
Exercise (Day 2): Property Driven Development

For these exercises you will need to have GHC installed, together with
the current version of QuickCheck. If you don’t already have GHC, then
I suggest installing the Haskell Platform from this URL:

https://www.haskell.org/platform/

You can install QuickCheck using the Cabal package manager. Run the commands

cabal update
cabal install quickcheck

which updates the package database and installs the latest version of QuickCheck. At the time of
writing, this is version 2.13.1. You can find the documentation for QuickCheck here:

http://hackage.haskell.org/package/QuickCheck-2.13.1/docs/Test-QuickCheck.html

Introducing QuickCheck
If you have used QuickCheck before, you can skip this section.

Open the file SimpleStart.hs in your editor. This file defines two properties of the reverse
function for lists: one (true) property, that it is its own inverse, and one false property, that it is the
identify function. Notice that we give a type signature for the properties: this is to tell QuickCheck
what kind of test data to generate, in this case lists of integers. Notice also that the return type is not
Bool, but Property: this is an abstract datatype of tests. In this case, the (===) operator tests
for equality like (==), but returns a Property rather than a Bool. This is so that a more
informative message can be displayed when tests fail.

Load this file into the Haskell interpreter with the shell command

ghci SimpleStart.hs

Now you can test each property in the interpreter, by running the commands

quickCheck prop_Reverse
quickCheck prop_Wrong

In each case, QuickCheck tries to run 100 tests (by default); in the first case, the tests succeed, while
in the second case, the tests fail. Run the failing tests repeatedly—how much, and why, does the
output vary?

Property-Driven Development
Test-driven development (TDD) is a well-known agile development method, in which no code is
written until there is a failing test that requires it to be written. TDD thus encourages developers to
write tests before code, and to keep code as simple as possible to pass the existing tests. This
exercise will give you the experience of developing code in this way, where the tests are generated
for you by QuickCheck, rather than written by hand. Along the way, you will have plenty of
experience of discovering and fixing bugs with QuickCheck.

https://www.haskell.org/platform/
http://hackage.haskell.org/package/QuickCheck-2.13.1/docs/Test-QuickCheck.html

The module we will work with is ISets.hs: open it in your editor now. This module defines a
datatype ISet of interval sets, representing sets of integers, in which sequences of consecutive
integers are represented compactly. For example,

ISet [(1,10),(20,30)]

represents the set of integers

[1,2,3,4,5,6,7,8,9,10,20,21,22,23,24,25,26,27,28,29,30]

ISets must satisfy an invariant, captured by the function valid, and can be converted to the list of
integers they represent using the function toList. The module also contains a QuickCheck
generator for the type ISet, which enables us to test properties that take ISets as parameters. We
shall return to the subject of writing generators later in the week.

Our goal is to implement the functions

member :: Int -> ISet -> Bool
insert :: Int -> ISet -> ISet
delete :: Int -> ISet -> ISet
union :: ISet -> ISet -> ISet

The module contains properties for testing each of these functions. How these properties work in
detail is not important for this exercise, but (roughly speaking) the properties whose names end in
Valid check that each operation constructs an ISet satisfying the invariant, while the properties
whose names end in Model check that the ISet functions behave consistently with similar
functions on lists of integers.

Load the module into ghci. You can test all the properties in the module by running

runTests

You will find that most properties fail (because the operations haven’t been implemented yet). You
can of course test individual properties by using quickCheck as usual.

The module already contains an implementation of the member function—and indeed, the tests for
member pass. This implementation was constructed using property-driven development, as follows.
The member function is tested by one property:

prop_Member x s =
 (x `member` s) === (x `elem` toList s)

which simply asserts that the result of member is consistent with membership of the list returned by
toList. Because I expect to recurse on the list of pairs inside the ISet, I began by defining a
wrapper function

member x (ISet xys) = member' x xys

which uses an auxiliary (recursive) function to do the real work. Then I defined

member' x xys = undefined

and tested prop_Member. Of course, the test failed:

0
ISet []
Exception thrown while showing test case:
 Prelude.undefined

This output tells me that prop_Member failed when x was 0 and s was ISet []; it failed (of
course) because undefined was evaluated. So the next step is to add a case to the member'
function which handles this example.

However, before doing so, I added this test to the module:

prop_MemberTest1 = prop_Member 0 (ISet [])

This defines a specialized version of the prop_Member property, that just tests this case; I wrote
this code by copying and pasting the counterexample that QuickCheck found into the module.

Now I can refine the definition of member':

member' x [] = False
The equation I added handles the test case QuickCheck found correctly; of course, I chose to write a
more general equation that handles membership of any value in the empty set, not just zero. I can
repeat the failing test, which now passes:

*ISets> quickCheck prop_MemberTest1
+++ OK, passed 1 test.

But if I test prop_Member, then I find another missing case:

0
ISet [(0,0)]
Exception thrown while showing test case:
 ISets.hs:38:1-20: Non-exhaustive patterns in function
member'

This tells me that the code for member' does not handle the case member’ 0 [(0,0)], and so I
can add prop_MemberTest2 to test this case, and continue—for example, by extending the
definition of member' like this:

member' x [] = False
member' x (ISet [(x’,y’)]) =
 x==x’

This makes prop_MemberTest2 pass, but of course, QuickCheck finds another failing example.
The file you have been given contains five test cases that each failed at some point during my
development.

The reason for saving failed tests in the code is so that we can be sure that the change we made to
the code actually fixed this bug. If the bug is indeed fixed, then running quickCheck on
prop_Member will show us a different failing case (until the code works), but this might be because
QuickCheck randomly found a different example. Only be repeating exactly the same test can we be
sure that the bug is actually fixed, and this is why these test cases are worth saving.

The ISets module already contains properties for testing insert, delete, and union, along
with wrapper functions and auxiliary functions defined to be undefined. See if you can follow the
approach described above to complete these definitions. Try to follow the “test first” philosophy:
write no code that is not needed to make the test case you are currently working with pass. When
you are done, be sure to use runTests to test all the properties in the module—there may be one
you forgot about!

	Exercise (Day 2): Property Driven Development
	Introducing QuickCheck
	Property-Driven Development

