
Fibrancy of universe from equivalence extension

Abstract

This expository note concerns the cartesian cubical model of type theory.1 We explain how to derive
fibrancy of the universe from the equivalence extension property in the style of working “on the right”,
that is, not explicitly looking at lifting problems against trivial cofibrations, and not using internal
languages.

1 Setting and assumptions

1.1 Local cartesian closure
For a map f : A → B, we write f! ⊣ f∗ ⊣ f∗ for the adjunctions between slices induced by f . Note
that f! ⊣ f∗ is a cartesian adjunction: both functors preserve pullbacks and the unit and counit are
cartesian. In the special case that B is the terminal object, we identify the slice over B with the
underlying category and just write A! ⊣ A∗ ⊣ A∗.

For an object I, the unit of I! ⊣ I∗ evaluated at the terminal object is called the generic element
inclusion gI : 1 → I∗I over I. Its underlying map is the diagonal I → I × I.

Lemma 1.1. The exponential action (−)gI is isomorphic to the counit of I∗ ⊣ I∗.

Proof. Passing from right to left adjoints, the claim becomes that gI ×− is isomorphic to the unit of
I! ⊣ I∗. This expresses that the unit is cartesian.

Lemma 1.2. For an object I, the following functors on arrows are naturally isomorphic:

(1) the composite of I∗, pullback exponential with gI , and I!,
(2) the composite of I∗, pullback application of the counit of I∗ ⊣ I∗, and I!,
(3) pullback application of the counit of I ×− ⊣ (−)I .

Proof. This follows formally using “Leibniz calculus”. For relating conditions (1) and (2), we use
Lemma 1.1. For relating, Conditions (2) and (3), we observe that the adjunction I × − ⊣ (−)I is the
composite of the adjunction I! ⊣ I∗ with the adjunction I∗ ⊣ I∗. The counit of I! ⊣ I∗ is cartesian, so
has trivial pullback evaluation.

1.2 Trivial fibrations
We assume trivial fibrations have been defined in the usual manner. We try to work in a manner that
treats trivial fibrations as abstractly as possible, avoiding mentions of the cofibration classifier when
possible.

Trivial fibrations are closed under the following operations:

• compositions,

• pullbacks,

• retracts,

• pushforward (f∗ for any map f : A → B)

Every trivial fibration admits a section.

1A previous shorter note applies to the connection-based cubical model.
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1.3 Fibrations
We now fix a suitable interval object I. A map p : Y → X is a fibration if the pullback exponential
with gI of I∗p is a trivial fibration. We may re-express this condition more elegantly as follows.

Lemma 1.3. Pullback evaluation of the counit of I×− ⊣ (−)I creates fibrations from trivial fibrations.

Proof. Use the isomorphism of Lemma 1.2 between conditions (1) and (3).

Spelled out, a map p : Y → X is a fibration exactly if the pullback gap map in the square

I × Y I evY //

I×pI

��

Y

p

��

I ×XI evX // X

is a trivial fibration.

Lemma 1.4. Pullback exponential with ⟨id, id⟩ : I → I × I sends fibrations to trivial fibrations.

Proof. Write ϵ̂ for the pullback evaluation of the counit of I∗ ⊣ I∗. The operation in question decom-
poses as I∗ ◦ ϵ̂ ◦ I∗. From Lemma 1.2, we know that I! ◦ ϵ̂ ◦ I∗ sends fibrations to trivial fibrations. The
claim follows since I! creates and I∗ preserves trivial fibrations.

The following statement requires diagonal cofibrations.

Lemma 1.5. Every trivial fibration is a fibration.

1.4 Homotopy equivalences
Given an object Γ, the notion of homotopy equivalence A ≃ B between fibrant objects A and B over
Γ is defined in any of a variety of equivalent ways. This is a pullback-stable notion. We recall some of
their closure properties.

Lemma 1.6. Over any object Γ:

(1) trivial fibrations are homotopy equivalences,
(2) homotopy equivalences admit inverses up to homotopy,
(3) homotopy equivalences are closed under composition.

1.5 Universe
We write p : Ũ → U for a chosen fibration. It has to have sufficient closure properties for Lemma 1.9 to
be derivable.

1.6 Equivalence classifier
We build a classifier for homotopy equivalences between fibers of p. This is a span

U Equiv
s0oo

s1 // U

that is Reedy fibrant at its summit.

Lemma 1.7 (Fragment of classifying property). Consider Γ with A0, A1 : Γ → U and a homotopy
equivalence (A0)

∗p ≃ (A1)
∗p over Γ. We have a filler as follows:

Γ
A0

||

A1

""��

U Equiv
s0
oo

s1
// U

Corollary 1.8. The relation Equiv on U is reflexive.
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Proof. Apply Lemma 1.7 with Γ = U and A0 = A1 = id and the identity homotopy equivalence.

The main technical work is hidden in the following statement. It depends on the definition of the
homotopy equivalence classifier (which may ultimately be defined in terms of a contractibility classifier).

Lemma 1.9 (Equivalence extension property). s1 is a trivial fibration.

2 Equivalence extension
The goal of this section is to prove that s1 : Equiv → U is a trivial fibration.

Here are some tools we expect to use:

• aligning for trivial fibrations and fibrations
• closure of trivial fibrations under pushforward
• switching back and forth between different representations of homotopy equivalences.

3 Fibrancy of universe
A reflexive relation Y on an object X consists of the following data:

X

r

��

id

~~

id

  

X Y
s0
oo

s1
// X.

(3.1)

Definition 3.1. Let Y be a reflexive relation on an object X. Consider the reflexive relation on I×XI

obtained by restricting the terminal relation on I. We say that Y has generalized paths if

evX : I ×XI → X

lifts to a morphism of reflexive relations.

Using the notation of (3.1), this definition unfolds to a morphism e fitting into the squares

I × I ×XI πk×XI

//

e

��

I ×XI

evX

��

Y
sk // X

(3.2)

for k = 0, 1 and

I ×XI
⟨id,id⟩×XI

//

evX

��

I × I ×XI

e

��

X
r // Y .

(3.3)

Lemma 3.2. Let Y be a reflexive relation on X (denoted as in (3.1)). If

⟨s0, s1⟩ : Y → X ×X

is a fibration, then Y has generalized paths.

Proof. A map e satisfying (3.2) and (3.3) amounts to the following diagonal filler:

I ×XI evX //

⟨id,id⟩×XI

��

X
r // Y

⟨s0,s1⟩
��

I × I ×XI

⟨π0×XI ,π1×XI⟩
//

e

22

(I ×XI)× (I ×XI)
evX×evX

// X ×X.
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The left map is the pushout product of ⟨id, id⟩ : I → I × I with 0 → XI . The right map is a fibration
by assumption. By adjointness and Lemma 1.4, this lifting is equivalent to lifting 0 → XI against a
trivial fibration. For this, we use that every trivial fibration admits a section.

Lemma 3.3. In the situation of Definition 3.1, read

Y
s0 //

s1

��

X

��

X // 1

as a horizontal morphism of arrows. Applying the functorial action of pullback evaluation of the counit
ev of the adjunction I ×− ⊣ (−)I yields a split epimorphism.

Proof. We introduce notation for the pullback evaluation of ev at s1:

I × Y I
I×(s1)

I

%%

evY

%%

êvs1

$$
P

π0 //

π1

��

I ×XI

evX

��

Y
s1 // X

The morphism of arrows in question is the solid part of the below diagram:

I ×XI
⟨π0,e⟩

//

⟨π0,evX⟩
��

I × Y I
I×(s0)

I

//

êvs1

��

I ×XI

⟨π0,evX⟩
��

I ×X
⟨I×π1,rπ1⟩

// P
⟨π0π0,s0π1⟩

// I ×X.

For the indicated section, we make use of the map e after Definition 3.1 and write (−) for the transpose
with respect to I ×− ⊣ (−)I .

• The bottom dashed map is well-defined because evX ◦ (I × π1) = π1 = s1rπ1.

• The bottom row composes to the identity because s0rπ1 = π1.

• Let us check that the top row composes to the identity:

I ×XI

π1
##

e // Y I

(s1)
I

��

XI .

This transposes to
I × I ×XI

I×π1

��

e // Y

s1

��

I ×XI evX // X,

which is (3.2) for k = 0.

• Let us check that the left square commutes after postcomposing with π0:

I ×XI e //

evX

��

Y I

(s1)
I

��

X
π1 // XI .
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This transposes to:
I × I ×XI e //

I×evX

��

Y

(s1)
I

��

I ×X
π1 // X,

which is (3.2) for k = 1.

• Let us check that the left square commutes after postcomposing with π1:

I ×XI
⟨π0,e⟩

//

evX

��

I × Y I

evY

��

X
r // Y .

This is (3.3) after substituting e = evY ◦ (I × e).

Corollary 3.4. In the situation of Definition 3.1, if s1 is a fibration, then X is fibrant.

Proof. Apply Lemmata 1.3 and 3.3 and note that trivial fibrations are closed under retract.

Corollary 3.5. Consider an object X with a reflexive relation (denoted as in (3.1)). If

⟨s0, s1⟩ : Y → X ×X,

s1 : Y → X

are fibrations, then X is fibrant.

Proof. Combine Lemma 3.2 and Corollary 3.5.

Corollary 3.6. The object U is fibrant.

Proof. Use Corollary 3.5 with Corollary 1.8 and Lemma 1.9.
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