Fibrancy of \mathcal{U} derived "on the right". We write Equiv for universe of equivalences and p_0, p_1 : Equiv $\rightarrow \mathcal{U}$ for its endpoint projections. We abbreviate $I = \Delta[1]$ and denote its endpoint inclusions $\delta_0: \{0\} \rightarrow I$ and $\delta_1: \{1\} \rightarrow I$.

From the equivalence extension property, we have that p_0 and p_1 are trivial fibrations. We want to show that \mathcal{U} is fibrant. This means to show that $[\delta_0, \mathcal{U}], [\delta_1, \mathcal{U}] : [I, \mathcal{U}] \to \mathcal{U}$ are trivial fibrations. We only deal with $[\delta_0, \mathcal{U}]$, the other case is dual.

Recall that δ_0 is a strong homotopy equivalence. This means that the map of arrows $\theta_0 \times \delta_0: \delta_0 \to \delta_0 \times \delta_0$ is split mono where $\theta_0 = (!, \delta_1): !_{0 \to 1} \to \delta_0$. Applying the functor $[-, \mathcal{U}]$, we get that the map

of arrows from the left to the right is split epi.

We have a map

$$\begin{array}{c} [I,\mathcal{U}] & \xrightarrow{c} & \mathsf{Equiv} \\ & & & \\ \langle [\delta_0,\mathcal{U}], [\delta_1,\mathcal{U}] \rangle & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$$

that converts equalities into equivalences between types. We use it to split the map of arrows (0.1) into two factors:

Since the composite morphism is split epi, so is its right factor (depicted by the right square). Since p_0 is a trivial fibration, so is $\widehat{\exp}(\delta_0, p_0)$. Since $[\delta_0, \mathcal{U}]$ is its retract, it is also a trivial fibration.