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Abstract: Fault-tolerance is a crucial aspect of safety critical systems. When such systems need to meet strict timing 

requirements, achieving fault-tolerance is more challenging. Considering the highly frequent transient faults, we propose 

redundant execution of real-time tasks to mask at most F transient errors in safety critical systems. Rate-Monotonic 

scheduling of a set of n preemptive real-time periodic tasks in multi-cores tolerating transient fault is the focus in our work.    

 

Introduction: Use of computers has made the automotive and aerospace industry to contemplate shifting from mechanical to 

electrical control by introducing brake-by-wire and fly-by-wire systems. In such safety-critical hard real-time systems 

missing the deadline of a task can pose threat to human lives. Moreover, when faults occur in such system, recovery from the 

error before deadline of a task is must. We consider tolerating transient faults in this work. Transient faults are temporary 

malfunctioning of a computing unit have shown to occur at much a higher rate than permanent faults [1]. In this paper, the 

well known duplication and comparison paradigm, and redundant execution of task are used for transient error detection and 

recovery [2]. If the number of faults and task execution time is relatively large, use of multi-cores having more computational 

power can provide better schedulability of real-time tasks. In this paper, we propose the rate-monotonic scheduling of a set of 

n preemptive periodic tasks that mask the effect of F transient errors in multi-cores. For brevity, the detail equations to 

generate the redundant tasks and the scheduling algorithm for multiple cores are not outlined here. Interested readers can find 

the details in [3]. 

 

Motivation: Building more powerful uniprocessors with increasing transistor counts has ceased due to limited instruction 

level parallelism, increased wire delay and latency to main memory access. Now the trend in processor industry is to 

accommodate many processing cores in the same die area, called chip multi processor (CMP) [4]. CMPs can provide better 

performance to many applications in terms of throughput. For example, to application software, a Sun’s Niagara processor 

will appear as 32 discrete processors [5]. If such a processor is used for real-time task scheduling, a total of 32 real-time tasks 

can be scheduled in parallel. Using our proposed error detection and recovery technique, redundant copies of real-time tasks 

can run in parallel. Such inherent parallelism of real-time periodic tasks tolerating transient faults for safety critical real-time 

systems is the best target for execution in multi-core processors.  

 

Task model: The real-time task set we consider consists of n periodic tasks, Γ ={τ1, τ2,…. τn}.  Each task τi  has a period Ti, 

and a relative deadline Di, worst case execution time Ci and priority Pi. According to rate-monotonic static priority 

assignment, task with shorter period has higher priority. The relative deadline is considered to be equal to its period in this 

work, that is Ti=Di. The length of the Planning Cycle (PC) in which the task schedule repeats iteratively is the least common 

multiple of all task periods, that is PC=lcm{T1, T2,…., Tn}. Within one PC, one or more instances of task τi will execute. Each 

task instance is denoted by τi
j
 where j is the jth instance of task τi. The utilization of a task τi is defined as, Ui=Ci/Ti. The 

utilization of the whole task set is U=∑  
τ� Ci/Ti. 

 

Error Detection and Recovery: Our error detection and recovery technique works as follows: when a task is released, two 

copies, known as primary copies, of the same task instance are run first. If an error is detected by comparison of results, or by 

other error detection mechanism, F more extra/recovery copies of the same task instance are run to mask at most F errors. 

Figure 1(a) and Figure 1(b) demonstrate this for F=2 and for a single task τ1 with period T1=10 and execution time C1=2. 

 

          
Figure 1. (a) Fault free execution of two primary copies          (b) Fault masking by running two more recovery copies 

Parallelism Exploitation by Multi-cores: The inherent parallelism that can be exploited by multi-cores is demonstrated here 

using an example. Consider a real-time system having two tasks τ1 and τ2 as in Figure 2(a), and F=1. Also consider that, one 

of the two primary copies of τ1 is in error. The Rate-Monotonic schedule is in Figure 2(b) with recovery copy running from 

t=2 to t=3. The second instance of the first task, τ1
2
 (the error free instance of τ1), finishes at time t=5. The first instance of 

task τ2
1
 does not have two time units within PC for execution of its two primary copies. So, the task set is not schedulable. 

Now, observe that the two primary copies of each task can run in parallel in two processing cores. Considering this inherent 

task level parallelism, the periodic task model we consider has higher schedulability for multi-cores. Figure 3 shows the rate-

monotonic schedules in two processing cores for the task set in Figure 2(a). In the schedule in Figure 3, the task τ2
1
 is 

schedulable and other tasks have low response time and high slack is available in the schedule that can be used to tolerate 

more transient faults. Next question is how to generate such parallel tasks set for execution and the algorithm to schedule the 

tasks in multiple cores? 



                                   
Figure 2. (a) Example task set        (b) Rate-Monotonic schedule                    Figure 3. Rate monotonic schedule in two cores 

 

Generating parallel tasks: There are three steps to generate the parallel task set; (i) Step 1: identify the set of primary copies 

of each task, (ii) step2: find the worst case distribution of F faults within PC and determine the set of recovery copies of tasks 

to mask F errors, (iii) step3: combine the task sets from step 1 and 2 as a set (called EXE) of triplets EXE={(Task Release 

time, Task Index, Task Execution Time)}. For the task set in Table 1, the set EXE with F=2 is, EXE ={(0,τ1
1, 4), (0,τ2

1, 2), 

(4,τ1
1, 4), (6,τ2

1, 2), (7,τ1
1, 4), (11,τ1

1, 4)}. Please see [3] about the details to generate task set EXE.                                      

 

                                           
         Figure 4. The Rate Monotonic schedule for task set in Table 1 using two cores 

 

Rate-Monotonic Scheduling: Once the set EXE is found, next task is to schedule the tasks. In [3], a Rate-Monotonic 

algorithm to schedule task set EXE is outlined to find the minimum number of cores to tolerate F errors. At each time instant 

the highest priority task in set EXE is identified, and the task is executed before the deadline in a free processor as shown in 

Figure 4. The algorithm iteratively searches for required number processing cores for a feasible schedule. 

Schedulability Test: Generating the task set EXE and then iteratively search for suitable number of cores is computationally 

expensive if there are a large number of tasks. A simple utilization based test can determine schedulability of a task set in 

linear time. A utilization based test guarantee schedulability of any task set if the total utilization of the task set is less than or 

equal to a particular fraction (known as achievable utilization bound) of the total processing capacity. Until year 2001, it was 

known for multiprocessor that the achievable utilization bound is 0% for hard real-time systems due to the well known 

Dhall’s effect [6]. The essence of Dhall’s effect is that even if we have infinitely many processors available, there are hard 

real-time task sets that can have almost 0% utilization and still unschedulable. In 2001, Andersson, Baruah and Jonsson in [7] 

have proved that if total utilization of the task is less than or equal to 33% of the capacity of all processors, the rate-

monotonic schedule is feasible. They have also proved that more than 50% utilization is never possible no matter how 

powerful processors are used for scheduling of hard real-time tasks. We are currently working on achieving more than 33% 

utilization bound. We have observed that, if the ratio of any two task period is greater than 2, the achievable utilization is 

40%. Moreover, if the maximum utilization of any single task is small, higher utilization is also possible to achieve. As 

periods or task utilization have strong impact on schedulability, we are trying to find a relationship among different task 

parameters to find a good utilization bound for multi-cores. 

Conclusion: The inherent parallelism within real-time periodic tasks can be exploited by multiple cores to achieve high 

reliability of safety critical real-time systems. Redundant execution of tasks can be used for error detection and recovery in 

today’s powerful multi-cores to tolerate transient faults. In addition more slack would become available in the schedule and 

real-time task set not schedulable in uniprocessor becomes schedulable using multi-cores even if when faults occur. We are 

investigating issues like, given a number of m cores and a task set, what is the maximum number of faults that can be 

tolerated, and what utilization bound we can have for m cores with F transient faults.  
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