Fibrancy of U derived “on the right”. We write Equiv for universe of equiva-
lences and pg, p1: Equiv — U for its endpoint projections. We abbreviate I = A[1]
and denote its endpoint inclusions dg: {0} — I and d;: {1} — I.

From the equivalence extension property, we have that py and p; are triv-
ial fibrations. We want to show that U is fibrant. This means to show that
[00,U], [61,U]: [I,U] — U are trivial fibrations. We only deal with [do,U], the
other case is dual.

Recall that Jg is a strong homotopy equivalence. This means that the map of
arrows 6y X do: 69 — 8o X 0p is split mono where 6y = (!,6,): lo_.1 — do. Applying
the functor [—, U], we get that the map
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of arrows from the left to the right is split epi.
We have a map
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that converts equalities into equivalences between types. We use it to split the map
of arrows (0.1]) into two factors:
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Since the composite morphism is split epi, so is its right factor (depicted by the
right square). Since pp is a trivial fibration, so is eéxp(do, po). Since [6g,U] is its
retract, it is also a trivial fibration.
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