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Abstract 

The influence of computer systems in human life is in-
creasing and thereby increases the need for having re-
liable, robust and real-time services of computer sys-
tems. Avoidance of any catastrophic consequences due 
to faults in such systems is the main objective. This pa-
per addresses the problem of finding a probabilistic 
measure of schedulability of real-time systems tasks in 
the presence of multiple transient faults. The main ap-
proach used in this paper is employing Temporal Error 
Masking (TEM) technique to achieve Node Level Fault 
Tolerance (NLFT) within the least common multiple of 
periods of a set of pre-emptively scheduled periodic 
tasks with at most f transient faults. Rate Monotonic 
(RM) scheduling is used to observe how the probability 
of system success, that is, the probability of meeting 
deadlines for all tasks is affected with the worst-case 
distribution of f faults 
Keywords: Fixed-Priority Scheduling, NLFT, Real-
Time Fault-Tolerant systems, TEM, Transient faults. 
1. INTRODUCTION 
Real-time systems that are being increasingly used in 
several applications are time critical in nature where a 
failure can pose a threat to human lives. The ability to 
tolerate faults in such hard real-time systems is crucial 
since a task can potentially miss its deadline when faults 
occur. The use of fault-tolerant computers in avionics 
was advanced in 1980s and the early 1990s, when so 
called fly-by-wire systems were introduced in military 
aircrafts and commercial airlines, such as the Airbus-
320 [1] and Boeing 777 [2]. Real-time systems with 
high dependability requirements are traditionally being 
built with massive replication and redundancy. In cer-
tain classes of applications, due to space, weight and 
cost considerations it may not be feasible to provide 
space redundancy. Such systems need to exploit time 
redundancy techniques. In this paper, time redundancy 
is used to achieve fault tolerance in the presence of at 
most f transient faults. Several studies have shown that 
transient faults occur at much a higher rate than perma-
nent faults [3]. In [4], measurements showed that tran-
sient faults are 30 times more frequent than permanent 
faults. In this paper, time redundant execution of tasks 
known as Temporal Error Masking (TEM) is used to 
mask at most f transient faults at node level, known as 
Node Level Fault Tolerance (NLFT). Moreover, in this 
paper, scheduling with probabilistic guarantee for a 
hard real-time system is addressed. The term ‘probabil-
istic guarantee’ means a scheduling guarantee with an 
associated probability. Hence, a guarantee of 99.95 % 
does not mean that 99.95 % of the deadlines of tasks are 

met. Rather it implies that the probability of all dead-
lines of all tasks being met during given period of op-
eration is 99.95%.   
2. RELATED WORK 
One of the first scheduling mechanisms for fault toler-
ance deals with periodic tasks whose periods must be 
multiples of one another and the execution time of re-
covery tasks must be shorter than that of the original 
execution time was described by Liestman and Camp-
bell [5].  In [6], a framework for light-weight node-level 
fault tolerance is presented where it is shown that 
NLFT-nodes may provide 55% higher reliability after 
one year and 60% higher mean time to failure (MTTF) 
compared to systems with fail-silent nodes. The fault 
injection experiment in [7] show that the percentage of 
correct results increased from 81% to 89% using tempo-
ral error masking. In [8] it is shown that, the percentage 
of detected errors increased from 93.9% to 97.2 %. In 
[9] Pandya and Malek analyze the schedulability of a 
set of periodic tasks that are scheduled using Rate 
Monotonic Scheduling and tolerate a single fault. In 
[10], the notion of probabilistic guarantee for fault-
tolerant hard real-time systems is introduced. Another 
study, presented in [11], provides an exact schedulabil-
ity test. In [12], a temporal-redundancy-based recovery 
technique is proposed that tolerates transient task fail-
ures where tasks have timing, resource, and precedence 
constraints.  In [13], an appropriate schedulability 
analysis based on response-time analysis is proposed 
where recovery task may be executed at higher priority 
levels. In [14], a scheme is proposed that guarantees the 
timely recovery from multiple-faults assuming earliest-
deadline-first scheduling (EDF) scheduling for aperi-
odic pre-emptive tasks. In this paper, similar approach 
as in [14] is made but for rate monotonic scheduling 
(RM) algorithm for a set of pre-emptive periodic tasks. 
Many papers have addressed the problem of tolerating 
transient faults with some restrictions as follows: only 
one fault is possible within some operational time, tasks 
periods are multiple of one another, and recovery task 
has smaller execution time or higher priority than that 
of the original task. In this paper, the response time of a 
task instances is found out considering only the worst-
case distribution of f faults using an algorithm RM-FT. 
Moreover, a probabilistic measure of system success 
denoted by Psuccess is determined using resultant data 
from fault injection experiment with 68340 microproc-
essor [6-8, 15]. 
3. TASK MODEL 
The task set consists of n periodic tasks, Γ={τ1, τ2, …. 
τn}. Each task τi has a period Ti, and a relative deadline 



Di which is equal to its period. Each task τi has the 
worst-case execution time Ci and has a priority Pi. The 
highest priority task has the lowest period. The length 
of the planning cycle (PC) within which the tasks repeat 
themselves iteratively is the least common multiple of 
all task periods is defined as: PC=lcm(P1, P2….Pn). 
Within one PC, one or more instances of task τi will 
execute. Each task instance is denoted by τij where j is 
the jth instance of task τi.  Γall is defined as the set of all 
task instances within PC. That is, Γall= {τij⎪i=1,2,…n 
and j=1,2,…..⎡

Ti
PC  ⎤}. 

4. TEMPORAL ERROR MASKING (TEM) 
The technique for TEM is, first two copies (primary 
copies) of a task instance is run, and if error is detected 
either by comparison of results of the two copies, or by 
timer monitor or by Error Detection Mechanism (EDM) 
a third copy of the task instance is run and then by ma-
jority voting of the three results, the result is either ac-
cepted or omission failure is occurred. In [15], three 
different cases in Fig. 1 were considered. According to 
[15], whenever two primary copies are faulty, assuming 

 
Fig. 1 Error detection and error recovery using TEM 
two faults will not lead to the same error, running the 
third copy always leads to omission failure, hence the 
error is not masked. The approach in this paper to mask 
f errors, assuming multiple faults will not lead to same 
error, is first to run two primary copies of the same task 
instance. If an error is detected, run f more extra copies 
of the task instance. For example, in case f=2, run two 
more extra copies (third and fourth) when error is de-
tected. Then the four results are compared. If there are 
at least two matching results, the result is accepted. If 
we have all four different results, it will lead to omis-
sion failure as shown in Table I.  
Table I Masking two errors by running two extra                                                                                                             
copies of a task instance. 

 

5. RESPONSE TIME ANALYSIS 
Traditional response time analysis for RM scheduling as 
in [16] is not suitable when multiple faults are consid-
ered. The response time of task τi depends on the distri-
bution of f faults within PC. If all f faults occur within 
the same task instance, the extra f copies are scheduled 
only for that task instance. If the f errors are occurred in 
many task instances, then for each of the erroneous task 
instances f extra copies will be scheduled. For at most f 
faults with total m different task copies of different 
tasks instances, one has to consider mf different fault 
distributions if traditional response time analysis is con-
sidered. Instead of considering all possible distributions 
of f faults, in this paper, only the worst-case distribution 
of f faults is considered. In section 6, an algorithm RM-
IND to find the response time for individual task in-
stance in fault free environment is developed. By con-
sidering only the worst-case distribution of f faults 
within PC and using the result of RM-IND, the feasibil-
ity of a schedule of a task set is checked in another al-
gorithm RM-FT is developed in section 7. At last, a 
probabilistic measure of system success for any task set 
based on RM-FT is determined in section 8. 
6. RESPONSE TIME OF TASK INSTANCES IN 
FAULT-FREE ENVIRONMENT 
To find the response time of individual task instances in 
fault free environment the following functions are de-
fined: 
RD(Γ,t): The set of ready task at time t. It represents all 
the task instances that are released at time t. 
REL_LD(t): The release load in a fault-free environ-
ment at time t. It represents the total execution time re-
quired for the task instances in set RD(Γ,t) at time t. 
Ψ(Γ,t): The amount of work still to be done at any time 
t in the fault-free environment. This function is defined 
recursively as follows:  

 
This binary operator “-- ” with operands a and b is de-
fined as: a--b = 0 if b>a, else a--b=a-b. Using the func-
tion Ψ, the following algorithm RM-IND is developed 
that finds the response time of individual task instances. 
1.1 Algorithm: RM-IND 

 
Fig. 2 Pseudocode for finding the response-time of each 

task instance in fault-free environment 
The for loop at line 1 iterates  PC times and at each time 
it checks in line 3 if there is a task eligible to execute in 
the time slot between (t-1) and t in fault free environ-



ment. When any particular task instance finishes execu-
tion in line 4, the finishing time is recorded in line 6.  
6.2 EXAMPLE: SIMULATION OF RM-IND 
For the following task set in Table II, the start time and 
the finishing time of each task instances is found in the 
Table III and the corresponding schedule is shown in 
Fig. 3 along with the value for ψ. 

Table II Task Set 

  
 

Table III Simulation of RM –IND for task in TableII 

 

 
Fig. 3 RM Schedule for task set in Table II 

The function fin(τij) is defined as the time when task 
instance τij completes execution in RM-IND. So, 
fin(τ11)=2, fin(τ12)=5 and fin(τ21)=6 as in Fig. 3. In next 
section, fault-tolerant algorithm RM-FT is developed 
considering the worst possible distribution of f faults. 
7. FAULT-TOLERANT ALGORITHM: RM-FT 
The algorithm RM-FT in section 7.1 checks the sched-
ulability of a set of tasks in environment where faults 
are likely. Inspired by the work in [14], the function 
δf(t,Γall) in defined as the amount of extra work that still 
need to be done at time t due to f faults in an environ-
ment where faults are likely. For the task set in Table 
IV, the amount of extra work that still needs to be done 
is calculated in Fig. 4. If f=1, the amount of extra work 
when τ11 finishes execution is δ1(2,Γall)=1 since if the 
task instance is in error, we need to run one more extra 
copy. Note that, δ1(8, Γ) =2, since when task instance 
τ12 finishes execution, the only fault if occurs in the task 
instance τ21 represents the worst-case distribution of one 
fault. Observe that, for f=1, the lowest priority task (τ22) 
finishes before deadline since the amount of extra work 
at t=15 is δ1(15, Γ)=2 that becomes zero before the 
deadline of that task instance. But higher priority task 
instance τ21 cannot finish before deadline which is t=9 
since at t=9, the extra work still to be done is δ1(9, 
Γ)=1. Hence the task set in Table IV is not schedulable.  
Theorem 1:  Given task set Γall and the lowest priority 
task τij in Γall completes by its deadline which is (Ti × j) 

in fault tolerant schedule, if and only if, δf( Γ,t)=0 for 
some t,  fin(τij) ≤ t ≤ Ti ×j. 

Table IV Task set 

 

 
Fig. 4: The schedule with the value of δ at each time t 
Corollary 1: A necessary and sufficient condition for 
the feasibility of the fault tolerant schedule for a given 
task set Γall for any distribution of f or less faults can be 
obtained by applying Theorem 1 to N task sets Γj for 
j=1,..,N where Γj contains the jth highest priority task 
from Γall. 

7.1 ALGORITHM: RM-FT 

Using Corollary1, the algorithm RM-FT for feasibility 
check of a schedule is developed and simulated in 7.2 
and 7.3 using the two example task sets in Table V: 

 
Fig. 5 Pseudocode for checking schedulability 
Table V: Two task sets with same period but different 
execution time. 

 
7.2 RM-FT SCHEDULE WITH δ VALUE For f=1 
(EXAMPLE 1): 

 

 

 
Fig. 6 Task schedule for Example1 using RM-FT with δ 
value. The task set is not schedulable. 



7.3 RM-FT SCHEDULE WITH δ VALUE FOR 
f=1(EXAMPLE 2): 

 

 
 
 
 
 
 
 
 
 
 

Fig. 7 Task schedule for Example 2 using RM-FT with δ 
value. The task set is schedulable 

8.  PROBABILITY OF SCHEDULABILITY: 
8.1 PARAMETERS OF PROBABILITIES: 
In this section, a probabilistic measure of system success in 
case of f faults is derived. The result of injecting faults into 
applications provides the parameters of certain probabilities 
that are given in the following Table VI. The values in the 3rd 
column are taken from experiment   of injecting faults in a 
68340 microprocessor [6-8, 15]. 

Table VI Parameters for the probabilities from fault 
injection experiment in 68340 microprocessor. 

 
8.2 PROBABILITY OF FAULT OCCURRENCE IN 
TASK τij: 
For a maximum of f faults, the probability of a fault 
occurrence in task instance τij is P(Fij) is defined as: 

P(Fij)=  
PC

Ci*2)(f +  × 
PC

ij )Rel(-PC τ  

Here,
PC

Ci*2)(f +  represents the task utilization of task τij 

in case of faults within one PC. Since the probability of 

fault occurrence decreases as the tasks’ completion time 
within one PC decreases, therefore, we scale the prob-
ability by multiplying 

PC
ij)Rel(-PC τ  where Rel(τij) is the 

release time of task τij. 
8.3 PROBABILITY OF SCHEDULABILITY Yij 

FOR A TASK τij: 
                   0      if task τij is not schedulable by RM-FT 
                   1       if task τij is schedulable by RM-FT 
8.4 PROBABILITY OF ERROR MASKING: 
In this analysis, the probability of error detection and 
masking by any one of the techniques (double execu-
tion, timer monitor, or EDM) is: (PDE × PDE,M) + (PT × 
PT,M) + (PEDM × PEDM,M). When a fault occurs, and the 
fault leads to an error and the error is detected, then the 
error needs to be masked. Denote the probability error 
masking of all task instances by PError is defined as: 

 

Using the probabilities given in Table VI, (Px × PDE × 
PDE,M +PT × PT,M +PEDM × PEDM,M )=0.120122 
8.5 PROBABILITY OF NO ERROR MASKING: 
Let’s denote the probability of task execution without 
the need for error masking by PNoError. This occurs 
when: (i) No fault occurs and the probability is 1-
∑P(Fij) for τij∈ Γall  (ii) Fault occurs but no error is gen-
erated, and the probability is [P(Fij) ×(1-Px)], and 
(iii)Fault occurs and error generated but error is not 
detected and the probability is P(Fij) ×Px × PND. So, the 
probability when errors don’t need to be masked for all 
task instances is: 

 
8.6 PROBABILITY OF SYSTEM SUCCESS: 
Let’s denote the probability of the system success by  
Psuccess=PNoError+PError                                              …          …(III) 
9. CALCULATING PSUCCESS WITH EXAMPLE 
TASK SETS: 
In this section the probability of system success is cal-
culated using different example task sets. 
9.1 EXAMPLE 1 

Table VII Task set 

 
If f=0, by running algorithm RM-FT, all tasks are 
schedulable. Hence, Yij   =1 for all task instances. The 
probability of fault occurrence in each task instance 
within PC is given as follows:  
P(F11)=.055555, P(F12)=0.04166, P(F13)=0.027777, 
P(F14)=0.01388, P(F21)=0.05555, P(F22) =0.027777,                     
P(F31)=0.055555 

Yij = 



     So,   ∑    P(Fij) =0.277773 
        τij∈ Γall           
Using equation (I), (II) and (III) , PError =0.033366,  
PNoError=0.952778, Psuccess=0.986145. 
If f=1, PError =0.05005, PNoError=0.92916,  
Psuccess=0.979219. If f=2, PError =0.07006, PNoEr-

ror=0.90083, Psuccess=0.97088. If f=3, PError =0.083417   
and  PNoError=0.88195   and     Psuccess=0.96536. If f=4, 
the task set is not schedulable using RM-FT. To see 
why, observe the following schedule in Fig. 8. 

 

 
Fig. 8 Schedule for f=4 using RM-FT of task set in Ta-
ble VII. 
In the schedule, the lowest priority task is τ31 is sched-
ulable. However, task τ12 finishes at time t=11 and the 
value of δ=13 (amount of extra work due to faults). It is 
not possible to complete the extra work δ before the 
deadline of τ12 which is t=18, since δ≠0 for any t such 
that fin(τ12)=11 ≤  t ≤ (T1 ×2) =18. So, task set in Table 
VII cannot be scheduled.  Hence, Y12   =0. And,  ∏  Yij   
=0. Hence, if f=4, PError=0   and    PNoError=0.858336   
and     Psuccess=0+0.858336=0.858336. Obviously, for 
the task set in Table VII, if f>3, Psuccess =Pnoerror. 
9.1.1 DISCUSSION (EXAMPLE 1) 
The graph in Fig. 9 shows that, as f increases, the prob-
ability of fault occurrence also increases. In Fig. 10, it 
can be seen that the probability of masking faults in-
creases (PError) as we increase f since the system now 
employs error-masking capabilities to mask errors. 
However, in practice, no system is capable of tolerating 
an infinite number of faults. So, after a certain value of 
f, the fault masking capability will diminish to zero (see 
the column in Fig. 10 for f=4). In Fig. 11, the probabil-
ity of system success without fault masking capability 
(PNoError) decreases as f increases. This is because as 
more faults are likely, the system becomes more vulner-
able to faults and the probability of schedulability de-
creases. Fig. 12 shows that as f increases, there is a de-
crease in the probability of overall system success (Psuc-

cess). As more errors are occurring, there is an increase 
in probability of fault masking (PError) and there is also a 
decrease in the probability of success without fault 
masking (PNoError). However, the sum of these two prob-
abilities has a downward trend. This is because, as the 
number of maximum fault f occurrence increases, the 
probability of overall system success is more dependent 
on the fault masking capability of the system, which is 
limited for any practical system. So, for higher number 
of f, the probability Psuccess is low. 
9.2 EXAMPLE 2: The execution time of task τ1 in Ta-
ble VIII is increased by 1 time-unit in Example 2 than it 
is given in Example1 in Table VII. 

Probability of fault occurrence increases as f 
increases
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Fig. 9: The probability of fault increases as f increases 

Probability of masking faults increases as f increases
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 Fig. 10: Probability of fault masking increases 

probability of success with no faults masking
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Fig.11: Probability of system success without fault 
masking decreases as f increases 

Probability of overall success decreases as f 
increases
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Fig. 12: Probability of system success decreases as f 
increases 

Table VIII Task set 

.  
Using (I), (II) and (III), it can be derived that, if f=1, 
PError =0.07507, P NoError=0.89375, Psuccess=0.96882; if 
f=2, PError=0, P NoError=0.858335 and Psuccess=0.858335. 
Intuitively, for this task set if f>3, Psuccess =PNoError. 
9.2.1 DISCUSSION (EXAMPLE 2): 
Observe that, Example 2 has larger execution time for 
task τ1 than the execution time of task τ1 given in Exam-
ple 1. For f=1, the probability of Psuccess in Example 2 
(Psuccess=0.96882) is lower than the probability of Psuccess 
in Example1 (Psuccess=0.979219). This is because with 
increased execution time there is less slack in the 
schedule and hence task with higher execution time 
contributes to the increased value of δ. Similarly, for 
f=2, the probability of Psuccess in Example 2 (Psuc-

cess=0.858335) is lower than the probability of Psuccess in 
Example1 (Psuccess=0.97088). Consequently, it can be 
said that with higher task utilization, the less number of 
faults can be masked and thereby having a lower prob-
ability of system success. 



9.3 EXAMPLE 3:  
                           Table IX Task set 

 
9.3.1 DISCUSSION (EXAMPLE 3): 
Observe that, Example 3 in Table IX has larger execu-
tion time for task τ3 that the execution time given in 
Example 2 but both examples task set have same task 
utilization. For f=1, the probability of Psuccess in Example 
3 (Psuccess=0.964632) is lower than the probability of 
Psuccess in Example 2 (Psuccess=0.96882). This is because, 
even if both have same utilization, tasks with large exe-
cution time runs for a long time in a fault tolerant 
schedule when extra/recovery copies need to be run. 
Hence, less slack is provided in the schedule. So, not 
only utilization but also the execution time of individual 
task is a major success factor of system schedulability. 
10. CONCLUSION: 
Meeting task deadlines is the main objective of hard 
real-time systems. If faults are likely, mechanisms must 
be employed to tolerate the faults if the system has to 
avoid catastrophic consequences. Use of redundancy is 
the solution for achieving fault tolerance. In this paper, 
probabilistic analysis of schedulability shows that, with 
increased f, probability of system success increases with 
fault masking capability up to a certain value of f, after 
which the probability of system success decreases, as 
the system can’t tolerate unlimited number of faults. 
Moreover, not only higher task utilization but also indi-
vidual task’s execution time determines the probability 
of system success.  
Running f extra copies requires more slack in the 
schedule which may not be available for many task sets 
in hard real-time systems. If the number of extra copies 
is decreased more slack would be available in the 
schedule and more task sets could be schedulable at 
node level. However, by running less than f extra cop-
ies, all errors may not be possible to mask at node level. 
If error could not be masked at node level, system level 
fault tolerance has to be employed. Future work could 
be to find a trade-off between system level and node 
level fault tolerance.  
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