
Exercise (Day 3): Testing with Properties 
 

In today’s exercise we will develop a variety of properties for testing 
the binary search tree implementation discussed in yesterday’s 
lecture. The materials provided include a correct implementation in 
BST.hs, and the properties presented on the slides in BSTSpec.hs. BSTSpec uses Template Haskell and 
quickCheckAll to define runTests, which tests all the properties in the module. Make sure you can 
run these tests, and use this file as a starting point for your work. As you develop new properties, you 
should make sure they continue to pass for BST.hs. The files BST1.hs … BST8.hs contain different 
buggy versions of BST.hs, with a different bug in each file. Do not read these files; we will use them 
later to practice diagnosing bugs by testing. 

Writing Properties for BST 
As you write properties so solve the next exercises, make sure you test each property as soon as you 
have written it, either by running quickCheck with the property as an argument, or by using runTests 
to test all the properties in the BSTSpec module. Since you are testing a correct implementation, all 
the properties you write should pass. (If a property fails, you need to correct the property, not the 
code!) 

1. BSTSpec contains a validity property for insert. Add similar properties for nil, delete, 
and union. 

2. BSTSpec contains postcondition properties for find and insert. Add postconditions for 
delete and union. 

3. BSTSpec contains metamorphic properties for size/insert and insert/insert. Add 
further metamorphic properties to test insert, delete, and union. 

4. BSTSpec contains a model based property for insert. Add model-based properties to 
test find, nil, delete, and union. 

 

Diagnosing Bugs with Properties 
Once you are satisfied with your properties, try using them to diagnose buggy implementations. The 
files BST1.hs … BST8.hs contain different buggy versions of BST.hs, with a different bug in each file. 
Do not read these files. Four bugs are revealed by the original BSTSpec.hs provided, and four slip 
through. Each of these versions can be tested using BSTSpec.hs, by changing import BST to import 
BST1 … import BST8. 

5. Run your tests on each of the buggy implementations, using runTests. If any 
implementation passes all your tests, something is wrong! 

6. Which properties are most effective at revealing errors? 
7. Use the counterexamples found to diagnose each bug. Which properties give the 

most helpful output? Once you think you know what the bug is, you may inspect the 
implementation to see if you are right. 

 

Generating Equations with QuickSpec 
To do this exercise, you will need to install QuickSpec. Assuming you are using cabal, you should be 
able to do so with the command 



cabal install quickspec 

If you encounter installation problems, then I suggest installing QuickSpec in an Ubuntu virtual 
machine instead. 

The file BST_QuickSpec.hs runs QuickSpec to generate properties of the binary search tree API. Make 
sure you can compile and run this program: 

ghci BST_QuickSpec 
main 

You should see equations involving find, nil and insert generated. You may find it useful to put these 
functions into the background before rerunning QuickSpec, which can be done by applying 
background to a single signature entry, or a list of entries. The effect is to suppress equations that 
only involve background functions from the output (although they are still generated internally). 

8. Add delete to the signature supplied to QuickSpec, and generate a new set of 
equations. Are the equations generated for delete reasonable? 

9. Add union to the signature, and inspect the generated equations. Is there one that 
you might expect to see in a more general form? If so, make a note of it. 

10. Define a new function notKey k t = k `notElem` keys t, and add it as a predicate to 
the QuickSpec signature. Inspect the properties discovered of notKey; is there a 
generalization of the equation you noted in the previous step? 

 

(If you find that QuickSpec generates conditional equations with conditions involving variables that 
do not appear in the equation, you can usually eliminate them by adding withMaxTests 100000 to 
the signature. These odd conditions sometimes appear because QuickSpec runs two few tests 
satisfying the condition to eliminate them; adding withMaxTests to the signature causes QuickSpec 
to run 100 times as many tests as usual—making equation generation slow, but more accurate.) 


	Exercise (Day 3): Testing with Properties
	Writing Properties for BST
	Diagnosing Bugs with Properties
	Generating Equations with QuickSpec


