generality suppose 𝑎 < 𝑏. Reducing the claim to the
pushout square given by Yoneda applied to (3.5). we need to show that the
simplicial equivalence relation ∼ on Δ𝑘1 + Δ𝑘2 generated by

𝜏1(𝑠𝑎𝑑𝑖) ∼ 𝜏2(𝑠𝑏𝑑𝑖) (3.10)
for 𝑑𝑖 ∶ [𝑛 − 1] → [𝑛] with 𝑖 ≠ 𝑡 already identifies 𝜏1(𝑠𝑎) and 𝜏2(𝑠𝑏). Pick
𝑏′ ∈ {𝑏, 𝑏 + 1} different from 𝑡. We have

𝜏1(𝑠𝑎) = 𝜏1(𝑠𝑎𝑑𝑎𝑠𝑎) ∼ 𝜏2(𝑠𝑏𝑑𝑎𝑠𝑎)
= 𝜏2(𝑠𝑏𝑑𝑎𝑠𝑎𝑑𝑏′𝑠𝑏) ∼ 𝜏1(𝑠𝑎𝑑𝑎𝑠𝑎𝑑𝑏′𝑠𝑏)

= 𝜏1(𝑠𝑎𝑑𝑏′𝑠𝑏) ∼ 𝜏2(𝑠𝑏𝑑𝑏′𝑠𝑏) = 𝜏2(𝑠𝑏)
using (3.10) for 𝑖 = 𝑎, 𝑏′. This derives 𝜏1(𝑠𝑎) ∼ 𝜏2(𝑠𝑏) in case 𝑡 ≠ 𝑎.
Under the symmetry (−)op ∶ Δ → Δ, we obtain an analogous derivation of
𝜏1(𝑠𝑎) ∼ 𝜏2(𝑠𝑏) in case 𝑡 ≠ 𝑏 + 1. Together, this covers all cases. □

Proposition 3.5. In simplicial sets, given a degeneracy-uniform trivial fibration
𝑌 → 𝑋, we have a uniform trivial fibration structure on 𝑌 → 𝑋.

Proof. Present 𝑌 as a presheaf over ∫ 𝑋. The given degeneracy-uniform trivial
fibration structure consists of an operation 𝑞(𝑥, 𝑦) ∈ 𝑌 (𝑥) for 𝑥 ∈ 𝑋𝑛 and a coherent
family 𝑦𝑓 ∈ 𝑌 (𝑥𝑓) for 𝑓 ∶ [𝑘] → [𝑛] non-surjective such that 𝑞(𝑥, 𝑦)𝑓 = 𝑦𝑓 for 𝑓 as
before that additionally for 𝑠∶ [𝑛′] → [𝑛] a non-invertible degeneracy map satisfies
𝑞(𝑥𝑠, 𝑦′) = 𝑦𝑠 where 𝑥 ∈ 𝑋𝑛, 𝑦 ∈ 𝑌 (𝑥), and 𝑦′

𝑓 = 𝑦𝑠𝑓 for 𝑓 ∶ [𝑘′] → [𝑛′] non-
surjective.

Fixing 𝑛, note that the category of non-surjective 𝑓 ∶ [𝑘] → [𝑛] has a final full
subcategory consisting of non-identity face maps 𝑑 ∶ [𝑘] → [𝑛]. We may thus equiv-
alently take the family 𝑦 in 𝑞(𝑥, 𝑦) to just be indexed over the latter category.

It will suffice to lift 𝑌 → 𝑋 to an object of ℳ⋔
dec. For this, we need to solve a

lifting problem
𝐴 𝑦

//

��

𝑌

��

𝐵 𝑥 //

̄𝑞
>>

𝑋

(3.11)

where the left map is levelwise a decidable inclusion. We define ̄𝑞(𝑏) ∈ 𝑋𝑛 for
𝑏 ∈ 𝐵𝑛 by induction on 𝑛 ≥ 0. If 𝑏 lies in 𝐴𝑛, we let ̄𝑞(𝑏) = 𝑦(𝑏𝑛). Otherwise, let

̄𝑞(𝑏) = 𝑞(𝑥(𝑏), 𝑦) where 𝑦𝑑 = ̄𝑞(𝑏𝑑) for 𝑑 ∶ [𝑘] → [𝑛] non-identity face map.
This defines levelwise maps forming a diagonal filler in (3.11). Note that ̄𝑞 is

natural with respect to face maps by construction. It remains to check naturality
with respect to a degeneracy map 𝑠∶ [𝑛′] → [𝑛]. This is proven by induction on
𝑛′. Given 𝑏 ∈ 𝐵𝑛, the goal ̄𝑞(𝑏𝑠) = ̄𝑞(𝑏)𝑠 unfolds to 𝑞(𝑥(𝑏𝑠), 𝑦) = ̄𝑞(𝑏)𝑠 where
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𝑦𝑓′ = ̄𝑞(𝑏𝑠𝑑′) for 𝑑′ ∶ [𝑘′] → [𝑛′] non-surjective face map. It remains to show
̄𝑞(𝑏𝑠𝑑′) = ̄𝑞(𝑏)𝑠𝑑′ for then the goal follows from degeneracy-uniformity of 𝑞. For

this, we consider the Reedy factorization 𝑠𝑑′ = 𝑑𝑠′ and use naturality of 𝑞 with
respect to the face map 𝑑 and the degeneracy map 𝑠′, the latter given by induction
hypothesis. □

Lemma 3.6. In simplicial sets, given a degeneracy-uniform fibration 𝑌 → 𝑋 and
𝑘 ∈ {0, 1}, then the pullback exponential with {𝑘} ↪ Δ1 of 𝑌 → 𝑋 is a degeneracy-
uniform trivial fibration.

Proof. We only do the case 𝑘 = 1, the other case being analogous. We need to
produce a diagonal filler in any commuting square

{0} × Δ𝑛 ∪ Δ1 × 𝜕Δ𝑛 //

��

𝑌

��

Δ1 × Δ𝑛 //

77

𝑋

(3.12)

as indicated such that whenever the horizontal maps factor as in

{0} × Δ𝑛 ∪ Δ1 × 𝜕Δ𝑛 //

��

Δ1 × Δ𝑛′
//

��

𝑌

��

Δ1 × Δ𝑛
∆1×𝑠

//

33

Δ1 × Δ𝑛′
//

77nnnnnnnnnnnnn
𝑋

(3.13)

for a non-identity degeneracy maps 𝑠∶ [𝑛] → [𝑛′], the constructed filler coheres with
the trivial filler in the right square.

To construct the diagonal filler in (3.12), we use the standard presentation [GZ67,
IV.2.1.1] of the open prism inclusion on the left as a relative cell complex of horn
inclusions. For 0 ≤ 𝑖 ≤ 𝑛 + 1, let 𝐴𝑖 be the union of {0} × Δ𝑛 ∪ Δ1 × 𝜕Δ𝑛 with the
simplicial subset of Δ1 × Δ𝑛 consisting of all elements [𝑘] → [1] × [𝑛] whose image
consists of pairs (𝑎, 𝑏) with 𝑎 = 1 or 𝑏 < 𝑖. Then

𝐴0
� � // 𝐴1

� � // … � � // 𝐴𝑛+1 (3.14)

provides a cellular presentation of the left map in (3.12) where the step 𝐴𝑖 → 𝐴𝑖+1
is a pushout of Λ𝑛+1

𝑖+1 → Δ𝑛+1 where the relevant map Δ𝑛+1 → Δ1 × Δ𝑛 sends 𝑗
to (0, 𝑗) for 𝑗 ≤ 𝑖 and to (1, 𝑗 − 1) for 𝑗 > 𝑖. This induces the lift in (3.12) via the
given degeneracy-uniform fibration structure.

Consider now the situation of (3.13) for a non-identity degeneracy map 𝑠∶ [𝑛] →
[𝑛′]. Our goal will be to show that the diagonal filler constructed in the previous
step makes the diagram commute. With respect to the cellular presentation (3.14),
we show by induction on 𝑖 that the partial diagonal filler 𝐴𝑖 → 𝑌 factors via
Δ1 × Δ𝑛′ → 𝑌 . In the induction step, we have to show that the dotted filler

Λ𝑛+1
𝑖+1 //

��

𝐴𝑖 //

��

Δ1 × Δ𝑛′
//

��

𝑌

��

Δ𝑛+1 //

33

𝐴𝑖+1 //

_�
Δ1 × Δ𝑛′

//

;;xxxxxxxxxx
𝑋

constructed using the degeneracy-uniform fibration structure makes the diagram
commute. This follows from degeneracy-uniformity as the pasting of the left and
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middle square decomposes as

Λ𝑛+1
𝑖+1 //

��

Δ𝑛′+1 //

��

Δ1 × Δ𝑛′

��

Δ𝑛+1 ̄𝑠 // Δ𝑛′+1 𝑡 // Δ1 × Δ𝑛′

where ̄𝑠 ∶ [𝑛 + 1] → [𝑛′ + 1] is the non-identity degeneracy map sending 𝑗 with 𝑗 ≤ 𝑖
to 𝑠(𝑗) and to 𝑠(𝑗 − 1) + 1 otherwise, and 𝑡 ∶ [𝑛′ + 1] → [1] × [𝑛′] sends 𝑗′ with
𝑗′ ≤ 𝑠(𝑖) to (0, 𝑗′) and to (1, 𝑗′ − 1) otherwise. □
Proposition 3.7. In simplicial sets, given a degeneracy-uniform fibration 𝑌 → 𝑋,
we have a uniform fibration structure on 𝑌 → 𝑋.

Proof. Note that a uniform fibration structure on 𝑌 → 𝑋 coincides with uniform
trivial fibration structures on the pullback exponentials of 𝑌 → 𝑋 with {𝑘} ↪ Δ1

for 𝑘 = 0, 1. With Lemma 3.6, the claim thus reduces to Proposition 3.5. □
Proposition 3.8. Given a uniform trivial fibration 𝑌 → 𝑋 in simplicial sets, then
𝑗∗𝑌 → 𝑗∗𝑋 is a uniform trivial fibration in symmetric simplicial sets.

Proof. This follows under the adjunction 𝑗∗ ⊣ 𝑗∗ from the trivial fact that 𝑗∗ pre-
serves levelwise decidable inclusions. □
Proposition 3.9. Given a uniform fibration 𝑌 → 𝑋 in simplicial sets, then 𝑗∗𝑌 →
𝑗∗𝑋 is a uniform fibration in symmetric simplicial sets.

Proof. Given a levelwise decidable inclusion 𝐴 → 𝐵 in symmetric simplicial sets,
we have to lift the pushout product of {𝑘} ↪ Δ1 and 𝐴 → 𝐵 against 𝑗∗𝑌 → 𝑗∗𝑋
for 𝑘 = 0, 1. We only do the case 𝑘 = 1, the other case being analogous. Under
the adjunction 𝑗∗ ⊣ 𝑗∗ and using bicontinuity of 𝑗∗, the claim transposes to lifting
the pushout product of 𝑗∗{0} → 𝑗∗Δ1 and 𝑗∗𝐴 → 𝑗∗𝐵 against 𝑌 → 𝑋. Note that
𝑗∗𝐴 → 𝑗∗𝐵 is a levelwise decidable inclusion in simplicial sets.

The map 𝑗∗{0} → 𝑗∗Δ1 presents as a relative cell complex of height 𝜔 consisting
at stage 𝑛 ≥ 1 of the horn inclusion Λ𝑛

0 → Δ𝑛 where Δ𝑛 → 𝑗∗Δ1 is the map
𝑗[𝑛] → [1] sending 𝑖 to its remainder after dividing by 2. The horn Λ𝑛

0 → Δ𝑛 is a
retract of the pushout product of itself with {0} ↪ Δ1 [GZ67, IV.2.1.3] and also a
levelwise decidable inclusion. Using cocontinuity of the pushout product in its two
arguments, associativity of the pushout product, and closure of ℳdec under pushout
product, the original left map in simplicial sets thus writes as an 𝜔-composite of
maps in {𝛿0, 𝛿1} ×̂ ℳdec, each lifting against 𝑌 → 𝑋. □
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