
Exercise (Day 5): Labelling and Tuning Tests

Tuning Tests for Interval Sets
If you completed the ISets exercise on Day 3, congratulations, you
have a chance to reuse your code now! If not, you may start from the
provided version of ISets, which contains a complete implementation.

Today we will focus on prop_DeleteModel, which tests that the delete function behaves according to
the model (as a list of integers). Add labelling to this property, to measure:

1. How often the value x being deleted is actually present in the set?
2. In cases when x is present in the set, how often each of the following cases arises:

a. x is the first element of some interval (i.e. x+1 is also in the set, but x-1 is not).
b. x is the last element of some interval.
c. x is the only element of an interval.
d. x is a middle element of some interval (neither the first, nor the last).

3. In cases when x is present in the set how often it is in the first, last, or a middle interval of the
set (neither first nor last).

Attach these labels to test cases, and use labelledExamples to check that your labelling code is
correct. (For even more refined information, you could use labels that contain all of the above
information—such as “only element, middle interval”—by concatenating the strings you used for
each type of label).

Measure the distribution of tests:

quickCheck . withMaxSuccess 10000 $ prop_DeleteModel

Is it satisfactory?

Using the forAll combinator from QuickCheck, we can supply a custom generator for a property:

forAll :: Gen a -> (a -> Property) -> Property

Write a generator

probablyElement :: Arbitrary a => [a] -> Gen a

which generates a random value of type a, that is more likely to be an element of the given list. (Hint:
consider using arbitrary, elements, and oneof in some combination).

Can you use probablyElement in combination with forAll to improve the distribution of tests in
prop_DeleteModel?

Tuning the Registry Tests
Another version of RegistryModel.hs is provided with today’s exercises. This version has been
extended to collect data on the number of threads in the registry, and to classify calls according to
whether they succeeded or failed, and (in the case of register), why the call failed. (The classification
and labelling code is in the monitoring method of the StateModel class).

Generate labelled examples from prop_Registry and read through them. Do any surprise you? Are
any calls incorrectly labelled? If so, adjust the code in monitoring to label them correctly.

Inspect the distribution of call labels (in the table Outcomes). Some types of call may appear quite
rarely. Use

quickCheck . checkCoverage $ prop_Registry

to see whether the stated coverage requirements (that each type of call appear at least 4% of the
time) are satisfied. If not, tune the test case generation so that they are. You can do so in two ways:

• Adjust the weights in the call of frequency in arbitraryAction, to generate some types of
action more often than others.

• Change the way the name arguments to register and unregister are generated.

The second is more difficult: try it only if adjusting the weights does not succeed.

	Exercise (Day 5): Labelling and Tuning Tests
	Tuning Tests for Interval Sets
	Tuning the Registry Tests

