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Simple Contextual Information-Flow Control with Effects

ANONYMOUS AUTHOR(S)

Pure functional languages have the particularity of being able to provide information-flow security (IFC)

as a library. These libraries (e.g., LIO, MAC, HLIO, etc.) use monads as their main abstraction for enforcing

security. While sound, such a design decision can introduce restrictions at the time of programming that need

to be solved by adding extra primitives, e.g., to support a functor or applicative-like functor structure when

handling sensitive values. We argue that such approaches are unnecessarily conservative mainly because of

the use of a single security label to secure both aspects of a monadic computation, namely its effects and result.

In this work, we explore a different point in the design space for IFC in pure languages. We present coIFC,

a novel domain-specific language where IFC is tracked differently for the effect-free and effectful components.

This language uses modalities for protecting the effect-free part of our language, and a graded monad for

effectful components. The monad does not enforce security per se, but only collects the labels of the potential

observers of the computation’s effects. coIFC reduces the security of effectful IFC to a single point in the

language, thus giving us clarity and simplicity in the design and implementation.

We provide a Haskell library implementing coIFC in less than 10 lines of code for the effect-free fragment

and less than 30 for the effectful part. We demonstrate that our library is capable to encode previous libraries

that enforce IFC statically. We also show that providing a functor or applicative-functor structure for sensitive

values is a derived operation in our language. All of our security guarantees are mechanized in the Agda proof

assistant.

Additional Key Words and Phrases: Modalities, Graded Monads, Information-Flow Control, Security Library,

Haskell

ACM Reference Format:
Anonymous Author(s). 2017. Simple Contextual Information-Flow Control with Effects. In . ACM, New York,

NY, USA, 28 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Information-flow control [17, 38] (IFC) is a promising technology to protect data confidentiality.

Many IFC approaches are designed to prevent sensitive data from influencing what attackers can

observe from a program’s public behavior—a security policy known as non-interference [14]. In

the past years, the use of pure functional languages for tackling IFC challenges and answering

research questions has been proliferating, e.g., [31, 33, 34, 49]. From the practical point of view,

pure functional languages can provide IFC security via libraries [24, 37, 42]—which is a minor task

when compared to building compilers or interpreters from scratch [9, 16, 28, 41]. Some of these

security libraries have demonstrated to be capable of building practical secure systems [13, 31].

The foundational work on the Dependency Core Calculus [1] (DCC) positions monads as a

suitable abstraction for enforcing IFC on the simply-typed lambda calculus; and there are several

implementations of DCC’s ideas in Haskell [3, 4, 37, 44]—a language known to embrace monadic

domain-specific languages. Intuitively, DCC implements security through a family 𝑇 of monads

indexed by security labels. The type𝑇ℓ 𝑎 denotes data of type 𝑎 which is only accessible to observers
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who have the privilege of reading data at least as sensitive as the security label ℓ . This idea naturally

extends to secure effects which can be represented in a pure way (like state or exceptions), but

it becomes less evident how to use it to secure arbitrary effects, e.g., like those provided by the

opaque IO-monad. Hirsch and Cecchetti [19] describe a translation from a version of DCC with

a program counter [11]—a label used to rule out data leakage arising from effects in imperative

languages—to an effect-free setting based on productors [43].
Other monadic approaches to IFC adopt principles from operating systems [6] to provide security

in pure functional languages. For instance, Russo [36] introduces a family MAC of monads indexed

by security labels. The typeMAC ℓ a represents an effectful computation where the label ℓ indicates

that the result of type a is only accessible to observers who have the privilege of reading data at

least as sensitive as ℓ—analogously to DCC. However, the label ℓ is also used to restrict leakeage

through effects. Specifically, a computation of type MAC ℓ a can only read sources labeled ℓ𝑖 if

they are at most as sensitive as ℓ (no-read-up principle). Similarly, a computation of type MAC ℓ a
can only write to sinks labeled ℓ𝑜 if they are at least as sensitive as ℓ (no-write-down principle). The
choice of using a single label to restrict both aspects of a computation, i.e., both its effects and result,

is exhibited by a number of IFC libraries, e.g., SecLib [37], LIO [42], HLIO[10], LWeb [31], and Lifty

[33]. While sound, such a design decision imposes constraints at the time of programming that

need to be resolved by adding more primitives. For instance, the work by Vassena et al. [46] adds a

functor and applicative-like structure to sensitive values handled by MAC, which took the authors

to re-do the security proofs from previous work [47].

This work explores a different point in the design space of enforcing IFC in pure languages.

We design a security library that is simple, sound, and implementable in a way that each security
label talks only about a single aspect of the computation, i.e., either a value like an integer or a

boolean, or an effect like writing to a file. For that we have taken inspiration from work on IFC

for the simply-typed lambda calculus using modalities [26, 40] and other contextual approaches

like coeffects [12]. It is known that approaches based on modalities and coeffects are challenging

to implement as a library since they are likely to require access to contextual information that is

usually not available to the library implementer, e.g., which variables are currently in scope. This

work shows how to overcome this limitation in the IFC setting.

This article introduces coIFC, a language where IFC is tracked differently for the effect-free

and effectful components. By construction, coIFC separates effect-free and effectful terms and

each label talks only about a single aspect of the computation. For the effect-free part we utilize

a family Labeled of modal types. The type Labeledℓ 𝜏 makes sure that the value of type 𝜏 is only

accessible to observers who have the privilege of reading data at least as sensitive as ℓ . We stress that

Labeledℓ 𝜏 is a modal type rather than a monadic one and that implies having a different interface
to manipulate sensitive values. We later show that the modal operators for protecting or inspecting

sensitive values are flexible enough to encode DCC; and we provide a Haskell implementation that

corroborates it.

For representing computations coIFC uses a graded monad Effℓ𝑠 𝜏 which tracks in its type a set

of security labels ℓ𝑠 . The monad does not enforce security however, it only collects the labels of

the potential observers of the computation’s effects. For instance, when the effect is printing the

set contains the labels of the channels the computation writes to; when the effect is writing to

memory it accounts for the security labels of the memory cells the computation writes to. In pure

languages—like Haskell—there is a strict separation between the time a computation is built and

when it is executed. Enforcing security amounts to only allow computations to run whose effects

do not violate the security policy.

In this work, we reduce the problem of ensuring that an effectful sensitive computation does

not leak through effects to simply checking that the computation’s label is compatible with the
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effects’ label. To illustrate this point, the type Labeledℓ (Effℓ𝑠 Unit) denotes a program which builds

an effectful computation depending on sensitive information at level ℓ . A program with this type, if

naively allowed to execute, could leak information marked with sensitivity ℓ into public sinks if ℓ𝑠

contains the label of a less sensitive observer than ℓ . To enforce security, we could forbid running

any program of type Labeledℓ (Effℓ𝑠 𝜏), but this would be overly restrictive. Instead, if every label in

ℓ𝑠 is at least as sensitive as ℓ then we definitely know that the effect will not leak; and allowing the

program to run is safe. The relation between the sensitivity of the data as indicated by the

modality Labeledℓ 𝜏 and of the effects’ observers is the key and the design of coIFC takes full

advantage of it. Thus, coIFC reduces the security of effectful IFC to a single point in the language

thereby giving us clarity and simplicity in the design and implementation.

Along with our informal argumentation for why coIFC is secure, we have mechanized proofs

in the Agda proof assistant about the strong security guarantees that the programs in the lan-

guage satisfy, namely termination-insensitive non-interference (TINI). Our proofs are based on the

technique of logical relations and consist of around 1500 lines of Agda code.

Finally, we present an implementation of coIFC as a Haskell library. The conciseness of our

implementation illustrates the elegance and simplicity of our approach: less than 10 lines of code for

the effect-free fragment and less than 30 for the effectful part. Our library is at least as expressive

as previous work on libraries for IFC in Haskell. We show implementations of SecLib [37], DCC [1]

(in its alternative presentation SDCC [3]) and MAC [36]) in terms of coIFC’s interface. Furthermore,

in order to implement our IFC modal operators as a library, we use a novel encoding of contextual

information as capabilities via higher-rank polymorphism [22].

The summary of the technical contributions of this paper are:

▶ A language design where effect-free parts are protected by modal types (Section 2).

▶ A language design where effectful components are modelled by a graded monad. We show how

to handle both write (Section 3) and read effects (Section 4). Further, we present a single primitive

capable of enforcing security in effectful computations (Section 3).

▶ Security gurantees and proofs of TINI based on logical relations (Section 5).

▶ A Haskell implementation of coIFC using a novel encoding of contextual information as capa-

bilities together with evidence that coIFC can encode existing monadic security libraries as well as

derive operations for a flexible treatment of sensitive values (Section 6).

▶ Mechanized proofs of all our security guarantees (approx. 1500 lines of Agda code submitted as

accompanying material).

2 EFFECT-FREE LANGUAGE
In this sectionwe present 𝜆-coIFC, an effect-free languagewith amodal type-system for information-

flow control. We split the presentation in two parts; a base programming language which is a

variant of the STLC with call-by-name semantics; and a security type-system that enforces IFC.

This incremental presentation arises from the consideration that programs already make sense

(semantically speaking) on their own before enforcing security. This statement is specially true for

static IFC enforcements, since all the relevant security type annotations and security checks should
not have any runtime impact on programs.

The effect-free fragment of the language is a non-strict variant of the sealing calculus [40]. For

simplicity, we consider Bool and Unit as the only ground types. The base language, STLC, is given

by the set of types, typing contexts, well-typed terms and a small-step reduction relation which

explains the operational behavior of programs—see Figure 1. The typing judgements and semantics

for STLC are well understood and therefore we omit their explanation here. Instead, we focus on

the IFC security type-system.

3



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

ICFP2021, July 1997, City, State, Country Anon.

Ground Types 𝜎 ::= Bool | Unit
Types 𝜏, 𝜏1, 𝜏2 ::= 𝜎 | 𝜏1 → 𝜏2

Typing Contexts Γ ::= · | Γ, 𝑥 : 𝜏

Γ ⊢ 𝑀 : 𝜏

Var

𝑥 : 𝜏 ∈ Γ

Γ ⊢ 𝑥 : 𝜏

Lam

Γ, 𝑥 : 𝜏1 ⊢ 𝑀 : 𝜏2

Γ ⊢ 𝜆𝑥 .𝑀 : 𝜏1 → 𝜏2

App

Γ ⊢ 𝑀 : 𝜏1 → 𝜏2 Γ ⊢ 𝑁 : 𝜏1

Γ ⊢ 𝑀 𝑁 : 𝜏2

Unit

Γ ⊢ () : Unit

True

Γ ⊢ true : Bool

False

Γ ⊢ false : Bool

If

Γ ⊢ 𝑀 : Bool Γ ⊢ 𝑁1 : 𝜏 Γ ⊢ 𝑁2 : 𝜏

Γ ⊢ ifte(𝑀, 𝑁1, 𝑁2) : 𝜏

Γ ⊢𝑣 𝑉 : 𝜏

Var

𝑥 : 𝜏 ∈ Γ

Γ ⊢𝑣 𝑥 : 𝜏

Lam

Γ, 𝑥 : 𝜏1 ⊢ 𝑀 : 𝜏2

Γ ⊢𝑣 𝜆𝑥 .𝑀 : 𝜏1 → 𝜏2

True

Γ ⊢𝑣 true : Bool

False

Γ ⊢𝑣 false : Bool

Unit

Γ ⊢ () : Unit

𝑀 −→ 𝑁

App

𝑀 −→ 𝑀 ′

𝑀 𝑁 −→ 𝑀 ′ 𝑁

Lam

(𝜆𝑥 .𝑀) 𝑁 −→ 𝑀 [𝑁 /𝑥]

If

𝑀 −→ 𝑀 ′

ifte(𝑀, 𝑁1, 𝑁2) −→ ifte(𝑀 ′, 𝑁1, 𝑁2)

If-True

ifte(true, 𝑁1, 𝑁2) −→ 𝑁1

If-False

ifte(false, 𝑁1, 𝑁2) −→ 𝑁2

Fig. 1. Types, terms and small-step operational semantics for STLC (excerpts).

In the rest of this document, we assume 𝐿 to be a set of security labels equipped with a preorder

structure L = (𝐿, ⊑); we also denote concrete labels using letters ℓ, ℓ ′, etc.
𝜆-coIFC enforces IFC through a type discipline. To introduce the type-system, we start by defining

the grammar for security types 𝜏 𝑠
and a relation J𝜏𝑠K = 𝜏 to be read as 𝜏𝑠 refines type 𝜏 with a

security annotation—see Figure 2. The security types reflect those in the base language except for

a new type former, Labeled, which serves to annotate a piece of a program with a security label.

Labeled takes two arguments, a security label ℓ from 𝐿 and a security type 𝜏 𝑠
.

Further, in Figure 2 we define the typing derivations for the security IFC type-system where the

typing rules are defined over well-typed terms in the base language. Judgements in the security

type-system are of the form 𝜋 ; Γ 𝑠 ⊢𝑠 𝑀 𝑠
: 𝜏 𝑠

, where J𝜏 𝑠K = 𝜏 and JΓ 𝑠K = Γ—we ignore 𝜋 for the

moment. It is necessary that𝑀 is a well-typed term in the base calculus, i.e., Γ ⊢ 𝑀 : 𝜏 holds.

For easier reading of examples, we decorate rules [Label] and [Unlabel] with terms, and

interchangeably use𝑀 to refer both to the underlying term without decorations, i.e., Γ ⊢ 𝑀 : 𝜏 , and

the typing derivation, i.e., 𝜋 ; Γ 𝑠 ⊢𝑠 𝑀𝑠
: 𝜏 𝑠

. Further, in the latter we usually omit the
𝑠
superscript

in the typing contexts and types when it is evident from the context.

4
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The component 𝜋 of the security typing judgement is a finite set of security labels, drawn from 𝐿,

i.e, 𝜋 ⊆fin 𝐿, and it represents the security labels of all the data that the term can depend upon. The

set of labels indexing the context are analogous protections contexts from previous work [40, 44].

To illustrate the intuition behind 𝜋 , we assume the classical two-point lattice for IFC as a preorder,

i.e., LH = ({𝐿,𝐻 }, ⊑LH) where 𝐻 @LH 𝐿 is the only disallowed flow. In this scenario, 𝜋
def

= {𝐻 }
means that the program can unlabel, i.e., can depend on, terms tagged with security type Labeled𝐿 𝜏
or Labeled𝐻 𝜏 . Instead, if 𝜋

def

= {𝐿}, then only terms of type Labeled𝐿 𝜏 can be unlabeled, ensuring

the flows of information are secure, i.e., they follow the policy ascribed by LH . Labels in 𝜋 act as a

kind of type-level key whose possession permits access to sensitive information.

The IFC typing rules for the STLC fragment are rather standard: they simply propagate the set of

labels 𝜋 to their premises, e.g., rules [App], [Lam] and [If]. Observe, that using rule [If] to branch

on a secret boolean requires the secret to be explicitly unlabeled to be of the correct type, i.e.,

Bool 𝑠 . Rules [Unlabel] and [Label] are the most interesting ones since they are responsible for

enforcing that information flows to the appropriate places. These are the only rules which interact

in a non-trivial way with the set of security labels 𝜋 .

The rule [Unlabel] allows unlabeling a termwith security type Labeledℓ 𝜏 if 𝜋 contains a security

label which is compatible with the label ℓ in the term’s type. Compatible means the policy allows

the flow of information. Formally, this is encoded by the relation 𝜋 ⪰ ℓ
def

= ∃ℓ𝐻 . ℓ𝐻 ∈ 𝜋 ∧ ℓ ⊑ ℓ𝐻 ,

which we read as 𝜋 covers ℓ . Intuitively, a key ℓ𝐻 can be used to open a term of type Labeledℓ 𝜏 if
information with sensitivity ℓ can flow into entities with sensitivity ℓ𝐻 , which the security policy

allows just in case ℓ ⊑ ℓ𝐻 . If we were to assume a lattice structure on 𝐿, then, the only possible

readers of a term typed with a set of labels 𝜋 would be any ℓ that is at least as sensitive as the least
upper bound of all the labels in 𝜋 , i.e., ⊔(𝜋) ⊑ ℓ1.

The rule [Label] serves a double purpose: it marks terms as being of Labeledℓ 𝜏 type; and it

extends the set of security labels in the premise with label ℓ . This means that the derivation of the

premise can utilize the rule [Unlabel] on any label that can flow to ℓ . From the IFC perspective,

[Label] is responsible to make sure that𝑀 is built from values of at most sensitivity ℓ or any other

label ℓ ′ ∈ 𝜋 . The set 𝜋 in the judgement 𝜋 ; Γ ⊢𝑠 𝑀 : 𝜏 represents an over-approximation on the

number of enclosing label-terms to 𝑀 . In case that the set is initially non-empty, then the term

can depend on information that can flow to any of those levels, even containing sub-terms whose

evaluation cannot be observed. Yet those sub-terms cannot influence the observable behaviour of

the program.

As an example, consider a two-point preorder with labels ℓ1 and ℓ2 such that the only permitted

flows are the reflexive ones, i.e., ℓ1 ⊑ ℓ1 and ℓ2 ⊑ ℓ2. A program · ⊢ 𝑀 : Bool → Bool typed in the

security type system with {ℓ1} ; · ⊢𝑠 𝑀 : Labeledℓ1 Bool
𝑠 → 𝑠 Bool 𝑠 may use the rule [Unlabel]

to make use of its argument to influence the result, e.g., it could be the identity function. On the

other hand, if instead the term is typed as {ℓ1} ; · ⊢𝑠 𝑀 : Labeledℓ2 Bool
𝑠 → 𝑠 Bool 𝑠 then we are

guaranteed that the resulting Bool cannot be influenced by the argument, i.e., it is equivalent to a

constant program.

3 EFFECTFUL LANGUAGEWITH PRINTING EFFECTS
To secure effects in a language, it is enough to classify them as read and/or write effect and enforce

the corresponding security checks—an insight that comes from operating systems research [6, 52]

and has been recently adopted by security IFC libraries (e.g., [10, 36, 42]). In this light, we follow

the same approach and start describing how to incorporate write-effects to 𝜆-coIFC.

1
The join operator ⊔ is lifted to sets in the usual manner.
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Security types

Ground Types 𝜎 𝑠
::= Bool 𝑠 | Unit 𝑠

Types 𝜏 𝑠 , 𝜏 𝑠
1
, 𝜏 𝑠

2
::= 𝜎 𝑠 | 𝜏 𝑠

1
→ 𝑠 𝜏 𝑠

2

| Labeledℓ 𝜏 𝑠

Typing Contexts Γ 𝑠
::= · | Γ 𝑠 , 𝑥 : 𝜏 𝑠

Annotation relation
JUnit 𝑠K = Unit

JBool 𝑠K = Bool

J𝜏 𝑠
1
→ 𝑠 𝜏 𝑠

2
K = J𝜏 𝑠

1
K → J𝜏 𝑠

2
K

JLabeledℓ 𝜏 𝑠K = J𝜏 𝑠K
J·K = ·

JΓ 𝑠 , 𝑥 : 𝜏 𝑠K = JΓ 𝑠K, 𝑥 : J𝜏 𝑠K

Typing rules

𝜋 ; Γ 𝑠 ⊢𝑠 𝑀𝑠
: 𝜏 𝑠

given JΓ 𝑠K ⊢ 𝑀 : J𝜏 𝑠K

Var

𝑥 : 𝜏 ∈ Γ

𝜋 ; Γ ⊢𝑠 𝑥 : 𝜏

Lam

𝜋 ; Γ, 𝑥 : 𝜏1 ⊢𝑠 𝑀 : 𝜏2

𝜋 ; Γ ⊢𝑠 𝜆𝑥.𝑀 : 𝜏1 → 𝑠 𝜏2

App

𝜋 ; Γ ⊢𝑠 𝑀 : 𝜏1 → 𝑠 𝜏2 𝜋 ; Γ ⊢𝑠 𝑁 : 𝜏1

𝜋 ; Γ ⊢𝑠 𝑀 𝑁 : 𝜏2

Unit

𝜋 ; Γ ⊢𝑠 () : Unit 𝑠
True

𝜋 ; Γ ⊢𝑠 true : Bool 𝑠
False

𝜋 ; Γ ⊢𝑠 false : Bool 𝑠

If

𝜋 ; Γ ⊢𝑠 𝑀 : Bool 𝑠 𝜋 ; Γ ⊢𝑠 𝑁1 : 𝜏 𝜋 ; Γ ⊢𝑠 𝑁2 : 𝜏

𝜋 ; Γ ⊢𝑠 ifte(𝑀, 𝑁1, 𝑁2) : 𝜏

Label

𝜋 ∪ {ℓ} ; Γ ⊢𝑠 𝑀 : 𝜏

𝜋 ; Γ ⊢𝑠 labelℓ (𝑀) : Labeledℓ 𝜏

Unlabel

𝜋 ; Γ ⊢𝑠 𝑀 : Labeledℓ 𝜏 𝜋 ⪰ ℓ

𝜋 ; Γ ⊢𝑠 unlabelℓ (𝑀) : 𝜏

Fig. 2. Security type-system for 𝜆-coIFC.

As in the previous section, we first introduce the syntax, typing rules, and semantics of the

underlying language. As expected in a pure setting, programs which might produce effects, hereafter

computations, are given a specific type former which enjoys a monadic structure [27]. In our case,

Eff 𝜏 types computations that when executed on top of possibly producing effects also return a

result of type 𝜏 . Figure 3 presents the extension to STLC which allows programs to perform printing

effects via a primitive print (rule [Print]). Note that print is indexed by a channel and the channel

is static information, i.e., there are a number of fixed channels and these are statically known. This

permits linking a channel to the security label of the observers on that channel. The typing rules of

the standard monadic operations, return and bind, are as expected—see rules [Return] and [Bind].
A monadic reduction relation specifies the operational semantics of computations. The relation

is of the form𝑀 ⇝ 𝑁,𝑜 and is to be read as: program · ⊢ 𝑀 : Eff 𝜏 evaluates in one step to program

· ⊢ 𝑁 : Eff 𝜏 and produces output 𝑜 . The output is a function from channels to lists of boolean values,

𝑜 : 𝐶ℎ → 𝐿𝑖𝑠𝑡 (𝐵𝑜𝑜𝑙). For a given channel 𝑐ℎ, 𝑜 (𝑐ℎ) is the list of booleans printed to 𝑐ℎ during

the execution of the program. To combine outputs, we lift the monoid structure on 𝐿𝑖𝑠𝑡 (𝐵𝑜𝑜𝑙) to
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Types 𝜏, 𝜏1, 𝜏2 ::= . . . | Eff 𝜏

Γ ⊢ 𝑀 : 𝜏

Return

Γ ⊢ 𝑀 : 𝜏

Γ ⊢ return(𝑀) : Eff 𝜏

Bind

Γ ⊢ 𝑀 : Eff 𝜏1 Γ ⊢ 𝑁 : 𝜏1 → Eff 𝜏2

Γ ⊢ bind(𝑀, 𝑁 ) : Eff 𝜏2

Print

Γ ⊢ 𝑀 : Eff Bool

Γ ⊢ print𝑐ℎ (𝑀) : Eff Unit

Γ ⊢𝑣 𝑉 : 𝜏

ReturnV

Γ ⊢ 𝑀 : 𝜏

Γ ⊢𝑣 return(𝑀) : Eff 𝜏

BindV

Γ ⊢ 𝑁 : Eff 𝜏1 Γ ⊢ 𝑀 : 𝜏 → Eff 𝜏2

Γ ⊢𝑣 bind(𝑁,𝑀) : Eff 𝜏2

PrintV

Γ ⊢ 𝑀 : Eff Bool

Γ ⊢𝑣 print𝑐ℎ (𝑀) : Eff Unit

Γ ⊢𝑐𝑣 𝐶𝑉 : 𝜏

Return

Γ ⊢ 𝑀 : 𝜏

Γ ⊢𝑐𝑣 return(𝑀) : Eff 𝜏

𝑀 ⇝ 𝑁,𝑜

Pure

𝑀 −→ 𝑀 ′

𝑀 ⇝ 𝑀 ′, 𝜖

Bind-Ctx

𝑀 ′ ⇝ 𝑀 ′, 𝑜

bind(𝑀, 𝑁 ) ⇝ bind(𝑀 ′, 𝑁 ), 𝑜

Bind-Ret

bind(return(𝑁 ), 𝑀) ⇝ 𝑀 𝑁, 𝜖

Print-False

print𝑐ℎ (false) ⇝ return(()), 𝑐ℎ ↦→ [false]

Print-True

print𝑐ℎ (true) ⇝ return(()), 𝑐ℎ ↦→ [true]

Print-Ctx

𝑀 −→ 𝑁

print𝑐ℎ (𝑀) ⇝ print𝑐ℎ (𝑁 ), 𝜖

𝑀 ⇝ ★𝑁,𝑜

Nil

𝑀 ⇝★ 𝑀, 𝜖

Cons

𝑀 ⇝ 𝑀 ′, 𝑜1 𝑀 ′ ⇝★ 𝑁,𝑜2

𝑀 ⇝★ 𝑁,𝑜1 · 𝑜2

Fig. 3. Types, terms and small-step operational semantics for STLC with printing effects.

functions, and use 𝜖 to denote the unit element, i.e, 𝜖 = 𝜆𝑐ℎ.[ ], and · to denote composition, i.e.,

(𝜆𝑐ℎ.𝑥𝑠) · (𝜆𝑐ℎ.𝑦𝑠) = 𝜆𝑐ℎ.𝑥𝑠 ++ 𝑦𝑠 . We borrow notation from Haskell; symbol [ ] stands for the
empty list, and function ++ for list concatenation.

Rules [Bind-Ctx] and [Bind-Ret] reduce the left argument of the bind. The judgement Γ ⊢𝑐𝑣
return(𝑀) : Eff 𝜏 indicates that the term return(𝑀) is a computational value for any term𝑀 ; the

monadic semantics does not evaluate it further. This design choice will have implication on how

we state the security property (explained below).

Rules [Print-False] and [Print-True] output false and true in the output channel 𝑐ℎ, respec-

tively. The output 𝑐ℎ ↦→ [𝑣] is the function that maps the channel 𝑐ℎ to the list [𝑣] and every other
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Security types
Types 𝜏 𝑠 , 𝜏 𝑠

1
, 𝜏 𝑠

2
::= . . . | Effℓ𝑠 𝜏 𝑠

Annotation relation

JEffℓ𝑠 𝜏
𝑠K = Eff J𝜏 𝑠K

Typing rules

𝜋 ; Γ 𝑠 ⊢𝑠 𝑀𝑠
: 𝜏 𝑠

given JΓ 𝑠K ⊢ 𝑀 : J𝜏 𝑠K

Return

𝜋 ; Γ ⊢𝑠 𝑀 : 𝜏

𝜋 ; Γ ⊢𝑠 return(𝑀) : Eff∅ 𝜏

Bind

𝜋 ; Γ ⊢𝑠 𝑁 : Effℓ𝑠1 𝜏1 𝜋 ; Γ ⊢𝑠 𝑀 : 𝜏1 → 𝑠 Effℓ𝑠2 𝜏2

𝜋 ; Γ ⊢𝑠 bind(𝑁,𝑀) : Effℓ𝑠1∪ℓ𝑠1 𝜏2

Print

𝜋 ; Γ ⊢𝑠 𝑀 : Bool 𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) = ℓ

𝜋 ; Γ ⊢𝑠 print𝑐ℎ (𝑀) : Eff{ℓ } Unit

Subeff

𝜋 ; Γ ⊢𝑠 𝑀 : Effℓ𝑠1 𝜏 ℓ𝑠1 ⊆ ℓ𝑠2

𝜋 ; Γ ⊢𝑠 𝑀 : Effℓ𝑠2 𝜏

Distr

𝜋 ; Γ ⊢𝑠 𝑀 : Labeledℓ (Effℓ𝑠 𝜏) ℓ ⊑ ℓ𝑠

𝜋 ; Γ ⊢𝑠 distr(𝑀) : Effℓ𝑠 (Labeledℓ 𝜏)

Fig. 4. Security type-system for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡 (excerpts).

channel to the empty list. Rule [Print-Ctx] reduces print𝑐ℎ’s argument. Observe that the rules for

print𝑐ℎ make the primitive strict in its argument, i.e., the reduction first evaluates the argument to

a boolean value, and then prints it to 𝑐ℎ. The reflexive transitive closure of the monadic reduction

relation—see rules [Nil] and [Cons]—is responsible to combine the outputs of multiple steps of

the computation.

Rule [Pure] defines the interplay between the reduction relation for the effect-free and the

effectful fragments of the language. It states that we can lift effect-free into monadic reductions

and these produce the empty output 𝜖 . Terms which exclusively belong to the monadic part of the

language, such as return, bind and print, are treated as values by the pure reduction relation from

Figure 1—see rules [ReturnV], [BindV] and [PrintV].

Two reduction relations. While it might seem unnecessary to have two separated reduction

relations, it is a natural form of expressing the semantics of a pure language with effects [50]. The

pure reduction relation is responsible to evaluate pure programs, whilst the monadic reduction

relation for computing the effects. Having two separated semantics enables us to precisely localize

the parts of the program that might perform effects when executed. This choice of presentation

helps to clarify one of the novel insights of this work: in a pure language, computations are first

class objects and there exists a separation between building computations, i.e., values of type Eff 𝜏 ,

and executing them. In IFC terms, the construction of programs which can produce effects does not leak
information, but its execution might! In this light, our approach is more permissive than previous

work by allowing attackers to build insecure computations as long as they do not attempt to run

them.

Once laid down the basis of the extended underlying language, we are in position to turn our

attention to security. For IFC purposes, we consider that each output channel has a dedicated

8



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Simple Contextual Information-Flow Control with Effects ICFP2021, July 1997, City, State, Country

security level ℓ which represents the lower bound of the security labels of the observers on the

channel. Using 𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) = ℓ we denote that the channel 𝑐ℎ is at security label ℓ , i.e., observers

at label ℓ ′ are allowed to see output on 𝑐ℎ if ℓ ⊑ ℓ ′. The security type system indexes the print
instruction with the channel and the security level of the channel where the write occurs. For

ease of presentation, sometimes we conflate a channel with its security label since to reason about

security it is irrelevant that there are several channels associated with the same label.

Unfortunately, by naively extending 𝜆-coIFC with computations (programs of type Eff 𝜏) is not

secure. To illustrate this point, the reader should consider a program 𝑝 of type Labeled𝐻 (Eff Unit);
and ask themselves, is it secure to execute those effects? It is if 𝑝 = label𝐻 (print𝐻 (unlabel𝐻 (𝑠)))
assuming · ⊢𝑠 𝑠 : Labeled𝐻 Bool is the secret we would like to protect, i.e., 𝑝 outputs the con-

tents of 𝑠 into a secret channel. However, and assuming again the same 𝑠 , it can also be the case

that 𝑝 = label𝐻 (print𝐿 (unlabel𝐻 (𝑠))). In this case, 𝑝 , when executed, sends a secret in an public

channel, clearly in violation of the security policy! The problem arises because the type of 𝑝 ,

Labeled𝐻 (Eff Unit), is not expressive enough; it does not say anything about what effects the

computation might perform—in this case printing effects—and most importantly who will be able

to observe those effects. Without this information, and as just exemplified, only from its type we

cannot tell if the program 𝑝 is safe to execute. If we wanted to retain any sort of security guarantee

in the presence of effects, thus, we would need to disallow executing any such program. However,

this would be overly restrictive; we can do better and will do.

To address this, we need to reflect the security levels of the channels a computation prints to in

its type so we can decide when it is safe to execute. We extend the security type-system with an

Eff-type that is more precise; it carries a set of security labels. Programs typeable at security type

Effℓ𝑠 𝜏 are guaranteed not to print to any channel whose security label does not belong to the set ℓ𝑠 .

Figure 4 presents 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
and the new IFC typing rules that cover possibly effectful programs.

We extend the security types with Effℓ𝑠 𝜏
𝑠
, which essentially indexes the monad for printing effects

with a set of labels ℓ𝑠 . The set ℓ𝑠 over-approximates the actual set of labels of the channels that the

computation may print to.

Next, we explain the rules of the security type-system. Rule [Return] states that return produces
no effect, thus its security monadic type has the empty set as index, Eff∅ 𝜏 . Rule [Bind] combines the

sets of labels of its two arguments (Effℓ𝑠1∪ℓ𝑠1 𝜏2). The only instruction which actually performs an

effect is print, thus, rule [Print] states that its security type is indexed by the label of the channel

where the output will be written, (Eff{ℓ } Unit
𝑠
). Lastly, rule [Subeff] allows for subeffecting, this is

casting the type of a term to include more security labels, (ℓ𝑠1 ⊆ ℓ𝑠2).
With the security types for the effectful language in place, we turn our attention to terms of type

Labeledℓ (Effℓ𝑠 𝜏 𝑠 ). Observe that, in the underlying language, a program · ⊢𝑠 𝑝 : Labeledℓ (Effℓ𝑠 𝜏𝑠 ) is
nothing but a computation, i.e., · ⊢ 𝑝 : Eff 𝜏 . As the previous examples evidence, in terms of security

there are two kinds of computations; those that leak secrets upon execution; and those which do

not. Thus, in the general case we should forbid their execution. To increase the expressivity of

our security type-system, we introduce a more selective primitive that only permits the execution

of computations when security is not compromised. The idea is that programmers can construct

computations, i.e., programs of type Eff𝜏 , at will inside labeled terms; the computations and the

effects they produce depend on secret information. However, they are not guaranteed that these

programs will ever get executed.

Rule [Distr] introduces a mechanism to make sometimes possible to execute the effects described

inside a term of type Labeledℓ (Effℓ𝑠 𝜏). For that, the rule permits the security-type of its premise

to be swapped in its conclusion, i.e., Labeledℓ (Effℓ 𝜏) to Effℓ𝑠 (Labeledℓ 𝜏), always provided it is

secure to execute the effects. Yet, the question remains: when it is secure to execute the effects?
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The answer is, whenever the observers of the computations’ effects , i.e., ℓ𝑠 , are no less sensitive

than the label of the decision to perform the effects, i.e., ℓ . The condition ℓ ⊑ ℓ𝑠 in the premise of

the rule precisely captures this situation, i.e., ∀ℓ ′ ∈ ℓ𝑠 . ℓ ⊑ ℓ ′. After bringing the monadic type to

the top level, we can be sure the effects of type Effℓ𝑠 (Labeledℓ 𝜏 𝑠 ) can be safely performed by the

monadic operational semantics from Figure 3.

To illustrate rule [Distr] in action, we can revisit the previous examples. The program 𝑝 =

label𝐻 (print𝐻 (unlabel𝐻 (𝑠))), again assuming the secret 𝑠 ⊢𝑠 Labeled𝐻 Bool 𝑠 , is a well-typed pro-

gram of type Eff{𝐻 } (Labeled𝐻 Bool 𝑠 ) in the security type-system—therefore executable—by apply-

ing the rule.

⊢𝑠 𝑝 : distr(label𝐻 (print𝐻 (unlabel𝐻 (𝑠)))) : Eff{𝐻 } (Labeled𝐻 Unit 𝑠 )

However, program 𝑝 = label𝐻 (print𝐿 (unlabel𝐻 (𝑠))) cannot be safely executed, since it leaks sensi-

tive information into a public channel. Our type-system rightfully rejects 𝑝:

⊬𝑠 𝑝 : distr(label𝐻 (print𝐿 (unlabel𝐻 (𝑠)))) : Eff{𝐻 } (Labeled𝐻 Unit 𝑠 )

Observe that rule [Distr] executes the effects and protects the returned value using the same label

as the decision to perform the effects. This is necessary because computations need not to perform

effects at all. In a pure language, it is always possible to construct the no-op computation using the

monadic primitive return.
Rule [Distr] shows the main novelty and elegance of our approach: the separation of effect-free

and effectful computations, where each of them has different security labels (i.e., ℓ , and ℓ𝑠). Previous

security libraries tried to separate effect-free and effectful computations but they often ended up

using one security label for both [10, 31, 33, 36, 37, 42]. We argue that in a pure language having

such separation is natural, since computations are both executable and first-class objects that can

be manipulated. This also helps to clarify the relation between secure effect-free programs and

computations as recent works points out [19].

4 EFFECTFUL LANGUAGEWITH MEMORY EFFECTS
We turn our attention to reading effects which are the counterpart to writing effects. In order to do

so, we look at an effecful language with memory references.

The language is, again, an extension of STLC with a monadic type for computations and a type

for memory references. References allow both writing effects—like channels in 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
—but

also reading effects, i.e., reading the contents of a memory cell. The idea is that to ensure security,

memory references are ascribed a security label, like channels did, and the security label of a memory

location is used both to constraint the writes and ensure readings are secure. Following standard

procedure, we start by introducing the syntax, typing rules, and semantics for the underlying

language. Besides a monadic type for computations, the types also include Ref 𝜎 for typed memory

locations that hold terms of type 𝜎 . The typing judgement is extended with a store typing Σ, which
is a mapping from store locations to ground types. Figure 5 presents the extension to STLC which

allows programs to manipulate memory cells via two primitives, read and write (rules [Read] and
[Write]). Moreover, the primitive ref(𝑙) (rule [Ref]) is not part of the surface syntax but rather

an internal representation for locations of memory cells. The typing of the monadic operations is

exactly as before.

A monadic reduction relation of the form 𝜃1, 𝑀 ⇝ 𝜃2, 𝑁 specifies the operational semantics of

computations. This is to be read as: program Σ , · ⊢ 𝑀 : Eff 𝜏 paired with store 𝜃1 evaluates in one

step to program Σ , · ⊢ 𝑁 : Eff 𝜏 and store 𝜃2. Observe, the input and output stores are of store

typing Σ, i.e., 𝜃1 : Σ and 𝜃2 : Σ. In order to avoid unnecessary extra complexity, we make two

assumptions: stores only holds terms—since we are in a call-by-name language—of ground type,

10
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Types 𝜏, 𝜏1, 𝜏2 ::= . . . | Eff 𝜏 | Ref 𝜎
Locations 𝑙, 𝑙1, . . .

Store Typings Σ ::= · | 𝑙 : 𝜎, Σ

Σ , Γ ⊢ 𝑀 : 𝜏

Read

Σ , Γ ⊢ 𝑀 : Ref 𝜎

Σ , Γ ⊢ read(𝑀) : Eff 𝜎

Write

Σ , Γ ⊢ 𝑀 : Ref 𝜎 Σ , Γ ⊢ 𝑁 : 𝜎

Σ , Γ ⊢ write(𝑀, 𝑁 ) : Eff Unit

Ref

𝑙 : 𝜎 ∈ Σ

Σ , Γ ⊢ ref(𝑙) : Ref 𝜎

Γ ⊢𝑣 𝑉 : 𝜏

ReadV

Σ , Γ ⊢ 𝑀 : Ref 𝜎

Σ , Γ ⊢𝑣 read(𝑀) : Eff 𝜎

WriteV

Σ , Γ ⊢ 𝑀 : Ref 𝜎 Σ , Γ ⊢ 𝑁 : 𝜎

Σ , Γ ⊢𝑣 write(𝑀, 𝑁 ) : Eff Unit

RefV

𝑙 : 𝜎 ∈ Σ

Σ , Γ ⊢𝑣 ref(𝑙) : Ref 𝜎

𝜃1, 𝑀 ⇝ 𝜃2, 𝑁

Read

𝜃 (𝑙) = 𝑀

𝜃, read(ref(𝑙)) ⇝ 𝜃, return(𝑀)

Read-Ctx

𝑀 −→ 𝑁

𝜃, read(𝑀) ⇝ 𝜃, read(𝑁 )

Write

𝜃2 = 𝜃1 [𝑙 ↦→ 𝑀]
𝜃1,write(ref(𝑙), 𝑀) ⇝ 𝜃2, return(())

Write-Ctx

𝑀1 −→ 𝑀2

𝜃,write(𝑀1, 𝑁 ) ⇝ 𝜃,write(𝑀2, 𝑁 )

𝜃1, 𝑀 ⇝★ 𝜃2, 𝑁

Nil

𝜃,𝑀 ⇝★ 𝜃,𝑀

Cons

𝜃1, 𝑀 ⇝ 𝜃2, 𝑀
′ 𝜃2, 𝑀

′ ⇝★ 𝜃3, 𝑁

𝜃1, 𝑀 ⇝
★ 𝜃3, 𝑁

Fig. 5. Extending STLC with read and write effects.

i.e., Bool or Unit; and the size of the store is fixed during execution. The reason for the former is

that higher-order stores allows to express monadic fixpoint operator, thus non-termination. The

reason for the latter is that the well-typed formalization that we work on becomes complicated

and we prioritize simplicity of presentation—recent work [15] shows it is possible to lift these two

simplifications and still obtain NI guarantees.

We follow the same approach as before and extend the security type-system of 𝜆-coIFC with

reading and writing primitives. Since terms are well-typed with respect to a store typing, we extend

the grammar of security types with security store typings. These equip each location of the store

given by the store typing Σ with a security type for its contents and a security label of the location.

The latter serves to prevent implicit flows of information through the store [51]. Rules [Return],

[Bind], [Subeff] and [Distr] are analogous to those from 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
, cf. Figure 4 thus omitted.

Next, we introduce typing rules for the new primitives in Figure 5. Rule [Ref] states that typing

a location at security type Refℓ 𝜎 amounts to checking in the security typing of the store that

location 𝑙 has the correct type and label ℓ . Writing on the store is an effect, thus the typing rule for
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Security types
Store Typings Σ 𝑠

::= · | 𝑙 :ℓ 𝜎 𝑠 , Σ 𝑠

Annotation relation
J·K = ·

J𝑙 :ℓ 𝜎 𝑠 , Σ 𝑠K = 𝑙 : J𝜎 𝑠K, JΣ 𝑠K

Typing rules

𝜋 ; Σ 𝑠 , Γ 𝑠 ⊢𝑠 𝑀 : 𝜏 𝑠
given JΣ 𝑠K ; JΓ 𝑠K ⊢ 𝑀 : J𝜏 𝑠K

Write

𝜋 ; Σ , Γ ⊢𝑠 𝑀 : Refℓ 𝜎 Σ , Γ ⊢𝑠 𝑁 : 𝜎

𝜋 ; Σ , Γ ⊢𝑠 write(𝑀, 𝑁 ) : Eff{ℓ } Unit
𝑠

Read

𝜋 ; Σ , Γ ⊢𝑠 𝑀 : Refℓ 𝜎

𝜋 ; Σ , Γ ⊢𝑠 read(𝑀) : Eff∅ (Labeledℓ 𝜎)

Ref

𝑙 :ℓ 𝜎 ∈ Σ

𝜋 ; Σ , Γ ⊢ ref(𝑙) : Refℓ 𝜎

Fig. 6. Security-type system for 𝜆-coIFC𝑚𝑒𝑚(excerpts).

write ([Write]) reflects the writing effect it on its type using the label of the reference (ℓ) as the

annotation in its monadic security type, i.e., Eff{ℓ } 𝜎 .
Most peculiar is the typing rule for read (rule [Read]) for its type diverges from usual presentation

of coarse-grained libraries to IFC (e.g., [33, 36, 42] with exception of SLIO in [35]). In coarse-grained

libraries, the monadic type keeps track of one label which represents and upper bound of all the

labels that could have influenced the computation after unlabeling them. In a nutshell, the monad

uses a single label to rule them all. Reading from a memory reference, if the flow is permitted,

amounts to incorporate the contents of the memory cell directly into the context. The coarse label

protects the whole context and in particular the newly incorporated term.

In contrast, 𝜆-coIFC𝑚𝑒𝑚
takes advantage of purity again by forcing the flow of information

from memory to the program to be explicit. Rule [Read]—see Figure 6—does so by wrapping the

result of the read in a Labeled value so subsequent parts of the computation that depend on it have

to explicitly remove the label by unlabeling. Further, the typing rule states that the set of labels

attached to the monadic type is empty; in our model reads to the store do leave footprints that an

attacker can use as a side-channel [21] to recover information about our secrets.

5 SECURITY GUARANTEES
In this section, we formally state the security conditions of the languages presented in previous

sections. Further, we explain the proof technique of logical relations which we utilize to show that

the type-system is sound, i.e., terms with a typing derivation are secure. Lastly, we detail how each

soundess proof follows as a corollary of the fundamental theorem of the appropiate logical relation.

5.1 Effect-free Language
In this section, we formally state our security condition for 𝜆-coIFC: termination-insensitive non-
interference (TINI). In words, for any given program in 𝜆-coIFC with a hole for a secret, and two

executions of it obtained by replacing the secret by any two values, then the public output will

be the same. We note that 𝜆-coIFC is strongly normalizing, and assuming termination in TINI

12
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RVJUnit 𝑠K𝜋𝐴𝑡𝑘
(𝑀1, 𝑀2) = 𝑀1 ≡ 𝑀2

RVJBool 𝑠K𝜋𝐴𝑡𝑘
(𝑀1, 𝑀2) = 𝑀1 ≡ 𝑀2

RVJ𝜏1 → 𝑠 𝜏2K𝜋𝐴𝑡𝑘
(𝑀1, 𝑀2) = ∀(𝑁1, 𝑁2 : · ⊢ 𝜏1).REJ𝐸K𝜏1𝜋𝐴𝑡𝑘 (𝑁1, 𝑁2) ⇒ REJ𝜏2K𝜋𝐴𝑡𝑘

(𝑀1 𝑁1, 𝑀2 𝑁2)
RVJLabeledℓ 𝜏K𝜋𝐴𝑡𝑘

(𝑀1, 𝑀2) = 𝜋𝐴𝑡𝑘 ⪰ ℓ ⇒ RVJ𝜏K𝜋𝐴𝑡𝑘
(𝑀1, 𝑀2)

REJ𝜏Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2) = ∀(𝑉1,𝑉2 : · ⊢ 𝜏).𝑀1 −→∗ 𝑉1 ∧𝑀2 −→∗ 𝑉2 ⇒ RVJ𝐴K𝜋𝐴𝑡𝑘

(𝑉1,𝑉2)

RSJ𝑆K𝜋𝐴𝑡𝑘
(·, ·) = ⊤

RSJΓ, 𝑥 : 𝜏K𝜋𝐴𝑡𝑘
((𝛾1, 𝑀1), (𝛾2, 𝑀2)) = REJ𝜏K𝜋𝐴𝑡𝑘

(𝑀1, 𝑀2) ∧ RSJΓK𝜋𝐴𝑡𝑘
(𝛾1, 𝛾2)

RTJΓ ⊢𝑠 𝜏K𝜋𝐴𝑡𝑘
(𝑀1, 𝑀2) = ∀(𝛾1, 𝛾2 : · ⊩ Γ).RSJΓK𝜋𝐴𝑡𝑘

(𝛾1, 𝛾2) ⇒ REJ𝜏K𝜋𝐴𝑡𝑘
(𝛾1 (𝑀1), 𝛾2 (𝑀2))

Fig. 7. Logical relation for 𝜆-coIFC.

seems redundant. We remark that it is straightforward to consider fixpoint operators from a IFC-

perspective while assuming termination (e.g., as done in [37, 39, 41]) and therefore we omit it here

for simplicity and easy of presentation.

In what follows, we keep the formulation of TINI concrete by restricting the secret input and

public output to be both of boolean type. This simplifies the security condition since it is enough

to check for syntactic equality of the outputs, i.e., boolean values. We assume the presence of an

attacker at security level ℓ𝐴𝑡𝑘 and secrets with sensitivity ℓ𝐻 . We consider public outputs as those

outputs observable by the attacker.

Definition 1 (TINI for 𝜆-coIFC). Assume an attacker with security label ℓ𝐴𝑡𝑘 , and a label ℓ𝐻 for

secrets such that ℓ𝐻 @ ℓ𝐴𝑡𝑘 . Given a program𝑀 , two terms · ⊢ 𝑁1, 𝑁2 : Bool, and values 𝑉1,𝑉2 such

that,

• {ℓ𝐴𝑡𝑘 } ; 𝑠 : Labeledℓ𝐻 Bool 𝑠 ⊢𝑠 𝑀 : Labeledℓ𝐴𝑡𝑘
Bool 𝑠

• 𝑀 [𝑁1/𝑠] −→∗ 𝑉1 ∧𝑀 [𝑁2/𝑠] −→∗ 𝑉2,

then it holds that 𝑉1 ≡ 𝑉2.

A more general formulation of TINI is possible, for instance, where the output of the program𝑀

is at function type. This naturally follows from the logical relation we use to prove that 𝜆-coIFC

satisfies Definition 1. We refer the interested reader to our Agda mechanization for further details.

In the rest of this subsection we explain the details of the logical relation.

5.1.1 Soundness of the IFC Type-System for 𝜆-coIFC. In order to prove that the language satisfies

TINI, we define a logical relation (LR) by structural induction on the security types. As usual

in proofs based on logical relations, the proof of TINI for 𝜆-coIFC follows as a corollary of the

fundamental theorem of the LR (described below).

Logical relation for proving TINI. We split the LR in two parts, depending on whether the term is

already evaluated, i.e., RVJ_K_, or not, i.e., REJ_K_. At each type the LR stipulates what observations

an attacker can perform on programs. For this, the LR is parametrized by a finite set of labels

𝜋𝐴𝑡𝑘 which represents the attacker’s observation power, namely, the attacker can observe any data

labeled at ℓ—or below ℓ—such that ℓ ∈ 𝜋𝐴𝑡𝑘 .
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Before diving into the details of our LRs, we remark that the operational behavior of programs

typed in the security type system of Figure 2 is based on the operational reduction of the underlying

programs in the base calculus—cf. Figure 1. This implies that the terms decorating the rules [Label]

and [Unlabel], i.e., label and unlabel, do not carry computational meaning; they are operationally

irrelevant and do not influence reduction.

The LR for 𝜆-coIFC is described in Figure 7. Starting with the LR for values (RVJ_K_), we have
that for types Unit 𝑠 or Bool 𝑠 two values are related whenever they are the same syntactic term

(𝑀1 ≡ 𝑀2). At the function type 𝜏1 → 𝑠 𝜏2, two functions are related whenever they map related

inputs
2
(REJ𝐸K𝜋𝐴𝑡𝑘

𝜏1 (𝑁1, 𝑁2)) to related outputs (REJ𝜏2K𝜋𝐴𝑡𝑘
(𝑀1 𝑁1, 𝑀2 𝑁2)). Finally, if the security

type is Labeledℓ 𝜏 for some ℓ and 𝜏 , then depending on the attacker observation power we might

require the underlying values to be related. If the attacker can observe the labeled term, as in the

premise of the implication (𝜋𝐴𝑡𝑘 ⪰ ℓ), then the two values have to be related at type 𝜏 . As before,

𝜋𝐴𝑡𝑘 ⪰ ℓ means that ℓ flows to some label in 𝜋𝐴𝑡𝑘 , i.e., 𝜋𝐴𝑡𝑘 covers ℓ . In case the attacker cannot

observe the label ℓ , both𝑀1 and𝑀2 can assume any value.

When it comes to the LR for expressions (REJ_K_), we have that, for an attacker with observational
power 𝜋𝐴𝑡𝑘 , two expressions are related at type 𝜏 (REJ𝐸K𝜏𝜋𝐴𝑡𝑘 (𝑀1, 𝑀2)), whenever both expressions
evaluate to two corresponding values and those values are related by the LR for values. Definitions

RVJ_K_ and REJ_K_ only work on closed terms. In order to prove the fundamental theorem of the

LR we need to lift the latter to closing substitutions, i.e., RSJ_K_. Two empty substitutions, (·, ·), are
trivially related, denoted by ⊤, and two non-empty substitutions (𝛾1, 𝑀1) and (𝛾2, 𝑀2) are related
whenever they are pointwise related, i.e., REJ𝜏K𝜋𝐴𝑡𝑘

(𝑀1, 𝑀2) ∧ RSJΓK𝜋𝐴𝑡𝑘
(𝛾1, 𝛾2). Finally, the LR

for arbitrary open terms, written RTJ_K_, states that two open terms are related when for any two

related closing substitutions, the substituted terms are related by the LR for expression.

The fundamental theorem of the LR states that any open term which can be typed in the security

type system of 𝜆-coIFC is related to itself.

Theorem 5.1 (Fundamental theorem of the LR for 𝜆-coIFC). For any attacker’s observational
power 𝜋𝐴𝑡𝑘 , and program 𝜋𝐴𝑡𝑘 ; Γ ⊢𝑠 𝑀 : 𝜏 with type 𝜏 in typing context Γ, it holds that T JΓ ⊢𝑠
𝜏K𝜋𝐴𝑡𝑘

(𝑀,𝑀).
Proof. By induction on the typing derivation. □

The security property TINI is derived as a corollary of the fundamental theorem.

Corollary 5.2. Assume an attacker with security label ℓ𝐴𝑡𝑘 , and label ℓ𝐻 for secrets, and a program
𝑀 as described by Definition 1, then𝑀 satisfies TINI.

Proof. Let · ⊢ 𝑁1 𝑁2 : Bool be the secrets to be substituted in 𝑀 . Since ℓ𝐻 @ ℓ𝐴𝑡𝑘 , we have

that the secrets are related, i.e., REJLabeledℓ𝐻 Bool 𝑠K{ℓ𝐴𝑡𝑘 } (𝑁1, 𝑁2), and thus we have two closing

substitutions 𝛾1 = {𝑠 ↦→ 𝑁1} and 𝛾2 = {𝑠 ↦→ 𝑁2} which are also related. By the fundamental

theorem, the term𝑀 is related to itself whichmeans thatREJLabeledℓ𝐴𝑡𝑘
Bool 𝑠K{ℓ𝐴𝑡𝑘 } (𝛾1 (𝑀), 𝛾2 (𝑀)).

Unfolding the definitions of REJ_K_ and RVJ_K_, we obtain, ∀(𝑉1𝑉2 : · ⊢ 𝜏).𝛾1 (𝑀) −→∗ 𝑉1 ∧
𝛾2 (𝑀) −→∗ 𝑉2 ⇒ 𝑉1 ≡ 𝑉2 □

The fundamental theorem of the LR permit us to state and prove more general versions of the

non-interference theorem. It does not restrict the program nor its result to be of boolean type.

For example, the program could return values of function type which independent of secrets are

guaranteed to have the same extensional behaviour. In a different direction, the LR let us generalize

the secret that𝑀 depends on to several secrets intermixed with public dependencies. In such case

the public parts should be the same across all executions while the secrets can vary.

2
The ∀ (forall) quantifies over well-typed terms of type 𝜏1, i.e., (𝑁1, 𝑁2 : · ⊢ 𝜏1) means · ⊢ 𝑁1 : 𝜏1 and · ⊢ 𝑁2 : 𝜏1.
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5.2 Effectful Language with Printing Effects
Next, we proceed to show the security condition that holds for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡

in the presence of

effects. To do so, we have to take into account the resulting value of a program and the effects the

program performs, and show that an attacker cannot learn information about the program’s secrets

through either. Therefore, the first step is to define when are two outputs, i.e., the outputs of the

same program with different secrets, are indistinguishable to an observer of a certain security label.

Definition 2 (Output indistinguishability). Two outputs 𝑜1 and 𝑜2 are indistinguishable to an

observer at level ℓ , denoted by 𝑜1 ≃ℓ 𝑜2, when ∀𝑐ℎ. 𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) ⊑ ℓ ⇒ 𝑜1 (𝑐ℎ) ≡ 𝑜2 (𝑐ℎ).

In words, the definition above says that any channel 𝑐ℎ observable at level ℓ (𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) ⊑ ℓ)

contains the same list of boolean values—the prints the program performs on the channel—in both

𝑜1 and 𝑜2. The outputs do not contain observable differences to observers at level ℓ .

Next, we define the security condition for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
, where we demand that a program with

substituted secrets produces indistinguishable outputs with regard to an attacker at level ℓ𝐴𝑡𝑘 .

Definition 3 (TINI for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡 ). Assume an attacker with security label ℓ𝐴𝑡𝑘 , and a label ℓ𝐻
for secrets such that ℓ𝐻 @ ℓ𝐴𝑡𝑘 and a set of security labels ℓ𝑠 .

Given a program 𝑠 : Bool ⊢ 𝑀 : Eff Bool, two terms · ⊢ 𝑁1, 𝑁2 : Bool, two terms · ⊢ 𝑀 ′
1
, 𝑀 ′

2
: Bool

and two outputs 𝑜1, 𝑜2, such that

• {ℓ𝐴𝑡𝑘 } ; 𝑠 : Labeledℓ𝐻 Bool ⊢𝑠 𝑀 : Effℓ𝑠 Bool
• 𝑀 [𝑁1/𝑠] ⇝∗ return(𝑀 ′

1
), 𝑜1 ∧𝑀 [𝑁2/𝑠] ⇝∗ return(𝑀 ′

2
), 𝑜2,

then it holds that 𝑜1 ≃ℓ𝐴𝑡𝑘
𝑜2.

The security condition disregards the boolean terms produced which result after the programs

execution and only takes into account the produced output. In a non-strict language, possibly

also in strict languages with explicit monads, the monadic operational semantics does not force

evaluation under the monad, i.e., the final value of a computation is · ⊢ return(𝑀) : Eff 𝜏 where

· ⊢ 𝑀 : 𝜏 is an arbitrary program of type 𝜏 , not a value.

Definition 3 does not require that the returned terms (𝑀 ′
1
and𝑀 ′

2
) reduce to indistinguishable

values. An alternative formulation of TINI could demand that if both terms𝑀 ′
1
and𝑀 ′

2
terminate,

then they reduce to equal values. Our Agda formalization shows that these two apparently different

formulations of Termination-Insensitive Non-Interference are actually equivalent.

5.2.1 Soundness of the IFC Type-System for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡 . In order to prove that the language with

printing effects is secure, i.e., satisfies TINI, we employ again the method of logical relations.

Writing-scope logical predicate. When considering effects, we need to first capture the writing
scope of the effects that a monadic program might produce, i.e., what are the security labels of

the channels that a computation possibly writes to. The security type-system already refines the

type of computations by adding a set of security labels. What is needed now is to show that the

type-system is sound in this regard; a program · ⊢ 𝑝 : Eff 𝜏 with security type · ⊢𝑠 𝑝 : Effℓ𝑠 𝜏
is guaranteed not to print on any channel whose security label does not belong to ℓ𝑠 . Formally,

∀𝑁,𝑜. 𝑃 ⇝∗ return(𝑁 ), 𝑜 ⇒ ∀𝑐ℎ. 𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) ∉ ℓ𝑠 ⇒ 𝑜 (𝑐ℎ) = 𝜖 .

In order to prove soundness, as previous work on LRs for security type-systems [35], we use

a logical predicate. Figure 8 introduces the logical predicate (LP)—unary logical relation—which

defines for each type what effects a program might produce. Similarly as in the previous section,

the LP is expressed for values (WVJ_K), expressions (WEJ_K), closing substitutions (WSJ_K), and
open terms (WTJ_K). For base types,WVJ_K simply holds. For function types,WVJ𝑀 : 𝜏1 → 𝑠 𝜏2K
holds if it maps expressions that satisfy the expression predicate (WEJ𝜏1K(𝑛)) to expressions that
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WVJUnit 𝑠K(𝑀) = ⊤
WVJBool 𝑠K(𝑀) = ⊤
WVJ𝜏1 → 𝑠 𝜏2K(𝑀) = ∀(𝑁 : · ⊢ 𝜏1). WEJ𝜏1K(𝑁 ) ⇒ WEJ𝜏2K(𝑀 𝑁 )
WVJLabeledℓ 𝜏K(𝑀) = WVJ𝜏K(𝑀)
WVJEffℓ𝑠 𝜏K(𝑀) =

∀𝑁,𝑜. 𝑀 ⇝★ return(𝑁 ), 𝑜 ⇒ WEJ𝜏K(𝑁 ) ∧ (∀𝑐ℎ. 𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) ∉ ℓ𝑠 ⇒ 𝑜 (𝑐ℎ) ≡ [])

WEJ𝜏K(𝑀) = ∀(𝑉 : · ⊢𝑠 𝜏) . 𝑀 −→∗ 𝑉 ⇒ WVJ𝜏K(𝑁 )

WSJ·K(·) = ⊤
WSJΓ, 𝑥 : 𝜏K(𝛾,𝑀) = WEJ𝜏K(𝑀) ∧WSJΓK(𝛾)

WTJΓ ⊢𝑠 𝜏K(𝑀) = ∀(𝛾 : · ⊩ Γ). WSJΓK ⇒ WEJ𝜏K(𝛾 (𝑀))

Fig. 8. Logical predicate capturing the writing scope of effects.

also satisfy it (WEJ𝜏2K(𝑀 𝑁 )). The interesting case is the definition of WVJEffℓ𝑠 𝜏K(𝑀), which
demands that the outputs produced by𝑀 only target those channels whose label is present in its

security type, i.e., in the set ℓ𝑠 . The lifting of the LP for substitutions and open terms is standard

and therefore we do not describe them any further.

The fundamental theorem of the LP guarantees that the writing scope of a monadic computation

is bounded by its security type: the computation may print to any channel whose label is stated in

its type and no more.

Theorem 5.3 (Fundamental theorem of the writing-scope predicate,WTJ_K.). For any
program Γ ⊢𝑠 𝑀 : 𝜏 , it holds that WTJΓ ⊢𝑠 𝜏K(𝑀).

Proof. By induction on typing derivations. □

By capturing the scope of writing effects (outputs), we obtain an approximation about where

information could flow via effects. Now we are in a position to reason about TINI for the effectful

language.

Logical relation. Figure 9 presents the indistinguishability relation for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
as a LR. Struc-

turally, the indistinguishability relation is similar to the one defined for 𝜆-coIFC—cf. Figure 7—except

that now it includes a case when the security type is the monadic type for effects (RVJEffℓ𝑠 𝜏Kℓ𝐴𝑡𝑘
). It

is worth noting however, that the LR has adjustments in both the function (RVJ𝜏1 → 𝑠 𝜏2Kℓ𝐴𝑡𝑘
) and

labeled types (RVJLabeledℓ 𝜏Kℓ𝐴𝑡𝑘
), where it mentions the writing scope predicate—recall Figure 8.

The LR at function type has now the additional requirement that both the arguments and the

produced result satisfy the writing-scope predicate (WEJ𝜏2K(𝑁1),WEJ𝜏2K(𝑁2),WEJ𝜏1K(𝑀1 𝑁1),
WEJ𝜏1K(𝑀2 𝑁2)). Intuitively, this extra assumptions are needed to strengthen the induction hy-

pothesis and prove the fundamental theorem of the LR. Unlike previous work, [34], the binary

logical relation does not imply the writing-scope predicate for its components, namely it is not the

case that REJ𝜏Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2) ⇒ WEJ𝜏K(𝑀1) ∧ WEJ𝜏K(𝑀2). Intuitively, the reason is that in the

call-by-name setting variables are substituted for arbitrary terms and not just for values.

16



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Simple Contextual Information-Flow Control with Effects ICFP2021, July 1997, City, State, Country

RVJUnit 𝑠Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2) = 𝑀1 ≡ 𝑀2

RVJBool 𝑠Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2) = 𝑀1 ≡ 𝑀2

RVJ𝜏1 → 𝑠 𝜏2Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2) = ∀(𝑁1, 𝑁2 : · ⊢𝑠 𝜏1). REJ𝜏1Kℓ𝐴𝑡𝑘

(𝑁1, 𝑁2) ∧WEJ𝜏2K(𝑁1) ∧WEJ𝜏2K(𝑁2)
⇒ REJ𝜏2Kℓ𝐴𝑡𝑘

(𝑀1 𝑁1, 𝑀2 𝑁2) ∧WEJ𝜏1K(𝑀1 𝑁1) ∧WEJ𝜏1K(𝑀2 𝑁2)
RVJLabeledℓ 𝜏Kℓ𝐴𝑡𝑘

(𝑀1, 𝑀2) = (ℓ ⊑ ℓ𝐴𝑡𝑘 ⇒ RVJ𝜏Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2))

∧ (ℓ @ ℓ𝐴𝑡𝑘 ⇒ WVJ𝜏K(𝑀1) ∧WVJ𝜏K(𝑀2))
RVJEffℓ𝑠 𝜏Kℓ𝐴𝑡𝑘

(𝑀1, 𝑀2) = ∀(𝑁1, 𝑁2 : · ⊢ 𝜏), 𝑜1, 𝑜2 . 𝑀1 ⇝
★ return(𝑁1), 𝑜1 ∧𝑀2 ⇝

★ return(𝑁2), 𝑜2
⇒ REJ𝜏Kℓ𝐴𝑡𝑘

(𝑁1, 𝑁2) ∧ 𝑜1 ≃ℓ𝐴𝑡𝑘
𝑜2

∧ (∀𝑐ℎ. 𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) ∉ ℓ𝑠 ⇒ 𝑜1 (𝑐ℎ) ≡ [])
∧ (∀𝑐ℎ. 𝑙𝑎𝑏𝑒𝑙 (𝑐ℎ) ∉ ℓ𝑠 ⇒ 𝑜2 (𝑐ℎ) ≡ [])

REJ𝜏Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2) = ∀(𝑉1,𝑉2 : · ⊢𝑠 𝜏). 𝑀1 −→∗ 𝑉1 ∧𝑀2 −→∗ 𝑉2 ⇒ RVJ𝜏Kℓ𝐴𝑡𝑘

(𝑉1,𝑉2)

RSJ·Kℓ𝐴𝑡𝑘
(·, ·) = ⊤

RSJΓ, 𝑥 : 𝜏Kℓ𝐴𝑡𝑘
((𝛾1, 𝑀1), (𝛾2, 𝑀2)) = REJ𝜏Kℓ𝐴𝑡𝑘

(𝑀1, 𝑀2) ∧ RSJ𝑆Kℓ𝐴𝑡𝑘
(𝛾1, 𝛾2)

RTJΓ ⊢𝑠 𝜏Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2) = ∀(𝛾1, 𝛾2 : · ⊩ Γ). RSJΓKℓ𝐴𝑡𝑘

(𝛾1, 𝛾2) ∧WSJΓK(𝛾1) ∧WSJΓK(𝛾2)
⇒ REJ𝜏Kℓ𝐴𝑡𝑘

(𝛾1 (𝑀1), 𝛾2 (𝑀2))

Fig. 9. Logical relation for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡 .

The LR for the Labeledℓ 𝜏 type has two cases. As before, if the label flows to the attacker, then the

two values have to be related at type 𝜏 (RVJ𝜏Kℓ𝐴𝑡𝑘
(𝑀1, 𝑀2)). Otherwise, the terms are required to

satisfy the writing-scope predicate. In this case, the writing predicate ensures that the underlying

terms do not produce effects which may compromise security.

The relation for monadic values states that if the monadic reduction of both computations

terminate (𝑀1 ⇝★ return(𝑁1), 𝑜1 and 𝑀2 ⇝★ return(𝑁2), 𝑜2) then the resulting terms are related

(REJ𝜏Kℓ𝐴𝑡𝑘
(𝑁1, 𝑁2)) and the outputs are indistinguishable (𝑜1 ≃ℓ𝐴𝑡𝑘

𝑜2). Moreover,the LR ensures

that neither computation produces output on those channels not explicitly mentioned in its type

analogously to the writing-scope predicate. The lifting to substitutions is as expected; however, the

lifting to open terms requires that the closing substitutions to fulfil the writing-scope predicate.

Again, it is needed to strengthen the induction hypothesis. Below, we state the fundamental theorem

of the LR for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
.

Theorem 5.4 (Fundamental theorem of RTJ_K_). For any program Γ ⊢𝑠 𝑀 : 𝜏 , it holds that
RTJΓ ⊢𝑠 𝜏Kℓ𝐴𝑡𝑘

(𝑀,𝑀).

Proof. By induction on the typing derivation. □

The security property TINI is derived as a corollary of the fundamental theorem.

Corollary 5.5. Assume an attacker with security label ℓ𝐴𝑡𝑘 , a label ℓ𝐻 for secrets, and a program
𝑀 as described by Definition 3, then𝑀 satisfies TINI.
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IGJUnit 𝑠K(𝑀1, 𝑀2)
= ∀(𝑉1𝑉2 : · ⊢𝑠 Unit). 𝑀1 −→∗ 𝑉1 ∧𝑀2 −→∗ 𝑉2 ⇒ 𝑉1 ≡ 𝑉2

IGJBool 𝑠K(𝑀1, 𝑀2) = 𝑀1 ≡ 𝑀2

= ∀(𝑉1𝑉2 : · ⊢𝑠 Bool). 𝑀1 −→∗ 𝑉1 ∧𝑀2 −→∗ 𝑉2 ⇒ 𝑉1 ≡ 𝑉2

IMJΣ 𝑠Kℓ𝐴𝑡𝑘
(𝜃1, 𝜃2) = ∀𝑙, ℓ, 𝜎 𝑠 . (𝑙 :ℓ 𝜎𝑠 ∈ Σ 𝑠 ) ∧ (ℓ ⊑ ℓ𝐴𝑡𝑘 ) ⇒ IGJ𝜎 𝑠Kℓ𝐴𝑡𝑘 (𝜃1 (𝑙), 𝜃2 (𝑙))

Fig. 10. Indistinguishability of ground programs and stores for 𝜆-coIFC𝑚𝑒𝑚 .

Proof. Let · ⊢ 𝑁1 𝑁2 : Bool be the secrets to be substituted in𝑀 . Since ℓ𝐻 @ ℓ𝐴𝑡𝑘 , we have that the

secrets are related, i.e., REJLabeledℓ𝐻 Bool 𝑠Kℓ𝐴𝑡𝑘
(𝑁1, 𝑁2), and thus we have two closing substitutions

𝛾1 = {𝑠 ↦→ 𝑁1} and 𝛾2 = {𝑠 ↦→ 𝑁2} which are also related. By the fundamental theorem, the term

𝑀 is related to itself which means that REJEffℓ𝑠 Bool
𝑠Kℓ𝐴𝑡𝑘

(𝛾1 (𝑀), 𝛾2 (𝑀)). By assumption we have

that𝑀 [𝑁1/𝑠] ⇝∗ return(𝑀 ′
1
), 𝑜1 and𝑀 [𝑁2/𝑠] ⇝∗ return(𝑀 ′

2
), 𝑜2. From this we obtain that there

exists two intermediate programs, 𝑀 ′′
1
, 𝑀 ′′

2
such that𝑀 [𝑁1/𝑠] −→ 𝑀 ′′

1
∧𝑀 ′′

1
⇝∗ return(𝑀 ′

1
), 𝑜1

and𝑀 [𝑁2/𝑠] −→ 𝑀 ′′
2
∧𝑀 ′′

2
⇝∗ return(𝑀 ′

2
), 𝑜2. We apply REJEffℓ𝑠 Bool

𝑠Kℓ𝐴𝑡𝑘
(𝑀 [𝑁1/𝑠], 𝑀 [𝑁2/𝑠])

to the two pure reductions which gives us that RVJEffℓ𝑠 Bool
𝑠Kℓ𝐴𝑡𝑘

(𝑀 ′′
1
, 𝑀 ′′

2
), which we apply again

to the monadic reductions, obtaining that 𝑜1 ≃ℓ𝐴𝑡𝑘
𝑜2. □

5.3 Effectful Language with Memory Effects
The type-system 𝜆-coIFC𝑚𝑒𝑚

satisfies an analogous security guarantee as TINI for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
—cf.

Definition 3. The main difference is that in 𝜆-coIFC𝑚𝑒𝑚
, we have to take into account the stores,

since monadic reduction is only sensible when the program is paired with a store that provides

terms for the references. Note that differently from call-by-value, in a call-by-name language terms

need not be fully evaluated before storing them in memory. Thus, it is not enough to say that two

stores are indistinguishable if they contain syntactically the same terms in positions transparent to

the attacker; we need a more refined notion. For that, we lift the security condition TINI to terms in

the store, namely, assuming termination of the terms pairwise stored in the memories the resulting

values are equal. In Figure 10 we define indistinguishability of stores.

The indistinguishability relation states that two stores are pointwise related at security store

typing Σ when both stores agree on the contents—they are indistinguishable by IGJ_K—up to

locations that the attacker can not observe (ℓ ⊑ ℓ𝐴𝑡𝑘 ). Note that IGJ_K_ is an instance of the logical

relation for expressions specialized at ground types.

Next, we state the notion of non-interference for the language with memory.

Definition 4 (TINI for 𝜆-coIFC𝑚𝑒𝑚). Assume an attacker with security label ℓ𝐴𝑡𝑘 , and a label ℓ𝐻
for secrets such that ℓ𝐻 @ ℓ𝐴𝑡𝑘 and a set of security labels ℓ𝑠 . Also assume a security store typing

Σ. Given a program Σ , 𝑠 : Bool ⊢ 𝑀 : Eff Bool, two terms Σ , · ⊢ 𝑁1, 𝑁2 : Bool, two initial stores

𝜃1, 𝜃2 : Σ, two terms Σ , · ⊢ 𝑀 ′
1
, 𝑀 ′

2
and two final stores 𝜃 ′

1
, 𝜃 ′

2
: Σ, such that

• {ℓ𝐴𝑡𝑘 } ; Σ , 𝑠 : Labeledℓ𝐻 Bool ⊢𝑠 𝑀 : Effℓ𝑠 Bool
• IMJΣKℓ𝐴𝑡𝑘

(𝜃1, 𝜃2)
• 𝜃1, 𝑀 [𝑁1/𝑠] ⇝∗ 𝜃 ′

1
, return(𝑀 ′

1
) ∧ 𝜃2, 𝑀 [𝑁2/𝑠] ⇝∗ 𝜃 ′

2
, return(𝑀 ′

2
),

then it holds that IMJΣKℓ𝐴𝑡𝑘
(𝜃 ′

1
, 𝜃 ′

2
).

18



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Simple Contextual Information-Flow Control with Effects ICFP2021, July 1997, City, State, Country

5.3.1 Soundness of the IFC Type-System for 𝜆-coIFC𝑚𝑒𝑚 . In order to show that 𝜆-coIFC𝑚𝑒𝑚
satisfies

TINI, we again employ the method of logical relations. In the rest of this section we outline the

notable differences between the LR for 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
and 𝜆-coIFC𝑚𝑒𝑚

. We refer the reader to the

Agda formalization for further details.

First, we necessitate of a similar logical predicate to writing-scope to show that a computation

only may modify those memory cells whose label, i.e., as given by the store typing, appear in the

set of labels of its security monadic type. Formally, given a security store typing Σ, a computation

Σ , · ⊢𝑠 𝑀 : Effℓ𝑠 𝜏 and two concrete stores of that type, 𝜃1, 𝜃2 : Σ the predicate states that

∀𝑙 .𝑙𝑎𝑏𝑒𝑙 (𝑙) ∉ ℓ𝑠 ⇒ 𝜃1 (𝑙) ≡ 𝜃2 (𝑙). In words, locations whose labels do not belong to ℓ𝑠 contain

syntactically equal terms in both stores. The logical predicate is also lifted to the contents of the

store.

Next, the logical indistinguishability relation from Figure 9 has to be adapted to take into

consideration that terms of monadic type take related stores to related stores upon execution. The

LR for stores is exactly like the indistinguishability relation from Figure 10. Restricting the contents

of stores to terms of ground types avoids stepping into circularity problems in the definition which

heavily complicates our development.

A further adaptation occurs in the case of the value relation for terms ofmonadic typeRVJEffℓ𝑠 𝜏Kℓ𝐴𝑡𝑘
.

In this case, the computation takes any two initial logically related stores to related values and

related final stores. Moreover, the initial stores should satisfy the writing-scope predicate, and in

return the final stores also satisfy it.

Then the proof of Definition 4 falls as a corollary, in the same vein as the previous two languages,

of the fundamental theorem of the logical relation.

Theorem 5.6. The language 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡 satisfies TINI as in Definition 4.

Proof. Follows directly as a corollary of the fundamental theorem of the LR. □

The details can be found in the accompanying Agda formalization.

6 IMPLEMENTATION
In this section, we outline the Haskell implementation of 𝜆-coIFC and 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡

—the code for

handling references follows analogously. The challenging aspect of implementing the calculus from

Figures 2 and 4 in Haskell is how to handle the security labels in 𝜋 . Recall that the symbol 𝜋 in the

type judgement 𝜋 ; · ⊢ 𝑀 : 𝜏 represents the set of security labels—intuitively type-level keys—that
program𝑀 has in context. Security labels in the calculus are non first-class objects, i.e., the calculus

does not have a type of security labels neither introduction nor elimination rules; accordingly, the

implementation should concur.

The set of security labels can also be understood as reflecting the capabilities the program can

use to open labeled data. In this light, our approach provides an implementation which considers

type-level keys—i.e., security labels—as capabilities [20] which should be explicitly exercised. This

design decision aligns with the fact that capability-based systems are enough to enforce IFC (e.g.,

[7, 25]). Another challenge in the implementation is to provide unforgeable capabilities. For that we
will resort to a combination of Haskell’s module system, to hide internals of the implementation

from users, and a known trick of second-order polymorphism. Our implementation is simple and

elegant, and we believe that it could be also applied to other capability-based system—an interesting

direction for future work.
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1 module CoIFC
2 (Key (), Label (. .), FlowsTo (), Labeled (Labeled), label, unlabel, ...)
3 where

4 -- Enumeration of security labels for the two-point lattice

5 data Label = H | L
6 -- Preorder relation as a type-class

7 class FlowsTo (𝑙 :: Label) (l′ :: Label)
8 -- Instances for the preorder

9 instance FlowsTo 𝑙 𝑙
10 instance FlowsTo L H

11 -- Type-level keys

12 data Key 𝑙 s = Key

13 data Labeled 𝑙 a = Labeled (∀ s . Key 𝑙 s → a)
14 -- Labeling terms

15 label :: (∀ s . Key 𝑙 s → a) → Labeled 𝑙 a
16 label = Labeled

17 -- Unlabeling terms

18 unlabel :: FlowsTo l′ 𝑙 ⇒ Key 𝑙 s → Labeled l′ a → a
19 unlabel k@Key (Labeled f ) = f Key

Fig. 11. Implementation of 𝜆-coIFC for the two-point security lattice.

6.1 Implementation of 𝜆-coIFC
Figure 11 shows the whole implementation of 𝜆-coIFC in Haskell. Without loss of generality, the

implementation assumes a two-point lattice. Similar as previous work (e.g., [4, 10, 36], we represent

labels as types of kind Label (line 5, and the use of the GHC extension DataKinds) and the preorder
relation encoded via a type class (lines 7–10).

𝜆-coIFC treats the set of labels 𝜋 abstract, and the only rules which modify the set of security

labels are [Label] and [Unlabel]—cf. Figure 2. This coincides with the idea that capabilities cannot

be either created out of thin air nor deconstructed. Thus, our implementation needs to mimic this

behavior within Haskell. We propose to apply the ST monad trick [22] as a solution to not allow

keys be treated as first-class objects.

Line 12 introduces a new datatype Key which is parametrized by a type 𝑙 , of kind Label. It
stands for a label in the security lattice and a phantom type s. Then, line 13 introduces the Labeled
datatype, which is simply a wrapper over the function space between the type Key and an arbitrary

type a. In order to ensure IFC safety, it is important that the constructors of the datatype Key
to be kept abstract from the library user—observe Key () in the export list of the module (line

2). Otherwise, anyone—including the attacker—could extract the underlying term of type a from
secret ::Labeled 𝑙 a by applying the destructor unLabeled to the constructor of the key datatype Key,
i.e., writing unLabeled secret Key. In fact, anyone with access to the constructor Key has authority

to forge any capability. The ∀ (forall) quantifier on the right hand side of Labeled prevents keys

from being stored within Labeled values—see line 13. The idea is that any new key bound by the
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function will have a unique type variable which would not coincide with any type variable stated

on the type, i.e., the program p = Labeled (𝜆k → k) does not typecheck.
Function label (line 15 and 16) is a wrapper over the constructor of the Labeled type. The

combinator unlabel (lines 18–19) allows to unlabel a term of Labeled type in case we have a Key
(i.e., capability) for a label l′ which flows to 𝑙 (FlowsTo l′ 𝑙). Similar to [37], this function is strict

in its argument (k@Key) to eliminate the possibility that a forged key like undefined :: Key can be

effectively used to leak secrets. We remark that the security condition TINI —recall Definitions 1

and 3—rules out the execution of those programs where undefined is evaluated, i.e., halts the

execution with error.

The implementation shown so far consists of the trusted computing base (TCB) for our security
library. From now on, users of the library can derive functionalities from the interface of the library.

For instance, programmers can show that Labeled 𝑙 is a Functor , an Applicative and a Monad for

any label 𝑙 as follows:

instance Functor (Labeled 𝑙) where
fmap f x = label (𝜆k → f (unlabel k x))

instance Applicative (Labeled 𝑙) where
pure x = label (𝜆k → x)
f <∗> a = label (𝜆k → (unlabel k f ) (unlabel k a))

instance Monad (Labeled 𝑙) where
return = pure
m >>= f = label (𝜆k → unlabel k (f $ unlabel k m))

Observe that these instances can be implemented only with the exposed interface, which we take

as a sign of the elegance and generality of our approach. We have also implemented the security

libraries for writting effect-free programs Sec [37] and DCC [1] (in an alternative but equivalent

formulation proposed by Algehed [3]).

6.2 Implementation of 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡

Figure 12 shows the extension to the implementation in Figure 11 to obtain 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
. In order

to implement printing effects, we introduce a datatype that Eff which is parametrized with a

type-level list of the security labels of the channels where the computation might print—see line 5.

The type Eff is a graded monad over the set of security labels—just like in the calculus. The label

information about effects is critical to implement the distr rule from Figure 4, i.e., to know what

observers an computation has.

Datatype Eff wraps IO-actions and uses type-level lists (𝑐𝑠 of kind [Label ]) to keep track of the

channel where the computation can write to. We can simply implement the return and bind of

the graded monad, see lines 24–27, where we borrow type level sets from [30] to represent the

labels indexing the graded monad. The type of return indicates that it does not produce effects, i.e.,

the index is the empty set—line 20. The type of bind is annotated with the union of the sets of the

first argument and the continuation—line 26. Lastly, we present the subeffecting as the identity

function—line 29–30.

The printing effect is emboddied by function printEff (line 10–11) which builds a computation

that produces output at security level 𝑙 when executed. Argument of type SLabel 𝑙 is simply to

provide an argument to indicate on which channel 𝑙 , of kind Label, the output will get produced
it—recall that functions’ arguments in Haskell are of kind ∗, 𝑙 has kind Label, and SLabel 𝑙 has kind
∗.
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1 module CoIFC
2 (..., Eff (), FlowsToSet (), pureEff , appEff , returnEff , bindEff , distr, subeff , printEff )
3 where

4 ...

5 newtype Eff (𝑙𝑠 :: [Label ]) a = Eff { runEff :: IO a}
6 -- Printing

7 data SLabel :: Label → ∗where
8 SH :: SLabel H
9 SL :: SLabel L

10 printEff :: (Show a) ⇒ SLabel 𝑙 → a → Eff [𝑙 ] ()
11 printEff 𝑙 x = Eff (print (header 𝑙) >> print x)
12 where header :: SLabel 𝑙 → String
13 header SH = "Channel H:"

14 header SL = "Channel L:"

15 -- Functor Eff

16 instance Functor (Eff 𝑙𝑠) where
17 fmap f (Eff io) = Eff (fmap f io)
18 -- Applicative

19 pureEff :: a → Eff [ ] a
20 pureEff = returnEff

21 appEff :: Eff 𝑙𝑠 (a → b) → Eff 𝑙𝑠 a → Eff (Union 𝑙𝑠 ls′) b
22 appEff (Eff ioff ) (Eff ioa) = Eff $ ioff <∗> ioa

23 -- Monad

24 returnEff :: a → Eff [ ] a
25 returnEff a = Eff (return a)
26 bindEff :: Eff 𝑙𝑠1 a → (a → Eff 𝑙𝑠2 b) → Eff (Union 𝑙𝑠1 𝑙𝑠2) b
27 bindEff (Eff m) f = Eff (m >>= runEff ◦ f )
28 -- Sub-typing

29 subeff :: Subset 𝑙𝑠1 𝑙𝑠2 ⇒ Eff 𝑙𝑠1 a → Eff 𝑙𝑠2 a
30 subeff (Eff m) = Eff m

31 -- Distr

32 type family FlowsToSet (𝑙 :: Label) (𝑙𝑠 :: [Label ]) :: Constraint where
33 FlowsToSet 𝑙1 [ ] = ()
34 FlowsToSet 𝑙1 (𝑙2 : 𝑙𝑠) = (FlowsTo 𝑙1 𝑙2, FlowsToSet 𝑙1 𝑙𝑠)
35 distr :: FlowsToSet 𝑙 𝑙𝑠 ⇒ Labeled 𝑙 (Eff 𝑙𝑠 a) → Eff 𝑙𝑠 (Labeled 𝑙 a)
36 distr (Labeled f ) = Eff $ fmap (𝜆a → label (const a)) (runEff (f Key))

Fig. 12. Implementation of 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡 .
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Finally, the implementation of the primitive distr is straightforward—see line 35-36. Type con-
straint FlowsToSet 𝑙 𝑙𝑠 checks that 𝑙 ⊑ l′ for every channel l′ in 𝑙𝑠 . The implementation uses a Key
for label 𝑙 (eff Key) to "unlabel" the IO-action effects io :: IO a. The final step is to "label" the result

of the IO-action with label 𝑙 (fmap (𝜆a → label (const a) io)).

6.3 Implementing Existing Libraries for IFC
The strength of our type-system as a basis for IFC libraries in Haskell arises from being able to use

it as a low level implementation language for already existing libraries such as SecLib [37], DCC

[1] and MAC [48].

In the rest of the section we briefly explain their implementations with a focus on the non-

standard combinators. To clarify the presentation assume the interface of 𝜆-coIFC is in scope and

qualified as CoIFC when it is not clear from the context. For a more complete account of DCC’s

and SecLib’s implementations, we refer the reader to the Appendices A and B.

SecLib. SecLib [37] is one of the pioneers of static IFC as a library in the context of a general

purpose language such as Haskell. Its main feature is a family of security monads, Sec, indexed by

labels from the security lattice, each equipped with >>= (bind) and return. Sec’s special ingredient is
a combinator up, which allows coercing values value from a lower security into a higher levels in

the security monad. On the left column, the reader can find the important types and combinators

exported from the Sec library, on the right their implementation using 𝜆-coIFCas a library:

type Sec 𝑙 a

instance Functor (Sec 𝑙) where
instance Monad (Sec 𝑙) where

up :: FlowsTo 𝑙 l′ ⇒ Sec 𝑙 a → Sec l′ a

type Sec 𝑙 a = CoIFC .Labeled 𝑙 a

...

...

up :: FlowsTo 𝑙 l′ ⇒ Sec 𝑙 a → Sec l′ a
up lv = label (𝜆k → unlabel k lv)

Dependency Core Calculus. DCC [1] is a calculus design to subsume several dependency analysis.

Although direct implementations of DCC in Haskell exist [4], we opt for an alterative presentation,

S(implified)DCC, due to [3].

The main difference between SDDC and DCC, is that the former avoids the non-standard bind

and the protected at relation disapears favoring a different set of combinators. Like DCC, SDCC

sports a family of monads, one for each security label with fmap, return and >>=. Moreover, SDC

interface exposes two combinators up and com. The former serves to relabel values to higher

security types and the latter alows to commute the labels of a value with double monadic type. The

left column displays SDCC’s interface, on the right column its implementation using 𝜆-coIFC.

type T 𝑙 a

instance Functor (Sec 𝑙) where
instance Monad (Sec 𝑙) where

up :: FlowsTo 𝑙 l′ ⇒ T 𝑙 a → T l′ a

com :: T 𝑙 (T l′ a) → T l′ (T 𝑙 a)

type T 𝑙 a = CoIFC .Labeled 𝑙 a

...

...

up :: FlowsTo 𝑙 l′ ⇒ Sec 𝑙 a → Sec l′ a
up lv = label (𝜆k → unlabel k lv)
com :: T 𝑙 (T l′ a) → T l′ (T 𝑙 a)
com lv = label (𝜆kl′ → label (𝜆kl →

unlabel kl′ (unlabel kl lv)))
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MAC. MAC [48] is a full-featured library for effectful IFC in Haskell. At its core, MAC defines

two types, one for labeled pure values, Labeled 𝑙 a and a another,MAC 𝑙 a, for secure computations.

MAC 𝑙 a is a monad for each security label 𝑙 , where the purpose of the label is to, a) protect the

data that it is in the context of the computation; and b) restrict what effects the computation is

allowed to perform. MACs key is the interaction between labeled values and computations. This is

achieved through two primitives label and unlabel. Unlike 𝜆-coIFC, in order to label a value one

needs to be in a computation, there is no notion of a effect-free (non monadic) secure programs.

Below we hint its implementation. In the left column, we show MAC’s interface and in the right

column its implementation in terms of effectful 𝜆-coIFC.

type Labeled 𝑙 a

type MAC 𝑙 a

label :: FlowsTo 𝑙 l′ ⇒ a → MAC 𝑙 (Labeled l′ a)

unlabel :: FlowsTo 𝑙 l′ ⇒ Labeled 𝑙 a → MAC l′ a

type Labeled 𝑙 a = CoIFC .Labeled 𝑙 a

type MAC 𝑙 a = ∀ 𝑙𝑠 . FlowsToSet 𝑙 𝑙𝑠
⇒ Labeled 𝑙 (Eff 𝑙𝑠 a)

label :: FlowsTo 𝑙1 𝑙2 ⇒ a → MAC 𝑙1 (Labeled 𝑙2 a)
label a = label (𝜆k → (returnEff (label (𝜆k′ → a))))
unlabel :: FlowsTo 𝑙1 𝑙2 ⇒ Labeled 𝑙1 a → MAC 𝑙2 a
unlabel lv = label (𝜆k → returnEff (unlabel k lv))

7 RELATEDWORK
Modal logic and programming languages. The pure fragment of our language, i.e., 𝜆-coIFC, has

been inspired by several works on applying modal logic to language-based security. The work

by Shikuma and Igarashi [40] presents the sealing calculus, which captures the same principles

behind our labelℓ and unlabelℓ annotations but in a call-by-value setting. The sealing calculus is

equivalent to DCC [1] and we therefore expect that 𝜆-coIFC enjoys of the same expressivity. The

work by Miyamoto and Igarashi [26] gives an informal connection between a classical type-system

for IFC and a certain modal logic. Their type-system is very different from ours in that a typing

judgement has two separate contexts, inspired by work on dual-context calculi for modal logic,

which serve to keep track of globally and locally valid assumptions. Globally valid assumptions are

tagged with security labels which represents the sensitivity of the variable. Further, the judgement

is also indexed by a label which somehow stands for the current security level, and serves to

constraint when variables from the global context can be used in terms. The authors also give

semantics for their labelℓ term which has a computation cost (i.e., a subsitution). In contrast, labelℓ
in 𝜆-coIFC has no runtime representation, and therefore no cost at runtime. Recently, the work

by Abel and Bernardy [2] presents a unify treatment of modalities in typed lambda calculi. The

authors essentially present a side-effect free lambda calculus parametrized on a modality with

certain mathematical structure, and show many PL analyses, including IFC, can be obtained as an

instantiation of their framework. As we have shown, our type-system has a rather straightforward

implementation in Haskell, in contrast is not very clear how would one implement theirs since it

would require a fine-grained control over the variables in the context which is difficult to achieve

for a shallow embedding.

Coeffects type-systems. Recently, there is a line of work that suggests using coeffect type systems

to enforce information-flow control. The work by Petricek et al. [32] develops a calculus to capture

different granulatiry demands on contexts, i.e., flat whole-context coeffetcs (like implicit parameters

[23]) or structural per-variable ones (like usage or data access patterns). The work by Gaboardi et al.

[12] expand and use graded comonads and monads to combine coeffects and effects. The authors

describe distributivity laws for the graded comonads and monads for situations similar to what
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our primitive distr addresses. The article suggests IFC as an application domain where the coeffect

system captures the IFC constraints and the effect system gives semantics to effects, concretely

non-determinism. The distributive laws, then explain how both are combined. However, their work

does not state neither proves a concrete security property for their calculus. Their interest lays in

constructing a categorical model with a flavour of the usual erasure for IFC languages. Different

from it, our work does not use comonads as the underlying structure for IFC and considers general

reading and writing effects. Granule is a recent programming language [29] based on graded modal
types to impose usage constraints, and encompassing coeffect types and graded monads for effects.

This work also hints about IFC as an application domain by changing the interpretation of the

coffect grades in a pure setting.

IFC for pure and effectful languages. The work by Austin et al. [5] analyzes dynamic IFC for an

imperative language in terms of a IFC-aware pure lambda calculus. This work relies on adding

security annotations to lambda terms’ evaluation contexts as well as that insecure effects can be

rolled back, i.e., writing to a public location of memory gets ignored if a secret is available in scope.

In a similar spirit, Hirsch and Cecchetti [19] develop a formal framework based on productors

and a type-and-effects systems to characterize how effectful languages can be translated into a

pure subset—an idea that informally hint by Algehed and Russo [4]. In contrast, our approach is

conceived to separate side-effect free and side-effectful parts by design, where we use a modal

operator for the side-effect free terms and a graded monad for the side-effectful ones.

Logical relations for NI. Both Heintze and Riecke [18], and Zdancewic and Myers [51] use logical

relation to prove non-interference for a simply-typed security lambda calculus. Tse and Zdancewic

[45] apply logical relation to prove soundness of a translation from DCC [1] to System F. Unfortu-

nately, the translation is not sound [40]. Bowman and Ahmed [8] use existential types (expressed

as universal ones) to provide a valid DCC to System 𝐹𝜔 translation—their soundness theorem is

also based on logical relations. Different from the cited work so far, Rajani and Garg [34] introduce

logical relation to prove non-interference for a language with references. In this line of work,

Gregersen et al. [15] extend the use of logical relation to prove NI for languages with predicative

polymorphism. Different from [15, 34], we consider only first-order references for simplicity. Oth-

erwise, we should have had to utilize a step-indexed Krypke-style logical-relations model, which

would have introduced technical complications that are orthogonal to the main contribution of our

work.

8 CONCLUSIONS
In this paper, we shed light on a point in the design space of information-flow control libraries in

the context of pure languages with effects. To achieve so, we have introduced several type-systems

for IFC, 𝜆-coIFC, 𝜆-coIFC𝑝𝑟𝑖𝑛𝑡
and 𝜆-coIFC𝑚𝑒𝑚

, which build atop a pure call-by-name program-

ming language with modal types and explicit effects of a monadic type. We show that to secure

computations is enough to constraint what computations we allow to run rather than restricting

which ones are allowed to be programed. After all, in a pure language, computations are first-class

objects! Such an insight translates into a single primitive which controls when computations built

depending on labeled information can be executed. We hope that coIFC revitalizes the importance

of modalities for IFC research and opens the door to a new design space for security libraries.
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A IMPLEMENTATION OF THE SECLIB LIBRARY (PURE FRAGMENT)

1 module SecLib
2 (Sec, return, (>>=), fmap, up, FlowsTo, Label (. .))
3 where

4 import CoIFC
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5 import Prelude hiding (fmap, (>>=), return)
6 type Sec 𝑙 a = Labeled 𝑙 a

7 return :: a → Sec 𝑙 a
8 return a = label (𝜆k → a)
9 fmap :: (a → b) → Sec 𝑙 a → Sec 𝑙 b
10 fmap f lv = label (𝜆k → f (unlabel k lv))
11 (>>=) :: Sec 𝑙 a → (a → Sec 𝑙 b) → Sec 𝑙 b
12 lv >>= f = label (𝜆k → unlabel k (f (unlabel k lv)))
13 up :: FlowsTo 𝑙 l′ ⇒ Sec 𝑙 a → Sec l′ a
14 up lv = label (𝜆k → unlabel k lv)

B IMPLEMENTATION OF THE (SIMPLIFIED) DEPENDENCY CORE CALCULUS

1 module SDCC
2 (T , eta,mu,mapT , up, com, FlowsTo, Label (. .))
3 where

4 import CoIFC
5 type T 𝑙 a = Labeled 𝑙 a

6 eta :: a → T 𝑙 a
7 eta a = label (𝜆k → a)
8 mapT :: (a → b) → T 𝑙 a → T 𝑙 b
9 mapT f lv = label (𝜆k → f (unlabel k lv)
10 mu :: T 𝑙 (T 𝑙 a) → T 𝑙 a
11 mu lv = label (𝜆k → unlabel k (unlabel k lv))
12 up :: FlowsTo 𝑙 l′ ⇒ T 𝑙 a → T l′ a
13 up lv = label (𝜆k → unlabel k lv)
14 com :: T 𝑙 (T l′ a) → T l′ (T 𝑙 a)
15 com lv = label (𝜆kl′ → label (𝜆kl → unlabel kl′ (unlabel kl lv)))
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