CHALMERS

Real-Time Scheduling Analysis of System Tolerating
Multiple Transient Faults

RISAT MAHMUD PATHAN

Master's Thesis

International Master’s Program in Dependable Computer Systems

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Computer Engineering

Goteborg 2005



All rights reserved. This publication is protected by law in accordance with “Lagen om Upphovsratt,
1960:729”. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of the authors.

O Risat Mahmud Pathan, Géteborg 2005.



Real-Time Scheduling Analysis of System Tolerating Multiple Transient Faults

Risat Mahmud Pathan
Department of Computer Engineering
Chalmers University of Technology
421 96 Gothenburg, Sweden
risatmp(@yahoo.com

ABSTRACT

The influence of computer systems in human life is increasing and thereby increases the need for
having reliable, robust and real-time services of computer systems. Avoidance of any catastrophic
consequences due to faults in such systems is the main objective now-a-days. In this paper, a
probabilistic measure of schedulability of real-time systems tasks is addressed in the presence of
multiple transient faults. The main approach is employing Temporal Error Masking (TEM)
technique to achieve Node Level Fault Tolerance (NLFT) within the least common multiple of
periods of a set of pre-emptive period tasks with at most f transient faults. The Rate Monotonic (RM)
scheduling is used to observe how the probability of system success denoted by Pyc.ss, that is the
probability of meeting deadlines for all tasks, is affected with worst-case fault distribution. In
addition, a recovery algorithm is proposed along with a probabilistic estimate for such recovery
when transient faults are early detected by hardware or software Error Detection Mechanism
(EDM).

Keywords: Real-Time Systems, Fault Tolerance, Task Schedulability, Probabilistic Guarantee,
Fixed-Priority Scheduling, NLFT, TEM.
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1. Introduction:

“Non-faulty systems hardly exists, there are only systems which may have not yet failed.”
—J. C. Laprie [1]

Real time systems are being increasingly used in several applications which are time critical in nature.
This includes systems where a computer failure can pose a threat to human lives or the environment, and
systems where a failure may cause significant economic loss. Recent advantages in technologies have
brought much attention to migrating previously mechanical or manual system to embedded computing
systems. Among these, systems with timing constraints have been widely used in several time critical
applications ranging from fly-by-wire, brake-by wire, autopilot system and space shuttles, to industrial
process control, robots and smart automobiles. The tasks in such application are hard real-time tasks,
which have stringent timing requirement. The consequences of missing the deadline of a hard real time
task may be catastrophic. Moreover, the ability to tolerate faults in hard real-time systems is crucial, since
a task can potentially miss its deadline when faults occur. In case of a fault, a deadline can be missed if the
time taken for recovery from faults is not taken into account during the phase when tasks are submitted or
accepted to the system. Hence, fault tolerance is an essential requirement for such systems, due to the
catastrophic consequences of not tolerating faults.

Fault tolerant computers have been used in satellites, launchers and other space vehicles since the
beginning of the space era to protect the lives of the crews in manned space missions and economic
investments in unmanned missions [2]. One of the first widespread uses of fault tolerant computers where
public safety was at stake was in commercial airplanes in the early 1990’s. At that time systems allowing
automatic landing in all visibility conditions were introduced. The system must be extremely dependable,
as a failure could cause the plane to crash. The use of fault tolerant computers in avionics was further
advanced in 1980s and the early 1990s, when so called fly-by-wire systems were introduced in military
aircrafts and commercial airlines, such as the Airbus-320 [3] and Boeing 777 [4]. In fly by wire systems,
the mechanical links between the pilot controls and the plane’s control surfaces are replaced with
computer networks and electronically controlled actuators. These systems must meet very stringent
dependability conditions, since the pilot is unable to control the aircraft if the fly-by-wire system fails.

The importance of dependability in embedded system will increase dramatically as future computers take
a more active role in everyday control applications such as drive-by-wire and brake-by-wire systems in
vehicles. By-wire systems are also currently being considered for safety-critical control systems in cars
and other road vehicles. The introduction of brake-by-wire systems and steer-by wire systems will allow
future vehicles to be equipped with intelligent safety systems that can help the driver to brake or steer the
vehicle to avoid accidents or to mitigate the impact of collisions.

Real-time systems with high dependability requirements are traditionally built with massive replication
and redundancy. The main objective is to maintain the properties of correctness and timeliness even in the
event of faults. In certain classes of applications, due to space, weight and cost considerations it may not
be feasible to provide space redundancy. Such systems need to exploit time redundancy techniques. Due
to real-time nature of such systems, it is essential that the exploitation of time redundancy for correctness
does not jeopardize the timeliness guarantee. There is a need for the feasibility analysis which provides
guarantees for fault-tolerant real-time task sets under the assumption for a defined failure hypothesis.
Thus, safety critical systems have to guarantee functional and timing constraints even in the presence of
hardware and software failures. One way of guaranteeing that all timing and resource constraints are met
is to statically schedule all tasks to meet their deadlines.



2. Basic Concepts: Fault Tolerant Systems

In [1] the term ‘dependability’ is defined as, “that the property of computer system such that reliance can
justifiably be placed on the service it delivers.”

2.1 Failure, Error, and Faults:

A system failure occurs when the service provided by the system deviates from the specified service. An
error is a perturbation of internal state of the system that may lead to failure, that is, a failure occurs when
the erroneous state causes an incorrect service to be delivered. The cause of the error is called a fault. An
active fault leads to an error; otherwise the fault is dormant.

Task deadlines in hard real-time system must be met even in presence of faults due to their critical nature.
Faults to be tolerated can be of three different types: permanent, intermittent, and transient [5, 6].
Permanent faults are caused by total failure of computing unit, and are typically tolerated by hardware
redundancy such as spare processors. Transient faults are temporary malfunctioning of the computing unit
or any other associated components which causes incorrect results to be computed. Intermittent faults are
repeated occurrences of transient faults.

2.1.1 Transient Faults:

Although the ongoing reduction of device geometry and supply voltage increases the risk for not only
transient faults but also for permanent faults, our focus in this paper is on transient faults due to their
higher frequency of occurrence. The main source of transient faults is environmental disturbances.
Environmental disturbances include power fluctuations, electromagnetic interference and ionizing
radiation by alpha particles and high energy neutrons [5, 7]. For example, neutron radiation has primarily
been a concern in aerospace applications, as high energy neutrons are much more common at higher
altitudes than at ground level.

Several studies have shown that transient faults occur at much a higher rate than permanent faults [7]. In
[8], measurements showed that transient faults are 30 times more frequent than permanent faults, while in
the work in [9] revealed that 83% of all faults were determined to be transient or intermittent. In [7], tables
were provided to show that rates of transient faults are about 20 times that of permanent faults. In some
real time systems such as satellites and space shuttles, transient faults occur at a much higher rate than in
general purpose systems [10]. An orbiting satellite containing a microelectronics test system has been used
to measure rates in various semiconductor devices including microprocessor systems. The number of
errors, caused by protons and cosmic ray ions, mostly ranged between 1 and 15 in a 15-minute intervals,
and was measured to be as high as 35 in such intervals. Because of high occurrence of transient faults and
because permanent faults can be tolerated using physical redundancy, we focus on transient faults in this
thesis.

2.1.2 Failure Modes:

A system failure mode describes the ways in which a system can fail. One way of categorizing failure is
by their domain [5]. The failure domains can be divided into the value domain and the timing domain. The
value domain may include value failures and fail bounded failures. A value failure occurs when the
produced output value deviates from an expected value. A fail bounded failure occurs when the system
produces an incorrect output value, but the output is within a tolerable bound. In the time domain, a timing
failure occurs when the time of the output value is produced too early or too late. An omission failure
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occurs if the system does not respond to an input and other part of the system is not aware of the failure. A
crash failure occurs if the system permanently stops operating and fails to respond to any input. A fail-
stop failure is a crash failure that is made known to rest of the system.

2.2 Fault Tolerance:

Fault tolerance in distributed systems can be achieved through a hierarchy of system level, node level and
circuit level mechanisms. Error handling at the circuit level refers to a mechanism provided by hardware
components such as microprocessors and I/O circuits, while error handling at the node level refers to when
additional hardware components and/or software components are used. Error handling activities involving
more than one computer node in the distributed systems are performed at the system level. Our focus in
this thesis is to achieve node level fault tolerance. Fault tolerance relates to providing additional
mechanisms that allow faults to be detected and handled in an appropriate way. A fault tolerant system
tolerates faults while still maintaining full system operation. In this thesis, we focus on achieving cost
effective fault tolerance for handling faults at the computer nodes.

2.2.1 Node Level Error Detection Techniques:

An active fault leads to an error. By providing effective error handling at the node level and circuit level, it
is possible to restrict the failure modes a node can exhibit, which allows for simpler protocols and fewer
redundant nodes at system level. Error detection at node level can be implemented in hardware or
software. Hardware implemented error detection can be achieved by executing the same functions on two
processors and compare their outputs for discrepancies. A less costly hardware approach is to use a
watchdog processor. A watchdog processor is a simple co-processor that can monitor the control flow or
conduct reasonable checks on the output of the main processor. Software implemented error detection may
be achieved using redundancy based checks, executable assertions, structural checks, timing checks and
control flow checks [5].

Redundancy based checks include for example time redundancy. In time redundancy, an instruction, a
function or a task is executed twice and the results are compared to allow errors to be detected. In
information redundancy, errors are detected by duplicating and comparing the contents of variables.
Redundancy based techniques can be implemented systematically, which reduces the complexity for
application designers. For example, time redundancy may be used without the knowledge of the
application, and duplicating variables can be automated by a transformation tool [11].

Executable assertions are based on detailed information about the specification of the application. These
checks are implemented using a small software routine that checks the reasonableness of variables.
Structural checks allow the integrity of data structures such as lists and queues to be checked by including,
for example, status information and redundant variables/pointers. Timing checks are used to detect
erroneous programs execution by checking the time a program runs. Such checks may be provided by the
processor in the form of a watchdog timer. Control flow checks detects if an incorrect sequence of
instructions is executed.

Many modern processors provide on-chip error detection mechanisms such as error detection and
correction in memories, caches and registers, illegal op-code detection, address range checking. However
the effects of certain faults occurring, for example, in the arithmetic units of a microprocessor, such as
adders and multipliers, may pass undetected which justifies the use of software implemented error
detection techniques such as executable assertions or time redundant execution [6, 12, 13].
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2.2.2 Node Level Fault Tolerance Techniques:

Fault tolerance within the node may be realized in hardware using techniques such as static or dynamic
redundancy same as fault tolerance at the system level. Due to associated cost with using hardware,
software based approach is more cost effective. Software implemented fault tolerance may be
implemented using error-masking or error-recovery mechanisms. Error masking can be achieved in
software by triplicating variables or executing a module three times, and then taking a majority vote on the
outputs. Triplicated time redundant execution is evaluated in [14] where each software module and voting
mechanism executed three times to mask errors. Error recovery is achieved by restoring the system to a
fault-free state from which the system can continue whenever an error is detected. In this thesis, time
redundant execution is used to mask errors at node level, known as Temporal Error Masking (TEM).

3. Basic Concepts: Real-Time Systems

As mentioned in [15], “Any system where a timely response by the computer to external stimuli is vital is
a real-time system. This includes embedded systems that control things like aircraft, nuclear reactors,
chemical power plants, jet engines, and other objects where Something Very Bad will happen if the
computer does not deliver its output in time. These are called hard real time systems. There is another
category called soft real-time systems, which are systems such as multimedia, where nothing catastrophic
happens if some deadlines are missed, but where the performance will be degraded below what is
generally considered acceptable. In general, a real time system is one in which a substantial fraction of the
design effort goes into making sure that task deadlines are met.”

Thus, a real time computer must be much more reliable than its individual hardware and software
components. It must be capable of working in harsh environments, rich of electromagnetic noise and
elementary particle radiation, and in the presence of rapidly changing computation loads. The field of real-
time computing is especially rich of research problems because all problems in computer architecture,
fault tolerant computing, and operating systems are also problems in real-time computing, with the added
complexity that real-time constraints must be met. It is important that the task execution time is
predictable to allow the designer to figure out if all critical tasks will meet their deadlines.

Real time computer systems differ from their general purpose counterparts in two important ways. First,
they are much more specific in their applications and second, the consequences of their failure are more
drastic. The real time computer is typically designed for a specific application, for example to control a
particular aircraft. The advantage of this is that the characteristic of the application and its operating
environment are more precisely known that for general purpose machines. As a result, it is possible to fine
tune real time systems more precisely for optimum performance.

A task in real-time systems is classified in one of two ways: by the predictability of their arrival and by the
consequences of their not being executed in time.

Periodic and aperiodic task: Tasks that are executed repeatedly are called periodic tasks. The periodicity
of these tasks is known to the designer, and so such tasks can be pre-scheduled. An aperiodic task occurs
occasionally. By their very nature, the arrival and workload of aperiodic task cannot be predicted and
sufficient computing power must be held in reserve to execute them in a timely fashion. Aperiodic tasks
with a bounded inter-arrival time are called sporadic tasks.

Critical and non critical tasks: Critical tasks are those where the violation of a deadline is catastrophic
and while non-critical tasks are those where the violation of a deadline is tolerable to some acceptable
degree.



Scheduling work in hard real time systems is traditionally dominated by the notion of absolute guarantee
that is task deadline must met if the system has to avoid catastrophic consequences. Static analysis is used
to determine that all deadlines are met even under the worst case load conditions. With fault-tolerant hard
real-time systems this deterministic view is usually preserved even though faults may occur. No fault-
tolerant system can however, cope with an arbitrary number of errors in a bounded time. The scheduling
guarantee is thus given under the assumption of a certain fault model. If the occurrences of faults are no
worse than that assumed in the fault model then all deadlines are guaranteed. The disadvantages of this
separation of scheduling guarantee and fault model is that it leads to simplistic analysis; either the system
is schedulable or it is not. In this thesis, scheduling issues and errors to justify the notion of probabilistic
guarantee for a hard real time system are addressed. By ‘probabilistic guarantee’ we mean a scheduling
guarantee with an associated probability. Hence, a guarantee of 99.95 % does not mean that 99.95 % of
the deadlines are met. Rather it implies that the probability of all deadlines being met during given period
of operation is 99.95%.

4. Related work:

One of the first scheduling mechanisms for fault tolerance purposes was described by Liestman and
Campbell [16]. Their proposed mechanism only deals with periodic tasks whose periods must be multiples
of one another and the execution time of recovery tasks must be shorter than that of the original execution
time.

The work in [17] presented a scheme which can be used to tolerate faults during the execution of pre-
emptive real time tasks. It describes a recovery scheme which can be used to re-execute tasks in the event
of single and multiple transient faults and discuss conditions that must be met by any such recovery
scheme.

In [18], a framework for light-weight node-level fault tolerance is presented in addition to a set of
mechanisms that should be used in order to achieve fault tolerance. The approach for achieving fault
tolerance is based on a real-time kernel that supports light-weight node-level fault tolerance through time-
redundant execution of tasks and the use of several software-implemented error-detection techniques. The
result in [18] show that NLFT-nodes may provide 55% higher reliability after one year and 60% higher
mean time to failure (MTTF) compared to systems with fail-silent nodes.

The work in [19] evaluates a real time kernel that employs TEM for brake-by-wire applications using fault
injection. Transient bit flips were injected into the internal registers and flip flops of the CPU that
executed the kernel, The experiments show that the percentage of correct results increased from 81% to
89% using temporal error masking, while fail-silent failures decreased from 17% to 10% and value
failures decreased from 1.7% to 1.1%. In [20], the focus is on the execution of kernel code rather on the
application task which was the focus in [19]. The experimental results showed that, the percentage of
detected errors when injecting faults during the execution of each kernel function increased from 93.9% to
97.2 %.

In [21] Pandya and Malek analyze the schedulability of a set of periodic tasks that are scheduled using
Rate Monotonic Scheduling and tolerate a single fault. In the presence of a fault, all unfinished tasks are
re-executed. They prove that no task will miss a single deadline under these conditions even in the
presence of a fault if the utilization of the processor does not exceed 50%.

In [22], Ramos-Thuel presented static and dynamic allocation strategies to provide fault tolerance. Two
algorithms were proposed to reserve time for the recovery of periodic real-time tasks on a uniprocessor.
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The reservation algorithm for scheduling fault-recovery modules and dynamic on-line redundant time
allocation strategies was based on the concept of slack stealing.

In [23], the notion of probabilistic guarantee for fault-tolerant hard real-time systems is introduced.
Schedulability and sensitivity analysis is used together to establish a maximum fault frequency that a
system can tolerate. The fault model is then used to derive the probability that, during the lifetime of the
system, faults will not arrive faster than this maximum rate.

Another study presented, in [24], provides an exact schedulability test for fault-tolerant task sets. Time
redundancy is used to provide predictable performance in the presence of faults. In [25], a temporal-
redundancy-based recovery technique is proposed that tolerates transient task failures in statically-
scheduled distributed embedded systems where tasks have timing, resource, and precedence constraints. It
is based on taking advantage of task set spare capacity. The amount of spare capacity is distributed over a
given period so that task faults can be handled.

In [26], a scheme is presented to guarantee that the execution of real time tasks can tolerate transient and
intermittent faults assuming a queue-based scheduling technique. The scheme is based on reserving
sufficient slack in the schedule such that a task can be re-executed before its deadline without
compromising the guarantees given to other tasks. Only enough slack is reserved in the schedule to
guarantee fault tolerance if at most one fault occurs within a given time interval.

In [27], an appropriate schedulability analysis based on response time analysis, for supporting fault-
tolerant hard real time systems is proposed. This paper proposed a technique to make use of error
recovery technique to carry out fault tolerance. The proposed schedulability takes into account the fact
that the recoveries of task may be executed at higher priority levels, since after errors, tasks certainly have
a shorter period of time to meet their deadlines.

Time redundant execution of application tasks is addressed in [28]. Whenever transient faults are detected,
the affected component is turned off and reintegrated immediately by retrieving the uncorrupted state of
the actively redundant partner component.

The work in [30], a scheme is proposed that guarantees the timely recovery from multiple faults within
hard real-time constraints in uniprocessor system. Assuming earliest-deadline-first scheduling (EDF) for
aperiodic pre-emptive tasks, a necessary and sufficient feasibility check algorithm for fault tolerant
scheduling is proposed. In this thesis work, similar approach as in [30] is made for rate monotonic
scheduling (RM) for periodic tasks.

In [31], an approach is made to tolerate a single transient-fault within the least common multiple of
periods of a set of pre-emptive periodic tasks where the task deadline is equal to its period. The scheduling
algorithm used in [31] is rate monotonic (RM). It also finds the probabilistic measure of the system
schedulability in case of a single fault in uniprocessor system. In this thesis, the probabilistic estimate in
[31] is extended to take into account for multiple transient faults.

The ability to tolerate faults is an extremely desirable characteristic for hard real-time systems. It involves
both suitable schedulability analysis, which takes effect of possible faults into account, and fault-tolerance
mechanisms, which keeps the system computation complying with the specification even in the presence
of faults. Due to the required fault-tolerance /schedulability-analysis synergy and the uncertain nature of
faults, most papers published up to date have proposed restrictive and/or ad-hoc solutions to the
schedulability analysis. As a result, those solutions impair the applicability and flexibility of the analysis.
By contrast, recent approaches [23,24] based on the well known response time analysis has eliminated



these drawbacks by not restricting the way that fault tolerance is carried out and by assuming realistic fault
and task modules.

5. Problem Statement:

Real-time systems with high dependability requirements are traditionally built with massive replication
and redundancy. Research within the field of the fixed priority scheduling theory has mainly focused on
the provision of feasibility tests which determines if a given task set is schedulable that are susceptible to a
single fault [21,29, 31].

In this thesis, a schedulability analysis for tolerating multiple transient faults is proposed in conjunction
with a probability of having a feasible schedule in case of at most f faults with one least common multiple
of periods of periodic tasks. Many papers have addressed the problem of tolerating transient faults with
some restrictions as follows:

*  Only one fault is possible within some operational time.

* Tasks periods are multiple of one another.

* Recovery task has smaller execution time than that of the original task.
* Recovery task has higher priority than that of the original task.

In contrast, the only limitation in this thesis is on the number of maximum faults f within one least
common multiple of periods. This assumption is reasonable since no system can tolerate an unbounded
number of faults.

The work started with the following question:

* How can multiple transient faults be tolerated in distributed real-time systems using Temporal
Error Masking (TEM) technique to achieve Node-Level Fault Tolerance (NLFT)?

After establishing the approach for tolerating multiple transient faults, the next question arose:

* What is the worst-case response time in a fault free environment of each copy of each individual
task?

Then when faults were considered, the following questions arose:

* How does the distribution of a maximum of f faults affect the worst case response time of any task
copy?

* How can the existing scheduling be extended to account for any possible distribution of fault
pattern?

Since, by providing more slack in the schedule, the task set becomes more likely to be schedulable, the
logical question to be addressed in this thesis then became:

* How can more slack be provided in the schedule so that a task set, once un-schedulable because of
their maximum execution time, becomes schedulable with some recovery mechanism and reduced
execution times?



6. Proposed Solution:

Temporary faults are usually more frequent than permanent faults, and the tolerance of permanent faults
requires hardware redundancy which increases dramatically the cost and complexity of its
implementation. A system that employs mechanisms to tolerate temporary faults is usually more cost
effective. These transient faults can impair individual computations and corrupt the internal state of a
computational unit, thus giving rise to permanent malfunction. Because of their very transient nature and
short duration, it is difficult to detect and locate transient faults.

In this thesis, to tolerate multiple transient faults using time redundancy, two task copies are run and then,
if an error is detected, f more recovery copies to tolerate a maximum f transient faults are run. If there are
at least two matching results, the output is accepted, and if all the outcomes of f+2 copies are different, it
leads to an omission failure.

To find the worst-case response time of all task copies, the algorithm in [30] was used. That algorithm was
developed for EDF scheduling for aperiodic tasks, but has been adapted to RM scheduling for periodic
task where task deadline is equal to its period. The algorithm finds the start time and finishing time of all
tasks copies in one least common multiple of periods. This algorithm is then extended to account for any
possible distribution of a maximum of f faults within the task set. To recover an infeasible schedule where
tasks copies are considered to run up to its worst-case execution time, a probabilistic estimate is made to
make the schedule feasible by considering the fact that error detection is possible before a task copy
finishes its execution.

The probability of system success, denoted by Pgyccess, 18 determined using resultant data from fault
injection experiment in 68340[5, 18-20, 31].

The rest of the thesis is organized as follows: First, the necessary task model, background and motivation
for this thesis work are given in Section 7 and 8. Then, strategy and analysis for handling multiple
transient faults is presented in Section 9 and 10. In Section 11 and 12, necessary function definitions for
the algorithm to find the RM schedule in fault free environment is given. Then, properties and theorems
for a fault-tolerant algorithm for RM schedulability are presented in Section 13 and 14. In Section 15, a
recovery algorithm is proposed to find a schedule, if possible, by reducing the original execution time of
tasks. The probabilistic analysis of schedulability is given in conjunction with examples in Section 16.
Next, in Section 17, the result of this thesis work is presented. Section 18 concludes the thesis with some
pointers to future work.

7. Task Model:

We will consider a uniprocessor system. The task set consists of n tasks, I' ={T, T, T,}. Each task T;
has a period Tj, and a relative deadline D; which is equal to the period. Each task copy of T; has a worst
case execution time C; and has a priority P;. The highest priority task has the lowest period T;. The length
of the planning cycle within which the tasks repeat themselves iteratively is the LCM of all task periods.

LCM=Least Common Multiple {T;, T2 .. T}

Within one planning cycle, one or more copies of task T; will execute. We will denote each task copy by Tj;
where J is the i copy of task T;.



8. Background and Motivation:

Achieving NLFT to tolerate only one fault using TEM is addressed in [18-20]. In TEM all critical tasks
are executed twice and the results are compared in order to detect errors. A third execution is started if an
error is detected by the comparison, timer monitor or other Error detection mechanism (EDM). This
allows the kernel to mask errors by conducting a majority vote on three results. To ensure that recovery of
the erroneous task does not lead to any deadline violation, sufficient slack must be reserved in the
schedule. Such schedulability analysis, in case of faults is addressed in [31] where the rate monotonic
scheduling algorithm is considered and the response time analysis is used. The schedulability analysis
presented in [31] is based on the assumption that there is one processor with critical tasks assigned on it,
and the tasks are scheduled under fixed priority assignment. In that paper, each task 7; is independent,
periodic with period 7;, worst case computation time C; with priority Pi and the relative deadline D; of
task 7;is equal to its period. The Task with the longest period is given the lowest priority. For 7;, the worst
case response time it experiences with double execution and a third copy of re-execution is summed up in
the following equation (1):

Ri rE
Rige= 2XC;i + Ce+ > [ Tx2 %y (1)
kOhp(i) Tk
max
ehpe(i)
The parameters of equation(1) are as follows:
1) 2 x i, Ti’s primary execution time.
i) C., the time to run the third copy of T, and T. ‘s priority is greater than or equals to T;, where

hpe(i)={e | P.= P;}
1ii) The execution time of all task that may pre-empt T; ,where hp(i)={j | P.= P; }

The solution to (1) is obtained iteratively by forming a recurrence relation with R;’ =2C;. This iterative
procedures finishes either when R{™"'= R;™, which gives the worst case response time of T;, or when R{"™"
> D, that is T; is considered un-schedulable.

As mentioned in [7-10, 18-20, 17], transient faults are much more common and tolerating such faults at
node level rather than at system level has some advantages, it is tempting to device strategy for
schedulability analysis of real time system in the presence of faults at the node level. In [31], the
schedulability and reliability of a class of real-time systems is designed for achieving NLFT by employing
TEM. In that work, the rate monotonic (RM) scheduling algorithm for uniprocessor systems is used with
functionality of the independent periodic tasks are assumed where the timing behaviour of the tasks is
considered within a specific period called the planning cycle that will repeat for the entire lifetime of the
system. The length of the planning cycle is defined as the Least Common Multiple (LCM) of task periods.
The assumed fault model for the task in that work is one where only one fault which could lead to possible
error is considered. Our intention with this thesis is to extend the RM algorithm to tolerate multiple faults
at node level.

In [4], the following three different cases were considered depending on fault occurrence and the detection
mechanism for the associated error:

(1) A fault free execution.
(i)  An error detected by double execution or timer.
(ii1)  An error detected by Error Detection Mechanism (EDM).



The following Figure 1 shows three different scenarios using TEM: in fault free operation (i) a critical
task, T is executed twice (denoted by T' and T?) and a comparison of the results is made to detect errors.
As the results match, a third copy does not have to be executed and the time may be used by other tasks.
In (ii) an error is detected by the comparison and a third copy of task T° is then executed. The results of
the three copies are checked by a majority vote. If the majority voter detects two matching result of the
task, these are accepted as valid result of the task. Otherwise, no result is delivered, which leads to an
omission failure.

Fault Free Execution: ‘ T' ‘ T ‘
w
Fault Comparison
Error detected by the ‘ T! ‘ T? ‘ T3 ‘
comparison between W w_
1 2.

T and T": Faylt Comparison Voting
Error detected by T T2 T
HW/SW EDM: ‘ ‘ ‘VK ‘V\

Error detected Voting

Figurel: Error detection and error recovery using temporal error masking.

In (iii), where an error is detected by a circuit level mechanism or node level mechanism, the affected
copy, T2, is terminated as soon as the error is detected and a new copy, T°, is started immediately. Note
that, when error is detected by EDM, the executing copy may run less than C;. The new copy will be able
to use time reclaimed from the terminated copy as well as time from the available slack. A comparison is
made to confirm that the results match before the result is delivered. There is one more scenario similar to
scenario (iii), but the fault occurs in copy T'.

In [31], these three cases are addressed separately, independent of the corresponding error detection
mechanism. However, when considering occurrence of multiple faults, addressing the three cases
separately is overly optimistic since the underlying assumption must be then only one type of error
detection mechanism is active in any planning cycle, that is, multiple errors within in one planning cycle
are detected by the same kind of error detection mechanism. But real time systems employing fault
tolerance may use different error detection mechanism as mentioned in many papers. So, within one
planning cycle, multiple faults may be detected by different error detection mechanism. For example, the
first error may be detected by double execution and the second error may be detected by EDM or timer.
So, equation (1) should be modified to account for multiple faults. In the next section, we will find the
modified equation for response time analysis and show that the schedulability analysis requires n*
combinations of faults to be considered, which is quite impractical. We then propose an algorithm as in
[30] to perform the schedulability analysis. In [30], EDF scheduling is considered to account multiple
faults for aperiodic tasks.

9. Strategy for handling multiple faults:

9.1 Temporal Error Masking (TEM) mechanism:

In [31], the approach to tolerate only one fault employs Temporal Error Masking (TEM), where two
primary copies of each task are run first. If the results of these two run match, the output of any of the
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tasks is accepted. Otherwise, when the error is detected by comparison, timer monitor, or by EDM, a third
copy is run and majority voting is taken. Either the result is accepted or it leads to omission failure. The
underlying assumption is that only one fault could occur while the primary copies are executing in one

planning cycle.

Qutcome of third copy
Correct Faulty
Both copies are | Accepted  without | Accepted  without
Outcome of two | correct running the third | running the third
primary copies copy copy
One of the copies is | Accepted by | Omission failure
faulty lead to error | majority ypting
Error masking by

running third copy
Tablel: Error masking according to Qian’s paper [31] (at most one fault).

In Tablel, when both of the primary copies are correct, without running the third copy the result is
accepted. And when one of the copies is faulty, by running the third copy, the result is accepted or denied
based on majority voting.

When considering multiple faults that might occur in one planning cycle, this approach does not work. For
example, consider two faults occurring in one planning cycle. In case of two faults, by running a third
copy, we can’t mask the error as shown in Table 2. In this case whenever two primary copies are faulty,
running the third copy always leads to omission failure.

Third copy
Correct Faulty
Both copies are | Accepted  without | Accepted  without
correct running the third | running the third
Outcome of two copy copy
primary copies | One of the copy is | Accepted by | Omission failure
faulty majority voting
Both copies are | Omission Failu Omission fglure
faulty @\ /

Two faults leads to omission
failure and can’t be masked.

Table2: Error masking is not possible in case of double faults in primary run executing.
When the number of omission failure is higher the faults are masked at system level by sacrificing the

advantages that can be achieved by tolerating the faults at node level. In this paper our intention is to
increase the fault tolerance at node level.

9.2 Solution: TEM to mask a maximum of f Number of Error:

Any schedulability analysis must rely on some fault model that is the maximum frequency or the
maximum number of fault occurrence for achieving fault tolerance. If there is a bound on the number of
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transient fault occurrence in one planning cycle, we can generalize the error masking mechanism. Here,
we will provide a mechanism to mask a maximum of f faults in one planning cycle. Our underlying
assumptions are the following:

*  Multiple faults caused by the transient faults will not lead to same error. That is two transient faults
will not lead to same type of error.

* Based on the previous assumption, it is guaranteed that, whenever we have two or more
matching/same results, these results are correct and can be accepted.

» Error propagation is not possible. So, one transient fault could cause at most one error.

The approach to mask f errors is as follows: we will run two primary copies of the same task. When an
error is detected by comparison, timer monitor, or by EDM we will run f more extra copies of the task to
mask at most f errors. For example, in case f=2, we need to run two more extra copies (third and fourth)
when error is detected in any one of the primary copies. Then the four results are compared. If we have at
least two matching results, the result is accepted. If we have all four different results, it will lead to
omission failure as shown in the following table:

QOutcome of Third and Fourth copy
Both (3"“ and 4™) | One is correct | Both (3" and
Correct and one is faulty | 4™ ) Faulty
Both copies | Accepted without | Accepted without | Accepted
are correct | running the third | running the third | without running
Outcome and fourth copy and fourth copy the third and
of two fourth copy
primary | One of the | Accepted (3 same | Accepted (2 same | Omission
copies copies is | results) results) failure(4
faulty different results)
Both copies | Accepted(2 same | Omission Omission
are faulty result) Failure(all failure (all
different results) | different results)

Error masking /yrunning
third and fourth copy

Table 3: Masking two errors by running two more extra copies.

In [31], majority voting is taken to decide the outcome whenever a third copy is run. But in this new
approach, majority voting will not work since we may have even number of task execution. To mask f
errors, a total f+2 of executions of a task (2 primary copies and f extra copies) is run in case of at most f
errors. Result is delivered if there are two or more matching results out of f+2 executions, otherwise, it
leads to omission failure.

9.3 Fault Localities:

In our fault model, at most f faults within a planning cycle are considered which may lead to at most f
errors. The presence of faults within one planning has two localities as follows:
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* Casel: All f faults could occur in a single task (within the two primary executions and within the
extra f copies)

/ Total 42 copies of 7; and all ffaults occurs within the same task Ti.\

I L Ii Ii ok L Ti ok L Ii next
Faulty-1 | Faulty-2 Faulty-3 | | ceeeee Faulty- Fulty- Fulty-f priority
(-2) (f-1) task
Error detected all f faults in one task

Figure 2: All f errors occurs in task 7;
Faulty-i represents the i faulty copy.

* Case2: All f faults could occur in different tasks.

Total f+2 copies of 7; and one fault occurs within task 7;.

Total f+2 copies. Second fault occurs in other task T/

4] i ok i ok i ok Tiok Z} ok Z} Z} ok
Faulty-1 | | || e Faulty-2 | | eeee

% P %

Error detected Only one fault Error detected
(error masked)

Figure 3: Errors occur in task 7; and7;

9.4 Worst case Scenario (Maximum number of task run):

In fault free environment all tasks run twice hence total 2V task copies are executed. When all f faults are
localized within a single task (casel), the total number of different task execution is 2V+f, since each of
the /V primary tasks run twice and the only task affected by transient fault causes f more copies of the task
to run. When all £ faults occur in different tasks (case2), a total of 2N +fxN to 2N+f* copies of task are
run depending on whether f< N or f = N. Considering this worst case, we need to provide more slack time
in schedule when masking at most f faults. This means that our strategy to mask multiple faults will be
more effective with lower utilization.

When tolerating a total of /" faults, the worst case response time occurs when all the f faults occur in
different primary copies of the tasks. But fault may occur when the extra copies of any task due to an error
is executing. In that case, no further extra copy is scheduled. So, when faults occur in those additional
copies, number of maximum faults that maximizes the response time of the task set is reduced hence this
scenario does not represents the worst case. The worst case is when all faults affect individual primary
copies of task. In this paper we address all possible fault combinations for scheduling a set of task and
thereby consider the worst case in our analysis.

10. Scheduling Analysis:

This section discusses how the analysis in [31] could be extended to tolerate multiple faults. For
schedulability analysis the following are considered:
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* Rate Monotonic priority assignment algorithm is used.

* Response time analysis is considered.

* Possible re-execution is considered in our analysis.

* C(ritical instance in which all tasks arrive at time 0O is considered to get the worst case response
time.

The response time for each task T; has the following three components:

Componentl: Time to execute the primary two copies of T.

Component2: Time to execute the recovery copies of T; and higher priority tasks of T;.
Component3: Time to execute the primary copies of higher priority tasks of T; due to pre-emption.

Three techniques for error detection are considered: comparison, timer monitor and EDM.

Calculation of Component 1:

In case of comparison and timer monitor, the two primary copies of Ti run up to 2C; time. In case of EDM,
any task copy may run less than C; time depending on when the error is detected by software or hardware
EDM.

Let, Ci.gere denotes the maximum time the task 7, could run in case of k™ error detected by EDM. Any
copy of a particular task 7, could run up to Ce or Cy.qer.e depending on whether k™ error is detected by

EDM or not.

The execution time of j™ copy of task 7; denoted by Ci-rm-i, 18 given as follows:

G if the task copy is correct
Cirmi= G if error is detected by timer or comparison
Cidet-i if the k™ error in j" copy of task 7 is detected by EDM

Calculation of Component 2:

The maximum time the recovery copies in T; and in all higher priority task of T; could run is Cj.rm-c

for each ee hpe(i) and j>2, where e is a task in the set hpe(i)={e | P. > P;}. This factor is the sum of all
execution time of the extra copies (j>2) of task T; and any higher priority task of T; that run due to error
detection. So, the factor is the following:

z Cj-RM-e

e[hpe(i)
and j>2

The term Cjrm-c 1s the component 1 for jth copy of task Te,

Calculation of Componet3:

The response time for task T;is given by the following formula:

Ri, rE

Rire= (Component] + Component2) + Z [ TX(C 1rvser € 2raix)

kOhp(i) k
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Ri, re
k
Each time two primary copies will run which are denoted by C;rmk and C r.rmk - Time to execute the

higher priority task of T; due to pre-emption is thus:
R, rE .
Z [ | X(C 1rmk + C 2.rmx ) Where hp (i)={e| P->P;}.

kOhp(i) k

| times within the response time (Rirg) of task T;

Each higher priority task T, will run a total of [

10.1 Scheduling of different cases:

10.1.1 Case1: Fault free execution.

As we assumed in the previous section, there are multiple faults occur within a LCM, the faults may either
occur during the primary executions of the tasks, or at any other point in time, which does not affect the
tasks’ executions. Figure 4 shows these two possible situations of fault occurrence.

The fault occurs during
primary execution

The fault does not occur during
any of the two primary executions

v

Tl T2 Tl T2 Tl T2

Figure 4: Possible occurrence of faults
Thus, this case of fault-free operation could be considered as three different sub-cases:

la) Faults don’t occur during any of the two primary executions of the tasks
1b) Faults occur during a primary execution, but no error is generated by the transient fault.
l¢) Faults occur during a primary execution, an error is generated, but the error is not detected.

The worst case response time for T is derived in the following equation. Since no error is actually detected
by comparison or EDM, no task executes any extra copy, hence there is no C. added in the following
equation:

Ri, FF

Ripr=2xC; + z [ 1 x2xCy

kOhp(i) k
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10.1.2 Case 2: Error detected by EDM/DoubleExecution/Timer

This scenario will occur, when an error is detected by EDM, double execution or by a timer monitor of
task 7. and is masked by TEM by running f extra recovery copies of 7. In double execution, error is
detected by comparison after the primary two copies has been executed and then f more copies of the task
are scheduled. When using timer monitor or EDM, there is the possibility that after or during the first
primary execution, the error could be detected. At this point we need to schedule f+/ copies of the task.
When the second execution of the primary copy violates the timer requirement or error in this second copy
is detected by EDM, we need to schedule /" more copies of the task provided, that the first primary
execution was not error detected by timer or EDM. When any error within the two primary executions is
detected by double execution or by a timer, then f extra recovery copies are scheduled. Fault may occur
within these extra copies and may cause error that could be detected by timer or by EDM. When the f
extra recovery copies of any task is running, no more copies will be scheduled even if error is detected by
timer or EDM. Such erroneous execution of any extra copy will be considered as incorrect results when
trying to match two or more correct result at the end of f+2 copies execution.

In case of an error detected by EDM, copies of a task may not run up to C; time as depicted by the
following figures:

—

Total f+2 Copies. First primary execution error is detected by EDM

1* Error, generated f* Error generated
_______ Next priority task
Ci-deti & & Crdet-i

Error detected Error detected
nd
1*topy starts 2% ¢ y starts

Figure 5: Error detected by EDM only in the first primary copy

o T

Total f+2 Copies. Second primary execution error is detected by EDM

1* Error generated  Error generated
/
_______ Next priority task
Gi Co-det Gi Crdet
Error detected Error detected Error detected
1*topy starts 2nd copy'starts

Figure 6: Error detected by EDM only in the second primary copy
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—

Total f+2 Copies. Both primary execution errors is detected by EDM

1* Error, generated 2" Eryor generated  Error generated
_______ Next priority task
Ci-det Co-det Gi Crdet
Error detected Error detected Error detected
d
1*topy starts 2% y starts

Figure7: Error detected by EDM in the first two primary copies

10.2 Response time analysis:

The formula for response time analysis given in equation (1) is not effective for analysis of multiple faults.
When considering multiple faults, equation (1) is not sufficient to find the response time of a task. Since
response time analysis in (1) takes into consideration only of a single fault which can occur when the task
is executing or in any higher priority tasks. But for multiple faults, we have to take into consideration of
any fault that may occur in any copy of a particular task in one LCM. Since two different faults may affect
two different copies of particular task.

For multiple faults, the worst case response time for task 7;is given by:

Ri rE

Rire= (Cirm-i T Cormai )T Cirmeet z I Tx(Crrmk+ C 2rmix) N )
kOhp(i) k
e[hpe(i)
and j>2

From now on for task 7 its j copy within the LCM will be denoted by T

10.3 EXAMPLE (Response time analysis):

Using equation (2) the schedulability analysis can be performed as follows for the following task sets:

Period (Ti) | Execution Time (C;)
7; 6 1
1) 9 2

Table 4: Task set

The planning cycle is 18.
r; will execute three copies with in the planning cycle 7;;, 7, and 1;3.
, will execute two copies with in the planning cycle 72; and 1,».
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Casel: Fault Free Execution

Under fault free execution equation (2) reduces to:

Ri rE

Rige= 2%Ci+ > [ Tx2xCy 3)

kOhp(i) k
For 7;.Since 7; is the highest priority task, it runs without pre-emption by other tasks.
R, JFF— 2x1=2

For 1. There are preemptions caused by7; when 7, executes.
1
2%2+ F§1 x2x1=6

2x2+ F%W x2x1=6

Thus, Rz, 1:1:=6.

Case 2: Faulty Execution

Now, when recovery copies are considered assume =2, we consider two different scenarios.

Scenario one: One fault occurs in 7; and the error is detected by comparison after two of the primary
copies of 7;, have executed.

Scenario two: Two faults occur in 7; and the error is detected by comparison after two of the primary
copies of 7;, have executed and by timer monitor after 7;; executes.

Scenario one:

Execution time of 7;;: Execution time of 7;3: Execution time of 7»;:
Cirma=1 Crrma=1 Cirm2=2

Corrm-1=1 Cs-rm-1=1 Carm2=2

Execution time of 7;: Execution time of 7»;:

Cirm-1=1 Cirm2=2

Carm-1=1 (Error is detected here by comparison) | Corym2=2
Cskm1=1  (The third copy of the task)
Cerm-1=1  (The third copy of the task)

Figure 8: Execution time of different copies of tasks (Scenario one).

For 7;. Since 1; is the highest priority task, it runs without pre-emption by other tasks, but the time for re-
execution needs to be considered.
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Rl, rRE= 1%x2+2=4

(Response time of 77;)

For 7,. There are pre-emption caused by7; when 7, executes.

2242 +FéW 2.1=8

2242 +F§1 2.1=8

So, Ry, re=8. Hence 1 is schedulable.

Scenario two:

Execution time of 7;;:
Cirm-=1
Corrm-=1

Execution time of 7;:
Cirm-1=1

Csem1=1  (The third copy of the task)
Cerm1=1  (The third copy of the task)

Carm1=1  (Error is detected here by comparison)

Execution time of 7»;:
Cirm2=2
Corrm2=2

Execution time of 7;3:

Crrma=1

Csrm1=1  (Error is detected here by timer)
Corm.1=1 (The third copy of the task)
Ciorm1=1  (The third copy of the task)

Execution time of 7»;:
Ci.rm2=2
Carm2=2

Figure 9: Execution time of different copies of tasks.

For 7;. Since 1; is the highest priority task, it runs without pre-emption by other tasks, but the time for re-

execution needs to be

R re= 1X2+2+2=6

considered.

(Response time of 17;)

For 7,. There are pre-emption caused by7; when 7, executes.

2.0+ 242 +FéW 2.1=1

0

Here after the first iteration the response time of task T, is greater than its deadline D,=9. Hence the

iteration terminates.

Since, R'5, gg=10>D,=9. the task 7 is not schedulable.

Consider another task

set:
Period (Ti) | Execution Time (C;)
7; 10 1
5 20 4
£} 40 6

Table 5: Task set
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The planning cycle is 40.

r; will execute three copies with in the planning cycle: 7;;, 7,2 173 and 14.
, will execute two copies with in the cycle: 7, and 1,».

r; will execute one copy with in the cycle: 73,.

Casel: Fault Free Execution

For 7;.Since 7; is the highest priority task, it runs without pre-emption by other tasks.
R, JFF— 2x1=2
For 7,. There are pre-emption caused by7; when 7, executes.

2x4+ 1 L x2x1=10
20

2xa+ [0 x0x1=10
20

Thus, Rz, FF— 10.

For _7;. There are pre-emption caused by 7> when 7; executes.

2x6+ [T xax14+] =] x2x4=22
40 40

ax6t [ 22T xax14+] 22 xaxa=22
40 40

Thus, R3, 1:1::22.

Case2: Faulty Execution

Now, when recovery copies are considered, assume /=2, we consider two different scenarios:

Scenario one: One fault occurs in 7; and the error is detected by comparison after two of the primary
copies of 7;; execute and another fault occurs in 7; and the error is detected by comparison after two of the
primary copies of 7,; execute.

Execution time of 7;5:

Cirm-1=1

Carma=1 (Error is detected here by comparison)
Csrma=1 (The third copy of the task)

Corm-1=1 (The third copy of the task)
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Execution time of 73;:

Cirm2=4

Crrm2=4 (Error is detected here by comparison)
Csrmo=4 (The third copy of the task)

Csrm2=4 (The third copy of the task)

For 7;. Since 1; is the highest priority task, it runs without pre-emption by other tasks, but the time for re-
execution needs to be considered.

Ry re= 1X2+2=4 (Response time of 77;)

For 7,. There are preemptions caused by7; when 7, executes.

2x4+ 2+8 +F2LOW x2x1=20

2x4+ 2+8 +F§—31 x2x1=20

So, Ry, re=20. Hence 1 is schedulable.

For 7;. There are pre-emption caused by7; and 7, when 73 executes.

2X6+ 2+8 +Fi1 ><2><1+Fi1 x2x2=28
40 40

2%6+ 2+8 +F§1 ><2><1+F§1 x2x2=28
40 40

So, R3 re=28. Hence 13 is schedulable.
Scenario two: one fault occurs in 7, and the error is detected by comparison after two of the primary
copies of 7»; execute and another is in 73 and the error is detected by comparison after two of the primary

copies of 73; execute.

For 7;. Since 1; is the highest priority task, it runs without pre-emption by other tasks, but the time for re-
execution needs to be considered.

Ry re= 1%2=2 (Response time of 77;)
For 7,. There are preemptions caused by7; when 7, executes.
2x4+8+[ 1 Tx2x1=18

20

2><4+8+F§1 x2x1=18
20

So, Ry, re=18. Hence 1 is schedulable.

For z;. There are preemptions caused by7; and 7> when 73 executes.
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2x6+ 8+12 +FL—| x2x1+fL—| XD x4=42
40 40

Since after the first iteration the response time is greater than the deadline of task D3;=40, the iterations
terminate.

Since, R'5, ge=42>D3=40. Hence 73 is not schedulable.

10.4 Observation: Traditional Response Time Analysis

In the above schedulability analysis, it is clear from the response time analysis that for some fault patterns,
the task set is schedulable while for another fault patterns the task set is not schedulable. For at most f°
faults with total m different copies of different tasks within one planning cycle, one has to consider all
possible m fault patterns for schedulability analysis before a system is put into mission. Table 6 shows
two examples of how the number of two possible fault pattern increases with f. In the first example there
are 5 copies of different tasks in one planning cycle. In the second example there are 7 tasks within one
planning cycle. Moreover, each primary copy runs twice.

Maximum f Faults Example 1 Example 2
(10 primary copies) (14 primary copies)
£=1 10'=10 14'=14
=2 10°=100 14°=196
f=3 10°=1000 14°=2744
f=4 10"=10000 14'=38416
F=5 10°=100000 14°=537824

Table 6: Number of possible fault patterns increases exponentially as f increases.

If the number of possible task copies is higher so as the number of possible fault combination that grows
exponentially. Our objective in this study is to find a suitable analysis that can determine whether a task
set is schedulable or not for any fault pattern. To that end, we can not consider traditional response time
analysis but must take into consideration of any possible fault patterns. In order to find the efficient way to
calculate the response time to see whether a task set is feasible or not, the response time of individual task
copy will be taken into consideration. We mentioned in section 9.4, the worst case response time for the
task set occur when each of the maximum f faults affect different task’s one primary copy but not the same
task’s other primary copy or any of the recovery copies. In this thesis, we extend the fault free response
time analysis of individual task copy to account for the worst case fault pattern for a maximum of f faults.

In the above examples, the error detection mechanism assumed is either comparison or timer in which
cases the primary copies run total 2C; time units. When EDM is used, the error may be detected earlier
and this early detection of error provides more slack time in the schedule which could mean that task sets
that were previously unschedulable become schedulable. In this study, an algorithm is proposed to find the
maximum time that the erroneous copy of a task can run when the error is detected by EDM mechanism.

11. Some Functions Definitions:

Next we define a number of functions for our analysis.
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The set of tasks that gets ready at time t is denoted by RD(I',t). That is,
RD(t)={1; | 0T and t=(j-1)xT; for some j=1,2,.. FLCM 1. }

RD(I',t) represents a set at time t such that T; is in set I and the J copy of task T; is released at time t

which is multiple of the task’s period T;, that is, t=(j-1)xT;.

Each task T; will run total FLCTMW copies within one planning cycle. Each copy of task is denoted by Tj;,

Ti2, Ti3, ... Tif@?'

For example for the task set in Table 7:

Period (Ti) | Execution Time (C;)
7; 10 1
5 20 4
i 40 6

Table 7: Task set
RD(I',0)={ 111, T21, 31 }
RD(F,IO):{ le,}
RD(F,20)={ T3, Tzz}
RD(F,?)O):{ Tia}
RDI",other time)={}

The RM schedule of task set I is denoted by the following function

Tjj if RM schedules T; between t and t+1
RM,t)=
1 if RM does not schedule any task within t and t+1
where t=0,1,2,........ represents time. We will use RM(I') to refer to the RM schedule of I

We define fin(T;) to be the time when task T;; completes execution in RM(I"), and we define the function
slack(t;,t2) to be the number of free slots between t=t; and t=t,. That is the number of free slots for which
RM(I',t)= t (excluding the slot that starts at t,). RM(I') is said to be feasible if fin(t;)< j XT; for all

i=1,2,...nand j=1,2,..... FLCM

We define the REL_LD(t) be the sum of execution time of all tasks that are released at time t(including
double execution).

That is, REL_LD(t)= 2 g Dm)zc-
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We define I’y as the sequence of all task copies within the planning cycle. That is,

Tai={T; | i=1,2,...n and j=1,2,.. FLCMW}

For example, for the above task set in Table 7, ['ay=<T;i, T12T13T14T21, T22, T3; >. Note that [y is a
sequence, that is, elements are ordered (T, is the first element T;, is the second element and T3, is the last
element).

Indexof(eS) returns the position of the element e in sequence S.

For example, Indexof(T2;, T'an)=5

We define a function

a-b ifa>b
Sub(a,b){

0 otherwise

Inspired by the work in [30], We define a function W(I',t) that finds the amount of work(accumulated
execution time) that remains to be completed at time t in RM(I"). This work is generated by the tasks that
become ready at or before time t, that is by the tasks in {T;;0 I'an| Ti X(-1)<t}.

Zﬁj CRD) 2 if t=0
(L, 0= sub( P([,t-1), 1) if t=LCM
sub( W(T,t-1), 1) + Zij EIRD(H)2G if t<LCM

N defines the total number of tasks copies in one LCM that is N=| I’y .

In the next section we develop an algorithm RM-IND to find the response time of individual task copy.

12. RM-IND: An algorithm for RM Schedulability

The algorithm in Figure 10 calculates the response time of individual task copy. In this algorithm, which
iterates total LCM time, we determine at each time ¢ which task T;; has finished execution and record the
task indices (i and j) and the finish time of the primary two copies. If any task copy failed to finish before
its deadline, the algorithm stops. If all task copy finish execution without violating the deadline, the
algorithm stops. To maintain the record we define the following data structure:

record TasklInfo {
int i; // Indices of the task Tj
int j; // the copy of task Tj
int First; //Finish time of first primary copy
int Second; //Finish time of second primary copy
}
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// Tanis the set of all task copy, and DONE in an array of type TaskInfo.

ALGORITHM: RM-IND(T ., DONE)

DA W -

~N

10
11
12
13
14
15
16
18
19
20
21
22
23
24

25
26

27
28
29
30
31

32
33
34

35
36
37

N=| Ty | //Total number of task copies in Iy

S=0 //Maintains the current set of tasks not finished yet

t=0 //Loop starts from t=0 and ends at t=LCM

DONE|[N] of type TaskInfo //Record all task information

First[N] //Temporary storage for the first primary copy finish time

do while(t<LCM)
if(S£0 )then
Find the Ty is the highest priority task in set S
End if
If(t# 0 and ( W(I',t-1)- ( Y(I',t)-REL_LD(t) ))>0) then
Ty executes 1 time unit in t-1 to t
if Ty has executed C, time units then
First[indexof(Ty)]=t
End if
if Ty has executed 2C; time unit then
Update DONE //Record all information
Remove Tj from set S
End if
If (¢ 2 kxT; and Ty has not executed 2C;) then
Tk is NOT SCHEDULABLE

Task set I' is not schedulable
Stop
End if
End if
S=S [0 RD(T',?)

Find the Ty is the highest priority task in set S

If (¢ 2 kxT; and Ty has not executed 2C; ) then
T is NOT SCHEDULABLE
Task set I is not schedulable
Stop

End if

Increment time t by one
End while
If S=0 then
Task set I' is schedulable
Stop
End if
Task set I' is not schedulable
Stop

Figure 10: Pseudocode for algorithm RM-IND.
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The algorithm RM-IND in Figure 10 finds the response time of each copy of each task.

In line 1, the number N represents the number of total task copies in I'ay. In line 2, the set S is set to null to
represent the set of ready task that has not yet finished execution at any time. Then, time ¢ is set to zero in
line 3 to repeat the loop for each ¢. In line 4, an array TaskInfo of size N is declared to keep track of an
individual task copy and its two primary copies finishing time. In line 5, an array First of size N is
declared to keep track of when the first primary copy of a task finishes execution.

Line 6-33 is in a while loop which runs a total of LCM times. In line 7-8, the highest priority task in set S
is found out if S is not null. The line from 9-24 inside the while loop executes when any work is done in
between time t-1 to t. This is determined by the condition in line 9 which is [W(I,t-1)- ( Y(T,t)-
REL LD(t) )]. W(I',t-1) represents total work to be done at time t-1 and ( W(I',t)-RelLd(t) ) represents
total work to be done at time t excluding any new task load which is released at time t. W(I',t-1)- ( W(T',t)-
RelLd(t) )>0 represents that in time t-1 to t the highest priority task executes for one time unit. In line 11-
13, the code checks if the highest priority task has finished executing its first copy and if so, stores the
finishing time in array First. In line 14-18, the code checks whether the highest priority task finish
executing its second copy and if so, stores the information in array DONE and removes the highest
priority task from set S.

In line 19-23, the condition checks whether the highest priority task has violated its deadline or not. In
case of violation, the algorithm reports NOT SCHEDULABLE and stops. In line 25, any newly released
task in added to the set S. In line 26 the highest priority task is identified. In line 27-31, the code checks
whether the highest priority task has violated its deadline or not. In case of violation, the algorithm reports
NOT SCHEDULABLE and stops. In line 32, time t is increased by one and iteration begins again.

After LCM time the iteration stops. Then checks whether set S is empty or not in line 34. If the set is
empty then all task has scheduled without violating the deadline. If the set is not empty, task set is not
schedulable.

EXAMPLE (RM-IND Simulation): Let us simulate the algorithm for the following task set:

Period (Ti) | Execution Time (C;)
T 6 1
) 9 2

Table 8: Task Set

Tan={T;1, 71271321 22}

The simulation of the algorithm RM-ANY for the above example in Table 8 of all steps are given in
Figure 11 and Figure 12.
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LT

Time [ Sets Highest | W(I.t) | REL_LDit) | Modification to Modification | Comments
t priority DONE to First
task
0 {1 &1y | T 6 6 At time zero new tasks are released
1 fnr oy | oo 5 0 First[0]=1 First copy of highest priority task
finishes
2 {rr wiy | oo 4 0 DONE[0].i= Second copy of the highest priority
DONE[0].=1 task finishes and 775 is removed from
DONE[0] First=1 5
DONE[0].Second=2
3 {121} 21 3 0 First copy of highest priority task
executes one time unit
4 {1} 21 2 0 First[1]=4 First copy of highest priority task
finishes
5 {121} 21 1 0 Second copy of highest priority task
executes one time unit
6 {1} 21 2 2 DONE[1].1 i= =2 Second copy of the highest priority
DONE[1].=1 task finishes and 777 is removed from
DONE[1] First=4 Sand 137 is 1n5e1ted ins
DONE[1].5econd=6
7 {112} 12 1 0 First[2]=7 First copv of highest priority task
finishes
2 {112} T2 0 0 DONE[2].i=1 Second copv of the highest priority
DONE[2].=2 task finishes and 7;;is removed from
DONE[2] First=7 S
DONE[2]. Second=8
9 {122} I3 4 4 New copy of task 7 is released

Figure 11: Simulation of RM-IND




8¢C

Time | Set$ Highest | ¥(I.t) | REL_LDit) | Modification to Modification | Comments
t priority DONE to First
task
10 {132} 27 3 0 First copy of highest priority task
executes one time unit
11 {122} 22 2 0 Frst[4]=11 | First copy of highest priority task
finishes
12 {122} 27 3 2 Second copv of highest priority task
executes one time unit and 77315
inserted in S
13 {2 g3} | T3 2 0 First[3]=13 | First copy of highest priority task
finishes
14 {72 T} | Qs 1 0 DONE[3].i ;= Second copy of the highest priority
DONE[3].73 task finishes and 7;31s removed from
DONE[3] First=13 5
DONE[3] Second=14
15 { 122} 27 0 0 DONE[4] 1 1= Second copv of highest priority task
DONE[4]. &2 executes one time unit and 77 is
DONE[4] First=11 removed from 5
DONE[4] Second=15
16 i} 0 0 No more task
17 iy 0 0 No more task
18 I 0 0 No more task. S is empty. So, the task

set 1s BM schedulable.

Figurel2: Simulation of RM-IND




The array DONE represents a sequence of finished task according to algorithm in Figure 10 in order of

time as follows:

DONEJ0].i=1
DONE[0].j=1
DONE]J0].First=1
DONE[0].Second=2

DONE[1].i=2
DONEJ[1].j=1
DONE[1].First=4
DONE][1].Second=6

DONE[2].i=1
DONE[2].j=2
DONE]2].First=7
DONE][2].Second=8

DONE]J3].i=1
DONE[3].j=3
DONE]3].First=13
DONE[3].Second=14

DONE[4].i=2
DONE[4].j=2
DONEJ[4].First=11
DONE[4].Second=15

Table9: Information stored by algorithm RM-TND for task set in Table 8

13. Properties and Theorem: Fault Tolerant Algorithm

Our objective in this paper is not to work for a particular fault pattern but to cover all possible fault
patterns in general. The reason is that, by considering all possible fault patter, we are guaranteed to cover
the worst case scenario.

In [30] the amount of extra work still to be done at the finishing time of any task and the amount of extra
work at any other time is defined for EDF scheduling for aperiodic task. Using the similar approach as in
[30], next we define these two quantities for RM scheduling with periodic task.

8fij( I') is defined as follows as the maximum extra work at time t=fin(T;) induced by any fault pattern
with f faults. That is it defines the extra work at the finishing time of task T;. Let pre(ij)=lk such that Ty is
the task which finishes immediately before fin(t;;) .

This maximum value can be obtained by considering the worst case scenario in each of the following two
cases:

* All f faults have already occurred before task T; begins. Hence the maximum extra work at fin(T;)
is the maximum extra work at fin(Ti), where Ty is the task that finishes just before T;; decremented
by the slack available between fin(Ti ) and fin(T;). The quantity is :

Ql=sub( 8peiy( I), slack( fin(pre(ij)) , fin(t;))

e All /-1 faults have already occurred before tasks T;; begins and a new fault occurs at T;; Hence, the
maximum extra work at fin(T;) is the maximum extra work due to /-1 faults at fin(Ty) where Ty is
the task that finishes just before Tj; and extra work due to the fault at T; decremented by the slack
available between fin(Ti ) and fin(T;;). The quantity is :

[+
Q2= 2, Co = R = & qub( 8 g(T) |, slack (Fin(pre(if), fin(Ty)))

k=3

afij( I') is the maximum of any of the above two quantities, defined as follows:

0 if =0
f+2
5fij( )= Z Crk-rm - if ij=11, that is first copy of first task
k=3

Otherwise

max(Q1, Q2)
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Next, we find the maximum extra work that need to be done for any fault pattern at any time . Remember
that we are considering a maximum of /' faults. Lets define, 8'(I', t) be the maximum amount of extra work

needed in case of maximum f faults in one LCM. Now we need a way to calculate 8'( T, t ), which is
defined as the maximum extra work at time t induced by exactly f faults.

-

0 if t=0

subb(8'i( I'),slack(fin(T;),t)) if fin(T;;)<t< fin(T) where Ty finishes just after T;

. D j j j j

o(I,t)=

sub(®( T, t-1),1) if RM(T ,t-1)=t

(T, t-1) Otherwise

-

EXAMPLE (Calculation of §%( I')):

Period (Ti) | Execution Time (C;)
7; 6 1
5} 9 2

Table 10: Task Set
Lets calculate afij( I)
set Ian=<Ti1, T12T13.T21, Tp >

The finishing time can be obtained from array DONE of RM-IND:
fin(t1,)=2 , fin(T2;)=6, fin(T,2)=8, fin(T;3)=14 and fin(T,,)=15.

For f=1,
(D=1, 8'2( D=2, & 3()=2, 85( =1, and &% ( [)=2.

For example, d%,( I)=2 is calculated in the following way:

&'2( T)=max( sub(d'13(I'), slack(14,15)), 2+sub(8’;3(D), slack(14,15)))
=max(sub(2,0),2+sub(0,0))=max(2,2)=2

For =2,
dN1( =2, 8 15( D=4, 8'13( =2, 8%:( =3, and d",( I)=3.

Now, 8( I, t) can be easily calculated for any t.

The fault tolerant schedule is denoted by RM' ( I'). We define a function W' (I,t) to denote the amount of
task needed to be done at time t for any fault pattern with exactly f faults as follows:

Work to be done at time t with fault=FExtra work at time t with fault+ Work to be done at t without fault
In equation,

YH(C,H=0(T,t)+ YT,
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Note that task T;; may complete at a time different than fin(T;) in RMY(T), the function ¥ has the important
property that it is equal to zero only at the beginning of an idle time slot in RM'( I').

There are other properties as in [5] but modified here for RM scheduling:

Propertyl: W(I',t)=0 if and only if RM(I',t)=1. That is ¥(I',t)=0 if and only if there is no work to be done
at time t in RM(I"), which means that any task released before t finishes at or before time t in the fault free
case.

Property2: ¥(T,t)=0 if and only if there is no work to be done at time t in RM" (I'), which means that any
task released before t finishes at or before time t when subjected to fault pattern f.

Property3: Y(I',t)- an CORDY) 2G=0 ifand only if all tasks released before time t is finish execution.

Property4: W(Tt)- an DRD(D)2C1 =0 if and only if all tasks released before time t is finish execution for
exactly f faults.

Property5: ‘Pf(F,t)Z Y(T',t). That is the amount of work incurred when fault occurs is never smaller than
the amount of work in fault free case.

Property6: t=fin(T;;) implies that W(I',t-1)>0. That is the slot before the end of a task is never idle.

The following Theorem 1 shows the necessary condition when a task finishes its execution in the fault
tolerant schedule. The & function is an abstraction that represents the extra work to be performed for
recovery. This extra work reduces to zero when all ready task completes execution and recovery, as
demonstrated by the following theorem which is adapted from [5] where the theorem is defined for a
particular fault pattern. We modified it to take into account of any fault pattern.

Theorem1: If 8 I',-1)>0 and &'( I',#)=0, then, in both RM(I") and RM'(I), any task with release time less
than t finishes before time 7.

Proof: See In Appendix

The following Theorem 2 shows the necessary condition when recovery of task is progressing. The next
theorem shows that, if at any time # the amount of extra work due to fault is positive and if there is an idle
slot at that time 7 in fault free schedule RM(I'), then in the fault tolerant schedule RMY(T') at time t+1, the

amount of extra work due to fault is reduced by one time unit, that is, recovery of the task is in progress
between time t and t+1.

Theorem?2: If 8'( I',t-1)>0 and RM(T" ,t-1)=1 then &' I',t)=8'( [',t-1)-1.
Proof: See In Appendix.

Now we will demonstrate one example to show that, for a particular fault pattern, the lowest priority task
may finish before deadline where as some higher priority task may miss the deadline.

Period (Ti) | Execution Time (C;)
T 6 1
) 9 2

Table 11: Task Set
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set Far=<tin, T2 Ti3To1, T2 >
fin(T11)=2, fin(112)=8, fin(T,3)=14, fin(T2;)=6 and fin(T122)=15
Consider at most one fault. In this case, we need to schedule one extra copy in case of error.

Under Fault free execution the schedule is as follows:

T 21 T2 T2 113 T2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Observe that, T2, which is the lowest priority task, finishes its execution by time 15 and there is enough
slack left to recover from an error. However, one of the higher priority tasks, T»;, misses its deadline since
at the end of the primary execution the value of & is 2 at time 6. But T;, will now pre-empt task T,; and
execute up to time unit 8. After that the recovery for 1, is not possible before the deadline t=9. Hence, if
one error occurs in Tyj, it will miss its deadline even if the lowest priority task, T2, finishes by its deadline.

The next Theorem 3 shows the necessary and sufficient condition when the lowest priority task meets its
deadline.

Theorem 3: Given task set I'and, the lowest priority task Tjjin I completes by T; %] in RM'(I), if and only
if, 8 I',t)=0 for some t, fin(ty)<t< T; %j.

Proof: See the Appendix

Since meeting the deadline of the lowest priority task doesn’t guarantee that all higher priority tasks also
meet the deadline, we have to repeatedly apply Theorem 3 to all task sets I';, j=1,..,N to obtain a sufficient
condition for the feasibility of the entire task set. So, it is not sufficient to apply Theorem 3 only to I',y.
The next corollary establishes the sufficient condition to check when an entire task set is schedulable.
Corollary 1: A necessary and sufficient condition for the feasibility of RM*(I") for a given I' and for
given fault pattern with f or less faults can be obtained by applying Theorem 3 to N task sets I, j=1,..,N

where I'; contains the j highest priority task in Iy,

Proof: Can be proved using induction on N. See the Appendix.

14. Fault Tolerant Algorithm: RM-FT-ANY

To apply the Corollary 1, we will now develop an algorithm RM-FT-ANY to determine schedulability
under all fault patterns. The algorithm is given in Figure 13.
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ALOGORITHM: RM-FT-ANY(I'an)

O 00 IO D Wi~

10
11
12

13

14
15
16

N=| T |
Q={tn }
For j=1 to N

Array of TaskInfo B of size j

Simulate RM-IND (Q,B)

Ti-Lowest priority task in Q

for t=0 to LCM

if(t=fin(T;) as in B and fin(1;;)=Tix (k-1))
if 3'(Q,t)=0 for some fin(T;;)<t<T; X j then
continue with next iteration on t

else
NOT SCHEDULABLE and STOP

End if
End if
end for
if (j<N) then Q=QU {t;} Where T;; is the next highest priority task in I'ai- Q

End for
RM SCHEDULABLE
STOP

Figure 13: Pseudocode for algorithm RM-FT-ANY.

In line 2 of this algorithm, set Q is initialized with the highest priority task, which is currently also the
lowest priority task in set Q. Then in the loop 3-14, the set Q is scheduled using RM, where upon Theorem
3 is applied to the lowest priority task in set Q to check if the task is schedulable. In line 13, the next
highest priority task is selected, which becomes the lowest priority task in Q.

Now we will apply this algorithm on some example task set:

EXAMPLE 1 (Simulation of RM-FT-ANY):

Period (Ti) | Execution Time (C;)
7; 6 1
5} 9 2

Lets calculate afij( I)
set [a=<T11, T2 113121, T2 >
fin(T;1)=2, n(T21)=6, fin(12)=8, fin(T;3)=14, and fin(T,)=15

For =1

Simulate RM-FT-ANY

Iteration j=1

Q={ty1} and &';( I')=1
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o0 O 1 0 O o0 o
Tll‘
1 2 3 4 5 6
T11 18 RM schdedule
Iteration j=2 and Q={1;1, T12}
O 1 o0 O o0 o 0 1 0 0 0 o O o0 o0 o 0 0
Tll‘ le‘
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T121s RM schedulable.
Iteration j=3 and Q={T111, Ti2, T13}
O 1 O O o0 o 0 1 0 0 0 o O 1 0 o 0 0
T T2 T3
| | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T131s not RM schedulable.
Iteration j=4 and Q={T;1, Ti2, T13, T21}
0 1 1 1 1 2 2 2 1 0 0 0 O 1 0 o 0 0
T ‘ Tzl‘ ‘ ‘ T2 ‘ T13‘
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T, 1s not RM schedulable.

EXAMPLE 2(Simulation of RM-FT-ANY):

Period (T))

Execution Time (C;)

1§

6

1

[§]

9

1
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=1
Q={T;;} and &';( I')=1

50 0 1 O O O0 O

T

1 2 3 4 5 6

T11 18 RM schdedule

=2
Q={Ti1, Ti2}
0 1 0 0O 0 O 0 1 0 0 0 O O 0 o0 0 0 0
T11 T12
| |
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18
T121s RM schedulable.
=3
Q={T11, Ti2, Ti3}
0 1 0 0O 0 O 0 1 0 0 0 O 0 1 0 O 0 0
T11 T2 T3
| | |
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18
T1318 RM schedulable.
=4
Q={Ti1, T1, Tu3, T21}
0 1 1 1 0 o0 0 1 0 0 0 O 0 1 0 0 0 0
T ‘ TZI‘ T2 ‘ T13‘
1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18

T,1 1S RM schedulable.

J=5
Q={T11, Ti2, T13, T21, T2z}

35



T 121 T2 T2 T3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T2, 18 RM schedulable.

From the above examples we have seen that, if the execution time of the task decreases, a task set that was
previously not schedulable may become schedulable. Consequently, a new question arises, is there any
circumstance in which the execution time of a task may be reduced? The answer is yes. When an error is

detected by EDM, the task copy immediately gets stopped and new copy of a task gets scheduled.

Our next objective in this work is to find the maximum time that a task copy can execute before the error
in the task is detected by EDM. The next example shows how this is possible:

Consider only one task T with C=2 and T=7 and f=2.

50 0 0 0 4 3 2 1

Here, the task is not schedulable in case of two faults. But if one error occurs in one of the primary two
copies (2" copy), and the error is EDM detected after 1 time unit, then the two primary copies of the task
will run a total of 3 time unit, in which case the task is schedulable in case of a maximum of two faults.

Now we will develop a strategy (MIN-EDM algorithm) to determine when a fault should occur and when
the error should be detected by EDM mechanism so that task set that was previously not schedulable
(when a task runs a full C time unit) becomes schedulable.

15. Fault-Tolerant Recovery Algorithm: RECOVERY-MIN-EDM

Algorithm RM-FT-ANY will fail when the lowest priority task T fails in set Q for which the following
condition is satisfied.
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if 8(Q,t)>0 for all fin(T;)<t<T; X j

We will now find other tasks for which a reduction in execution time either decreases 6 or provides more
slack in the schedule so that the extra amount of work & can be done before the task deadline.

From RM(I") we can determine other consecutive tasks Ty which are executed later than Tj; and also satisfy
the condition Bf(Q,t)>0 for all fin(Ty)<t<T, x k and fin(Ti)<T; Xj. Notice that we are concerned only with
consecutive tasks of Tj that finishes after T;; but before the deadline of T;;. Denote the set of such tasks
SET1. The extra work needed in these consecutive copies also includes the extra task needed at copy T
Hence, we are looking for tasks whose finish time is later than the release time of T;. Consequently, if
these tasks execution time can be reduced, then more slack can be found in the schedule and the task Tj;
can finish doing its extra work 0 and able to finish its execution before its deadline in the fault tolerant
schedule.

Again, the extra work needed to be done in T; also includes the extra work of the task that finishes before
T in RM(T'). If we can reduce the execution time of these tasks then the factor O for task Tjj also decreases
and task T;; can finish execution before its deadline. We are concerned here about the tasks those increases
the 0 of the task Tj;. Denote this set SET?2.

Now define the set

AFFECTED (Tij) = {Tij} USET10 SET2

Our aim is to decrease the execution time of all tasks in AFFECTED set so that task T; becomes
schedulable. We can decrease the execution time of a task by assuming that, the task will generate one
error and the error will be detected by EDM at or before the decreased execution time. Such recovery
mechanism will be probabilistic since we are relying on the probability of a task copy to be error detected

by EDM.

EXAMPLE: (Finding the affected set)

Period (T;) | Execution Time (C;)
7; 6 1
5} 9 2

set Lan=<T11, Ti2,T13.T21, T2 >
For f=1, when scheduling using algorithm RM-FT-ANY, the task T,; cannot be scheduled at iteration j=4.

0 o 1 1 1 1 2 2 2 1 0 O O O 1 O O O O

T 21 T2 113

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Task 1, (with deadline t=9) can not be scheduled because =1 at deadline t=9 and hence needs recovery.

AFFECTED(121)={ 121}
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Now if the task Tz is in error and the error is EDM detected after the primary copy runs for 1 timeunit,
then the task T, is schedulable.

0 o 1 1 1 2 1 1 1 O O O O O 1 O O O O

T 21 T2 113

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Task 1, (with deadline t=9) can now be scheduled because =0 at t=9 and is hence recovered.
For =2, when scheduled using algorithm RM-FT-ANY, the task T»; cannot be scheduled at iteration j=4.

50 0 2 2 2 2 6 6 6 5 3 2 1 1 2 1 0 0 O

T 121 T2 113

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Task 1, (with deadline t=9) can not be scheduled because =5 at deadline t=9 and hence needs recovery.

AFFECTED(Tzl):{ T11,To1, le}

Ty1 18 included in AFFECTED because it contributes to the =6 at t=6.

T, is included because it finishes before 1,;’s deadline and &>0 for all t before its deadline, which also
accounts 0 at t=6.

We assume that a task with high execution time contributes to a high value of d. Therefore, we choose to
decrease the execution time of T,;. If both primary copies of T, are affected by errors and if both of them
are EDM detected (which is probabilistic), we can reduce the execution time of the two primary copies by
2 time units (further reduction will lead to zero execution time of the primary copies which is not
possible). This reduction will lead to 2 time unit slack in the schedule before its deadline. However, we
need at least 5 time units slack in the schedule before its deadline. So, the task set is not schedulable.

Next we will develop an algorithm RECOVERY-MIN-EDM(T;) to determine whether a failed task in
RM-FT-ANY can be scheduled with some modified execution time in another. We maintain a list EDM-
LIST of modified task execution times to determine the maximum time within which the error should
occur in order to be detected by EDM mechanism. We will select the task from the set AFFECTED(Tj).

In the algorithm in Figure 14, the first thing that is done is that the number of task copies in set
AFFECTED-LIST that can be error detected by EDM is determined and stored in variable
TotalEDMError. Next the amount of extra work for which the task T; misses the deadline is calculated
and stored in variable RED_TIME. Our objective is to decrease this extra work (RED_TIME) to zero.
Then loop runs, for each iteration attempting to decrease the execution time of some task until
RED_TIME becomes zero. Within the while loop, different task copies (a total of f+2 copies are
considered for each task) in AFFECTED-LIST with maximum execution time are selected first. This is
because the extra work for which the lowest priority task in AFFECTED-LIST misses its deadline due to
the execution of the tasks with larger execution time. We can select such tasks up to the minimum number
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of errors (TotalEDMError) that could be detected by EDM. Each such selected task copy is stored in
EDM-LIST. When no task from AFFECTED-LIST can be selected, the task from EDM_LIST with
minimum execution time is selected, and its execution time is decremented by 1 time unit in each loop-
iteration. If the execution time becomes below 1 time unit while decrementing the task’s execution time
cannot be further reduced, and the task copy is eliminated from EDM-LIST. If RED TIME reaches to
zero, then the task is recoverable. When the task is recoverable, MIN-EDM calculates the time up to
which any task copy can run and can still meet the schedule.

ALGORITHM: RECOVERY-MIN-EDM(7;)

AFFECTED-LIST=AFFECTED(T;)
EDM-LIST={}
TotalEDMError=f * probability of error detected by EDM in task of AFFECTED-LIST.

If(TotalEDMError=0) NOT RECOVERABLE, STOP
RED_TIME= sub( 85( I) , slack( fin(ty), T:%j ))
While(RED TIME>0)

IfLAFFECTED-LIST#U and TotalEDMError>0){
EDM-LIST=EDM-LISTU {Tmn}, Where Tmy has the maximum running
time in AFFECTED-LIST
Decrease TotalEDMError by 1.
If same task is selected (2-+f) times, remove it from AFFECTED-LIST
If execution time of selected Ty, is less than 2, then not RECOVERABLE
Decrease execution time of selected Ty by 1
MINEDM-=Task with minimum execution time in EDM-LIST
Decrease RED _TIME by 1
If (RED_TIME==0) RECOVERABLE and STOP

}
Else Iff EDM-LIST #0)

{

Select Ty in EDM-LIST with minimum execution time

If execution time of selected Ty is less than 2 then remove the copy
of Ty from EDM-LIST

And Continue

Decrease execution time of selected Ty by 1

MINEDM-=Task with minimum execution time in EDM-LIST

Decrease RED_TIME by one

If (RED _TIME==0) RECOVERABLE and STOP

}

IfTAFFECTED-LIST=0 and EDM-LIST=L])
NOT RECOVERABLE and STOP
End loop

Figure 14: Pseudocode for the recovery algorithm.
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15.1 Correctness of the algorithm RECOVERY-MIN-EDM:

To recover a task T;, we are maintaining a list of affected task in AFFECTED-LIST where each task in
AFFECTED set also contributes to the extra work that need to be done before the deadline. So, if the extra
work to be done to finish a task in AFFECTED-LIST could be reduced, then the extra work to be done to
finish T; before its deadline is also reduced. For example, if T; is the task that is in the AFFECTED-LIST
whose execution time is reduced, then if T; has higher priority than T;, the reduction in execution time will
leave slack after the T; execution but before the T; deadline. Thus T; can finish its execution before its
deadline in the fault tolerant schedule. If the priority of T; is less than the priority of T;, the reduction of
execution time in T;, will leave more slack before the T; execution time, since T;j can be shifted right in the
schedule and hence T; can finish execution before its deadline. So, the above algorithm provides a

mechanism to recover task T; in case of faults. Remember the recovery is probabilistic because we are
assuming that an error within the task in AFFECTED-LIST will be detected by the EDM mechanism.

16. Probability analysis of schedulability:

16.1: Parameters of probabilities:

The result of injecting faults into applications provides us the parameters of certain probabilities. Those
probabilities are denoted by the following table. The values of these parameters are shown in APPENDIX
[Result from injecting faults in a microprocessor 68340].

Py Given that a fault occurs, an error is generated.

Ppe Given that an error is generated, the error is detected by double execution(DE)

Pr Given that an error is generated, the error is detected by timer monitor.

Pepm Given that an error is generated, the error is detected by a hardware error detection
mechanism(EDM)

Pxp Given that an error is generated, the error is not detected.

Ppem Given that an error is detected by DE, the error is masked by TEM

Prm Given that an error is detected by the timer monitor, the error is masked by TEM

Pepvm Given that an error is detected by an EDM, the error is masked by TEM

Table 12: Parameters of probabilities

16.2 Probability of Recovery (PR):

Let S is the set of different tasks from AFFECTED-LIST whose execution times are modified by the
RECOVERY-MIN-EDM algorithm.

C
The probability of an error detected and masked by EDM = Z 71 XPy XPrpm
Tul IS */

The probability of recovery of task T, denoted by Pr(Tj), is:

1 if no recovery is needed
Pr(Tyj) =

/ .
— XPy XPrpum otherwise

TS Ti
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EXAMPLE:

Period (T;) | Execution Time (C;)
7; 5 2
5} 10 1

set Ian=<Ty1, T12T21 >

For f=1:
o0 0 o0 O 2 2 2 2 2 2 2

Ti1 T | T2 21

T;1 needs recovery, AFFECTED(11)={ 1.1}
T;; can be recovered by reducing its execution time by 1 time unit as shown in Figure 15.

J=2: The task Ty, can be recovered in the same way.

J=3:

50 0 0 0o 2 2 2 2 2 2 2

Ti1 To1 | T2 21

T21 needs recovery, AFFECTED(121)={ T11,T12, T21 }
T,; can be recovered by reducing the execution times of task T;; and T, by 1 time unit as shown in
Figurelé.
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Tteration | AFFECTED- EDM-LIST | EDMError | RedTime | MinEDM | Comments
LIST

0 fti1} i} 1 1 Initialization before the loop

starts

1 f111} {111} 0 0 Ci-1 Among the 2+f copies the

execution time of the first copy
is reduced and the task is
recovered.

530 0 0 2 1 0

11
[
1 2 3 4 5
T111s scheduled
Figurel5: Recovery of task Ty

Iteration | AFFECTED-LIST |EDM-LIST |EDMEmor |RedTime | MinEDM | Comments

0 {1 11} {} 2 2 Initialization before the loop starts

1 {fumata} {ta} 1 1 Cl Among the 2+f copies, the execution
time of the first copy of 111 i
reduced.

2 {211} {11 12} 0 1 Cyl Among the 2+f copies, the execution
time of the first copy of 111 is
reduced and task is reduced.

600 0 2 2 2 2 2 2 0

T 1 §F
1 2 3 4 5 6 7 8 10

13115 scheduled

Figurel6: Recovery of task T,
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16.3 Probability of fault occurrence in task t;:

For a maximum of f faults, the probability of a fault occurring in Tj; is:
P(Uy)= [(f+2)*C/LCM] x [LCM-Rel(t;;)/LCM]
Here, (f+2)*Ci/LCM represents the percentage of work in case of faults occurring in T;; within one LCM.

Again, the probability of a fault occurring is higher early in one LCM. Therefore, we scale the probability
by [LCM-Rel(T;)/LCM].

16.4 Probability of schedulability for a task ;;:

0 if task T;jis not schedulable by RM-FT-ANY
Yij =
1 schedulable

16.5 Probability of error masking:

In this analysis, the probability of error detection and masking by any one of the techniques is Ppg X Ppgm
+Pr X Prm +Pepm X PepMMm

Denote the probability of fault occurrence, error detection and masking of all tasks by Pgyrer.

PEiror = M Yyx Z [ P(Uj;) xPx x (Ppe X Ppem TPt X P v +PeDM X PEDMM) X PR(Tij)]
T Tan T Tan

Using the number given in Appendix, we get:

PpE X PDE,M +Pr % PT,M +PepMm X PEDM,MZO.lg x1.0 +0.05 x0.06 + 0.77 x0.68=0.7066
Py X Ppg X Ppgm +P1 X Prv +Pepm X PEpMMm =0.17%0.7066 =0.120122

16. 6 Probability of no error masking:

Let’s denote the probability of fault free execution by Ppeeror- This occurs when

* No faults occur
* Fault occurs but no error is generated.
» Fault occurs and error generated but error is not detected.

Pnoerror: PNF + Z P(UU) X (I'Px) + Z P(UU) X Px ><PND
T Tan T;U Tan

Pnoerror: 1- Px X ( 1'PND) X Z P(UIJ)
T Tan
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16.7 Probability of system success:

Let’s denote the probability of the system success by Pgyccess.

Psuccess:PNoError+PErr0r

EXAMPLE 1:

Period (Ti) | Execution Time (C;)
T 9 1
1§} 18 1
£ 36 1

set Ia=<Ti1, Tz, T13, T1aT21, Top, T31 >

For =0,
By running algorithm RM-FT-ANY, we can see that all the tasks are schedulable. No recovery is needed.

Hence, [] Y; =1
T Tan

The probability of fault occurrence in all tasks:

P(Uy))= 2/36 =.055555
P(U»)=2/36* (27/36)=0.04166
P(U3)=2/36*(18/36)=0.027777
P(U14)=2/36*(9/36)=0.013888
P(U;)=2/36=0.05555

P(Uyy) =2/36*18/36=0.027777
P(Us1)=2/36=0.055555

Z P(Ujj) =0.055555*3+0.027777*2+0.041666+0.013888=0.277773
T Tan

Since no recovery is needed for any T;; we have: Pr(T;)=1

Peror =1 X 0.120122 % 0.277773=0.033366
PNobrror=1-0.17%(1-0.0) x0.277773=0.952778
Pouceess=0.033366+0.952778=0.986145
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For f=1:
By running algorithm RM-FT-ANY, we can see that all the tasks are schedulable. No recovery is needed.

Hence, [] Y; =1
T Tan

The probability of fault occurrence in all tasks:

P(Uy1)= 3/36 =.08333
P(U1,)=3/36* (27/36)=0.0625
P(U,3)=3/36*(18/36)=0.04166
P(U,14)=3/36*(9/36)=0.02083
P(U,1)=3/36=0.08333

P(Us,) =3/36*18/36=0.04166
P(Us1)=3/36=0.08333

Z P(Ujj) =0.083333*3+0.04166*2+0.02083+0.0625=0.41665
T Tan

Since no recovery is needed for any T;; we have: Pr(T;)=1

Peror =1 X 0.120122 x .41665=0.05005
PNobrror=1-0.17%(1-0.0) x0.41665=0.92916
Pguceess=0.05005+0.92916=0.979219

For £=2:
By running algorithm RM-FT-ANY, we can see that all the tasks are schedulable. No recovery is needed.

M Y=l
T Tan

The probability of fault occurrence in all tasks:

P(Uy1)=[4/36]=0.111111
P(Uy,)=4/36* (27/36)=0.083333
P(U13)=4/36*(18/36)=0.05555
P(U.14)=4/36%(9/36)=0.02777
P(Uy)=4/36=0.11111
P(Uy,)=4/36*18/36=0.083333
P(U,4)=4/36=0.11111

Y. P(Uj)=0.11111%3+0.083333%2+0.02777+0.05555=0.58331
T;;U Tan

Since no recovery is needed for any T;; we have Pr(T;)=1
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Peror =1 X 0.120122 x 0.58331=0.07006
PNoError=1-0.17%(1-0.0) x0.58331=0.90083
Puccess=0.90083+0.07006=0.97088

For =3:

All the tasks are schedulable using algorithm RM-FT-ANY. No recovery is needed.

MYy =1
T;;U Tan

P(Uy1)==5/36=.138888
P(Uy,)=5/36* (27/36)=0.104166
P(U,3)=5/36*(18/36)=0.069444
P(U14)=5/36%(9/36)=0.034722
P(U,1)=5/36=0.138888
P(U»1)=5/36*18/36=0.069444
P(U,14)=5/36=0.138888

Z P(U;) =0.13888%3+0.06944*2+0.034722+0. 0.104166=0.69444
T Tan

Since no recovery is needed for any T;; we have Pr(T;)=1

Peror =1 X 0.120122 % 0.69444=0.083417
PNoError=1-0.17%(1-0.0) %0.694408=0.88195
Pouceess=0.88195+0.08341=0.96536

For f=4:
The task set is not schedulable using algorithm RM-FT-ANY.

To see why, we now simulate algorithm RM-FT-ANY.
At j=T7:
Q = {T11, Tz, T3, Tua, Ta1, Taz, T31}

o
4 8 12 1

0
‘Tll ‘Tzl ‘T31 ‘ ‘ ‘
2 4 6 8

9 13 11 9 76 6 8 6 3 7 5 3 1

w | [ [T [fwlw| [ [ ]lwl[[[[][]]
10 12 14 16 18 20 22 24 26 28 30 32 34
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In the schedule, the lowest priority task is T3;, which is schedulable. However, task T, finishes at time t=11
and the value of =13 (amount of extra work due to faults). It is not possible to complete the extra task o
before the deadline (t=18), since & Q,t)#0 for any t such that fin(1,)<t<T; X2=18. Now if we try to recover
by reducing the execution time of tasks in the set AFFECTED(T,2), such recovery is not possible.

If we try to recover 1;2, then AFFECTED(T12)={ 111, T21, T13, T12}

Since AFFECTED-LIST has all tasks whose execution time is already 1, no further reduction is possible
according to the algorithm RECOVERY-MIN-EDM in Figure 14.

So, task set can not be scheduled. Hence, Y, =0.
And

MY =0
T Tan

Hence, Perror=0

P(U )= =6/36=.16666
P(U»)=6/36* (27/36)=0.125
P(U,3)=6/36*(18/36)=0.083333
P(U14)=6/36*(9/36)=0.041666
P(U»1)=6/36=0.16666

P(U, )=6/36*18/36=0.083333
P(U,4)=6/36=0.16666

Z P(Ujj) =0.16666*3+0.083333*2+0.041666+0. 0.125=0.833312
T Tan

Proerror=1-0.17%(1-0.0) x0.833312=0.858336
Pouccess=010.858336=0.858336

Intuitively, for this task set if £>3, Pgyccess =Proerror-

16.7.1 Discussion (Example1):

Before providing more examples, we concentrate on the results from EXAMPLE 1. In the following four
graphs, different parameters from EXAMPLE 1 is presented for various number of maximum faults /=1,

2,3, and 4.

The graph in Figure 17 shows that, as the number of maximum fault occurrence increases, the probability
of fault occurrence in the all tasks also increases.
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Probability of fault occurrence increases as f
increases
1 0.833331
0.8 - 0.694408

2 06 0.58331
Q | 0.41665 @ Probability
2 0.4 -
o 0.2

0

1 2 3 4
B Probability | 0.41665 | 0.58331 | 0.694408 | 0.833331
Maximum number of faults(f)

Figure 17: The probability of a fault increases as fincreases.

In the graph in Figurel8, it can be seen that the probability of masking faults increases as we increase the
maximum number of fault occurrence. This is not surprising as the system employs error masking
capabilities to mask errors. So, if the system is able to tolerate any number of faults, the probability of
fault masking will increase as more faults will be masked since the probability of fault occurrence
increases as the number of maximum fault occurrence also increases. However, in practice, no system is
capable of tolerating an infinite number of faults. So, after a certain value of £, the fault masking capability
will diminish to zero rather than decreasing slowly (see the column for f=4). Because, when the system is
not capable of tolerating a particular number of maximum faults, the system becomes unschedulable and
error masking capability is assumed to be zero from that point. From then on, for any higher value of £, the
fault masking capability remains zero and the system schedulability depends only on the probability of
system schedulability during fault free execution.

Probability of masking faults increases as f increases

0. 1 U. UU\)“P1

0.07006

0.05005

0.05 1

O Probability

1 2 3 4

O Probability 0.05005 0.07006 0.08341 0

Maxi mum number of faults(f)

Figure 18: Probability of fault masking increases up to a certain value of f and then becomes zero.

Hence, the probability of error masking increases as the number of maximum faults increases to a certain
point and then no error masking is possible since the task set is not schedulable.

48



In the graph in Figure 19, the probability of system success without fault masking capability is depicted. It
can be seen that, the probability of success without fault masking ability decreases as the number of
maximum fault occurrences, f, increases. This is because, as the errors occur, the probability of fault
occurrence increases and the probability of system success without fault masking capability decreases
since, without such capability, the system becomes unschedulable.

probability of success with no faults masking

0.94 0.92916
0.92

0.9
0.88
0.86
0.84
0.82

0.90083

0.88195

@ probability

0.85833

Probability(Pnoerr)

1 2 3 4
‘ @ probability | 0.92916 0.90083 0.88195 0.85833

Maximum number of faults

Figure 19: Probability of system success without fault masking decreases as f increases

As f increases, the probability decreases because the system becomes more vulnerable to faults and the
probability of schedulability decreases so there is a decrease in system success without fault masking
capability.

The graph in Figure 20 shows the probability of overall system success as the number of maximum faults
increases. As the probability of maximum number of fault occurrence increases, there is a decrease in the
probability of overall system success. As more errors are occurring, there is an increase in probability of
fault masking (Peror) and there is also a decrease in the probability of success without fault masking
(Pnoerror). However, the sum of these two probabilities has a downward trend. This is because, as the
number of maximum fault f occurrence increases, the probability of overall system success is more
dependent on the fault masking capability of the system, which is limited for any practical system. So, for
higher number of f, the probability Pgyccess 1 low.
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Probability of overall success decreases as f
increases

1 -0.979219 5 97088
0.970660.96536

0.95 |
0.9 |

0.858336 | | pronability

0.85 |

0.8 |

0.75

Probability(Psuccess)

1 2 3 4

@ Probability | 0.979219 | 0.97088 | 0.96536 | 0.858336
maximum number of faults

Figure 20: Probability of system success decreases as f increases.

For a higher number of errors, the probability of system success decreases. Observe that, for high value of
f, the decrease in system success for two consecutive values of f (from f=1 to £=2) is higher than decrease
for two consecutive low values of /' (from f=3 to f=4). This is because, for a higher number of errors, the
masking capability diminishes and the system success only depends on fault free execution of task which
will further decrease as f increases as shown in Figure 20.

So, as the probability of fault occurrence increases, probability of fault masking increases and probability
of success without fault masking decreases and probability of overall success decreases.

EXAMPLE 2: The execution time of task 7; is increased by one time unit that is given in Example 1.

Period (Ti) | Execution Time (C;)
T 9 2
5} 18 1
£ 36 1

set [a=<tin, Tiz, T3, TiaT21, Tao, T31 >

For =1:

All the tasks are schedulable. No recovery is needed.
MY =1
T Tan

The probability of error occurrence in all tasks:

P(U,1)=6/36=0.16666
P(U,)=6/36*27/36=.125
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P(U,3)=6/36*18/36=0.08333
P(U,14)=6/36*9/36=.041666
P(U,1)=3/36=0.08333

P(Us,) =3/36*18/36=0.041666
P(Us1)=3/36=0.08333

Z P(Uj) =.16666+.125+3%0.08333+2*0.041666=0.624982
T Tan

Since no recovery is needed for any T;; we have Pr(T;)=1

Peror =1 X 0.120122 % 0.624982=0.07507
PNoError=1-0.17%(1-0.0) %0.624982=0.89375
Pouccess=0.89375+0.07507=0.96882

For £=2;

All the tasks are schedulable with recovery for T2, T;3 which results in a minimum error detection time of
1 time unit.

When task T;, is scheduled, the schedule with o value is as follows:

1 ‘ T21 ‘ 131 ‘ ‘ T2 ‘ 113 ‘ T2 ‘

4 6 65 76 5432 4 6 543
24681012‘1‘“‘ “‘

AFFECTED(T12)={ T11.121.131.T12}

The recovery process is shown is Figure 21.

Here recovery is not possible.

P(U,1)=8/36=0.22222
P(U1»)=8/36*27/36=.16666
P(U,3)=8/36*18/36=0.11111
P(U14)=8/36*9/36=0.055555
P(Uy)=4/36=0.11111

P(Ux) =4/36*18/36=0.05555
P(Us)=4/36=0.11111

Z P(Uj;) =0.22222+0.16666+3*0.11111+2*0.05555=0.83332
T Tan

PError:()
Proceror=1-0.17%(1-0.0) x0.83332=0.858335
Pguccess=01+0.858336=0.858335
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Intuitively, for this task set if £>3, Pgyccess =Proerror-

Tteration | AFFECTED-LIST | EDM-LIST | EDMEmor | RedTime | MinEDM Comments

0 { T1L T2 T3 Tz} i} 2 2 Initialization before the loop
starts

1 { T1L T2 T3 Tz} {111} 1 1 Ci-1 Among the 2+f copies the

Of the first copy | execution time of the first
copy is reduced

2 { T T2 T3 Tz} {111} 0 1 Ci-1 No more reduction is
possible for task Tp;.

T17 can not be scheduled

MINEDM=C;-1-1=1

Figure 21: recovery is not possible

16.7.2 Discussion (EXAMPLE 2):

Observe that, Example 2 has larger execution time for task T, that the execution time given in Example 1.
For f=1, the probability of Pgyccess in Example 2 (Pgyecess=0.96882) is lower than the probability of Pgyccess in
Example 1 (Pgyccess=0.979219). This is because with increases execution time there is less possibility to
have more slack in the schedule and task with higher execution time contributes to the increased value of
0. Similarly, for /=2, the probability of Pgccess in Example 2 (Psuccess=0.858335) is lower than the
probability of P success in Example 1 (Psuccess=0.97088).

As the execution times of the primary copies of any task increase, there is more slack required to execute
the extra copies when error occurs. But increased execution time in primary copies decreases the amount
of available slack in the schedule, hence reducing the probability of system success (that is the probability
of schedulability).

Moreover, the recovery mechanism is activated for Example 2 when f=2, but for Example 1 the recovery
mechanism is activated when f=4.

Pguccess=0.858335 can be achieved in Example 2 for /=2, where the same Pgyccess=0.858336 can be obtained
in Example 1 with /=4.

Consequently, it can be said that with higher task utilization, the less number of faults can be masked and
thereby having a lower probability of system success.
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EXAMPLES3:

Period (Ti) | Execution Time (C;)
T 9 1
5} 18 1
£ 36 5

All the tasks are schedulable with recovery for T;3, which results in minimum error detection at time 4 for
task Ts;.

P(U11)=3/36=0.083333
P(U12)=3/36%27/36=0.0625
P(U15)=3/36*18/36=0.041666
P(U14)=3/36*9/36=0.020833
P(U,1)=3/36=0.083333

P(Usy) =3/36*18/36=0.041666
P(Us1)=15/36=0.416666

C
PR(Ts)= TIXPXXPEDM =5/36 *0.17*0.77=0.018
Tul IS */

PEiror = M1 Yyx Z [ P(Uj;;) xPx x (Ppg X Ppem TPt X P1m +PeDM X PEDMM) X PR(Tij)]
T Tan T Tan

=1*0.120122* [0.083333*2+0.0625+0.04166*.018+0.020833+0.041666+0.41666]
=.120122*.709074=0.085175

Proceror=1-0.17%(1-0.0) x0.709074=0.879457
Pouccess=0.085175+0.879457=0.964632

16.7.3 Discussion (EXAMPLE 3):

Observe that, Example 3 has larger execution time for task T3 that the execution time given in Example 2.
For f=1, the probability of Pgyccess in Example 3 (Pgyecess=0.964632) is lower than the probability of Pgyccess
in Example 2 (Pguccess=0.96882). This is because, even if both have same utilization, tasks with large
execution time runs for a long time in a fault tolerant schedule when recovery copies need to be run.
Hence, less slack is provided in the schedule.

With the same utilization as in Example 2, Example 3 requires recovery when f/=1. And the probability of
success 1S Pguccess=0.964632.

This recovery mechanism in case of /=1 is needed, because the execution time of task T;3 is increased 5
time units which requires more slack in the schedule in case of any fault patterns. So, not only utilization
but also the execution time of individual task is a major success factor.
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17. Results:

It is natural that, in an environment where faults are more likely, the maximum number of faults /" will
have a higher value. As the maximum number of faults f increases, the analysis show that the probability
of fault occurrence also increases. When error masking capability is introduced in system, the system is
more robust and can tolerate more transient faults as the probability of fault occurrence of the system
increases. However, no system can tolerate an arbitrary number of faults. It is shown in this thesis that,
increased probability of fault occurrence results in increased probability of error masking but with a
threshold value of . When error masking is not introduced the probability of system success decreases
since in that case system success is attributed only by the fault-free environment system success, not by
the system success in environment where transient faults are likely. As the number of maximum faults f
increases, the probability of system success in fault free environment decreases. Consequently, increased
probability of fault occurrence results in decreased probability of system success without fault masking.
Decrease in such probability is very sharp with high value of f.

As the number of maximum faults f increases, the probability of system success without fault masking
capability decreases and the probability of system success with fault masking capability increases. This is
because, as the number of maximum fault f occurrence increases, the probability of overall system success
is more dependent on the fault masking capability of the system, which is limited for any practical system.
So, for higher number of f, the probability Pgyccess is low. Since there is a threshold value for f'up to which
fault masking is effective, beyond that value of /* overall system success decreases. This is because, for a
higher number of errors, the masking capability diminishes and the system success only depends on fault
free execution of task which will further decrease as f increases.

To run the recovery copies in case of faults more slack needs to be provided in the schedule. If the amount
of slack is not sufficient to run the recovery copies in case of worst-case fault pattern, then the system may
not be schedulable. If the task utilization is high, then providing appropriate amount of slack in the
schedule may not be possible and the system may not be schedulable. So, probability of overall system
success decreases with higher utilization of tasks.

It is interesting to observe that, task sets with same utilization may have different probability of success
for the same maximum number of transient faults /. This is because, a task set with some task with very
high execution time may need to run the recovery copies for a long time which may cause violation of
deadline of some tasks with lower priority. Hence, task with higher primary execution time may cause
violation of task deadline. So, the probability of overall system success decreases with higher primary
execution time of tasks.

18. Conclusion:

Meeting task deadlines strictly is the main objective of hard real-time system. If faults are likely,
mechanisms must be employed to tolerate the faults if the system has to avoid catastrophic consequences.
Use of redundancy is the solution for achieving fault tolerance. In this thesis, due to space, weight and cost
consideration building real-time fault-tolerant embedded system using time redundancy rather than
hardware or software redundancy is addressed. Moreover, instead of system level fault tolerance, node-
level fault tolerance is more cost effective since it avoids using redundant nodes to achieve fault tolerance
and provides opportunity to use simpler protocols.

In this thesis, temporal error masking technique is used at node level to tolerate at most f transient faults.
The number of recovery copies run in case of an error is f. Running f recovery copies requires more slack
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in the schedule which may not be available for many task sets in hard real-time systems. If we decrease
the number of recovery copies, that is f, all errors may not be possible to mask at node level. If error could
not be masked at node level, system level fault tolerance has to be employed. However, by running less
number of recovery copies more slack would be available in the schedule and more task sets could be
schedulable which may not be possible if f/ recovery copies are run. Future work could be to find a trade-
off between system level and node level fault tolerance, so that, some errors are tolerated at node level by
running less than f number of recovery copies, thereby, providing more slack in the schedule and hence
allowing more task sets to become schedulable, and errors that could not be masked at node level could be
tolerated system level.
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APPENDIX-A

Results from injecting fault in 68340 microprocessor

Given that a fault occurs, an error
is generated.

373 (of 2076)

17%

PpE

Given that an error is generated,
the error is detected by double
execution(DE)

68 (of 373)

18%

Pr

Given that an error is generated,
the error is detected by timer
monitor.

19 (0f373)

5%

PepMm

Given that an error is generated,
the error is detected by a hardware
error detection mechanism(EDM)

286 (0f373)

77%

Pxp

Given that an error is generated,
the error is not detected.

0 (of 373)

0%

Ppem

Given that an error is detected by
DE, the error is masked by TEM

68 (of 68)

100%

Prm

Given that an error is detected by
the timer monitor, the error is
masked by TEM*'

18 (of 286)

6%

Pepm,m

Given that an error is detected by
an EDM, the error is masked by
TEM

194 (of 286)

68%

*! Assuming that an extra timer mechanism exists that detects if the execution time of tasks are violated.
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APPENDIX-B

Theoreml: If 8'( I',-7)>0 and &'( I',/)=0, then, in both RM(I") and RM'(I), any task with release time less
than t finishes before time 7.

Proof:
Since 8'( I',t-1)>0 and &' I',t)=0 implies that &'( [',t-1)=1.

Y= (T, t)+ (I,
Or, &(T,t)=Y (1) ¥(I.1)

Similarly, 8'( T, t -1)="¥'([,t-1)- ¥([,t-1)=1.

Since, by property 5, ¥'([',t-1)= ¥(I',t-1), we have W(I',t-1)=0 and ¥(I,t-1)=1.
W(I',t-1)=0 implies that all tasks released before t is finished by t in RM(T").

ST, t)=Y (L,t)- W(,H)=0
YH(,t)= P(ILh)

Subtracting an CORDY) 2G from both sides and using the definition of ¥, we have,

PI(Tt) - an Ry 20= W) - an R 20 =sub(P(It-1),1)

Since W(I,t-1)=0, we have W' (L,t) 'an DRD(F’t)2Ci =0. So, all task released before t is completed by t in
RM'(I) by property 4.

Theorem?2:
If 8'( I',t-1)>0 and RM(T ,t-1)=1 then &' I,t)=8'( [',t-1)-1.
Proof:

Y(I',t-1)=0 for RM(T" ,t-1)=1.

ST, t-1)=¥ (I,t-1)- Y(,t-1)= ¥ (I,t-1)>0

d( I,t) is the amount of extra work to be done at t. Since RM(I" ,t-1)=1, the extra work is equal to the
amount of work at t-1 due to ffaults decreased by one time slot.

d(Tt)= W' ([,t-1)-1=8'( I, t -1)-1 since 3( I, t -1)= ¥ ([,t-1).

Theorem3(adapted from [5]): Given task set I" and, the lowest priority task T in I' completes by T; Xj in
RM'(T), if and only if, 8'( T',t)=0 for some t, fin(Tj)<t< T; Xj.

Proof: To prove the if part, assume that t0 is the smallest value such that fin(T;)< t< T;Xj and 6f( I,t)=0. If
d( I',t)=0 for every t=0,....t0, then RM'(I') and RM'(T") are identical from t=0 to t=t0, which implies that
T;; completes by fin(T;)< T;%]j in both schedules. If, however, d( T,t)>0 for some 0<t<t0, then t, be the least
time before t0 such that &' I',t)>0. Note that t,< Tixj(since t0 is the first value after T;Xj at which &0) and
that & T, t;+1)=0(by definition of t;). Hence by Theorem 1, all tasks that are ready before t; finish
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execution by t; in both RM(I') and RMf(F). Moreover, 6f( I',t)=0 for t=t;+1,....,tp, which means that
W(I,t)= Y(I.t), and thus RM(T) is identical to RMT) in that period. But T;; completes in RM(I') at
fin(T;;), which means that it also completes by fin(T;;) in RMf(F).

We prove the only if part by contradiction: assume that &'( T,t)>0 for all fin(T;;)< t< TiXj and yet T;; finishes
in RM'(I') at t, for some fin(T;;)< t1< TiXj. The fact that the lowest priority task, Tj, executes between time
ti-1 and t; means that no other task is available for execution at t;-1, and thus ‘Pf(F,tl-l)=1. Given the
assumption that &'( T,ti-1)>0, by Property 5(in Section 13) implies that ¥(I',t;-1)=0, which by Property
1 (in Section 13) implies that RM(I',t;-1)=1, and by the definition(in Section 13) of 8'( T',t) leads to &'(
I',t;)=0, which is a contradiction.

Corollary 1: A necessary and sufficient condition for the feasibility of RMY(T") for a given I' and for given
fault pattern with f or less faults can be obtained by applying Theorem 3 to N task sets I'j, j=1,..,N where
I'; contains the j highest priority task in Iy,

Proof: Can be proved using induction on N.

The base case is trivial, when j=I1, since there is only a single task. For the induction step, assume that
RMf(Fj) is feasible and consider I'j:;= I'; U {Ti }, where Ty has a lower priority than any task in I'j. IN
RMf(rj+1), all tasks in I will finish at exactly the same time as in RMf(Fj), since T has the lowest
priority. Hence, the necessary and sufficient condition for the feasibility of RMf(Fj+1) is equivalent to the
necessary and sufficient condition for the completion of T by D (the deadline of Ty).
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