
Exercise (Day 4): Testing a Process Registry

In today’s exercise we will develop tests for a process registration
module that simulates the Erlang process registry—an example of an
API with side effects. The code that we will be testing is in the module
Registry.hs—DO NOT READ THIS FILE! Imagine instead that you are testing the real Erlang registry,
implemented by around 1500 lines of C code in the Erlang virtual machine. Our goal is to discover—
and specify—the behaviour of the registry by testing, treating the implementation as a black box.

You are provided with the module StateModel.hs, which contains the state modelling library
described in the lecture. You are also provided with two partial models of the registry, in files
RegistryModel1.hs and RegistryModel2.hs. DO NOT READ RegistryModel2 until you have
completed the positive testing exercises—it contains a solution to these exercises.

Positive Testing of the Registry
For the first part of this exercise session, we will work with module RegistryModel1, which contains
the specification code presented in the first part of yesterday’s lecture. We will be focusing on
positive testing, that is, on tests which only perform “successful” calls to the code under test, which
we interpret as calls that do not raise an exception.

Load RegistryModel1 into ghci, and make sure you can test the main property with QuickCheck:

quickCheck prop_Registry

1. Is it really true that the tests now pass—or did I lie to you? If they fail, strengthen the
precondition of register to avoid the failing cases, and check that the failing cases you found
are now discarded by QuickCheck by repeating exactly the same test.

2. The code provided only tests register—we shall extend it to test unregister in a similar way.
Add Unregister actions to the arbitraryAction generator. Run prop_Registry: your tests
should fail. Modify one function at a time, testing prop_Registry after each change, until your
tests pass again.

3. Once your tests pass, run a larger number of tests
quickCheck . withMaxSuccess 10000 $ prop_Registry

and study the statistics reported. The second table, the Actions table, is the interesting
one—it shows what percentage of all calls to the API under test were made to each function.
Why does this table appear as it does?

Adding Negative Testing with Postconditions
For the second part of this exercise, start from RegisterModel2 (which you may now read). This file
contains a solution to the exercises so far, extended to perform negative testing of register as
discussed in the lecture.

4. Test prop_Registry. Do the tests now pass? If not, the model of register is still wrong. Correct
it, so that the tests pass.

5. Add negative tests for unregister following a similar programme.

Crashing Processes
In practice, processes sometimes crash, and this might conceivably affect the operation of the
registry. Thus we would like to test the registry with processes which may crash before or after they

are registered, or even while they are in the registry. We can simulate crashes by killing processes at
known points in a test case; to do so we will include calls to the operation kill (defined in
RegisterModel2) in our tests.

6. Add an action to kill threads to your tests. Does this affect test results? If so, then we know
the registry does treat living and dead threads differently. Extend the model so that tests
pass again (thus discovering exactly how the registry behaves).

Debugging
The file RegisterBuggy.hs is an almost correct implementation of the registry. See if you can pin
down the bug without looking at the code:

• First of all, manually, by calling the API directly in ghci, and inspecting the results visually.
Don’t spend too long on this—perform a “reasonable” set of tests, enough to persuade an
average developer that the code seems to work. (If you find the bug at this stage,
congratulations!)

• Secondly, run your state machine tests on RegisterBuggy instead of Register (change the
import declaration). See if you can diagnose the bug from the results.

Still want more?
The file FileSpec.hs contains foreign import declarations for the C file I/O functions fopen, fclose,
fread, fwrite, and fseek—along with wrapper functions making them easier to call, a simple unit test,
and the skeleton of a state machine test. How do fread, fwrite and fseek behave, really? Can you
extend the skeleton to a full state-machine test, that checks that fread returns the predicted
sequence of bytes in every case?

	Exercise (Day 4): Testing a Process Registry
	Positive Testing of the Registry
	Adding Negative Testing with Postconditions
	Crashing Processes
	Debugging
	Still want more?

