Fibrancy of \mathcal{U} derived "on the right". We write Equiv for universe of equivalences and p_{0}, p_{1} : Equiv $\rightarrow \mathcal{U}$ for its endpoint projections. We abbreviate $I=\Delta[1]$ and denote its endpoint inclusions $\delta_{0}:\{0\} \rightarrow I$ and $\delta_{1}:\{1\} \rightarrow I$.

From the equivalence extension property, we have that p_{0} and p_{1} are trivial fibrations. We want to show that \mathcal{U} is fibrant. This means to show that $\left[\delta_{0}, \mathcal{U}\right],\left[\delta_{1}, \mathcal{U}\right]:[I, \mathcal{U}] \rightarrow \mathcal{U}$ are trivial fibrations. We only deal with $\left[\delta_{0}, \mathcal{U}\right]$, the other case is dual.

Recall that δ_{0} is a strong homotopy equivalence. This means that the map of arrows $\theta_{0} \widehat{\times} \delta_{0}: \delta_{0} \rightarrow \delta_{0} \widehat{\times} \delta_{0}$ is split mono where $\theta_{0}=\left(!, \delta_{1}\right):!_{0 \rightarrow 1} \rightarrow \delta_{0}$. Applying the functor $[-, \mathcal{U}]$, we get that the map

$$
\begin{array}{cc}
{[I,[I, \mathcal{U}]] \xrightarrow{\left.\left[I,\left[\delta_{1}, \mathcal{U}\right]\right]\right]}} & {[I, \mathcal{U}]} \tag{0.1}\\
\left.\left\langle\left[\delta_{0}[I, \mathcal{U}]\right]\right],\left[I,\left[\delta_{0}, \mathcal{U}\right]\right]\right\rangle \mid \\
{[I, \mathcal{U}] \times} \\
\downarrow
\end{array}
$$

of arrows from the left to the right is split epi.
We have a map

that converts equalities into equivalences between types. We use it to split the map of arrows 0.1 into two factors:

Since the composite morphism is split epi, so is its right factor (depicted by the right square). Since p_{0} is a trivial fibration, so is $\widehat{\exp }\left(\delta_{0}, p_{0}\right)$. Since $\left[\delta_{0}, \mathcal{U}\right]$ is its retract, it is also a trivial fibration.

