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Abstract

We describe a language-based, dynamic information flow control (IFC) system called LIO. Our

system presents a new design point for IFC, influenced by the challenge of implementing IFC

as a Haskell library, as opposed to the more typical approach of modifying the language runtime

system. In particular, we take a coarse-grained, floating-label approach, previously used by IFC

Operating Systems, and associate a single, mutable label—the current label—with all the data in

a computation’s context. This label is always raised to reflect the reading of sensitive information

and it is used to restrict the underlying computation’s effects. To preserve the flexibility of fine-

grained systems, LIO also provides programmers with a means for associating an explicit label with

a piece of data. Interestingly, these labeled values can be used to encapsulate the results of sensitive

computations which would otherwise lead to the creeping of the current label. Unlike other language-

based systems, LIO also bounds the current label with a current clearance, providing a form of

discretionary access control that LIO programs can use to deal with covert channels. Moreover,

LIO provides programmers with mutable references and exceptions. The latter, exceptions, are used

in LIO to encode and recover from monitor failures, all while preserving data confidentiality and

integrity—this addresses a longstanding concern that dynamic IFC is inherently prone to information

leakage due to monitor failure.

1 Introduction

Information flow control (IFC) tracks the flow of data through a system and prohibits code

from operating on data in violation of a security policy. Significant research, development,

and experimental effort has been devoted to static information flow mechanisms. Static

analysis has a number of benefits, including reduced runtime overhead, fewer runtime

failures, and robustness against implicit flows (Denning & Denning, 1977). However, static

analysis in difficult to use in certain scenarios, such as web apps, where for example, users

can join (or leave) the system arbitrarily, and where the security policy may depend on

data provided by users, at runtime. For such systems, dynamic enforcement techniques are

a more natural fit; dynamic IFC systems address many of the shortcomings of static IFC

systems while retaining permissiveness.
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Dynamic IFC systems fall into roughly two categories: fine-grained and coarse-grained

enforcement. Fine-grained approaches, typically employed by language-based systems,

e.g., (Austin & Flanagan, 2009; Austin & Flanagan, 2010; Hedin & Sabelfeld, 2012;

Hriţcu et al., 2013), explicitly associate security policies—or labels—with every value.

Such systems have the benefit of giving programmers the ability to associate a particular

security policy with a particular value. Unfortunately, this also places the burden of under-

standing and specifying labels on values that are not relevant for certain tasks. Moreover,

fine-grained IFC systems are typically implemented as new (or changes to) languages or

runtimes, imposing a large start-up cost on programmers.

Coarse-grained approaches, typically employed by IFC Operating Systems (VanDeBog-

art et al., 2007; Zeldovich et al., 2006; Krohn et al., 2007), associate a single label with

every value in the context of a computation, usually a process. The advantage of such

systems is simplicity: programmers do not need to clutter code with labels and can easily

understand the security policy of any value—it is simply the label of the context. However,

this is also a downside; programmers cannot associate a particular, and heterogeneous,

security policy with a particular value. Moreover, incorporating sensitive data into a context

usually amounts to “tainting” the whole context, which can lead to the label creep problem.

Label creep occurs when the context label is tainted to a point where the computation

cannot perform any useful side-effects.

In this work, we present LIO, a language-based dynamic IFC system, implemented

as a Haskell library, that borrows ideas from both fine- and coarse-grained IFC systems.

Like coarse-grained systems, LIO associates a label—the current label—with the current

context. In particular, we define a monad, LIO, that restricts computations to a safe, IFC

sublanguage of Haskell.1 This monad keeps track of the current label, which is, in turn,

used to permit restricted access to IO functionality by executing actions in the underlying

IO monad. Like many Operating Systems (OSes), LIO is a floating-label system; the

current label is raised to allow reading of sensitive data, thereby “floating above” the labels

of all data observed by the current computation. Of course, raising a computation’s label

comes at the cost of restricting where the computation may subsequently write.

Like fine-grained systems, LIO allows code to associate explicit labels with particular

values, thus allowing applications to handle differently-labeled data in the same context.

Specifically, LIO provides a Labeled type and a value constructor label that wraps explicit

labels around values. Typically, labels are created at run time and incorporate dynamic

information such as usernames or email addresses. LIO safely allows the label of a Labeled

value to always be inspected. The wrapped value, on the other hand, can be inspected

only using unlabel, a monadic function that appropriately raises the current label before

returning the value.

Explicit unlabeling trivially addresses the problem of implicit flows endemic to fine-

grained IFC systems, where control flow constructs are (ab)used to leak sensitive in-

formation. In LIO, code cannot branch on a labeled boolean value without first calling

unlabel on the value; this ensures that the code cannot leak information via control flow.

However, label creep could still occur if code keeps unlabeling heterogeneously labeled

1 Using SafeHaskell (Terei et al., 2012) we ensure that untrusted code executes in this sublanguage.
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data. To address this problem, we introduce a function called toLabeled. This primitive

executes a computation (that may raise the current label) and restores the current label

upon its termination—i.e., it provides a separate context in which to execute the sensitive

computation. Importantly, however, the result of the computation is encapsulated as a

Labeled value—only when the (outer) computation wishes to inspect the result will the

current label be raised.

Our dynamic IFC approach makes LIO more permissive than previous static approaches

for functional languages (e.g., (Pottier & Simonet, 2002; Li & Zdancewic, 2010; Russo

et al., 2008)), while still providing similar security guarantees (Sabelfeld & Russo, 2009).

Intuitively, dynamic IFC monitors, such as LIO, are more permissive since they only reject

the run of a program if the executed code is about to violate policy. Static IFC analysis, on

the other hand, would reject a program, even if a single line of unreachable code is insecure.

But, of course static IFC analysis does not incur runtime overheard. More importantly,

static approaches also do not usually suffer from covert channel leaks, present in most

dynamic language-based IFC systems because of the typical stop-the-world semantics

(see (Myers & Liskov, 1997)). LIO addresses these limitations in several ways.

Unlike other language-based work, LIO limits the ability to leak information via covert

channels by bounding the current label of a computation with a current clearance. The

clearance of a region of code may be set to impose an upper bound on the floating current

label within the region. Hence, clearance can be understood as a discretionary access con-

trol mechanism that restricts the data that a subcomputation can access. And, by limiting

access to data on a “need to know” basis, it reduces opportunities for code to leak data

through covert channels—after all, code that cannot access sensitive data cannot leak it.

LIO furthermore addresses two limitations common to most dynamic fine-grained sys-

tems: the lack of exception handling facilities and inability to recover from IFC monitor

failures (and thus the reason for stop-the-world semantics). Laminar (Roy et al., 2009),

Breeze (Hriţcu et al., 2013), and an early, unpublished, version of LIO (Stefan et al., 2012b)

are the notable exceptions, further discussed in Section 7. Our “mostly coarse-grained”

dynamic IFC approach makes it easy to reason about leaks due to exceptional control

flow. In particular, we need only reason about exception propagation across toLabeled

blocks since the current label is only restored, or “lowered,” at these points; by treating

computations executed by toLabeled as being of a separate context, the solution becomes

clear: exceptions should not propagate outside the toLabeled block.

Equipped with exception-handling facilities, LIO encodes all IFC violations as catchable

exceptions. This has the important consequence of allowing untrusted code to recover from

IFC violations; this is in contrast to most language-level systems, which consider monitor

failures fatal and leave the program in a stuck state (which itself may leak a bit). And, in

contrast to Laminar, which also supports recovery from monitor failure (albeit in limited

form, when compared to LIO), our uniform treatment of exceptions has led to a more

flexible and permissive system (see Section 7)—as with other exceptions, LIO code can

always recover from monitor failures.

This paper extends an earlier conference version (Stefan et al., 2011b) with dynamic

exception-handling facilities, an implementation of a real-world conference review web

application called λChair, and formal proofs mechanized in the Coq theorem prover. More-

over, this paper corrects the formalism of the sequential LIO calculus to match the Haskell
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implementation; the formal semantics given in the conference version of this paper (and

our tech report presenting an alternative semantics for dynamic IFC exceptions (Stefan

et al., 2012b)) did not faithfully capture Haskell’s evaluation strategy. The contributions

of this paper are the design, formalization, and implementation of a flexible and practical

language-level dynamic IFC system. Our main contributions are as follows.

• We propose a new, mostly coarse-grained, design point for dynamic language-level

IFC in which most values in lexical scope are protected by a single, mutable, cur-

rent label. This design has the simplicity of OS-style IFC systems—e.g., because it

alleviates the need for developers to annotate the sensitivity of all objects in scope.

Instead, in LIO, programmers only associate labels with values they care about by

encapsulating them using the Label constructor. Such Labeled values are similar to

labeled values in fine-grained programming languages IFC systems, but differ in a

crucial way: our encapsulation is explicitly reflected by types in a way that prevents

implicit flows. In a similar way, our calculus and Haskell implementation provides

labeled mutable references. In contrast to the Laminar IFC system (Roy et al., 2009),

which proposed a similar mostly coarse-grained system, LIO’s mutable current label

leads to a simpler and more flexible design—since it requires fewer annotations.

• Unlike other language-based work, our IFC model provides a notion of clearance

which is used to provide a form of discretionary access control on code, i.e., it

provides a way for restricting code to only access data it “needs to know.” This

is particularly useful in eliminating the opportunity for code to leak sensitive data by

exploiting covert channels.

• We present a simple dynamic, yet safe, exception-handling mechanism and encode

IFC monitor failures using exceptions. Exceptions are crucial to making LIO a prac-

tical IFC system; real-world applications cannot “stop the world” on an IFC violation

attempt. This has been longstanding problem with dynamic IFC monitors, as high-

lighted by Myers and Liskov: “the difficulty with runtime checks is exactly the fact

that they can fail. . . failure (or its absence) can serve as a covert channel (Myers &

Liskov, 1997).”

• We prove information flow, access control, and isolation security properties of our

design. A large part of our formalization is encoded in Coq. We remark that while our

formal description of LIO is Haskell-centric, this is not a fundamental restriction—

our formalism can be generalized to other programming languages.

• We describe a Haskell implementation of the IFC calculus in Haskell. LIO can be

implemented entirely as a library, demonstrating both the applicability and simplicity

of the approach. This has the added benefit of not imposing the burden of learning a

new programming language on developers—they simply need to understand a new

API. Moreover, developers can use many existing compilers, tools, and libraries

(e.g., roughly 12,500 Haskell modules on Hackage are safe to be used in LIO).

Our library, applications built on top of it (including λChair), and Coq proofs are

available at http://labeled.io.

This paper is organized as follows. Section 2 describes the core information flow control

LIO calculus. In Sections 3–5, we extend the core with clearance, mutable references,
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and exception-handling facilities. The security guarantees of the full calculus are given in

Section 6. Related work is described in Section 7. We conclude in Section 8.

2 Core dynamic information flow control LIO calculus

IFC systems track and restrict the propagation of information according to a security

policy. The core policy enforced by LIO, and most other IFC systems, is noninterference.

Noninterference guarantees confidentiality (Goguen & Meseguer, 1982), by preventing

sensitive information from being leaked to public entities, and integrity (Biba, 1977), by

preventing unreliable information from flowing into critical operations.

In this section, we detail the core design of LIO and discuss the design trade-offs of a

library-driven, mostly coarse-grained approach using the λChair conference review system

as a driving example. In λChair, authenticated users can read any paper and can normally

read any review. This reflects the normal practice in conference reviewing where, for

example, every member of the program committee can see submissions and their reviews,

and can participate in related discussion. In λChair, users can be added dynamically and

assigned to review specific papers. Importantly, we use IFC to ensure that only assigned

reviewers can write reviews for any given paper and that committee members in conflict

with a paper cannot access the related discussions.

We incrementally describe the semantics of LIO using an extended simply-typed λ -

calculus. First, we describe a pure base calculus. This calculus is then extended with labels

(Section 2.2), labeled computations (Section 2.3), and labeled values (Section 2.4). Further

leveraging labeled values we extend the calculus with toLabeled blocks to address label

creep (Section 2.5). Finally, we extend this core with other features such as clearance,

references and exceptions (Sections 3–5).

2.1 Base calculus for pure terms

Values v ::= True | False | () | λ x.t

Terms t ::= v | x | t1 t2 | fix t | if t1 then t2 else t3

Types τ ::= Bool | () | τ1→ τ2

Fig. 1. Formal syntax for values, terms, and types.

Our semantics build on a pure,

base calculus. The formal syntax

of this base calculus is given in

Fig. 1. Syntactic categories v, t,

and τ represent values, terms,

and types, respectively. Values in-

clude primitives (Booleans True,

False; and unit ()) and functions (λ x.t). Terms constitute values (v), variables (x),

function applications (t1 t2), the standard fixpoint operator fix t, and conditionals

(if t1 then t2 else t3). Types consist of Bool, unit (), and functions τ1→ τ2.

Fig. 2 shows the reduction rules for these pure terms using structural operational seman-

tics (Winskel, 1993). The relation t1 t2 represents a single evaluation step of pure term

t1 to term t2; we say that t1 reduces to t2 in one step. We write  ∗ for the reflexive and

transitive closure of .

Substitution { t2/x} t1 is defined in the usual way, homomorphic on all operators, renam-

ing bound names to avoid capture. The reduction rules for these terms are self-explanatory

and very much the same as those of standard λ -calculus—we do not explain them further.
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APPCTX

t1 t′1

t1 t2 t′1 t2

APP

(λx.t1) t2 {t2 /x} t1

FIXCTX

t t′

fix t fix t′

FIX

fix (λx.t) {fix (λx.t)/x} t

IFCTX

t1 t′1

if t1 then t2 else t3 if t′1 then t2 else t3

IFTRUE

if True then t2 else t3 t2

IFFALSE

if False then t2 else t3 t3

Fig. 2. Semantic rules for pure terms in the base calculus.

We solely remark that our semantics does not model the sharing in lazy evaluation, as

implemented by Haskell; modeling full lazy evaluation is beyond the scope of this paper

and has no impact on our termination- and timing-insensitive security guarantees.

LIO is implemented as a domain specific language embedded in Haskell. Hence, the

typing judgements for our calculus are a subset of Haskell’s and standard. We do not

give any of the type judgements in this paper. (The interested reader can see our Coq

formalization.) Rather, we remark that LIO relies on types only to distinguish terms that

can be used to compose safe computations and those that cannot, as further discussed in

Section 2.3. Indeed, LIO can be generalized to dynamically-typed languages, as shown

in (Heule et al., 2015).

2.2 Security lattice

To enforce security policies, like most modern dynamic IFC systems, LIO associates labels

with objects. Labels encode confidentiality and integrity data policies which are propagated

alongside the information they protect. In turn, the system mandatorily enforces these

individual policies when objects are read or written.

lA ⊔ lB

lA

⊑

lB

⊒

lA ⊓ lB

⊒
⊑

Fig. 3. Simple lattice.

Labels are elements of a set L that forms a security lattice (L ,⊑,

⊓,⊔), with partial order ⊑ (pronounced “can flow to”), binary join

⊔, and binary meet ⊓ (Denning, 1976). The ⊑ relation is used by

IFC systems when governing the allowed flows between differently

labeled entities.2 For example, LIO only allows data labeled ld ∈L

to be written to a channel labeled lc ∈L if ld ⊑ lc holds true. The

binary join is used to label computation results that depend on two

objects by encoding the restrictions imposed by their labels, i.e., for

labels lA, lB ∈L , the join lA ⊔ lB is the smallest element such that lA ⊑ lA ⊔ lB and lB ⊑

lA⊔ lB. Dually, the binary meet lA⊓ lB encodes the intersection of the restrictions imposed

2 Decentralized IFC (DIFC) extends IFC with the decentralized label model of Myers and
Liskov (Myers & Liskov, 1997), in which computations execute with a set of privileges, that can
be used to loosen the restrictions imposed by the⊑ relation. LIO supports privileges and the DIFC
model in full. But, since our formalisation is limited to the system without privileges, we omit this
from the presentation and refer the interested reader to the library documentation.
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by lA and lB; the meet is primarily used when labeling objects that we expect to be read by

entities labeled lA or lB. Fig. 3 shows how information flows in a simple lattice.

In LIO, labels are typed values. But, unlike most existing IFC systems (Zeldovich et al.,

2006; Myers & Liskov, 2000; Krohn et al., 2007; Hriţcu et al., 2013), LIO is polymorphic

in the label format. We solely require that the label type provide definitions for lattice

relations ⊑, ⊔, and ⊓. In Haskell, this amounts to making the label type an instance of the

typeclass Label; all LIO library functions are qualified by Label:

class Eq L ⇒ Label L where

(⊑) ::L →L → Bool

(⊔) ::L →L →L

(⊓) ::L →L →L

As an example, consider the definition of the typical 2-point lattice L2 = {Public,Secret},

where Public ⊑ Secret and Secret 6⊑ Public:

data L2 = Public | Secret deriving (Eq,Ord)

instance Label L2 where

x ⊑ y = x6 y

x ⊔ y = max x y

x ⊓ y = min x y

Here, we simply use the Ord functions (6, min, and max), as defined by the compiler, to

define the lattice operations. Of course, in real-world applications developers can define

more complex label formats, such as the DLM (Myers & Liskov, 1997), HiStar (Zeldovich

et al., 2006), Flume (Krohn et al., 2007), or DCLabels (Stefan et al., 2011a). Since such

label definitions are typically provided by trusted code, LIO simply assumes that labels

form a lattice, i.e., we do not verify that labels form a partially ordered set with a well-

defined least upper bound and greatest lower bound. However, in certain cases, static

analysis (e.g., in the form of refinement types (Rondon et al., 2008)) can be used to verify

that provided definitions are well-defined.

Values v ::= · · · | l | c

Terms t ::= · · · | t1 ⊔ t2 | t1 ⊓ t2 | t1 ⊑ t2

Types τ ::= · · · |L

Fig. 4. Formal syntax for labels and their operations.

To model labels, we extend our

calculus to make labels first-class.

Instead of modeling typeclasses, for

simplicity, we assume that our calcu-

lus is polymorphic in the label type

L . With this in mind, we extend the

syntactic categories of Fig. 1 as shown

on the right (Fig. 4). Here, values are extended with labels—metavariables l and c span over

such values; types are extended with the label type L ; and, terms are extended with label

operations.

The reduction rules for these label operations are straightforward and given in Fig. 5.

The rules for the label operations ⊔, ⊓, and ⊑ rely on the label-specific implementation

of these operators, as used in the premise of rule (LOP); we use the partial function J·KL ,

which maps terms to values, to denote this. For example, instantiating our calculus to

L2, JPublic ⊔ SecretKL2
= Secret, JSecret ⊑ PublicKL2

= True, etc. We highlight that

our evaluation rules reduce the left operand first. Reducing the right operand first does
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LOPCTXL
t1 t′1

t1 ⊗ t2 t′1 ⊗ t2

LOPCTXR
t2 t′2

l1 ⊗ t2 l1 ⊗ t′2

LOP

v = Jl1 ⊗ l2KL

l1 ⊗ l2 v

Fig. 5. Semantics for pure label operations, with binary operator ⊗ ∈ {⊔,⊓,⊑}. The precise

definition of these operators depends on the underlying label mode L .

not affect the semantics—we chose left-to-right evaluation solely because it matches the

implementation of the labels used in λChair (see (Stefan et al., 2011a)). In the rest of the

paper, we sometimes use a more lax notation to describe label operations, e.g., l1 ⊑ l2 in

place of l1 ⊑ l2 True.

2.3 Restricting Haskell to safe IFC subset with the LIO monad

As previously mentioned, every object in an IFC system must be labeled. Importantly, this

includes the current execution context whose label we call the current label.3 The current

label serves a role similar to the program counter (pc) in static IFC systems (Denning

& Denning, 1977). Namely, it prevents the current computation from performing side-

effects which might compromise confidentiality. For instance, if the current label is lcur,

LIO prevents the computation from writing to entities labeled le unless lcur ⊑ le.

To accomplish this, LIO provides a monad called LIO. The LIO monad encapsulates

Haskell’s IO monad as to allow for LIO computations to perform (restricted) I/O. The

monad also encapsulates the current label lcur, which is retrieved with the getLabel func-

tion. The relevant parts of the definition are given below. By convention, we use L for

type variables that are expected to be instantiated by a label. The library is polymorphic

over L for greater flexibility, but in any normal program, every occurrence of L will be

instantiated by the same label type. Hence, it is more intuitive to think of L as representing

a particular (though unspecified) label type. Below we give the interface for this monad.

We omit the definitions for simplicity.

data LIO L τ

instance Monad (LIO L )

return :: τ → LIO L τ

>>= :: LIO L τ1→ (τ1→ LIO L τ2)→ LIO L τ2

getLabel :: Label L ⇒ LIO L L

As usual, return lifts a value into the LIO L monad, while bind (>>=) is used to chain two

actions by executing the first and binding the result to be used in the executing second.

The definitions for the monadic return and bind (>>=) are straightforward—a reference

to the current label is simply threaded through the computation. This label is exposed via

getLabel; getLabel is a monadic action (in the LIO L monad), which, when executed,

returns the current label (of type L ).

3 More generally, every thread in the system is labeled. But, since we are focusing on a single-
threaded system, we refer to the main thread context as the current execution context and its label
as the current label.
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RETURN

〈lcur,ccur,m | return t〉
0
−→ 〈lcur,ccur,m | LIOTCB t〉

BIND

〈lcur,ccur,m | t1〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB t′1〉

〈lcur,ccur,m | t1 >>= t2〉
n
−→ 〈l′cur,c

′
cur,m

′ | t2 t′1〉

LIOPURE

t1 t′1

〈lcur,ccur,m | t1〉
0
−→ 〈lcur,ccur,m | t

′
1〉

GETLABEL

〈lcur,ccur,m | getLabel〉
0
−→ 〈lcur,ccur,m | return lcur〉

Fig. 7. Semantics for the LIO monad.

We remark that since return and bind are essentially the standard State monad combina-

tors (Liang et al., 1995), no security checks are performed internally by these combinators.

Instead, LIO library functions (e.g., readFile) use the current label to perform security

checks (so as to enforce IFC) before executing any underlying IO actions. Taking this

approach, the LIO library provides a collection of LIO actions that are similar to the

IO actions available in standard Haskell libraries—and, indeed, usually wrap them—but

additionally enforce IFC. Henceforth, we assume that all computations are in the LIO

monad.

Values v ::= · · · | LIOTCB t

Terms t ::= · · · | return t | t1 >>= t2 | getLabel

Types τ ::= · · · | LIO L τ

Memories m

Programs k ::= 〈lcur,ccur,m | t〉

Fig. 6. Formal syntax for core LIO.

To formally describe the be-

havior of the LIO monad, we

extend the syntactic categories of

our calculus as shown on the right

(Fig. 6). Our extension simply

adds monadic actions (LIOTCB t)

to values, monadic operations

to terms, and a type for LIO

computations. We note that the

LIOTCB constructor is not part of the surface syntax, i.e., programs that use LIOTCB are

not considered valid.4

We explicitly distinguish pure-term evaluation from top-level monadic-term evaluation.

Specifically, an LIO program is a configuration—spanned over by metavariable k—of the

form 〈lcur,ccur,m | t〉, where lcur is the current label, ccur is the current clearance (explained

in Section 3), m is the memory store (see Section 4), and t is the monadic term under

evaluation. The reduction 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 represents a single evalu-

ation step from term t, with current label lcur, current clearance ccur, and memory m, to

term t′, with current label l′cur, current clearance c′cur, and memory m′. For the moment, we

ignore the clearance and memory in the configuration. Index n in the transition relation

counts the number of executed toLabeled actions; this is an artifact of the proof technique

and not relevant to the semantics. We write
n
−→

∗
for the reflexive and transitive closure

4 For simplicity, we do not use additional syntactic categories to distinguish between values and
terms that are part of the surface syntax from those that are not. In Section 6, we define a safe
predicate for making such a distinction.
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of
n
−→. The reduction rules for the core LIO operations are given in Fig. 7. The rules for

return and (>>=) are trivial and standard—all IFC checks are performed by the non-proper

morphism of LIO. Similarly, the (LIOPURE) rule specifies that if we have a top level pure

term, it should be evaluated to completion, i.e., until it reduces to a monadic term. Rule

(GETLABEL) defines the LIO library function for retrieving the underlying current label,

further discussed below.

2.3.1 Coarse-grained labeling with the current label

To soundly reason about IFC, every value must be labeled. However, and in contrast to

other language-based systems (e.g., Jif (Myers & Liskov, 2000), FlowCaml (Simonet,

2003), Breeze (Hriţcu et al., 2013) etc.) in which every value is explicitly labeled, the

values in our calculus are not associated with explicit labels (see Fig. 1–6). This is a direct

consequence of taking a library-based approach: we cannot explicitly label every Haskell

value without modifying the language runtime. Instead, and like several IFC operating

systems (Efstathopoulos et al., 2005; Zeldovich et al., 2006), we take a coarse-grained

approach and use the current label to protect all values in scope, i.e., in LIO, the current

label lcur is the label on all “unlabeled” values in the current execution context. Since we

use the current label to restrict the current computation from performing arbitrary side-

effects, this also ensures that the confidentiality (and integrity) of all values in scope is

preserved.

In addition to ensuring that every value is labeled, this coarse-grained labeling approach

has two other interesting consequences. First, it does not force developers to explicitly

label every piece of data. This eliminates the need to clutter code with labels, reason about

the security implications of every value, or define a special default label (e.g., that would

be used to label literals). Instead, developers only explicitly label data they care about, as

detailed in Section 2.4.

if bSecret

then xPublic :=1Public

else xPublic :=0Public

Fig. 8. Implicit flows problem.

Second, it eliminates the implicit flows problem by

construction (Sabelfeld & Myers, 2003). As previously

mentioned, this problem arises when information can

be leaked through the program control flow. An

example of an implicit flow is given in Fig. 8, written

in a hypothetical alternative LIO language without

explicit labels. Here, secret bit b is leaked into public

reference x according to the program control flow, i.e., what code—which assignment (to

public reference x)—is executed depends on the secret b.

To prevent such leaks, language-based approaches rely on the program counter label to

reflect the sensitivity of the branch condition within each branch and, in turn, disallow such

unsafe assignments. In Haskell, and thus LIO, branch conditions have type Bool—they are

not explicitly labeled values. Rather, the branch condition is (conceptually) labeled by

the current label, which is common across both branches. As a consequence, control flow

cannot be used to leak sensitive information: regardless of the branch taken, the current

label prevents writes to public entities. Consider implementing the attack in Fig. 8 with

LIO. Since the branch condition bSecret is not explicitly labeled, it is protected by lcur. But

since bSecret is secret, we must have lcur = Secret, meaning any subsequent writes (within
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the branches or after) to public references are disallowed since lcur 6⊑ Public. In Section 4,

we give the precise semantics for mutable references in LIO.

2.3.2 A floating current label

The current label protects all data in scope by serving as an upper bound label on all values.

To preserve this invariant, when reading sensitive data, we can either disallow reads from

entities more sensitive or raise the current label to protect the newly read data. Like other

coarse-grained systems we take the latter approach and raise the current label to “float”

above the labels of all the entities from which data has been read.

Raising the current label allows computations to flexibly read data, at the cost of being

more limited in where they can subsequently write. Concretely, a computation with current

label lcur can read data labeled ld by raising its current label to l′cur = lcur ⊔ ld , but can

thereafter only write to entities labeled le if l′cur ⊑ le. For example, LIO allows a public

computation to read secret data by raising lcur from Public to Secret. Importantly, the

new current label prevents the computation from subsequently writing to public entities.

Some static IFC systems, such as Jif (Myers & Liskov, 2000), are even more permissive in

allowing public writes after reading secret data if no secret data is actually being leaked.

In Section 2.5, we present a method that can be used to safely restore the current label,

making our dynamic IFC system equally permissive.

2.3.3 Ensuring all code executes in the LIO monad

To ensure security, all side-effecting computations must be encoded in LIO. LIO can only

guarantee confidentiality and integrity for computations written using the LIO library; if an

attacker can bind an arbitrary IO action within a larger LIO computation, IFC can trivially

be violated. Hence, the visibility of the LIO value constructor, i.e., the constructor used to

create values of type LIO L , must be limited to the LIO trusted computing base (TCB)

so as to guarantee that “untrustworthy” (and potentially malicious) code cannot perform

arbitrary I/O. In our formal mode, this amounts to not making LIOTCB part of of the surface

syntax.

To accomplish this, we use Safe Haskell (Terei et al., 2012). Specifically, the module

in which the LIO data type is defined is marked Unsafe, while the modules that expose

IFC-enforcing LIO actions are marked—by us, the library providers—as Trustworthy.

In doing so, Safe Haskell ensures that we can safely execute arbitrary, attacker-provided

LIO actions by simply marking the top-level modules as Safe. Safe Haskell prevents Safe

code from depending on Unsafe modules thus ensuring that the computation could only

have been composed of TrustworthyLIO library functions or the subset of Haskell that is

“safe,” i.e., the part that does not contain the LIO value constructor or other unsafe features

such as unsafePerformIO (Terei et al., 2012).

2.4 Explicitly labeling values

While LIO ensures that everything in a context is protected by the current label, for many

applications it is useful to be able to handle differently-labeled data in a single scope. To
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motivate this, let’s consider an HTTP route (e.g., /papers/index.html) in λChair which

lists all the papers submitted by the logged-in user.

In λChair, each submitted paper is associated with a label to ensure that the paper

can only be read by users that have the appropriate role (e.g., is the author or committee

member). When reading a paper from the database system, the label of the HTTP request

handler (or controller) for the given route, which is an LIO action, is raised to reflect the

fact that sensitive data is being incorporated into the context. In doing so, LIO can ensure

that a response is only sent to the user’s browser—which, itself, has a label corresponding

to the authenticated user—when the controller label can flow to the browser label.

Paper Label

pAlice lAlice

pBob lBob

Fig. 9. Database

containing two papers.

Suppose that the λChair database contains two papers, as

shown in Fig. 9, submitted by Alice and Bob (neither of whom

is part of the committee). When Alice wishes to see the index

of all papers she submitted, the controller must read from the

database only data whose labels can flow to the browser label

lAlice. Otherwise, the controller will reach a state in which the

current label is above the browser label (e.g., lAlice ⊔ lBob) and

it will no longer be allowed to respond to the user. In language-

based IFC systems (Myers et al., 2001; Simonet, 2003), this is typically not a concern

because values returned from the database can be individually and explicitly labeled. As

a result, the controller would be able to compare the label of the value retrieved from

the database and the browser label, only using the retrieved value if its label flows to the

browser label. In LIO, reading both values into the context would taint the controller with

both lAlice and lBob, preventing the overtainted controller from replying to Alice.

To avoid being overly restrictive, LIO provides Labeled values. A labeled value protects

an arbitrary term with a strict, explicit label, irrespective of the current label. We define

such values as follows.

data Labeled L τ

As before, we restrict the value constructor to the TCB. However, to allow non-TCB code

to create and manipulate labeled values, we provide a safe, IFC-abiding, interface. This is

particularly important since labeled values are protected by their explicit labels—untrusted

code should not be allowed to bypass the label and arbitrarily inspect (or modify) the

protected value. This interface for creating and inspecting labeled values is given below.

label :: Label L ⇒L → τ → LIO L (Labeled L τ)

unlabel :: Label L ⇒ Labeled L τ → LIO L τ

labelOf :: Label L ⇒ Labeled L τ →L

Values v ::= · · · | LabeledTCB v t

Terms t ::= · · · | label t1 t2 | unlabel t | labelOf t

Types τ ::= · · · | Labeled L t

Fig. 11. Formal syntax for labeled values.

To describe the semantics of

these functions, we extend the

values, terms and types of our

calculus as shown in Fig. 11. (As

with LIOTCB, we do not consider

the LabeledTCB constructor part of the surface syntax.) The reduction rules for the new

terms are given in Fig. 10; rule (LABELCTX), (UNLABELCTX), and (LABELOFCTX)

reduce terms until they have appropriate structures to trigger rules (LABEL), (UNLABEL),
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LABELCTX

t1 t′1

〈lcur,ccur,m | label t1 t2〉
0
−→ 〈lcur,ccur,m | label t′1 t2〉

LABEL

lcur ⊑ l True l ⊑ ccur True

〈lcur,ccur,m | label l t〉
0
−→ 〈lcur,ccur,m | return (LabeledTCB l t)〉

UNLABELCTX

t t′

〈lcur,ccur,m | unlabel t〉
0
−→ 〈lcur,ccur,m | unlabel t′〉

UNLABEL

lcur ⊔ l l′cur l′cur ⊑ ccur True

〈lcur,ccur,m | unlabel (LabeledTCB l t)〉
0
−→ 〈l′cur,ccur,m | return t〉

LABELOFCTX

t t′

labelOf t labelOf t′

LABELOF

labelOf (LabeledTCB l t) l

Fig. 10. Semantics for labeled values.

and (LABELOF), respectively. We ignore parts of these rules that involve the current

clearance ccur until Section 3.

The label function is used to explicitly label terms. The function takes two arguments,

a label and a term, and returns an LIO action, which, when executed, produces an explic-

itly labeled value. Rule (LABEL) gives the precise semantics: the function associates the

supplied label l with term t by wrapping the term with the LabeledTCB constructor. It first

asserts that the new label (l) used to protect t is at least as restricting as the old label (the

current label, lcur), i.e., lcur ⊑ l True.

We remark that if the premise does not hold the function throws an exception to indicate

an IFC violation—our semantics do not employ stop-the-world semantics as a way to

encode monitor failures. This is the case for all other rules in LIO in which a premise is not

satisfied. Section 5 describes this in more detail and defines exception handling facilities

that code can use to recover from such IFC violations.

The dual of label, unlabel, takes an explicitly labeled value and returns an LIO action

which, when executed, returns the underlying wrapped value. As given by rule (UNLABEL),

the function takes a labeled value LabeledTCB l t and returns the wrapped term t. However,

since the returned term is no longer protected by l and is, instead, protected by the current

label, lcur must be at least as restricting as l5. To ensure this, the current label is raised from

lcur to lcur ⊔ l—this captures the fact that the remaining computation might depend on t.

The current label always “floats” above the labels of the values observed by the current

computation.

5 The effects of unlabel are similar to those of bind in DCC (Abadi et al., 1999): subsequent
computations must be protected by the label of the recently observed value.
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Finally, we provide the labelOf function as a way to inspect the label of a labeled value.

As detailed by the (LABELOF) reduction rule, labelOf takes a labeled value LabeledTCB l t

and simply returns the label l protecting term t. Since the label of a Labeled value is strict,

labelOf does not require an additional context rule for reducing the label. Unlike unlabel,

labelOf also does not raise the current label—labelOf is part of the pure calculus. Indeed,

this allows code to check the label of a labeled value before deciding to unlabel it (and

thereby raise the current label). This design decision has an important consequence: re-

gardless of the current label (and clearance) of the configuration, labelOf always succeeds.

While this may seem like LIO labels are “public,” they are in fact protected by a label—

the current label—and thus cannot be used as a covert channel. Section 2.5 describes an

alternative design in which labels are not public and shows how labels can be used to leak

information when not properly protected.

Example 1 (Fetching papers for reviewers)

Turning to our λChair use case, we now consider some of the core functions that are used

by the top-level request handler. In particular, we show how to fetch papers for a given

reviewer using a simple underlying database system. The specific label type used by λChair

is DCLabel. As defined in (Stefan et al., 2011a), a DCLabel is a pair of formulae over

principals (e.g., users) in conjunctive normal form, representing the principals that can

read and write data labeled as such. We define a type alias for the LIO monad with the

label instantiated to DCLabel:

type DC τ = LIO DCLabel τ

The λChair database system operates on DCLabeled papers, in the DC monad. As defined

below, a paper is simply a record with several fields, including the (unique) paper id

(paperId), the paper itself (pdf ), labeled reviews, etc.6

data Paper = Paper {paperId :: Id,pdf :: PDF,reviews :: [LabeledReview], ...}

type LabeledPaper = Labeled DCLabel Paper

Among other operations, the database system provides a fetchPapers function which is

used to get the list of all such papers:

fetchPapers :: DC [LabeledPaper]

For simplicity, we omit the implementation details of fetchPapers and only remark that it

relies on TCB code to wrap an underlying IO-based database system API and explicitly

label the fetched papers.

While simple, the fetchPapers function is sufficient for fetching a given reviewer’s pa-

pers. Note that if the controller simply unlabels the papers returned by fetchPapers, the

current label may be raised to a point where the computation cannot respond back to the

user, i.e., the current label may not flow to the browser label. This situation, for example,

happens when the current user is not part of the committee and another author’s paper is

6 We elide the details of labeled reviews used in the actual λChair implementation and simplify
some of the application details (e.g., the generic database system API). The interested reader is
referred to the code documentation at http://labeled.io for more details.
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unlabeled—λChair prevents such data from being sent (leaked) back to the user’s browser.

Hence, we need to make sure that the controller only reads data that the end-user can see.

To this end, we define fetchPapersFor:

fetchPapersFor :: User→DC [LabeledPaper]

fetchPapersFor user = do

-- Get all labeled papers:

lpapers← fetchPapers

-- Filter the papers the user is allowed to read:

let browserLabel = userToLabel user

lpapers′ = filter (λ lpaper.labelOf lpaper ⊑ browserLabel) lpapers

-- Unlabel and return all the papers this user can read:

mapM unlabel lpapers′

This function fetches the papers, filters the ones the user is allowed to read by comparing

the paper’s label with the user’s browser label—itself computed with function userToLabel—

and unlabels them. At this point, the controller can compose the HTML page containing

the paper information and safely respond to the user.

In addition to providing a simple illustration of how labeled values are used in LIO,

this simple example serves to illustrate the importance of labeled values. Specifically, by

providing labeled values in the language, we can implement core functionality such as

fetchPapersFor in the untrusted LIO application code; without labeled values such func-

tionality would otherwise have to be implemented in the trusted database layer or database

system itself. Indeed, building on this observation, we can, for example, extend λChair to

implement an in-memory database which solely uses the aforementioned database system

as a persistence layer, i.e., it solely relies on the actual database system to keep the papers

persistent.

2.5 Addressing label creep with toLabeled

In conference systems, it is often the case that some reviews are superseded by others,

papers change titles, submissions are withdrawn, etc. Hence, the λChair database system

provides functions for updating (or deleting) existing papers. For instance, updatePaper is

used to update the paper with the supplied paper id with the new labeled paper. The type

for this function is given below.

updatePaper :: Id→ LabeledPaper→ DC ()

Similar to fetchPapers, this function relies on TCB code to communicate with the actual

database system; from a security stance, it is only interesting to note that the function al-

ways ensures that the current computation can overwrite the existing paper (by performing

a⊑-check with the current label, current clearance (see Section 3), and label protecting the

existing paper).

Suppose we wish to implement a function that performs a partial update, i.e., an update

wherein only part of the paper object is updated. This is useful, for example, when a user

only updates the abstract of the paper and leaves other parts such as the underlying PDF
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intact. Indeed, sending a PDF file, which may be large, to simply perform a “full” update

is not practical. An implementation of such a partial update function is given below.

partialUpdatePaper :: Id→ PartialPaper→ DC ()

partialUpdatePaper i new = do

-- Get the existing paper according to its id:

lold← fetchPaperById i

old← unlabel lold

-- Merge the new (partial) paper and existing paper:

lnew← label (labelOf lold) (merge new old)

-- Perform actual update:

updatePaper i lnew

Here, we assume that the type PartialPaper encodes a partial paper (e.g., by using a Maybe

type for each of the fields in Paper) and function merge simply merges the content of the

new partial paper and existing paper. The underlying fetchPaperById database function

behaves as expected: it returns the labeled paper corresponding to the id.7

Unfortunately, this implementation has the drawback of always raising the current label

to the label of the paper being updated. This can result in a scenario where actions that

follow a partial update fail (e.g., writes to less sensitive entities), solely because the current

label is overly restricting. Raising the current label to a point where the computation

can no longer perform certain useful side-effects is known as label creep (Sabelfeld &

Myers, 2003). Label creep does not compromise security, since the current label still

protects all data in lexical scope. But, it hinders functionality. In the partialUpdatePaper

example, label creep is particularly unappealing since partialUpdatePaper does not return

any information about the existing paper—it simply writes back to the database. Ideally,

we should be able to implement the partialUpdatePaper computation that operates on

sensitive data, but avoid raising the current label and thus label creep.

In general, being able to perform computations on sensitive data without raising the

current label is crucial to building practical applications. To this end, LIO provides the

toLabeled function which can be used to execute an LIO action and subsequently restores

the current context label. The type signature for this function is:

toLabeled :: Label L ⇒L → LIO L τ → LIO L (Labeled L τ)

The function takes a label l (the upper bound, describe below) and the LIO term t that com-

putes on sensitive data. Intuitively, if the current label at the point where toLabeled l t gets

executed is lcur, toLabeled executes t and restores the current label to lcur, i.e., toLabeled

provides a separate context in which t is evaluated. Of course, returning the result of t

directly would allow for trivial leaks of sensitive data. Hence, toLabeled labels the result

of t with l. This design decision effectively states that the result of t is protected by label l,

as opposed to the current label at the point t completed. Of course, toLabeled requires that

the result of t not be more sensitive than l.

7 Note that this has the implication that id’s are effectively public. However, since the number of
elements in the database is public (as revealed by the length of the list returned by fetchPapers),
this is not surprising.
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TOLABELEDCTX

t1 t′1

〈lcur,ccur,m | toLabeled t1 t2〉
0
−→ 〈lcur,ccur,m | toLabeled t′1 t2〉

TOLABELED

lcur ⊑ l True l ⊑ ccur True

〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB t′〉 l′cur ⊑ l True

〈lcur,ccur,m | toLabeled l t〉
n+1
−→ 〈lcur,ccur,m

′ | return (LabeledTCB l t′)〉

Fig. 12. Semantics for toLabeled.

To formally describe the semantics of toLabeled, we extend terms with the toLabeled

primitive: t ::= · · · | toLabeled t1 t2 and give two new reduction rules in Fig. 12. In both

rules, the current label and clearance are preserved. Rule (TOLABELEDCTX) simply re-

duces the label argument. Rule (TOLABELED) specifies the non-trivial case. As noted

above, the label l is used to label the result of t. Hence, the rule first ensures that we are

not trying to create a labeled value below the current label (or above the current clearance,

see Section 3), i.e., lcur ⊑ l True. The rule then completely reduces t to an LIO value.8

If the current label l′cur at the time of completion is below the provided upper bound l, then

“transferring protection” of the result t′ from l′cur to l is safe and we thus simply return the

result, labeled with l. Observe that if l′cur ⊑ l False, then labeling the result t′ with l might

result in a leak, e.g., if t′ actually contains information above l. In Section 5, we consider

the cases where these conditions do not hold. We finally remark that the (TOLABELED)

increments the index n to indicate that toLabeled was executed. This decoration is used to

simplify the proof burden and is further explained in Section 6.

Example 2 (Partially updating papers)

Returning to our partial update λChair example, we can now use toLabeled in a straight-

forward way to implement partialUpdatePaper. This new implementation is given below.

partialUpdatePaper :: Id→ PartialPaper→DC ()

partialUpdatePaper i new = do

-- Get the existing paper according to its id:

lold← fetchPaperById i

lnew← toLabeled (labelof lold) (do

old← unlabel lold

-- Merge the new (partial) paper and existing paper:

return (merge new old))

-- Perform actual update:

updatePaper i lnew

This implementation is almost identical to the original one. It only differs in wrapping

the part of the code that is computing on sensitive data with toLabeled. Specifically, it

wraps the part of the code that unlabels the existing paper and performs the merge. (Since

8 By using big-step semantics, we do not need to rely on the use of trusted functions that (save and)
restore the current label and clearance.
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toLabeled returns a labeled value, we no longer need to explicitly label the merged paper—

we simply return it.) The current label within the toLabeled blocks is raised to the join of

the current label and the label of the existing paper (labelOf lold) by function unlabel. Im-

portantly, however, the current label before and after calling partialUpdatePaper remains

the same.

2.5.1 An alternative semantics for toLabeled

Naturally, one may ask why toLabeled demands that we provide the label of the result as an

argument, as opposed to simply using the final current label of the executed computation.

Indeed, an early version of LIO had such an implementation. The reduction rule for this

alternative function

toLabeled′ :: Label L ⇒ LIO L τ → LIO L (Labeled L τ)

is given below.

TOLABELED’

〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB t′〉

〈lcur,ccur,m | toLabeled′ t〉
n+1
−→ 〈lcur,ccur,m

′ | return (LabeledTCB l′cur t′)〉

But, different from the version of LIO as presented in this paper, inspecting the label of

labeled values with labelOf must raise the current label to the join of the current label and

label of the value. The semantics for this alternative function

labelOf ′ :: Label L ⇒ Labeled L τ → LIO L L

is given below.

LABELOF’

lcur ⊔ l l′cur l′cur ⊑ ccur

〈lcur,ccur,m | labelOf ′ (LabeledTCB l t)〉
0
−→ 〈l′cur,ccur,m | return l〉

This difference is particularly important since information can otherwise be leaked by

encoding it into the labels themselves (Russo & Sabelfeld, 2010; Buiras et al., 2014). To

illustrate this point, consider the 3-point lattice L3 = {Public,Secret,TopSecret} and the

following code that uses toLabeled′ and labelOf to leak the value of a secret Boolean.

leakBool :: Labeled L3 Bool→ LIO L3 Bool

leakBool secretBool = do

-- Current label is Public

secretBool′← toLabeled′ (do

s← unlabel secretBool -- Raise current label to Secret

-- Raise label to TopSecret if s is True

when s (raiseLabel TopSecret))

-- Current label is Public

return (labelOf secretBool′ ≡ TopSecret)

where raiseLabel l = label l ()>>=unlabel

The key distinction between the two designs is what label is used to protect the label of a

labeled value (Buiras et al., 2014). (Recall that in an IFC system every piece of data must be
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labeled—this include labels themselves.) In the early version of LIO (that with toLabeled′

and labelOf ′) the label on the label of a value was the label itself. Hence, inspecting the

label of a value required raising the current label. Importantly, however, toLabeled′ did not

require programmers to supply an upper bound label for the labeled result. In contrast, the

current version of LIO considers the current label lcur as the label protecting the labels of

labeled values. In this system, inspecting the label of a value does not require raising the

current label, and labelOf is, in turn, pure. Of course, the trade-off is that the label on the

result produced by toLabeled must be provided a-priori.

Our experience with building λChair and other larger-scale applications has shown that

the ability to inspect labels outweighs the “burden” of specifying an upper bound for

toLabeled. The interested reader is referred to (Giffin et al., 2012) for a description of

an example system built on top of LIO. In fairness, most of the systems and applications

we built on top of LIO are web-centric and while we believe this experience to extend

to other domains, evaluating this trade-off for other kinds of applications is an interesting

direction for future work.

3 Addressing covert channels with clearance

IFC systems do not typically restrict what data code can read, rather—and as we have done

thus far—they only restrict where the code can write to once it has read the data. Similarly,

code can always write to channels or create objects with arbitrary labels, as long as doing so

does not leak information, i.e., code can always write to and allocate entities more sensitive

than the current label. But, in many cases it is useful to execute code with least privilege

by limiting its access to the data/entities it needs to perform its task (Saltzer & Schroeder,

1975). This principle not only simplifies security auditing, but, as shown in this section,

it also eliminates the opportunity for code to leak sensitive data by exploiting covert

channels (Lampson, 1973). LIO introduces the notion of clearance to language-based IFC

systems (Stefan et al., 2011b), later adopted by Breeze (Hriţcu et al., 2013), as a means for

restricting access to certain labeled entities. Clearance in LIO can be seen as a particular

discretionary access control mechanism (DAC) integrated into a IFC system, where DAC

security checks are performed before their IFC counterparts (Stoughton, 1981).

3.1 Restricting data-access with clearance

The current clearance ccur is a label tracked by the LIO monad alongside the current label

lcur; in our formalization, the clearance appears as the second component of a program

configuration 〈lcur,ccur,m | t〉. LIO restricts access to certain labeled entities using the

clearance in two different ways.

First, the clearance is used to restrict the reading of overly-sensitive data by enforcing

that the current clearance always be an upper bound on the current label, i.e., for all valid

program configurations 〈lcur,ccur,m | t〉, it is the case that lcur ⊑ ccur True. This restric-

tion is enforced by the LIO interface. For example, unlabel as given in rule (UNLABEL) of

Fig. 10 only unlabels the labeled value if raising the current label lcur will not result in a

current label l′cur that is above the current clearance, i.e., l′cur ⊑ ccur True. In a similar
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way, before reading from a file or reference (see Section 4), we ensure that raising the

current label will not violate this guarantee.

The use of clearance to restrict code from reading certain entities is a form of discre-

tionary access control; we can prevent malicious code from exploiting covert channels to

leak overly-sensitive information by ensuring that it cannot read such data. As an example,

suppose that the partial update function in λChair is implemented by a third-party devel-

oper (e.g., to implement a better merging function). If the developer is malicious, they can

use the partial update function to leak the contents of a competing author’s paper through

covert channels. Indeed, this is simple since the developer can create an account on the

λChair platform and take on the role of an author to ensure that their malicious code is

executed. A malicious version of partialUpdatePaper is given below.

leakyPartialUpdatePaper :: Id→ PartialPaper→ DC ()

leakyPartialUpdatePaper i new = do

-- Get all existing papers:

papers← fetchPaperById i

-- Leak information about some of the papers

mapM maybeLeak papers

-- Execute the normal partial update:

partialUpdatePaper i new

where maybeLeak lpaper = toLabeled (labelOf lpaper) (do

paper← unlabel lpaper

-- If the paper has a specific author, leak it:

when (paperAuthors paper≡ ...) (leakToCovertChannel paper))

Here, we use function leakToCovertChannel to leak information about papers written by

certain authors; otherwise the function behaves in the same way as the normal partial-

UpdatePaper code. The function leakToCovertChannel leaks (part of) the sensitive paper

content through a covert channel. For instance, the code can leak information by diverging

(or not) according to the paper content, i.e., one bit at a time through the termination covert

channel (Askarov et al., 2008); alternatively, it can leverage the external timing covert

channel (Agat, 2000) to leak the information by delaying the response according to the

content, etc. Using clearance, we can prevent such leaks by setting the clearance to the

label of the browser—in this case, the leakyPartialUpdate will fail to unlabel papers which

the requesting user, i.e., the attacker, is not allowed to read. Since the code running on

behalf of one user does not have access to another user’s data, it cannot leak it—the code

can only leak data it can already read.

The second role of clearance is to restrict code from writing to and allocating entities

labeled above the clearance. For example, label as given in rule (LABEL) of Fig. 10 only

creates a Labeled value if the label of the value is bounded by the clearance. Similarly,

toLabeled as given in rule (TOLABELED) of Fig. 12 requires the upper bound of the

result to be below the clearance. In a similar way, before creating or writing to a file

or reference (see Section 4), we ensure that their label is below the current clearance.

As in (Zeldovich et al., 2006), this addresses attacks in which malicious code duplicates

sensitive data, e.g., by copying a file, only to read it later, when the system policy changes

(e.g., in λChair, promoting a member to a co-chair and granting them the corresponding
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GETCLEARANCE

〈lcur,ccur,m | getClearance〉
0
−→ 〈lcur,ccur,m | return ccur〉

LOWERCLEARANCECTX

t t′

〈lcur,ccur,m | lowerClearance t〉
0
−→ 〈lcur,ccur,m | lowerClearance t′〉

LOWERCLEARANCE

lcur ⊑ c′cur True c′cur ⊑ ccur True

〈lcur,ccur,m | lowerClearance c′cur〉
0
−→ 〈lcur,c

′
cur,m | return ()〉

Fig. 13. Semantics for clearance related terms.

privileges). While, within a single run, LIO programs can use robust declassification as

in (Zdancewic & Myers, 2001; Waye et al., 2015) to reason about policy changes, without

clearance, reasoning about the consequence of a system policy change across multiple

program runs is more difficult. We refer the intersted reader to (Zeldovich et al., 2006) for

a more detailed consideration of this use case.

3.2 Making clearance first-class

To leverage clearance for isolation, as described above, we execute a term in a configuration

that has initially set the desired clearance. Of course, in many applications it is useful to be

able to “drop” privileges and continue executing with least privilege (Saltzer & Schroeder,

1975). For example, in λChair when authenticating user requests, the clearance must be

high enough to read credentials, but once the authentication is complete, having access to

such information is unnecessary and dangerous: a simple bug in the code that generates an

HTML list of the user’s papers could potentially leak the credentials. Hence, we provide a

means for inspecting and manipulating the clearance. Specifically, we provide:

getClearance :: Label L ⇒ LIO L L

lowerClearance :: Label L ⇒L → LIO L ()

The getClearance and lowerClearance functions are used to get and set the current clear-

ance, respectively.

We add the primitives getClearence and lowerClearance to the syntactic category of

terms t ::= · · · | getClearance | lowerClearance t and formally describe its semantics in

Fig. 13. The rules are mostly self-explanatory. We solely highlight that the premise in

rule (LOWERCLEARANCE) requires the new current clearance c′cur to be below the current

clearance ccur and above the current label. By lowering the clearance, code can effectively

run with least privilege. Of course, allowing code to arbitrarily raise the clearance would

trivially prevent us from confining untrusted code—hence code can only decide to access

fewer entities.

However, recall from rule (TOLABELED) that toLabeled restores the current label and

clearance. Hence, combined with toLabeled, we can use lowerClearance to execute a term

t, at a lower clearance, without lowering the current clearance:
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withClearance :: Label L ⇒L → LIO L τ→ LIO L (Labeled L τ)

withClearance c′cur t = toLabeled c′cur (lowerClearnce c′cur >> t)

This use of toLabeled addresses the dual to the label creep described in Section 2.5: by

lowering the current clearance a program can reach a state where lcur = ccur, at which point

it cannot read or write to entities more-sensitive than lcur. More interestingly, this enables

powerful security patterns. For instance, it allows arbitrary untrusted code to treat code

it depends on as untrustworthy. Indeed, this primitive can be used to address the poison

pill attacks described in (Hriţcu et al., 2013), wherein untrusted libraries carry out denial

of service attacks via label creep. Additionally, withClearance can be used to structure

programs in such a way that different components execute with least privilege and are

isolated from one another. For example, in λChair, we can wrap request handlers with

withClearance to isolate requests based on the user (browser) label. This is similarly done

in the Hails web framework, when serving HTTP requests and accessing database tables,

which themselves have a notion of clearance for the labels on stored data (Giffin et al.,

2012).

4 Mutable labeled references

Many practical applications rely on imperative data-structures, often implemented using

mutable reference. In the context of λChair mutable references can, for example, be used

to implement an efficient in-memory database. Indeed, by modeling each paper as a labeled

reference, instead of a labeled immutable value, updating a paper becomes very cheap; it

simply amounts to writing to a reference, as opposed to creating a large immutable data

structure (that contains the rest of the papers).

Unsurprisingly, LIO provides labeled alternatives to Haskell’s IORef s (Peyton Jones,

2001). The LIO reference API is given below.

data LIORef L τ

newLIORef :: Label L ⇒L → τ → LIO L (LIORef L τ)

readLIORef :: Label L ⇒ LIORef L τ → LIO L τ

writeLIORef :: Label L ⇒ LIORef L τ → τ → LIO L ()

While the implementation of secure references can vary, we simply wrap Haskell’s IORef s.

Intentionally, this API resembles the standard Haskell API for mutable references. The key

difference is that the function for creating references takes an additional argument: the

label of the reference.

Values v ::= · · · | LIORe f TCB v a

Terms t ::= · · · | newLIORef t1 t2 | readLIORef t

| writeLIORef t1 t2

Types τ ::= · · · | LIORef L τ

Fig. 14. Formal syntax for references.

To formally describe this

API, we extend our calculus

with references as shown in

Fig. 14. Like LabeledTCB,

the LIORe f TCB constructor is

restricted to the TCB and is

strict in its first argument.

References are created with
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NEWLIOREFCTX

t1 t′1

〈lcur,ccur,m | newLIORef t1 t2〉
0
−→ 〈lcur,ccur,m | newLIORef t′1 t2〉

NEWLIOREF

lcur ⊑ l True l ⊑ ccur True fresh(a) m′ = m[a 7→ LabeledTCB l t]

〈lcur,ccur,m | newLIORef l t〉
0
−→ 〈lcur,ccur,m

′ | return (LIORe f TCB l a)〉

READLIOREFCTX

t t′

〈lcur,ccur,m | readLIORef t〉
0
−→ 〈lcur,ccur,m | readLIORef t′〉

READLIOREF

v = m(a)

〈lcur,ccur,m | readLIORef (LIORe f TCB l a)〉
0
−→ 〈lcur,ccur,m | unlabel v〉

WRITELIOREFCTX

t1 t′1

〈lcur,ccur,m | writeLIORef t1 t2〉
0
−→ 〈lcur,ccur,m | writeLIORef t′1 t2〉

WRITELIOREF

lcur ⊑ l True l ⊑ ccur True m′ = m[a 7→ LabeledTCB l t]

〈lcur,ccur,m | writeLIORef (LIORe f TCB l a) t〉
0
−→ 〈lcur,ccur,m

′ | return ()〉

LABELOFLIOREF

labelOf (LIORe f TCB l a) l

Fig. 15. Semantics for monadic LIO terms related to references.

newLIORef , read with function readLIORef , and modified with writeLIORef . We overload

the labelOf function to allow code to inspect the label of a reference.9

The reference store—spanned over by metavariable m—is a map from addresses—

spanned over by metavariable a—to labeled values.10 Since we do not provide any mech-

anisms for explicit deallocation or address inspection/comparison in the LIO API we can

model the store as an infinitely-large map, while allowing the implementation to safely

garbage collect unused references as necessary.11 In our formalization, this memory store

appears as the third component of a program configuration 〈lcur,ccur,m | t〉.

The reduction rules for references are given in Fig.15. When creating a reference, as

given by rule (NEWLIOREF), newLIORef l t creates a labeled value that guards t with label

9 In our implementation, we use a typeclass LabelOf to define the labelOf function. Both LIORef
and Labeled are instances of this class.

10 Since the label of a reference accompanies the address (both wrapped by the LIORe f TCB

constructor), an alternative memory store that simply maps addresses to terms is sufficient—we
chose the labeled-store approach to simplify the proof burden (see Section 6).

11 Non-opaque pointers could potentially be used to leak information (e.g., by freeing a reference in
a secret context only to allocate a reference and inspect its address in a public context). Adapting
LIO to deal with non-opaque pointers can be done as in (Hedin & Sands, 2006).
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l and stores it in the memory store at a new, fresh, address a. Subsequently, the function

returns an LIORef value that contains the reference label and the address where the term is

stored. (Like LabeledTCB, the constructor LIORe f TCB is not part of the surface syntax and

thus cannot be abused by untrusted code.) Rule (READLIOREF) specifies the semantics

for reading a labeled reference; reading the term stored at address a simply amounts

to unlabeling the value m(a) stored at the underlying address. Function writeLIORef ,

specified by rule (WRITELIOREF), updates the memory store with a new labeled term

t for the reference at location a, leaving the label intact. Note that in the latter three rules,

we impose the restriction that the label of the reference l must be bound by the current

label and clearance, i.e., lcur ⊑ l True and l ⊑ ccur True. This ensures that we both

preserve the confidentiality of data in scope and avoid reading/modifying entities above

the clearance. It is worth remarking that when one considers the current label lcur as the

dynamic version of the pc, our restriction that the label of the reference be above the current

label (lcur ⊑ l True) when writing to the reference is similar to the one imposed by

other IFC λ -calculi (Zdancewic, 2002; Austin & Flanagan, 2009). The rule labelOf , given

by (LABELOFLIOREF), is self-explanatory and we do not discuss it further.

5 Exception handling

Like references, exceptional control flow is common in real-world applications. As already

noted, LIO provides support for throwing and catching exceptions. Code can throw an

exception using the throwLIO function and catch exceptions using catchLIO:

throwLIO :: (Exception e,Label L )⇒ e→ LIO L τ

catchLIO :: (Exception e,Label L )⇒ LIO L τ → (e→ LIO L τ)→ LIO L τ

This API is identical to that of standard Haskell, except that it operates in the LIO monad.

Moreover, the semantics for these functions are standard.12 Nevertheless, we must con-

sider the implication on security when they are used in concert with other LIO library

functions—in particular, toLabeled.

Values v ::= · · · | ξ | LIOTCB

X t

Terms t ::= · · · | throwLIO t | catchLIO t1 t2

Types τ ::= · · · | Exception

Fig. 16. Formal syntax for exceptions.

In Fig. 16, we formally extend

values with exceptions ξ and a

new LIO constructor (LIOTCB

X ), terms

with the exception handling functions

(throwLIO and catchLIO), and types

with Exceptions. For simplicity, we

only consider a single exception type.

Fig. 17 gives the exception-related reduction rules. Function throwLIO, as given by rule

(THROWLIO), raises an exception by simply lifting the exception term t into the LIO

monad with constructor LIOTCB

X . Indeed, the role of the LIOTCB

X constructor is to distinguish

between exceptional and non-exceptional monadic control flow. Building on this, we add

12 This is in contrast with the original semantics of exceptions as presented in (Stefan et al., 2012b),
where an explicit label was associated with every thrown exception. In comparison to the treatment
of exceptions in (Stefan et al., 2012b) and (Hriţcu et al., 2013), the approach of this paper is
considerably simpler.
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THROWLIO

〈lcur,ccur,m | throwLIO t〉
0
−→ 〈lcur,ccur,m | LIOTCB

X t〉

BINDEX

〈lcur,ccur,m | t1〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB

X t′1〉

〈lcur,ccur,m | t1 >>= t2〉
n
−→ 〈l′cur,c

′
cur,m

′ | throwLIO t′1〉

CATCH

〈lcur,ccur,m | t1〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB t′1〉

〈lcur,ccur,m | catchLIO t1 t2〉
n
−→ 〈l′cur,c

′
cur,m

′ | return t′1〉

CATCHEX

〈lcur,ccur,m | t1〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB

X t′1〉

〈lcur,ccur,m | catchLIO t1 t2〉
n
−→ 〈l′cur,c

′
cur,m

′ | t2 t′1〉

Fig. 17. Semantics for exceptions without toLabeled. The remaining changes are given in Fig. 18.

a new reduction rule for bind (>>=) that propagates exceptions; as shown by the (BINDEX)

rule, bind re-throws the exception if the term under evaluation reduced to an exceptional

monadic term (LIOTCB

X t). (We explicitly define the (BINDEX) in terms of throwLIO to more

closely match our Haskell implementation.) Otherwise, it behaves as before, according to

rule (BIND).

The semantics for catchLIO is also straightforward. Since throwing an exception de-

pends on the information present in the lexical scope, catchLIO must retain the current

label to reflect this fact; observe that all the catchLIO reduction rules in Fig. 17 leave the

context intact. Rule (CATCH) specifies the case where the term does not raise an exception

and reduces to a “normal” LIO value. Here, the value is simply returned. Rule (CATCHEX)

specifies the case where the term raises an exception. In this case, the exception handler t2

is applied to the exception t1. We note that our semantics are lazy in the exception value,

much in the same way as Haskell; neither throwLIO nor catchLIO force the evaluation of

the exception.

The reduction rules of Fig. 17 take the standard approach of propagating exceptions up

the call stack until the nearest enclosing catchLIO. Though necessary, this is not sufficient;

without modifying the semantics of toLabeled, exceptions can be used to leak information.

Consider the following function:

condThrow :: Labeled L2 Bool→ LIO L2 ()

condThrow secretBool = do

s← unlabel secretBool

when s (throwLIO ξ )

Suppose that condThrow is invoked with the current label Public and secretBool has label

Secret. Then, throwLIO raises exception ξ if the secret is True; if the secret is False

condThrow simply returns (). This function alone cannot be used to leak the secret, since

the current label at the end of condThrow is Secret. But, by wrapping condThrow with

toLabeled, we can avoid raising the current label when the secret is False and thus leak the

value into a public reference:
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TOLABELEDEX

lcur ⊑ l True l ⊑ ccur True

〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB

X t′〉 l′cur ⊑ l True

〈lcur,ccur,m | toLabeled l t〉
n+1
−→ 〈lcur,ccur,m

′ | return (LabeledTCB

X l t′)〉

UNLABELEX

lcur ⊔ l l′cur l′cur ⊑ ccur True

〈lcur,ccur,m | unlabel (LabeledTCB

X l t)〉
0
−→ 〈l′cur,ccur,m | throwLIO t〉

LABELOF2

labelOf (LabeledTCB

X l t) l

Fig. 18. Semantics for terms affected by exceptions.

leakSecret :: Labeled L2 Bool→ LIO L2 Bool

leakSecret secretBool = do

-- Create public reference:

publicRef ← newLIORef Public True

toLabeled Secret (catchLIO (do

toLabeled Secret (condThrow secretBool)

writeLIORef publicRef False -- Write only if no exception is thrown

)(λ → return ()))

-- Read direct leak of secret:

readLIORef publicRef

Assume that this function is invoked with a Public current label. First, the function creates

a public reference publicRef initialized to True. Then, if the secret is True, the exception

thrown by condThrow escapes the innermost toLabeled block up to the catchLIO, which

invokes the handler. At this point the current label is Secret, since condThrow raised the

label to read the secret. However, the outer toLabeled restores the current label to Public.

This allows us to read the publicRef , which is still True. By contrast, if the secret is

False, condThrow simply returns (); the enclosing toLabeled ensures that the current label

remains Public. At this point, we write False into the public reference. Finally, we again

read and return the reference contents. In both cases the returned value corresponds to the

secret boolean.

This code illustrates that the standard propagation of exceptions up the call stack until

reaching the nearest enclosing catchLIO is not sufficient. LIO must only propagate ex-

ceptions up to the nearest catchLIO or toLabeled. Intuitively, the correct semantics for

toLabeled are as before with the added requirement that all exceptions be caught by it:

regardless of how the computation enclosed by toLabeled terminates—with an exception

or value—a Labeled value must always be returned. In other words, we adapt the semantics

of some LIO actions (including toLabeled) to secure the exception handling mechanism

provided by throwLIO and catchLIO.

Formally, we extend values with another Labeled constructor v ::= · · · | LabeledTCB

X v t,

that encodes the fact that t is an exception. The additional rule for toLabeled is given by

(TOLABELEDEX) in Fig. 18: if term t raises an exception (that is not caught) LIOTCB

X t′,
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we wrap the exception by the new Labeled constructor. When unlabeling such a labeled

value, as given by (UNLABELEX), LIO simply propagates the exception. Of course, unlabel

raises the current label, ensuring that information from the point of the throw cannot be

leaked. Finally, (LABELOF2) gives the additional rule for labelOf , which allows programs

to inspect the label of Labeled values wrapping exceptions. Note that we do not allow code

to distinguish between LabeledTCB and LabeledTCB

X ; doing so would allow for trivial leaks.

With these modifications in place, we highlight that the actions in leakSecret follow-

ing the toLabeled block will always be executed, even if an exception is raised inside

condThrow. Intuitively, we close the leak due to exception propagation by simply assuring

that the execution of (possibly public) actions following a toLabeled block does not depend

on the abnormal termination of a computation wrapped by toLabeled. In a similar manner,

but using concurrent threads, we can address leaks due to the timing and non-termination

behavior of the enclosed computation (Stefan et al., 2012a).

We remark that closing leaks due to exception propagation, as such, is not without

cost. In particular, “delaying” exceptions raised within toLabeled blocks raises two chal-

lenges. First, developers need to handle exceptions at the point of unlabeling data, even

though the exception was potentially raised in a different part of the program. This im-

poses a somewhat nonstandard, asynchronous programming model which closely resem-

bles promises (Friedman & Wise, 1976; Miller, 2006). We have found that, in general,

debugging IFC programs is non-trivial for average developers (Giffin et al., 2012).

To address this, our LIO implementation associates a stack-trace like data-structure with

exceptions. Internally, LIO defines an annotation function which is used in the rest of the

library:

withContext :: String→ LIO L τ→ LIO L τ

This function takes a string message (typically the name of the function) and the action to

execute, and returns an action that wraps the original action with catchLIO. The catch is

used to interpose any thrown monitor failure exceptions as to add the annotation message

before rethrowing it. Consider the following program:

withClearance lAliceOrBob (label lAlice 42)

Here, the program starts with an initial current label and clearance set to lPublic, where

lPublic ⊑ lAliceOfBob ⊑ lAlice, but neither relations flow hold in the reverse direction.

This program throws an exception because it attempts to create a labeled value above the

current clearance (within the withClearance block). In particular, it produces the following

error message:

LabelError {

lerrContext = ["withClearance","label"],

lerrFailure = "guardAllocP",

lerrCurLabel = lPublic,

lerrCurClearance = lAliceOrBob,

lerrPrivs = [ ],

lerrLabels = [ lAlice]

}
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Note that the error message contains a lot of useful information:

• A stack-trace like context of the functions called before the program terminated.

• The actual point of failure; in this case an internal function within label called

guardAllocP, which performs the actual ⊑-check before creating a labeled value.

• The current label and clearance when the exception was thrown.

• The privileges supplied to the action that threw the exception.

• The labels supplied to the action that thew the exception.

While an actual stack trace would be more useful, this information has proved very useful

in practice when building our Hails web framework and applications on top of it;13 particu-

larly because developers can use withContext to annotate their own constructs. We remark

that in an imperative language, debugging could be simplified even further.

The second issue with delaying exceptions is that it may lead to scenarios in which

exceptions go unnoticed. Consider, for example, executing a sensitive computation with

the sole interest of performing a side-effect (e.g., a write to the database). Since, the result

of the computation is of no interest, we are likely to never unlabel the result and, as a result,

overlook a failure—toLabeled catches all exceptions.

Concretely, suppose we attempt to update a paper stored in the database with a value

of type LabeledPaper, which was produced as a result of a toLabeled computation. (Our

partialUpdatePaper is an example of one such computation.) Further suppose that the

toLabeled computation read data more sensitive than its bound, which should be the paper

label. In such a case we would write an exceptional value to the database, which will only

be observed by the user on a follow-up read. While this is not an issue from a security

stance, it is likely not the desired or expected behavior; the computation should not delay

the exception and instead reply to the user with an error.

While, in practice, users can also use label to create labeled values that contain pure

exceptions (e.g., using Haskell’s throw), an alternative strict label type (e.g., StrictLabeled)

can ensure that such labeled values never contain exceptions. Given this, an alternative

toLabeled definition could simply return a labeled variant (see Section 5.1), i.e., a value of

type StrictLabeled L (Either Exception τ). While this alternative API would not prevent

code from ignoring the result (and thus, the errors), it would prevent developers from

overlooking exceptions raised in a toLabeled blocks when they try to reuse the resultant

values (e.g., to insert them into the database).

In practice, we found that using clearance to restrict what a computation can read and

write within a toLabeled block and having to provide an upper bound label to toLabeled

(and the fact that one can freely inspect labels) help with reasoning about and preventing

IFC monitor failures a-priori. But, of course, other failures (e.g., network connection fail-

ures) are less predictable and in such cases we cannot avoid inspecting the return values

to catch any delayed exceptions. In such cases, LIO’s support for declassification, though

not discussed in this paper, was used to “safely leak” the success/failure of a sensitive

computation. In general, we did not find delayed exceptions to be a hindrance. However,

13 In debugging mode, it is possible to get more accurate information by rewriting the Haskell
source to wrap at every bind, and also add file and line number annotations. We do not do this
in production because of performance.
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our experience comes from building Hails (Giffin et al., 2012) and applications on top of

Hails, which build on the concurrent version of LIO that uses threads in place of toLabeled;

in these applications, we mostly relied on toLabeled-like construct to execute code in which

failure was easy to predict (e.g., transformers from strings to abstract data types). Lastly,

we refer the reader to the work of (Hriţcu et al., 2013) for a more exhaustive discussion on

the various design points of delayed exceptions.

5.1 Recovering from monitor failures

Our reduction rules given thus far in Fig. 2–18 do not consider cases where label checks

fail. Like for other dynamic IFC systems (e.g., (Askarov & Sabelfeld, 2009b; Sabelfeld &

Russo, 2009; Austin & Flanagan, 2009; Austin & Flanagan, 2010; Devriese & Piessens,

2011)), this would imply aborting the program execution when a monitor failure occurs.

For practical systems, this approach is not appropriate: we cannot halt the system when a

λChair request handler is about to violate IFC. Moreover, it is not safe—this introduces a

covert channel (Myers & Liskov, 1997).

As we previously mentioned, LIO and Breeze (Hriţcu et al., 2013) differ from most other

dynamic IFC systems in using exceptions to encode monitor failures. For example, when

the security conditions in rule (UNLABEL) are not met, we throw an exception:

UNLABELFAIL

lcur ⊔ l l′cur l′cur ⊑ ccur False

〈lcur,ccur,m | unlabel (LabeledTCB l t)〉
0
−→ 〈lcur,ccur,m | throwLIO ξIFC〉

Here, ξIFC is simply an exception containing information about the failure. In the same

way, we provide reduction rules dual to those of Fig. 10–18 that simply throw exceptions

when a security condition is not met. We do not discuss these rules further since they are

straightforward. The only interesting case is a particular failure of toLabeled, given below.

TOLABELEDFAIL

lcur ⊑ l True l ⊑ ccur True

〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | v〉 l′cur ⊑ l False

〈lcur,ccur,m | toLabeled l t〉
n+1
−→ 〈lcur,ccur,m

′ | return (LabeledTCB

X l ξIFC)〉

Here, the enclosed term t raises the current label l′cur above the upper bound l. By sim-

ply throwing an exception we would potentially be leaking information about data more

sensitive than lcur. (Malicious code can “throw” an exception by raising the current label

above the upper bound imposed by toLabeled, reintroducing the attack from the previous

section.) As mentioned before, toLabeled must return a labeled value. Therefore, we return

a labeled value that contains an exception that encodes the monitor failure; at the point of

unlabel, this “delayed” exception is raised.

By encoding monitor failures with exceptions, as opposed to stopping the program,

LIO allows untrusted code to catch exceptions and safely recover from attempted IFC

violations. Consider, for instance, the following function that unlabels a Labeled value and

returns an Either value to indicate the success or failure of the operation:

safeUnlabel :: Label L ⇒ Labeled L τ → LIO L (Either Exception τ)

safeUnlabel lv = catchLIO (do v← unlabel lv
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return (Right v)

) (λ e→ return (Left e))

If the label of lv is above the current clearance or if the value is a labeled exception, the

LIO unlabel throws an exception (raising the label in the latter case), which is handled

by simply returning the exception wrapped with the Left constructor. If no exception is

raised, the current label is raised and the unlabeled result is returned, wrapped by Right.

As discussed in (Hriţcu et al., 2013), this is generally a very useful feature since it treats

code in an egalitarian fashion, and allows one to integrate untrusted code in an application

without having to worry that the code will halt the system by causing a monitor failure.

We remark that, unlike our original treatment of exceptions (Stefan et al., 2012b), the

(TOLABELEDFAIL) rule treats normal and exceptional results of a failed toLabeled block

the same. This means that if a computation within a toLabeled block raised its current

label above the bound and terminated with an exception, the exception will be hidden.

(Though, a non-exceptional value would be hidden too.) As for Breeze’s λ
〈〉
throw+D calculus,

this means that delayed exceptions are isomorphic to labeled tagged variants, i.e., values

of type Labeled L (Either Exception τ). The trade-off between these semantics and our

original ones are explored in detail in (Hriţcu et al., 2013). The downside of our current

approach is clear: error message are hidden, thus making it more difficult to debug LIO

programs.14 However, this trade-off comes with a benefit: all exceptions, including delayed

exceptions, can be caught. (After all, when unlabeled, delayed exceptions, are isomorphic

to tagged variants.)

This is not necessarily true of our original calculus. To understand the difference, sup-

pose an exception is raised in a toLabeled block with an upper bound set to l; further

suppose that the current label when exception is raised is l′, where l′ 6⊑ l. Since exceptions

are not hidden (in our original calculus), when unlabeling such delayed exceptions, the

unlabel primitive re-threw the exception, raising the current label lcur to lcur ⊔ l ⊔ l′. Un-

fortunately, wrapping unlabel with a catchLIO does not guaranteed that the exception will

be caught—in particular, if the l′ is not below clearance, catchLIO would simply propagate

the exception. At a high level, this effectively means that code cannot unlabel values from

an untrusted computation without risking a poison pill attack (Hriţcu et al., 2013), i.e.,

attacks wherein untrusted code running in a toLabeled block render outer computations

useless by raising the current label above the expected label of the labeled value. Of course,

code can always use withClearance to avoid such attacks, but this approach is less usable.

6 Security guarantees

In this section, we show that programs written in LIO satisfy noninterference and a form

of discretionary access control. Informally, noninterference states that secret values cannot

be leaked by LIO programs, while DAC ensures that computations cannot bypass the

restrictions imposed by clearance to access or create arbitrary data. Before delving into

14 We remark that this can be improved by keeping track of the precise point within the toLabeled
block that the current label was raised above the bound and adding this to the exception stack-trace
discussed above.
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the details of these security guarantees, we first highlight some notational difference with

the previous sections and describe the extent of our mechanization in Coq.

Notation To allow for incremental introduction of concepts, in the previous section we

used LIOTCB and LIOTCB

X constructors to respectively denote non-exceptional and excep-

tional monadic LIO terms that have been executed to the point of containing no more

side effects. In this section, we use a single constructor that additionally takes a boolean

argument to indicate whether the value is an exception or not: term LIOTCB

b t corresponds

to LIOTCB t if b = true and LIOTCB

X t if b = false. Similarly, we use LabeledTCB

b , with

b ∈ {true, false}, instead of the LabeledTCB and LabeledTCB

X constructors.

Mechanized proofs We formalized a large subset of the calculus, described in Section 2,

using the Coq theorem prover. The mechanized subset omits references and the reduction

rules corresponding to monitor failures described in Section 5.1. Moreover, the Coq im-

plementation uses a concrete four-point lattice similar to that shown in Fig. 3. For this

subset, we mechanized the propositions, lemmas, theorems, and proofs given below; we

distinguish the non-mechanized parts of the proofs with the symbol ✎. We leave the

extension to the full calculus with an abstract lattice to future work and refer the interested

reader to (Vassena & Russo, 2016) for a mechanization of a more extensive LIO-like

systems.

6.1 Noninterference

In this section, we prove that LIO satisfies noninterference using the term erasure technique

from (Li & Zdancewic, 2010; Russo et al., 2008). Intuitively, the term erasure technique

allows us to show that a program satisfies noninterference by showing that the behavior of

the program with all the sensitive data (classified above l) “erased” cannot be distinguished

by an attacker (at observation level l) from the behavior of the original program.

To model such programs, we extend our calculus and reduction rules with erased terms,

denoted by a new terminal •, as follows:

t ::= · · · | • ⊢ • : τ

HOLE

• •

HOLELIO

〈•,•,• | •〉
n
−→ 〈•,•,• | •〉

Intuitively, an erased term can have any type. Moreover, an erased term or configuration,

the latter represented by 〈•,•,• | •〉, always reduces to itself. We use a meta-level erasure

function εl(·) to replace all terms more sensitive than the attacker’s observation level l

with •. To an attacker, terms and configurations above their observation level appear as •;

the new reduction rules also ensure that no information can be learned from the reduction

of such terms (by effectively diverging).

Fig. 19 gives the definition of the erasure function for values, terms, memories, and con-

figurations. For most values, the erasure function is simply the identity function, since most

values are not heterogeneously labeled. Similarly, for most terms, the function is simply

applied homomorphically (e.g., εl( if True then t2 else t3) = if True then εl(t2) else εl(t3)).

There are only four interesting cases. First, when erasing a LabeledTCB

b l1 t2 value, we erase

the term t2 protected by label l1 to • when the label does not flow to l; otherwise we
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εl(True) = True εl(False) = False εl(()) = () εl(l1) = l1

εl(LabeledTCB

b l1 t) =

{

LabeledTCB

b l1 εl(t) l1 ⊑ l

LabeledTCB

b l1 • otherwise

εl(label l1 t2) =

{

label l1 εl(t2) l1 ⊑ l

label l1 • otherwise

εl(〈lcur,ccur,m | t〉) =

{

〈lcur,ccur,εl(m) | εl(t)〉 lcur ⊑ l

〈•,•,• | •〉 otherwise

εl(m) = {(a,εl(m(a)) : a ∈ dom(m) and labelOf m(a) ⊑ l} εl(•) = •

Fig. 19. Erasure function for values, terms, configurations, and memory store. For all other terms,

the erasure function is simply applied homomorphically..

simply apply the function homomorphically. Second, we aggressively erase values that are

about to be labeled with label. While the erasure function only erases values when the first

argument to label is a value (and not a term), we define a new reduction relation that applies

the erasure function at every step and thus ensure that values are erased as soon as possible.

We note that such aggressive erasure would not be correct for toLabeled, which also returns

a labeled value, since toLabeled takes a monadic LIO action that may produce side-effects

observable to the attacker. Third, we erase a whole configuration to 〈•,•,• | •〉 when the

current label is not below l; this ensures that the attacker cannot observe anything about

sensitive configurations. Fourth, we erase all reference more sensitive than the attacker

observation label, even those created in public contexts. This ensures the attacker cannot

observe anything about the sensitive parts of the memory store.

The addition of • and corresponding reduction rules completes our calculus and seman-

tics definition. We now prove several general properties for this calculus, followed by two

key properties needed for the noninterference theorem: simulation and determinacy of our

monadic reduction relation and a new relation that erases sensitive terms.

Our first lemma states that values are in normal form, i.e., values do not reduce.

Lemma 1 (Values do not reduce)

• For any value v, there is no term t such that v t.

• For any lcur,ccur,m,v,n, there is no program configuration k such that 〈lcur,ccur,m | v〉
n
−→

k.

Proof

The first case follows by induction on the pure term reduction relation. The second case

follows by induction on the structure of v.

Though straightforward, this lemma is helpful when distinguishing terms that terminate

since, as in most sequential IFC calculi, our noninterference guarantee is termination in-

sensitive, i.e., it only holds for terminating terms. And, recall that our calculus allows

non-terminating terms with fix.

The next proposition show that the erasure function is homomorphic over substitution

and idempotent over terms, memories and configurations.

Proposition 1 (Idempotence and distribution properties of the erasure function)
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1. Idempotent over terms: εl(t) = εl(εl(t))

2. Idempotent over memory✎: εl(m) = εl(εl(m))

3. Idempotent over configurations: εl(k) = εl(εl(k))

4. Homomorphic over substitution: εl({ t1 / x} t2) = {εl(t1)/ x} εl(t2)

Intuitively, the first three properties respectively state that multiple application of the era-

sure function does not affect the term, memory, or configuration once it has been erased.

In other words, the erasure function should completely erase sensitive data encoded in a

term.

The erasure function additionally distributes over the pure reduction relation.

Proposition 2 (Erasure function distributes over the pure-term reduction relation)

For any label l, if t t′ then εl(t) εl(t
′).

Proof

Straightforward induction on t, using Lemma 1, and Proposition 1.

In other words, taking a step in the pure reduction and erasing the end term is the same as

first erasing the term and taking a step. Intuitively this is stating that sensitive data does not

affect the reduction of a pure term.

We now extend this intuition to simulation with a new reduction relation under which

sensitive terms and configurations are erased. This new monadic-term reduction relation

with erasure is defined as follows:

Definition 1 (Reduction of pure and monadic terms with erasure)

k
n
−→ k′

k
n
−→l εl(k

′)

Configurations under this relation are evaluated in the same way as before, with the ex-

ception that, after one evaluation step, the erasure function is applied to the resulting

configuration. In this manner, the relation guarantees that confidential data, i.e., data above

level l, is erased as soon as it is created.

To illustrate the need for this relation, consider two labels l1 and l2, such that l1 ⊑ l2, and

the following program p= 〈l1, l2, /0 | (λ l.label l 42) l2〉. Assuming an attacker at observation

level l1, program p contains the secret 42, which is placed inside a label expression when

β -reducing. Observe that εl1(p) is not enough to capture what an attacker should see, since

εl1(p) = 〈l1, l2, /0 | (λ l.label l 42) l2〉, i.e., it still contains the secret! However, observe that

p
n
−→l1 〈l1, l2, /0 | label l2 •〉 erases the secret (42) as soon as it is β -reduced—capturing the

attacker observational power at every reduction step of the program.

k k′

εl(k) εl(k
′)

n

εl εl

n

l

Fig. 20. Simulation

between
n
−→ and

n
−→l .

Fig. 20 highlights the intuition behind our simulation result:

erasing all sensitive data, i.e., data whose label is not below l, and

then taking a step in
n
−→l is the same as taking a step in

n
−→ and

then erasing all the secret values in the resulting configuration.

Observe that if configuration k leaks data labeled above l (such

that it is observable at l), then erasing all sensitive data and taking

a step in
n
−→l might not be the same as taking steps in

n
−→ and
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then erasing all the secret values in the resulting configuration—

the data might have already been leaked. We remark that, while

this simulation result and several statements below involve configurations that are initially

erased, we rely on the more general reduction relation for determinacy and prove the more

general statement where appropriate.

First, we show that the current label after taking a step is always at least as restricting as

the current label before taking the step.

Proposition 3 (Monotonicity of the current label)

If 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then lcur ⊑ l′cur.

Proof

Straightforward induction on t, using the lattice-properties of labels (namely, reflexivity of

⊑ and definition of ⊔).

This proposition not only reduces the number of cases we need to consider, but also

reinforces our intuition that none of the LIO terms can lower the current label once sensitive

data is incorporated in the context (and thereby allow for such data to be leaked). We note

that since toLabeled is defined using big-step semantics it does not actually restore the

current label of the context; rather it executes a term in a separate context in a single step.

We now prove simulation of the monadic-term reduction relation. The proof follows by

induction on the number of executed toLabeled blocks, i.e., index n on the
n
−→ relation.

These cases are further broken down into several simpler cases, according to the observa-

tional level of the attacker and current labels (before and after taking a step). To simplify

presentation, these supporting statements are given in Appendix A.

Lemma 2 (Single-step simulation without toLabeled)

If 〈lcur,ccur,m | t〉
0
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then εl(〈lcur,ccur,m | t〉)
0
−→l εl(〈l

′
cur,c

′
cur,m

′ | t′〉).

Proof

Straightforward case analysis on lcur ⊑ l and l′cur ⊑ l. All cases follow directly from

supporting Propositions 10, 11, and 12 given in Appendix A.

This base-case simulation corresponds to the scenario where no toLabeled blocks are

executed. The single-step simulation lemma for arbitrary terms follows by induction, using

this lemma for the base case.

Lemma 3 (Single-step simulation)

If 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then εl(〈lcur,ccur,m | t〉)
n
−→l εl(〈l

′
cur,c

′
cur,m

′ | t′〉).

Proof

Straightforward case analysis on lcur ⊑ l and l′cur ⊑ l using Lemma 2 for the base case.

The cases follow directly from the supporting propositions—Propositions 11, 12, and 14—

given in Appendix A.

This lemma shows a simulation between a term taking a step in the normal reduction

relation and that same term, with all sensitive information erased, taking a step in the

reduction relation with erasure. This is highlighted by Fig. 20. Unfortunately, the statement

is overly restricting—it imposes the number of toLabeled blocks to be the n. (Indeed, we
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are only able to prove this lemma because the reduction rule (HOLELIO) is defined for any

index.)

A more general statement would allow for the number of toLabeled blocks to differ. In

particular, when considering erasure the number of toLabeled blocks executed is at most

n, since the erasure collapses all sensitive paths (an erased configuration reduces to itself)

and thus the number toLabeled blocks executed in a sensitive context need not be counted.

This statement is given below:

Corollary 1 (Single-step collapsed simulation)

If 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then εl(〈lcur,ccur,m | t〉)
n′

−→l εl(〈l
′
cur,c

′
cur,m

′ | t′〉)

for some n′ 6 n.

Proof

Directly from Lemma 3 using n as a witness.

We remark that while we directly use Lemma 3, this is not necessary. Indeed, one can

prove a more precise bound by showing that n′ corresponds to the number of toLabeled

blocks executed in attacker-observable contexts, i.e., contexts that have a current label

below the attacker observation level.

Having established the simulation between the standard reduction relation and the re-

lation with erasure, we now solely need to show that the latter relation is deterministic to

prove noninterference.

First, we show that the pure-term reduction relation is deterministic.

Proposition 4 (Determinacy of pure-term reduction)

If t t′ and t t′′ then t′ = t′′.

Proof

By induction on the pure-term reduction relation, using Lemma 1.

Since several reduction rules for the monadic-term reduction relation are given in using

big-step semantics, we show that the big-step relation, i.e., relation wherein the end-terms

are values, is deterministic:

Proposition 5 (Determinacy of big-step monadic-term reduction)

If 〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB

b′
t′〉 and 〈lcur,ccur,m | t〉

n′ ∗
−→ 〈l′′cur,c

′′
cur,m

′′ | LIOTCB

b′′
t′′〉,

then l′cur = l′′cur, c′cur = c′′cur, m′ = m′′, n = n′, t′ = t′′, and b′ = b′′.

Proof

By induction on t. Most cases follow by inversion of the first multi-step monadic-term

reduction hypothesis. The LIO, return, and throwLIO cases further require the inversion of

the second hypothesis.

This proposition is crucial to the noninterference theorem. Indeed, it can serve as a first

sanity-check when extending the library with new primitives: adding LIO actions that are

non-deterministic, such as getTimeOfDay would trivially break this statement. And, ex-

tending the system to consider a non-deterministic reduction relation is non-trivial. Indeed,

it may require changing even the security condition (Zdancewic & Myers, 2003; Sabelfeld

& Myers, 2003).

We now use these two propositions to show that the single-step monadic-term reduction

relation is deterministic.
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ς (True) = true ς (False) = true ς (()) = true ς (l1) = true ς (λx.t) = ς (t)

ς (LIOTCB

b t) = false ς (LabeledTCB

b l t) = false ς (LIORe f TCB l t) = false

ς (ξ ) = true ς (•) = false ς (x) = true ς (m) =
∧

(a,LabeledTCB

b t)∈m

ς (t)

ς (〈lcur,ccur,m | t〉) = ς (lcur)∧ ς (ccur)∧ ς (m)∧ ς (t)

Fig. 21. Safe function for values, memories, and configurations. The safe function for terms is

defined homomorphically over the structure of the term.

Proposition 6 (Determinacy of monadic-term reduction)

If k
n
−→ k′ and k

n′

−→ k′′ then k′ = k′′ and n = n′.

Proof

By induction on the monadic-term reduction relation, using Proposition 4 and Lemma 1.

We use Proposition 5 for the (BIND), (BINDEX), (TOLABELED), (TOLABELEDEX), (CATCH-

LIO), and (CATCHLIOEX) cases.

From this, the determinacy of the relation with erasure follows in a straightforward way:

Lemma 4 (Determinacy of monadic-term reduction with erasure)

For any label l, configurations k, k′, and k′′, and index numbers n and n′, if k
n
−→l k′ and

k
n′

−→l k′′ then k′ = k′′ and n = n′.

Proof

By inversion of the hypotheses, using Proposition 6.

Before stating the noninterference theorem, we first define a safe function ς to distin-

guish terms that are only composed of surface syntax. Fig. 21 gives the definition of this

function for values, memories and configurations. For terms, we define ς as the conjunction

of its application to all the term components. Since the definition of ς is straightforward,

we only remark that our definition for memories is permissive in treating a non-empty

memory m as safe when m only contains safe terms.

As in previous works on noninterference, we state noninterference as the preservation

of l-equivalence, defined according to a syntactic equivalence relation ≈l.
15 We define this

l-equivalence relation as the equivalence kernel of the erasure function εl(·) for configura-

tions. That is, k≈l k′ iff εl(k) = εl(k
′). Note that this equivalence relation precisely captures

the power of an attacker: to an attacker at observation level l, two terms that are l-equivalent

cannot be distinguished.

Theorem 1 (Noninterference)

For any label l, index n1, and two configuration k1 and k2, such that ς (k1) and ς (k2), there

exists an index n2, such that if k1 ≈l k2, k1
n1−→ k′1 and k2

n2−→ k′2 then k′1 ≈l k′2.

Proof

15 While considering syntactic l-equivalence is standard, a treatment of semantic l-equivalence would
be an interesting research direction.
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Applying Corollary 1 to the two hypotheses, we have: εl(k1)
n′1−→l εl(k

′
1), for n′1 6 n1 and

εl(k2)
n′2−→l εl(k

′
2), for n′2 6 n2. From k1 ≈l k2 and the definition of ≈l we have εl(k1) =

εl(k2). Then, by Lemma 4, we have εl(k
′
1) = εl(k

′
2) and n′1 = n′2. From the definition of l-

equivalence, this is the same as k′1 ≈l k′2. Our Coq proof uses types to eliminate degenerate

cases, but this is not fundamental to the proof and we thus elide this detail.

The theorem states that if two configurations with possibly secret information, but indis-

tinguishable to an attacker at level l, take a step, then the resulting configurations are also

indistinguishable to the attacker. In other words, the attacker does not learn any sensitive

information by observing configurations at lower sensitivity levels. Note, however, that the

number of toLabeled actions executed in each step may differ according to data the attacker

cannot observe—we assume that the attacker cannot observe the index counts.

This noninterference statement is stronger than that considered in the conference version

of this paper (Stefan et al., 2011b), which is stated in terms of a big-step. Specifically, this

statement says that no information is leaked at any intermediate step, as opposed to solely

stating that the result of two l-equivalent programs do not leak information. However, as

in the conference version, this is a termination-insensitive result, i.e., we only make claims

about the case where the configurations can each take a step and thus leaks due to non-

termination are not captured. In (Stefan et al., 2012a), we modify LIO to ensure that no

information about the termination of sensitive subcomputation is visible to public contexts.

For that, we force the execution of each toLabeled block to occur in a separate thread.

The concurrent version of LIO satisfies a much stronger property—termination-sensitive

noninterference—and is the library we use to implement both Hails and λChair.

6.2 Discretionary access control and isolation

In this section, we show that LIO programs cannot write or allocate entities below the

current label or read, write or allocate entities above their current clearance.16 Building on

this, we then show how LIO can be used to isolate untrusted computations to ensure they

can only access a particular part of memory and any faults are contained, i.e., faults in the

untrusted code do not percolate into the outer context.

6.2.1 Discretionary access control

In the previous section, we showed that the current label after taking a step is always at least

as restricting as the current label before taking the step. The dual holds for clearance; the

current clearance after taking a step is always at most as restricting as the current clearance

before taking the step.

Proposition 7 (Monotonicity of the current clearance)

If 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then c′cur ⊑ ccur.

16 When considering privileges, in the style of the decentralized label model of Myers and
Liskov (Myers & Liskov, 1997), these access restrictions give the code containing the privilege
the discretion to access certain entities below the current label and above the current clearance.
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Proof

By induction on t, using the lattice-properties of labels (namely, reflexivity of ⊑) and the

fact that only (LOWERCLEARANCE) modifies the clearance (for which the statement holds

trivially).

This proposition states that the current clearance monotonically decreases within a context.

In other words, the context can give up access to certain entities as it progresses, but not

conversely. This statement is the clearance equivalent of Proposition 3, which states that

once a computation reads confidential data, it cannot lower its current label to write to

entities less sensitive.

Before delving into our access control guarantees, we first define two store modifiers:

l� m = {(a,LabeledTCB

b l′ t) : (a,LabeledTCB

b l′ t) ∈ m and l ⊑ l′}

m� l = {(a,LabeledTCB

b l′ t) : (a,LabeledTCB

b l′ t) ∈ m and l′ ⊑ l}

l1 � m� l2 = l1 � m∩m� l2

Symbol l�m denotes the subset of m containing all the references whose labels are above

or equal to l. Similarly, m � l contains the references whose label is below or equal to l.

Operator l1�m� l2 encompasses the subset of m containing all the reference whose labels

are between the labels l1 and l2. Finally, we introduce the complement of the described

subsets as l� m, m� l, and l1 � m� l2, respectively.

Lemma 5 (No write-access below current label✎)

Given a term t and memory m, such that ς (t) and ς (m � ccur), if the term reduces to a

value according to 〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | t′〉, then lcur � m = lcur � m′.

Intuitively, this lemma states that the partitions, of the initial and final memory stores,

that (may) contain references with labels below lcur are identical, i.e., the computation

could not have modified or created references below lcur. Note, however, that the lemma

does not state that term t cannot read from a reference below the current label. A corollary

of this lemma states that any labeled values created by t are labeled above lcur.

A similar, though slightly stronger, access control statement holds for clearance.

Lemma 6 (No access above current clearance✎)

Given term t and memory m, such that ς (t) and ς (m� ccur), if the term reduces to a value

according to 〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | t′〉, then m� ccur = m′ � ccur.

In other words, the partition of memory above the initial current clearance remains

inaccessible throughout the program execution, i.e., the computation could not have mod-

ified or created references above ccur. A corollary of this lemma states that any labeled

values created by t are labeled below ccur. As shown in Appendix A, computations also

cannot read data above the clearance; this allows us to execute a term t with an alternative

memory—one where references above the clearance are arbitrarily modified—without

affecting its behavior.

From these two lemmas, we can further state that the current computation is restricted

to modifying references whose labels are between the current label and clearance:

Proposition 8 (Memory writes bounded by current label and clearance✎)
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Given term t and memory m, such that ς (t) and ς (m� ccur), if the term reduces to a value

according to 〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | t′〉, then lcur � m� ccur = lcur � m′ � ccur.

Proof

Directly from Lemma 5 and Lemma 6.

6.2.2 Isolation

Using the above access control properties of LIO, we now show how terms can be executed

in isolation. To this end, we first define an isolate function, similar to the withClearance of

Section 3:

isolate :: Label L ⇒L →L → LIO L ()→ LIO L ()

isolate l c t = toLabeled c (lowerClearance c>> raiseLabel l>> t)>> return ()

where raiseLabel l = label l ()>>=unlabel

This function executes a term t in a context where the initial current label and clearance

are l and c, respectively. While simple, this isolation function can be used to ensure that

the untrusted term t can only modify a specific portion of memory and indeed, behave, as

if it executes in a separate context:

Lemma 7 (Single term isolation✎)

If 〈lcur,ccur,m | isolate l c t〉
n+1 ∗
−→ 〈lcur,ccur,m

′ | LIOTCB

true ()〉, then l� m� c = l� m′ � c,

m′ = (l� m′ � c)∪ (l� m� c), and 〈l,c,m | t〉
n ∗
−→ 〈l′,c′,m′ | LIOTCB

true ()〉.

Here, the memory equations simply state that term t could only have modified the part of

the memory store m that is between l and c. Regardless of whether t terminates by raising

the current label, lowering the current clearance, and/or throwing an exception, the isolate

function ensures that this “fault” is not propagated to the outer computation. Indeed, this

can directly be used to address the poison pill attacks described in (Hriţcu et al., 2013).

Unfortunately, like the noninterference theorem, this lemma assumes that term t terminates.

By wrapping different terms with isolate and using disjoint labels for their corresponding

current labels and clearances, we can guarantee that the terms will execute in isolation, on

disjoint parts of the memory. Such a term isolation theorem, for two terms, is given below.

Theorem 2 (Term isolation✎)

Assume fresh(·) deterministically creates objects that are globally unique. Given safe terms

t1 and t2, memory m, and labels l1,c1, l2, and c2, bounded by lcur and ccur, such that l1 ⊑ c1,

l2 ⊑ c2, l1 6⊑ l2, l2 6⊑ l1, c1 6⊑ c2, and c2 6⊑ c1, if 〈lcur,ccur,m | isolate l1 c1 t1 >>

isolate l2 c2 t2〉
n ∗
−→ 〈lcur,ccur,m

′ | LIOTCB ()〉 then 〈l1,c1,m | t1〉
n1 ∗−→ 〈l′1,c

′
1,m1 | LIOTCB ()〉,

〈l2,c2,m | t2〉
n2 ∗−→ 〈l′2,c

′
2,m2 | LIOTCB ()〉, n = (n1 + 1) + (n2 + 1), and l1 � m� c1 =

l1 � m1 � c1, l2 �m� c2 = l2 � m2 � c2, l1 � m′ � c1 = l1 � m1 � c1, and l2 � m′ �

c2 = l2 � m2 � c2.

Intuitively, the theorem states that the behavior of terms t1 and t2 (under the supplied

context labels) is not affected by isolate function. Importantly, it also states that the two

terms operate on disjoint parts of the memory—indeed the behavior of t2 is the same
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as executing it with initial memory m, as opposed to m1, the memory after term t1 was

executed. In the context of λChair, this isolation property is especially important since it

allows us to ensure that requests running on behalf of different users run in isolation.

7 Related Work

Heintze and Riecke (Heintze & Riecke, 1998) consider security for lambda-calculus where

lambda-terms are explicitly annotated with security labels, for a type-system that guaran-

tees noninterference. One of the key ideas behind their work is to provide an operator that

raises the security label of a term. Similarly, Zdancewic’s PhD thesis (Zdancewic, 2002)

introduces a security λ -calculus which raises the pc associated to a term when sensitive

information gets obtained by reading references. Austin and Flanagan (Austin & Flanagan,

2009) design a λ -calculus which might temporary raise the pc when reducing function

application. These features are similar to raising the current label when manipulating

labeled values whose labels are above the current label. The notion of a floating current

label dates back to the High-Water-Mark security model (Landwehr, 1981) of the ADEPT-

50 in the late 1960s, which was later adopted by Asbestos (Efstathopoulos et al., 2005),

HiStar (Zeldovich et al., 2006), and Flume (Krohn et al., 2007) IFC Operating Systems.

Abadi et al. (Abadi et al., 1999) develop the dependency core calculus (DCC) based on a

hierarchy of monads to guarantee noninterference. In their calculus, they define a monadic

type that protects the confidentiality of pure values at different security levels. Our LIO

and Labeled types serve a similar role. However, since LIO has the guarantee that code

cannot create labeled values below the current label and or above the current clearance,

the Labeled type is not a monad—we must inspect the current label and clearance before

a new labeled value can be created (e.g., by applying a function to the protected value).

Nevertheless, we can use unlabel and toLabeled in the LIO monad to achieve the dynamic

equivalent functionality of DCC’s (non-standard) typing rules for the bind operator. Tse

and Zdancewic (Tse & Zdancewic, 2004) translate DCC to System F and show that nonin-

terference can be stated using parametricity. Unfortunately, like DCC, they rely on a non-

standard typing rule for bind—they provide several definitions for this operator and rely on

GHC’s UndecidableInstanceextension (which lifts type conditions of (Sulzmann et al.,

2007)) to resolve the correct bind. Crary et al. (Crary et al., 2005) present a monadic cal-

culus for noninterference for programs with mutable state. While inspired by these works,

we do not take a domain-specific approach to extend the Haskell type system or modify

the Haskell runtime; rather, we take a dynamic, label-polymorphic, and library approach to

IFC. Importantly, our implementation does not rely on any non-standard constructs—this

reduces the task of understanding IFC enforcement to understanding the LIO API.

Harrison and Hook show how to monadically encode abstract operating systems called

separation kernels (Harrison, 2005). The idea behind this work is to first partition a pro-

gram into multiple processes, each associated with a separate domain (label), running in

isolation. Inter-process communication is allowed through a kernel that mediates the mes-

sage exchange according to a security policy (e.g., noninterference). To formally reason

about separation kernels, the authors use a monad-layering approach, modeling state with

the State monad, concurrency with the Resumption monad, etc. This approach is orthogonal

to our approach; we use monads in a trivial fashion and primarily as a way to implement the
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calculus semantics as a library. In (Stefan et al., 2012a), we describe the concurrent version

of LIO, which unlike (Harrison, 2005), considers termination-sensitive noninterference.

The seminal work by Li and Zdancewic (Li & Zdancewic, 2006) presents an imple-

mentation of information-flow security for Haskell. Instead of modifying the language

runtime, they take a library-based approach by encoding IFC-constrained computations

using arrows (Hughes, 2000) (a generalization of monads). This work was extended by

Tsai et al. (Tsai et al., 2007) to consider concurrency and side-effecting computations.

Russo et al. (Russo et al., 2008) show an alternative library-based approach that eliminates

the need for arrows; they, instead, describe a monadic library that encodes static IFC.

This library relies on monadic types to track information-flow in pure and side-effecting

computations. Morgenstern and Licata (Morgenstern & Licata, 2010) extend this idea to

implement an authorization- and IFC-aware programming language in Agda. However,

and as is the case with many static systems (Sabelfeld & Russo, 2009), their library is

less permissive. Nevertheless, this library is a closely related work. In particular, we note

that the SecIO library (Russo et al., 2008) has functions that serve the static counterpart

of some of the core LIO functions (e.g., like unlabel, they provide a function that maps

pure labeled values into monadic computations; like toLabeled, they provide a function

that allows safely writing to public entities after reading secret data).

Another closely related work is that of (Devriese & Piessens, 2011); this work uses

monad transformers and parametrized monads (Atkey, 2009) to enforce noninterference,

both dynamically and statically. Different from our work, they focus on modularity (sepa-

rating IFC enforcement from underlying user API), using typeclass-level tricks. Unfortu-

nately, like the work on separation kernels, this requires programmers to first partition their

code to fit the new programming model, whereas the usage of LIO strives to be very close

to Haskell’s existing IO libraries.

Laminar (Roy et al., 2009) is a closely related system that combines OS- and PL-

techniques to jointly provide application and OS end-to-end guarantees. Although our work

does not extend to the OS, Laminar’s OS-confinement could be unified with LIO, much as

they unify the mechanism with their Java language-level system. More interestingly, at the

language level, Laminar enforces IFC within certain code regions named security regions,

where labeled data can be accessed. Security regions have a (secrecy and integrity) label

associated with them and are superficially similar to our toLabeled blocks.17 Unlike in

LIO, however, security regions cannot change their current label; if code wishes to read

data more sensitive than the region’s label, it must create another region with the supplied

label. Moreover, if code within a region violates a security check (e.g., attempts to write

to less sensitive file), the Laminar runtime raises an exception. Each security region has

a required catch block, which is executed when such an exception is raised. (Though,

code within a region can terminate the process by exiting.) Catch blocks run with the

same label as the security region and provides developers with a way for recovering from

monitor failures. Importantly, the runtime suppresses exceptions raised within the security

region’s catch block and any exceptions not explicitly caught. Similar to our approach,

17 Laminar also associates a set of capabilities as a means for declassification and endorsement, much
like LIO’s privileges. However, we do not discuss them further since we do not address such topics
in this work.
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this decision is done to avoid an exception raised in a sensitive context to suppress less

sensitive subsequent actions. Despite this similarity, there are several differences between

LIO and Laminar. First, LIO provides a single, flexible mechanism for handling exceptions;

we do not treat monitor exceptions differently from other exceptions—thus reducing the

abstractions developers must understand. Second, LIO does not suppress exceptions. Our

toLabeled block delays exceptions which may be suppressed, but do not have to be—we

can inspect the result of a toLabeled result, whether it is a failure or not. A result of these

two points is that Laminar’s secure regions can be implemented in LIO using toLabeled and

withClearance. More importantly, we remark that LIO code does not have to be wrapped

in toLabeled blocks—this is unlike Laminar, where code that handles labeled data must

always be wrapped by a secure region.

The secure treatment of exception-handling has been studied by the mainstream IFC

compilers Jif (Myers & Liskov, 2000) and FlowCaml (Simonet, 2003). These compilers’

type-systems enforce the following rule for exceptions: if an exception might be raised in

a sensitive context, no public side effects must follow either in the subsequent code in a

try block or in the catch handler. On the other hand, LIO enforces that once exceptions

are thrown in a sensitive context, no subsequent public side effects can be executed either

inside the toLabeled block where the exception is raised (if any) or in the catch handler.

In (Askarov & Sabelfeld, 2009a), the authors provide a more permissive static exception-

handling mechanism by introducing exceptions that cannot be caught. This idea could be

easily incorporated in LIO and we state it as an interesting direction for future work.

Hedin and Sabelfeld present a dynamic information-flow monitor for a core JavaScript

with exceptions (Hedin & Sabelfeld, 2012). In their calculus, they associate a security

level with every exception. This is similar to our initial approach, described below, in

associating the current label with exceptions thrown by throwLIO. Their semantics diverge

from standard JavaScript in disallowing public exceptions from being thrown in secret

contexts and, to address this permissiveness issue, they provide a non-standard construct

that can be used to upgrade the label of an exception. Unfortunately, IFC violations (which

may arise when an upgrade is not performed) are fatal.

Our initial treatment of exceptions was presented in the unpublished manuscript (Stefan

et al., 2012b). While the semantics are mostly the same as those presented in this paper,

there are some subtle differences. In particular, in the original work, exceptions had an

associated explicit label—the current label at the time of a throwLIO. And, at the time

of a catchLIO, the current label was raised to the join of the exception label and current

label. Unfortunately, these semantics are unnecessarily complex due to the implementation.

Specifically, the LIO monad was implemented as a State monad with IO as the base

monad and the current label and clearance as the monad state. Since the monad state may

change according to the computation control flow, it was necessary that exceptions carry

the additional state information to ensure that the current label is not arbitrarily lowered.

By removing this implementation consideration, we were able to simplify the semantics

to those presented in this paper and also simplify the implementation—the key insight is

that the current label and clearance are global to the computation and thus the State monad

needs to only contain a reference to these labels. Indeed, this simplification reduced the

complexity of exception handling to the interaction of exceptions and toLabeled.
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In parallel with our initial work on exceptions, Hriţcu et al. presented the Breeze IFC

language (Hriţcu et al., 2013). Breeze explored the design space of IFC and exceptions.

Not only do they consider various calculi with exceptions, but, like our work, also address

the issue of treating IFC monitor failures as recoverable failures. We refer the interested

reader to the Breeze paper for a very comprehensive comparison of Breeze and LIO, and a

detailed analysis of different design trade-offs that arise due to exceptions. Here, we only

remark that, like Breeze, we delay the propagation of exceptions raised in toLabeled blocks

(in Breeze, these are called brackets). Indeed, our semantics for exceptions are very similar

to their calculus λ
〈〉
throw+D. Both of these calculi differ from our original presentation (Stefan

et al., 2012b) in hiding exceptions raised in a toLabeled block where the current label is

above the supplied upper bound, see rule (TOLABELEDFAIL).

Different from most language-based IFC systems, LIO relies on the notion of clearance

to restrict information leakage due to covert channels. Bell and La Padula (Bell & La

Padula, 1976) formalized clearance as a bound on the current label of particular users’

processes. In the 1980s, clearance became a requirement for high-assurance secure systems

purchased by the US Department of Defense (Department of Defense, 1985). HiStar (Zel-

dovich et al., 2006) re-cast clearance as a bound on the label of any resource created by the

process (where raising a process’s label is but one means of creating a something with

a higher label). We adopt HiStar’s more stringent notion of clearance, which prevents

software from copying data it cannot read and facilitates bounding the time during which

possibly untrustworthy software can exploit covert channels.

8 Summary

We presented LIO, an IFC system that explores a new design point in language-based

information flow security. LIO takes a mostly coarse-grained labeling approach, inspired

by both IFC OSes and IFC programming languages. In particular, LIO only associates a

single, mutable, label—the current label with all the values in context (lexical scope) and

dictates how information flows to/from the context. Compared to typical language-based

IFC systems, where labels are explicitly associated with values, this design approach is

amenable to a fast, library implementation. But, to allow programmers to handle differ-

ently labeled data, LIO provides an abstract data type, Labeled, that encapsulates a term

and its explicit label. (In a similar way we provide mutable labeled references.) Labeled

values serve the dual purpose of addressing label creep—the raising of the current label as

increasingly sensitive data is incorporated into the context—by encapsulating the result of

sensitive sub-computation, as executed by toLabeled. Unlike other language-based work,

our IFC system also implements clearance as a means for restricting the kinds of data

a computation can read/write to; LIO relies on this form of discretionary access control

to address covert channels: code cannot leak data it cannot read. Finally, LIO provides

exception handling constructs which serve the dual purpose of encoding monitor failures,

from which untrusted code can recover. This addresses a long standing problem with

dynamic IFC enforcement—that monitor failures leak information.

We proved several security theorems for LIO. First, we showed that LIO programs,

which may perform complex side-effects (e.g., mutate variables and throw exceptions),

satisfy noninterference, i.e., LIO programs satisfy data confidentiality and integrity. Sec-
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ond, we showed that clearance is a form discretionary access control. And, finally, we

showed that LIO can be used to execute terms in isolation, operating on disjoint parts of

memory.

We implemented LIO as a Haskell library, using Safe Haskell to ensure that untrusted

code executes in the LIO monad, i.e., our IFC sub-language. To illustrate the expressiveness

of LIO, we described the core of a conference review system, λChair, that uses IFC to

enforce high-level security policies. In addition to λChair, we (and others) have used LIO

to implement several other web applications, some of which are in production use. We

found the library-based approach to be very effective, both in terms of deployment (at

the time of this writing, the library has thousands of downloads) and design (the interface

matured as a result of several iterations).
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A Detailed proofs

In this section, we provide expand the proof details for the results in Section 6.

Proposition 1 (Idempotence and distribution properties of the erasure function)

1. Idempotent over terms: εl(t) = εl(εl(t))

2. Idempotent over memory✎: εl(m) = εl(εl(m))

3. Idempotent over configurations: εl(k) = εl(εl(k))

4. Homomorphic over substitution: εl({ t1 / x} t2) = {εl(t1)/ x} εl(t2)

Proof

The first property follows by induction on term t; all cases follow trivially from the inver-

sion of the induction hypothesis. The second and third properties follow from the definition

of the erasure function for memories and configurations and first property. The fourth prop-

erty follows by induction on t2; most cases follow directly from the induction hypothesis

and definition of substitution.

Since a number statements rely on several inversion and distribution properties for the

erasure function, we give these below.

Proposition 9 (Inversion properties of the erasure function)

1. Labeled values:

• If l1 6⊑ l then LabeledTCB

b l1 •= εl(LabeledTCB

b l1 t) for any t.

• If l1 ⊑ l then LabeledTCB

b l1 εl(t) = εl(LabeledTCB

b l1 t).

2. Monadic values: LIOTCB

b εl(t) = εl(LIOTCB

b t).

3. Configurations:

• If lcur 6⊑ l then 〈•,•,• | •〉= εl(〈lcur,ccur,m | t〉) for any ccur, m and t.

• If lcur ⊑ l then 〈lcur,ccur,εl(m) | εl(t)〉 = εl(〈lcur,ccur,m | t〉).

Proof
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All properties follow directly from the definition of the erasure function.

This proposition states that, in certain cases, we can invert the application of the erasure

function to labeled values, LIO values, and configurations.18

Simulation

Our simulation lemma follows by induction on the number of executed toLabeled blocks.

The two lemma, Lemma 2 and 3, rely on several supporting propositions. We give these

below.

Our first base-case simulation proposition considers the case when both the starting and

end configuration labels can flow to the attacker observation level. In other words, the

current term t does not raise the current label (e.g., with unlabel) nor does it execute any

toLabeled blocks.

Proposition 10

For any label l, such that lcur ⊑ l and l′cur ⊑ l, if 〈lcur,ccur,m | t〉
0
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then

εl(〈lcur,ccur,m | t〉)
0
−→ εl(〈l

′
cur,c

′
cur,m

′ | t′〉)

Proof

By induction on t. Most cases follow directly from inversion of the first
0
−→ reduction hy-

pothesis or Lemma 1. The >>= and catchLIO cases follow from the definition of the single-

and multi-step relations, using Propositions 9 and a supporting proposition (not given here)

whose statement is the multi-step version of this proposition. The terms for which there is

a context reduction rule (e.g., label, unlabel, etc.), we further rely on Proposition 2.

The next proposition considers the case when initial configuration cannot be observed

by the attacker, i.e., the initial current label does not flow to the attacker label.

Proposition 11

For any label l, such that lcur 6⊑ l, if 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then it is also the

case that εl(〈lcur,ccur,m | t〉)
n
−→ εl(〈l

′
cur,c

′
cur,m

′ | t′〉)

Proof

We break the proof into two cases:

• Case l′cur ⊑ l: follows from Proposition 3.

• Case l′cur 6⊑ l: follows trivially from the single-step reduction rule of an erased

configuration, (HOLE).

Here, the simplicity of the proof allows us to consider the case where the number of

executed toLabeled blocks is any natural n.

The more interesting case—when the current label is raised by the current term t—is

given below. As shown below, only unlabel actually raises the current label, hence, we can

18 We note that, while we can prove inversion for all terms (and cases), we only need properties 1
and 2 to prove the more interesting simulation property.
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directly consider the simulation for an arbitrary number n of executed toLabeled blocks.

However, we must consider the case when unlabel is executed as part of a bigger action

(e.g., in >>= or catchLIO).

Proposition 12

For any label l, such that lcur ⊑ l and l′cur 6⊑ l, if 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then

εl(〈lcur,ccur,m | t〉)
n
−→l εl(〈l

′
cur,c

′
cur,m

′ | t′〉)

Proof

By induction on t. Most cases follow directly by inversion of the
n
−→ reduction rule and

lcur ⊑ l hypothesis. The remaining cases are:

• Case unlabel t1: Breaks down into the three reduction rules for unlabel:

— Case (UNLABELCTX): Follows directly from the definition of the
n
−→l reduction

rule and rule (UNLABELCTX), using Propositions 1 and 2.

— Case (UNLABEL): Both sub-cases (where the label of the value being unlabel can

and cannot flow to l) follow directly from the definition of the
n
−→l reduction rule

and rule (UNLABEL), using Propositions 1 and 9.

— Case (UNLABELEX): Same as the (UNLABEL) case, but using the definition of

(UNLABELEX) instead.

• Case t1 >>= t2: Straight forward induction on t1, using Propositions 1 and 9.

• Case catchLIO t1 t2: Straight forward induction on t1.

These supporting statements are used to prove the base-case simulation, Lemma 2,

where no toLabeled blocks are executed. However, all but one of the above supporting

propositions consider the more general case, where any number of toLabeled blocks are

executed. We need to extend Proposition 10 to arbitrary terms to prove the inductive case.

To do this, however, we must first show simulation for the big-step reduction relation

holds (since toLabeled is defined in terms of a big-step), if the starting and end current

labels can flow to the attacker label.

Proposition 13

For any label l, such that lcur ⊑ l, if 〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB

b t′〉 then

〈lcur,ccur,m | εl(t)〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | LIOTCB

b εl(t
′)〉

Proof

By induction on t, most cases follow by inversion of the first
n ∗
−→ reduction hypothesis and

the resulting
n
−→ hypothesis. This leaves us with the terms that reduce to LIO values: LIO,

return, and throwLIO. The first follows by inversion and Lemma 1. The latter two follow

directly from the definition of the
n
−→ and

n ∗
−→ reduction relations.

Using this proposition, the general version of Proposition 10 follows:

Proposition 14

For any label l, such that lcur ⊑ l and l′cur ⊑ l, if 〈lcur,ccur,m | t〉
n
−→ 〈l′cur,c

′
cur,m

′ | t′〉 then

εl(〈lcur,ccur,m | t〉)
n
−→l εl(〈l

′
cur,c

′
cur,m

′ | t′〉)

Proof
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We break this into two cases:

• Case n = 0: Trivially from Lemma 2.

• Case n = n′ + 1: By induction on t. Most cases follow trivially by inversio The

remaining cases are:

— Case t1 >>= t2: By inversion we break this down into the two sub-cases corre-

sponding to the reduction rules (BIND) and (BINDEX). Both cases follow directly

from the definition of the
n
−→l reduction rule, using Propositions 1, 9, and 13.

— Case toLabeled t1 t2: By inversion we break this down into the three sub-cases

corresponding to the reduction rules:

– Case (TOLABELEDCTX): Trivially by inversion.

– Case (TOLABELED): Both sub-cases (where the label of the result can and

cannot flow to l) follow directly from definition of the
n
−→l reduction rule

and rule (TOLABELED), using Propositions 1, 9, and 13.

– Case (TOLABELEDEX): Like the (TOLABELED) case, but using the defini-

tion of (TOLABELEDEX) instead.

— Case catchLIO t1 t2: By inversion we have two cases corresponding to (CATCHLIO)

and (CATCHLIOEX), both of which follow in the same way as the >>= case.

Directly, the single-step simulation lemma, Lemma 3, for arbitrary terms follows.

Discretionary access control and isolation

First, we give the proof for Lemma 5, which states that the current computation cannot

write to references below the current label:

Lemma 5 (No write-access below current label✎)

Given a term t and memory m, such that ς (t) and ς (m � ccur), if the term reduces to a

value according to 〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | t′〉, then lcur � m = lcur � m′.

Proof

Observe that t can only modify m by creating a new reference or writing to an existing

reference with (NEWLIOREF) and (WRITELIOREF), respectively. Both of these rules

require the label of the (potentially new) reference to be above lcur. Hence we know that

the memory below the current label will remain unchanged if t takes a single step. Using

Proposition 3 we can directly extend this to an arbitrary number of steps.

The somewhat dual statement, Lemma 6 states that the current computation cannot read

or write to references above the current clearance (or create labeled values labeled as such):

Lemma 6 (No access above current clearance✎)

Given term t and memory m, such that ς (t) and ς (m� ccur), if the term reduces to a value

according to 〈lcur,ccur,m | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′ | t′〉, then m� ccur = m′ � ccur.

Proof
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Observe that t can only modify m by creating a new reference or writing to an existing

reference with (NEWLIOREF) and (WRITELIOREF), respectively. Both of these rules

require the label of the (potentially new) reference to be below ccur. Hence we know that

the memory above the current clearance will remain unchanged if t takes a single step.

Using Proposition 3 we can directly extend this to an arbitrary number of steps.

Indeed, since no memory above the current clearance can be accessed we can simply

replace that part of the memory with arbitrary references:

Proposition 15 (Reduction is independent of memory above clerance✎)

If 〈lcur,ccur,m1 | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′
1 | t
′〉, ς (t), and m1 � ccur = m2 � ccur, then

〈lcur,ccur,m2 | t〉
n ∗
−→ 〈l′cur,c

′
cur,m

′
2 | t
′〉 and m′1 � ccur = m′2 � ccur.

Proof

Follows in the same way as the proof for Lemma 6.

Before delving into the term isolation proof we first give two supporting propositions.

First, a straightforward property for bind:

Proposition 16 (Term evaluation is obvlivious to memory above clearance✎)

The reductions 〈lcur,ccur,m | t1〉
n1 ∗−→ 〈l′cur,c

′
cur,m

′ | LIOTCB

true ()〉 and 〈l′cur,c
′
cur,m

′ | t2〉
n2 ∗−→

〈l′′cur,c
′′
cur,m

′′ | LIOTCB

true ()〉 hold iff 〈lcur,ccur,m | t1 >> t2〉
n ∗
−→ 〈l′′cur,c

′′
cur,m

′′ | LIOTCB

true ()〉

holds and n = n1 +n2.

Proof

Directly from definition of bind.

Second, we give simple memory equivalence when store modifiers are used:

Proposition 17 (Equivalence of memory subsets✎)

For labels l1,c1, l2, and c2, such that l1 ⊑ c1, l2 ⊑ c2, l1 6⊑ l2, l2 6⊑ l1, c1 6⊑ c2, and

c2 6⊑ c1, if l1 � m� c1 = l1 � m′ � c1 then l2 � m� c2 = l2 � m′ � c2.

Proof

Since the labels are incomparable, it is easy to show that (l2 � m � c2) ⊂ (l1 � m� c1)

and (l2 � m′ � c2)⊂ (l1 � m′ � c1), from which the statement trivially holds.

From these, the term isolation theorem follows in a mostly straightforward way.

Theorem 2 (Term isolation✎)

Assume fresh(·) deterministically creates objects that are globally unique. Given safe terms

t1 and t2, memory m, and labels l1,c1, l2, and c2, bounded by lcur and ccur, such that l1 ⊑ c1,

l2 ⊑ c2, l1 6⊑ l2, l2 6⊑ l1, c1 6⊑ c2, and c2 6⊑ c1, if 〈lcur,ccur,m | isolate l1 c1 t1 >>

isolate l2 c2 t2〉
n ∗
−→ 〈lcur,ccur,m

′ | LIOTCB ()〉 then 〈l1,c1,m | t1〉
n1 ∗−→ 〈l′1,c

′
1,m1 | LIOTCB ()〉,

〈l2,c2,m | t2〉
n2 ∗−→ 〈l′2,c

′
2,m2 | LIOTCB ()〉, n = (n1 + 1) + (n2 + 1), and l1 � m� c1 =

l1 � m1 � c1, l2 �m� c2 = l2 � m2 � c2, l1 � m′ � c1 = l1 � m1 � c1, and l2 � m′ �

c2 = l2 � m2 � c2.

Proof
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From Proposition 16, we have 〈lcur,ccur,m | isolate l1 c1 t1〉
n1+1 ∗
−→ 〈lcur,ccur,m1 | LIOTCB

true ()〉

and 〈lcur,ccur,m1 | isolate l2 c2 t2〉
n2+1 ∗
−→ 〈lcur,ccur,m

′ | LIOTCB

true ()〉.

Applying Lemma 7 to the first reduction we have m1 = (l1 � m1 � c1)∪ (l1 � m� c1),

〈l1,c1,m | t1〉
n1 ∗−→ 〈l′1,c

′
1,m1 | LIOTCB

true ()〉, and l1 � m� c1 = l1 � m1 � c1.

From Proposition 17 and l1 � m� c1 = l1 � m1 � c1 we have l2 �m� c2 = l2 �m1 � c2.

Applying Lemma 7 to the second reduction we have m′ = (l2 �m′ � c2)∪ (l2 � m1 � c2),

〈l2,c2,m1 | t2〉
n2 ∗−→ 〈l′2,c

′
2,m

′ | LIOTCB

true ()〉, and l2 � m1 � c2 = l2 � m′ � c2.

From Proposition 17 and l2 � m1 � c2 = l2 � m′ � c2 we have l1�m1� c1 = l1�m′� c1.

Further applying Proposition 15 we have 〈l2,c2,m | t2〉
n2 ∗−→ 〈l′2,c

′
2,m2 | LIOTCB

true ()〉 and

m� c2 = m2 � c2. From Proposition 8 we have l2 � m� c2 = l2 � m2 � c2.


