
John Hughes’ Publication List

This is a list of my publications as of March 2009, with citation counts fetched
from Google Scholar at that time. My most highly cited articles are [57, 15, 23,
64, 27, 38, 75, 71, 70, 72, 40]; all of these have over 100 citations according to
Google Scholar.

References

[1] John Hughes, Experiences from teaching functional programming at
Chalmers, ACM SIGPLAN Notices , Volume 43 Issue 11, November 2008.
(0 citations).

[2] Thomas Arts, Laura M. Castro, John Hughes. Testing Erlang data types
with quviq quickcheck. ERLANG ’08: Proceedings of the 7th ACM SIG-
PLAN workshop on ERLANG, Victoria, BC, Canada. September 2008. (0
citations).

[3] Alejandro Russo, Koen Claessen, and John Hughes. A Library for Light-
Weight Information-Flow Security in Haskell. Haskell ’08: Proceedings of
the first ACM SIGPLAN symposium on Haskell, Victoria, BC, Canada,
September 2008. (2 citations).

[4] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A His-
tory of Haskell: being lazy with class. In The Third ACM SIGPLAN History
of Programming Languages Conference (HOPL-III), San Diego, California,
June 2007. (30 citations).

[5] Ta-Chung Tsai, Alejandro Russo, and John Hughes. A Library for Secure
Multi-threaded Information Flow in Haskell. In Proceedings of the 20th
IEEE Computer Security Foundations Symposium, Venice, Italy, July 6-8,
2007. IEEE Computer Society Press. (5 citations).

[6] John Hughes. Functional Programming: a Secret Weapon for Software Test-
ing (invited talk). 12th ACM SIGPLAN International Conference on Func-
tional Programming, ed. Norman Ramsey. Freiburg, Germany, October 2007.
Available on Google Video. Citation count missing!

[7] John Hughes. QuickCheck Testing for Fun and Profit (invited paper). In
9th International Symposium on Practical Aspects of Declarative Languages,,
ed. Michael Hanus. Nice, France. January 2007. Lecture Notes in Computer
Science vol. 4354, Springer. (4 citations).

[8] Alejandro Russo, Andrei Sabelfeld, John Hughes, and David Naumann.
Closing Internal Timing Channels by Transformation. In Proceedings of the
11th Annual Asian Computing Science Conference, Tokyo, Japan, December
6-8, 2006. (10 citations).

1



[9] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing
Telecoms Software with Quviq QuickCheck. In Fifth ACM SIGPLAN Erlang
Workshop, Portland, Oregon, September 2006. (12 citations).

[10] Nils Anders Danielsson, Jeremy Gibbons, John Hughes, and Patrik Jans-
son. Fast and loose reasoning is morally correct. In Proceedings of the
33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 2006. (22 citations).

[11] Thomas Arts, Koen Claessen, John Hughes, and Hans Svensson. Test-
ing Implementations of Formally Verified Algorithms. In SERPS, Väster̊as,
October 2005. (4 citations).

[12] Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell. Ver-
ifying Haskell programs using constructive type theory. In ACM SIGPLAN
Workshop Haskell’05, Tallinn, Estonia, 30 September, 2005. ACM Press,
2005. (11 citations).

[13] J. Hughes, Global Variables in Haskell, Journal of Functional Program-
ming, Volume 14, Issue 05, September 2004, pp 489-502 (9 citations).

[14] John Hughes, Programming with Arrows, Fifth International Summer
School on Advanced Functional Programming, Tartu, Estonia, August 2004.
Editors: Varmo Vene and Tarmo Uustalu. Springer LNCS Vol. 3622. (6 ci-
tations).

[15] Simon Peyton-Jones et al. Haskell 98 Language and Libraries. The Revised
Report. Cambridge University Press, 2003. (610 citations).

[16] John Hughes, Per Larsson Edefors, Mary Sheeran, Per Stenström and Lars
Svensson, FlexSoC: Combining Flexibility and Efficiency in SoC Designs,
Norchip, Riga, November 2003. (4 citations).

[17] John Hughes and Doaitse Swierstra, Polish parsers, step by step (functional
pearl), ACM International Conference on Functional Programming, Uppsala,
Sverige, August 2003. (8 citations).

[18] K. Claessen and J. Hughes, Specification based testing with QuickCheck,
chapter in The Fun of Programming (festschrift for Richard Bird), eds.
Jeremy Gibbons and Oege de Moor, Palgrave “Cornerstones of Computing”
series, 2003. (9 citations).

[19] Pablo E. Martnez Lpez and John Hughes, Principal Type Specialisation,
ACM SIGPLAN Asian Symposium on Partial Evaluation and Semantics-
based Program Manipulation, Aizu, Japan, September 2002. (2 citations).

[20] Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes and Malcolm
Wallace, Testing and Tracing Lazy Functional Programs Using QuickCheck
and Hat , in Advanced Functional Programming: 4th International School,
eds. Johan Jeuring and Simon Peyton Jones, Oxford, Springer LNCS vol.
2638, 2002. (19 citations).

2



[21] K. Claessen and J. Hughes, Testing Monadic Code with QuickCheck, ACM
SIGPLAN Haskell Workshop (part of ACM Principles, Logics, and Imple-
mentations of High-Level Programming Languages), ed. M. Chakravarty,
Pittsburgh, 2002. (25 citations).

[22] R. Heldal, J. Hughes. Binding-time Analysis for Polymorphic Types. In
Dines Bjorner, Manfred Broy, and Alexandre Zamulin (editors), Andrei Er-
shov Fourth International Conference on Perspectives of System Informatics,
Novosibirsk, 2001. Springer-Verlag LNCS vol. 2224. (4 citations).

[23] Koen Claessen and John Hughes. QuickCheck, A Lightweight Tool for
Random Testing of Haskell Programs. In Phil Wadler (editor), International
Conference on Functional Programming, Montreal, Canada; 18–20 Septem-
ber 2000. (252 citations).

[24] Walid Taha, Henning Makholm, and John Hughes. Tag Elimination and
Jones-Optimality. In Olivier Danvy and Andrzej Filinski (editors), Sec-
ond Symposium on Programs as Data Objects PADO II, Aarhus, Denmark.
Springer Verlag, LNCS, vol. 2053, 2001. (37 citations).

[25] Nick Benton, John Hughes, and Eugenio Moggi. Monads and Effects.
APPSEM Summer School on Applied Semantics, Caminha, Portugal.
September 2000. Springer-Verlag LNCS Volume 2395, pp42-122. (64 ci-
tations).

[26] J. Hughes. The Correctness of Type Specialisation. In Gert Smolka, editor,
European Symposium on Programming, Lecture Notes in Computer Science.
Springer-Verlag, 2000. (9 citations).

[27] J. Hughes, Generalising Monads to Arrows, Science of Computer Program-
ming, 37 (1-3) (2000) pp. 67-111. (183 citations).

[28] R. Heldal, J. Hughes Extending a Partial Evaluator which Supports Sepa-
rate Compilation, Theoretical Computer Science, 248 (1-2) (2000) pp. 99-
145. (4 citations).

[29] J. Hughes, Restricted Data Types in Haskell, in Proceedings of the 3rd
Haskell Workshop, available as a Utrecht University technical report, Octo-
ber, 1999. (29 citations).

[30] J. Hughes and L. Pareto, Recursion and Dynamic Data-Structures in
bounded space; Towards Embedded ML Programming, ACM SIGPLAN In-
ternational Conference on Functional Programming, September, 1999. (92
citations).

[31] J. Hughes, Type Specialisation, in 1998 Symposium on Partial Evalua-
tion, editors Olivier Danvy, Robert Glück, and Peter Thiemann, vol. 30 of
Computing Surveys, September, 1998. (12 citations).

3



[32] J. Hughes, A Type Specialisation Tutorial, in DIKU Summer School on
Partial Evaluation, 1998. (8 citations).

[33] D. Dussart, R. Heldal, J. Hughes, Module-Sensitive Program Specialisa-
tion, ACM SIGPLAN Conference on Programming Language Design and
Implementation, Las Vegas, June, 1997. (14 citations).

[34] R. Heldal, J. Hughes, Partial Evaluation and Separate Compilation, ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, Amsterdam, June, 1997. (7 citations).

[35] D. Dussart, J. Hughes, P. Thiemann, Type Specialisation for Imperative
Languages, ACM International Conference on Functional Programming,
Amsterdam, June, 1997. (25 citations).

[36] J. Hughes, An Introduction to Program Specialisa-
tion by Type Inference, Glasgow Workshop on Func-
tional Programming, July, 1996. Published electronically as
http://www.dcs.gla.ac.uk/fp/workshops/fpw96/Proceedings96.html.
(14 citations).

[37] J. Hughes, Type Specialisation for the Lambda-Calculus, Dagstuhl Work-
shop on Partial Evaluation, February, 1996. Springer LNCS Vol. 1110. (64
citations).

[38] J. Hughes, L. Pareto and A. Sabry, Proving the Correctness of Reactive
Systems using Sized Types, ACM POPL, 1996. (178 citations).

[39] J. Hughes and J. Sparud, Haskell++: an Object-Oriented Extension of
Haskell, Proc. the Haskell Workshop, Yale University Technical Report,
1995. (23 citations).

[40] J. Hughes, The Design of a Pretty-printing Library, Proc. Spring School on
Functional Programming, Springer-Verlag LNCS Vol. 925, May 1995. (111
citations).

[41] J. Hughes and A. Moran, Making Choices Lazily, Proc. ACM Conference
on Functional Programming and Computer Architecture, June 1995. (22
citations).

[42] John Hughes and John Launchbury, Reversing Abstract Interpretations,
Science of Computer Programming, Vol. 22, No. 3, June 1994. (29 cita-
tions).

[43] A. Ferguson and J. Hughes, Fast Abstract Interpretation Using Sequential
Algorithms, Proc. Workshop on Static Analysis, Padova, Springer LNCS
Vol. 724, 1993. (15 citations).

4



[44] J. Launchbury, A. Gill, J. Hughes, S. Marlow, S.L.Peyton-Jones, and P.
Wadler, Avoiding Unnecessary Updates, Proc. Glasgow 1992 Workshop on
Functional Programming, Springer-Verlag Workshops in Computing. (27
citations).

[45] A. Ferguson and J. Hughes, Abstract Interpretation of Higher-Order Func-
tions using Concrete Data Structures, Proc. Glasgow 1992 Workshop on
Functional Programming, Springer-Verlag Workshops in Computing. (3 ci-
tations).

[46] J. Hughes and A. Moran, A Semantics for Locally Bottom-Avoiding Choice,
Proc. Glasgow 1992 Workshop on Functional Programming, Springer-Verlag
Workshops in Computing. (5 citations).

[47] J. Hughes and A. Ferguson, A Loop-detecting Interpreter for Lazy, Higher-
order Programs, Proc. Glasgow 1992 Workshop on Functional Programming,
Springer-Verlag Workshops in Computing. (7 citations).

[48] John Hughes and John Launchbury, Relational Reversal of Abstract In-
terpretation, Journal of Logic and Computation, special issue on Abstract
Interpretation, Vol.2 No. 4, pp465-482, 1992. (1 citations).

[49] John Hughes and John Launchbury, Reversing Abstract Interpretations,
Proc. European Symposium on Programming, Rennes, 1992. (0 citations).

[50] John Hughes and John Launchbury, Projections for Polymorphic First-
Order Strictness Analysis, Mathematical Structures in Computer Science,
Vol. 2, No. 3, pp301-326, 1992. (5 citations).

[51] Ryszard Kubiak, John Hughes and John Launchbury, Implementing
Projection-based Strictness Analysis, Proc. Glasgow 1991 Workshop on
Functional Programming, Springer-Verlag Workshops in Computing, 1992.
(8 citations).

[52] Carsten Kehler Holst and John Hughes, A Loop Detecting Interpreter for
Lazy Programs, Proc. Glasgow 1991 Workshop on Functional Programming,
Springer-Verlag Workshops in Computing, 1992. (4 citations).

[53] John Hughes (ed.), Proc. ACM Conference on Functional Programming
Languages and Computer Architecture, Springer LNCS Vol. 523, 1991. Ci-
tation count missing!

[54] Carsten Kehler Holst and John Hughes, Towards Binding-time Improve-
ment for Free! Proc. Glasgow 1990 Workshop on Functional Programming,
Springer-Verlag Workshops in Computing, 1991. (19 citations).

[55] John Hughes and John Launchbury, Towards Relating Forwards and Back-
wards Analyses, Proc. 1990 Glasgow Workshop on Functional Programming,
Springer-Verlag Workshops in Computing, 1991. (13 citations).

5



[56] John Hughes and John O’Donnell, Nondeterministic functional program-
ming with sets, Proceedings of the 4th Higher-Order Workshop, ed. Graham
Birtwhistle, Springer-Verlag Workshops in Computing, Banff, 1990. (10 ci-
tations).

[57] John Hughes, Why Functional Programming Matters, Computer Journal,
Vol. 32, No. 2, 1989, and in Research Topics in Functional Programming,
ed. David Turner, Addison Wesley, 1990. (614 citations).

[58] John Hughes and John O’Donnell, Expressing and Reasoning about Non-
deterministic Functional Programs, Proc. Glasgow 1989 Workshop on Func-
tional Programming, Springer-Verlag Workshops in Computing, 1990. (49
citations).

[59] Alex Ferguson and John Hughes, An Iterative Powerdomain Construction,
Proc. Glasgow 1989 Workshop on Functional Programming, Springer Verlag
Workshops in Computing, 1990. (6 citations).

[60] John Hughes, Compile-time Analysis of Functional Programs, in Research
Topics in Functional Programming, ed. David Turner, Addison Wesley, 1990.
(44 citations).

[61] John Hughes, Projections for Polymorphic Strictness Analysis, Proc. Con-
ference on Category Theory and Computer Science, Manchester, 1989. (17
citations).

[62] John Hughes, Abstract Interpretation of First-Order Polymorphic Func-
tions, Proc. Workshop on Implementation of Lazy Functional Languages,
eds. Johnsson, Peyton-Jones and Karlsson, Chalmers University, 1988. (19
citations).

[63] John Hughes, Backwards Analysis of Functional Programs, IFIP Workshop
on Partial Evaluation and Mixed Computation, eds. Bjoerner and Ershov,
1987. (99 citations).

[64] Phil Wadler and John Hughes, Projections for Strictness Analysis, IFIP
Conference on Functional Languages and Computer Architecture, 1987.
(203 citations).

[65] John Hughes, Analysing Strictness by Abstract Interpretation of Continu-
ations, in Abstract Interpretation of Declarative Languages, eds. Abramsky
and Hankin, Ellis-Horwood, 1987. (25 citations).

[66] Guy Argo, Jon Fairbairn, John Hughes, John Launchbury, and Phil
Trinder, Implementing Functional Databases, in Proc. International Work-
shop on Database Programming Languages, Roscoff, France, 1987. (19 ci-
tations).

6



[67] Richard Bird and John Hughes, The Alpha-Beta Algorithm: An Exercise
in Program Transformation, Information Processing Letters Vol 24 No 1,
1986. (14 citations).

[68] John Hughes, A Novel Representation of Lists and its Application to the
Function “reverse”, Information Processing Letters Vol 22 No 3, 1986. (59
citations).

[69] John Hughes, Strictness Detection in Non-flat Domains, Workshop on
Programs as Data Objects, Springer LNCS Vol. 217, 1985. (42 citations).

[70] John Hughes, Lazy Memo-functions, IFIP Symposium on Functional Lan-
guages and Computer Architecture, 1985. (137 citations).

[71] John Hughes, A Distributed Garbage Collection Algorithm, IFIP Sym-
posium on Functional Languages and Computer Architecture, 1985. (144
citations).

[72] John Hughes, The Design and Implementation of Programming Languages,
Oxford University D.Phil. thesis, 1983. (125 citations).

[73] John Hughes, A Semi-incremental Garbage Collection Algorithm, Software
Practice and Experience, 1982. (13 citations).

[74] John Hughes, Graph reduction with super-combinators. Oxford University
Computing Laboratory tech report, 1982. (17 citations).

[75] John Hughes, Super-combinators: A New Implementation Method for Ap-
plicative Languages, Proc. ACM Symposium on Lisp and Functional Pro-
gramming, 1982. (164 citations).

7


