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Abstract—Global fixed-priority scheduling of constrained- Context of this research.The adoption of global sched-
deadline sporadic tasks systems is important not only for yler in actual multicore systems is becoming more likely
CPU scheduling but also in other domains, for example, as various mechanisms (e.g., inter-core prefetching [16],

scheduling real-time flows in WirelessHART networks designed locked h 0 bei dt d arati
for industrial process control and monitoring. In this paper, we  |0cked-cachel[20]) are being proposed to reduce migration

propose a novel priority assignment scheme for scheduling such  Overhead in the design of recent multicore technology. The
task systems on multiprocessors and demonstrate, using proof analysis of global FP scheduling has also been applied to

and simulation, that the scheme is superior to prior schemes.  the end-to-end delay analysis and priority assignmentef th
periodic real-time flow scheduling on multiple communica-
. INTRODUCTION tion channels of WirelessHART networks [18], [19]. Wire-
We address the following problem in this paper: GivenlessHART is an open wireless sensor-actuator network stan-
a collection ofn constrained-deadline sporadic tasks, is itdard specifically designed for industrial process contool t
possible to meet all the task deadlines when the tasks amevoid severe economic loss or environmental threats, eeduc
executed omm unit-capacity processors using global fixed- production inefficiency, enhance equipment monitoring and
priority scheduling? maintenance[]3]. Improvement of global FP schedulability
Single chip multiprocessors are viewed as serious conanalysis and the priority assignment policy would result
tenders for many hard real-time systems in order to to medah less pessimistic end-to-end delay calculation and would
the growing demand of computing power. Many hard real-enhance the schedulability of the real-time flows transditt
time applications, e.g., control and monitoring, are oftenover multiple communication channels in WirelessHART
modeled as a collection of recurrent real-time tasks wheraetworks; and consequently, better control and monitoring
the instances or jobs of each recurrent task hbhwed  of industrial processes can be attained.
deadlines. The fixed-priority (FP) scheduling policy to inee To achieve economic advantage by hosting multiple
the deadlines of application tasks is the preferred sciveglul avionics functions on a single processor, aviation ingustr
approach in industry due to its flexibility, ease of debuggin is contemplating integrated modular avionics (IMA) [1].
and predictability. Considering the trend towards adaptin Similarly, the growing complexity and increased safety
chip multiprocessors for many safety-critical and realdi requirements in automotive systems have led to the devel-
applications, the study of FP scheduling algorithm and itsopment of AUTOSAR framework focusing composability
analysis on multiprocessors is important. of components[[2]. Version 4.0 of AUTOSAR provides the
Real-time task scheduling on multiprocessors is primarilyspecification for multicore OS architecture. When multiple
based on either thglobal or the partitioned approach. functions/components are integrated on the same multicore
In global scheduling, a task is allowed to execute on anychip, the tasks/runnables of each function/component ean b
processor even when it is resumed after preemption. In-partglobally FP scheduled on a (dedicated) subset of the pro-
tioned scheduling, each task is assigned to a fixed processoessing cores. This scheduling approach requires no éxplic
on which the task is allowed to run. A recent survey ontask/runnable assignment algorithm, and more importantly
various global and partitioned scheduling methods can bée temporal behavior of each function can be restricted
found in [12]. We focus on global FP scheduling in this only to its dedicated cores. Such restriction is necessady a
paper. The global FP scheduling of hard real-time systembeneficial for function/component upgrade, modificatiod an
can be thought of as a 2-phase process:as&ignment of incremental certification.
priorities to the tasks, followed bychedulability analysis In many real-time systems, e.g., avionics, spacecraft and
to determine whether all deadlines will be met under theautomotive, it is important to efficiently use the procegsin
priority assignment. The major conceptual contribution inresources due to size, weight and power constraints. Reduc-
this paper is a novel insight that allows us to bound theing the resource requirement (e.g., number of processors)
amount of interference that higher-priority tasks may haveof such systems would significantly cut costs for mass pro-
on the lower-priority tasks. Based on this insight, we ps®po duction of, for example, cars, trucks or aircrafts. However
a novel priority-assignment algorithm and a correspondingf the pessimism in schedulability analysis for such system
schedulability test, the iked-Fiority Test FPT), for global is large, then a relatively-higher number of processors is
FP scheduling. required to meet all the deadlines of the tasks. Our endeavor



in this paper is to reduce such pessimism by proposing betteneasure these overhead costs considering the application,
schedulability tests for global FP scheduling. operating system and the target hardware platform.

Since the optimal priority assignment for global Related Works. FP schedulability tests can broadly be
FP scheduling on a multiprocessor system (at presemtategorized in two flavorautilization-bound tests&nd iter-
time) is unknown, the quality (e.g., minimum number of ative tests Several utilization-based tests exist for global
processors required) of many previously proposed globaFP scheduling[5],17],14],[[17]. The idea behind such tests
FP schedulability tests depends on the actual priority oris to compare the total utilization of a taskset against amiv
dering of the tasks. Therefordetermining a good priority  bound; if the total utilization does not exceed the bounenth
ordering is as important as deriving a good schedulability the tasks are guaranteed to meet their deadlines. These test
test The FPT test proposed in this paper is based on a noveare very time efficient (linear in the number of tasks) but
fixed-priority assignment policy. are not exact (if the total utilization exceeds the utiliaat

We make the following contributions in this paper. First, bound, the task set may or may not meet all deadlines).
we propose a new criterion for reducing the pessimism in es- The basic idea of iterative schedulability test is that
timating the interference inflicted by higher-priority kason ~ one condition is tested for each lower-priority task. Sev-
a lower-priority task. Second, we propose a novel priority-eral iterative tests exist for global FP scheduling of
assignment algorithm for global FP scheduling based owronstrained-deadline sporadic tasks [7], [9]J[10]. [15B],
this criterion. We prove that if all the tasks are successful [17]. Empirical investigations in[7],[10],[13]/]17] sko
assigned priorities using our proposed priority-assignme that such tests are highly efficient in determining the suhed
policy, then all deadlines of the tasks are met @R test). lability of task sets having a total utilization beyond the
Third, we prove that theFPT test strictly dominates the state-of-the-art utilization bound. THEPT test proposed in
HPDALC test [17] (the best global FP schedulability testthis paper is of the iterative type.
at present time). Fourth, we empirically show that the Based on Baker's seminal work inl[7], several works
schedulability of theFPT test is noticeably better than that [10], [9], [15] have proposed iterative schedulability tees
of the theHPDALC test. One of the major findings of our for constrained-deadline sporadic task systems. Ih [B], [
empirical study is thatask-set cardinalitynot considered in  [15], the work done by a job of a higher-priority taskis
many previous works, has a significant impact on the globatonsidered as “carry-in” work within the scheduling window
FP schedulability of a task set. of a lower-priority taskr if a job of taskr; is released

The rest of the paper is organized as follows. Sediibn llbefore the beginning of the window and executes (partially
presents system models and related work. Building blocker fully) within the window. If a higher-priority task is
upon which theFPT test is built are presented in Sectlad IIl. considered to constitute carry-in work, then its worstecas
Our new priority-assignment policy and tHePT test are interference on the lower-priority task is higher than tbft
presented in Sectidn JV. Simulation results are presented iits non-carry-in counterpart [15], [13].

Section[ Y. Finally, we conclude the paper in Secfioh VI. Many global FP schedulability analyses of a lower-
priority task, considers all the higher-priority tasks to have
Il. MODEL AND RELATED WORK carry-in work [10], [9]. Baruah’s global EDF schedulabilit

Task Model. We consider a set of independent, sporadic analysis in [[8] limits the number of higher-priority tasks
tasks inI" ={y, 7,...7,} to be scheduled om identical  considered to have carry-in work {on — 1), wherem is
processors. Each sporadic tasks characterized by a triple the number of processors. The test proposed by Guan et
(Ci, D;, T;) where:C; represents the worst-case executional. [15], here called theRTA- LC test (“LC” stands for
time (WCET); D; is the relative deadline, which is the length “limited carry”), employs the same carry-in task limitatio
of the scheduling window of each jo; is a lower bound on  as the analysis ir [8] to improve the response-time analysis
the separation between release times of the jobs of the tasfroposed in[[9] for global FP scheduling of constrained-
Each job of taskr; requires at mosC; units of execution deadline sporadic tasks. Recently, inspired by the works in
time between its release time and deadline whichjsime  [9], [8], [15], Davis and Burns[]13] proposed a test (the
units after its release time. The utilization and density ofDA- LC test) that also considers: — 1) tasks having carry-
task; areC;/T; andC;/D;, respectively. in work to improve the schedulability analysis in_[10] for

In this paper, all time values (e.g, WCET, deadline, andglobal FP scheduling of constrained-deadline sporadicstas
interval length) are assumed to be positive integer. This is The RTA- LCtest dominates thBA- LCtest for any given
a reasonable assumption since all the events in the systefixed-priority ordering of the constrained-deadline ta§i3].
happen only at clock ticks. The cost of different kinds However, Davis and Burns [13] also addressed the problem
of overhead, for example, context switch, preemption andf finding an effective priority assignment by combining
migration, are assumed to be included in the WCET of eacludsley’s optimal priority assignment (OPA) algorithid [6]
task. Although we do not address such issues in this papewith the DA- LC test. It is empirically shown that OPA
one can rely on experimental studies (similar [tol[11]) tocombined withDA- LC is better than arRTA- LC test that



uses some other (for example, deadline-monotonic) heurist Interfering Workload (IW): The | Wof taskr; € ¢
priority assignment [13]. is the cumulative length of the intervals during which jobs

Pathan and Jonsson recently proposed a new priorityef task 7; execute and a job of task, is ready but not
assignment policy and a corresponding schedulability, tesexecuting within its scheduling window of length;. We
called theHPDAL C test [17]. TheHPDAL C test uses a mech- denote byl and IVC the upper bounds on thew of
anism, called the hybrid-priority assignment (HPA) policy taskr; € ¢ on any job of taskr, wheneverr; is aCl task
(to be presented shortly), to improve the priority-assigntm  and NC task, respectively. The values &f,/ and I," are
policy for the combination of OPA algorithm and the given as follows[[13]: '

DA- LC test propqsed by Davis and Burng in_[13]. The 1S = min(WE!, Dy — Cr + 1) 3)
HPDALC test considerm — 1 — m/) carry-in tasks for Ne ' ve
the schedulability analysis of each lower-priority taskeng I = min(Wiy", Dk — Ck + 1) “4)

0 < m’ < m. The HPDALC test is the state-of-the-art  The difference between the carry-in and non-carry-in
iterative test for global FP multiprocessor scheduling. Wel Wof task; is denoted byl/;/**" and is given as:

will show that our propose&PT schedulability test strictly
dominates théHPDALC test.

I1l. BUILDING BLOCKS OF THEFPT TEST Total Interfering Workload (TIW): TheTI W is the sum
of I W of all the tasks in{. We denote by, (¢) the upper
bound onTl W due to all the higher-priority tasks in sét
YThe value ofI;(¢) is calculated as follows [13]:

IR =10l - 1INE (5)

The priority-assignment policy and the corresponding
FPT test proposed in this paper are based on three differe
building blocks: (i) theDA- LC test [13] (ii) the basic idea

of the OPA algorithm[[18], and (iii) the HPA policy [17]. L)=>_1+ > Irr (6)
In this section, we present these three building blocks upon Ti€C i €Maz(¢,m—1)

which theFPT test in Sectio 1V is built. where Max((,m — 1) is the set of(m — 1) tasks from
A. TheDA- LC Test set( that have the largest values Bf/""".

Given a sefl” of constrained-deadline sporadic tasks and Interference: The interference on a job of task; is
a priority assignment on the tasks, ti&- LC test [13] the cumulative length of the intervals during which the job
determines the schedulability of each task € I' based of task 7, within its scheduling window is ready but not
on two factors: (i) the upper bound on interference due teexecuting. Because interference is an integer and all the
the higher-priority tasks on any job of task, and (i) the ™ processors are busy executing tasks frorwhile task
WCET of taskr,. If the sum of these two factors does not 7« IS interfered, the upper bound on interference due to the
exceedDy,, then the deadline of any job of, is met. tasks in¢ on any job of taskr is [ ) |. The DA- LC test

In the remainder of the paper, we call the higher priority for each lower-priority task;, € I' is given as follows:
taskr; a “carry-in task”(Cl) if it is considered to have carry- D> O I (¢) .
in work within the scheduling window of a lower priority B Cnt { J ()
task r; otherwise,r; is called a “non-carry-in task”(NC). where is the set of higher priority tasks of task and

In order to understand th®A-LC test, we need to ,, is the number of processors.
know how theworkload, interfering workload (| W, total ,
interfering workload (TI W, and interference within the B. The OPA Algorithm
scheduling window of any job of task, are calculated in Audsley’s OPA algorithm, originally proposed for unipro-
[13]. Note that the length of the scheduling window of any cessors in[[6], is extended by Davis and Burns for priority
job of task 7, is Dj. Assume that is the set of all the assignmentin global FP multiprocessor scheduling [13g Th
higher-priority tasks of task;. OPA algorithm given in FigurEl1 assigns fixed priorities to

Workload: The workload of task; within the scheduling e tasks in se# to be scheduled om processors based
window of lengthD;, is the cumulative length of intervals ©N Some global FP schedulability test
during which taskr; executes in that window. We denote by Algorithm OPA(Taskset A, number of processorsri, Test S)
Wf,f and Wﬁc the upper bounds on the workload of task 1. for each priority levePL, lowest first
7; € ¢ within any interval of lengthD, wheneverr; is a 2. for each priority-unassigned taske A

Cl task andNC task, respectively. The values Bf &/ and If 7 is Sghedmab"i Ogﬁl Pt:_(IJ.CGSSgtrS f’i;-] pr|i|0fit% levell
NC ; . ’ according to schedulability test with all other priority-
Wz}k are given as follows [13]: unassigned tasks assumed to have higher priorities, Then

3
4
5
Wi,czf _ Nik - C; + min(Cy, Dy, + Di — Cs — Nf T () (75 assignr to priority PL
8
9.

break (continue outer loop)
WY = |Di/Ti) - C; + min(Ci, Dy — | Dy /T3] - T)  (2) return “unschedulable”
return “schedulable”
where NF = [ (D, + D; — C;)/T;] in Eq. ).
Figure 1. Audsley’s OPA algorithm for multiprocessdrs|[13].



The OPA algorithm assigns priority to each task in setprocessors has nothing to do with partitioned multiprooess
A starting from the lowest-priority level. In order to be scheduling —the separation only exists as a means for
used, the FP schedulability teSthas to be OPA-compatible reducing the pessimism of interference due to the higher-
[13] which requires thathe relative priority ordering of the priority tasks on a lower-priority task
higher priority tasks must be irrelevant 9. It is proved in
[13] that theDA- LC test is OPA-compatible. V. PRIORITY ASSIGNMENT AND THE FPT TEST

If the function call OPA[, m, DA- LC) returns “schedu- In this section, we present our proposed priority-
lable”, then all deadlines of the tasks in are met on assignment algorithm and the correspondfiJ test. First,

m processors according to the priorities assigned by the OPwe present an overview of our proposed priority-assignment
algorithm in Figur&ll. Whether or not a (priority-unassigned policy in subsectiori TV-A. Then, in subsectién 1\-B, we
task, say task, can be assigned the particular priority level present a new and elegant criterion for finding the set of
PL is determined by applying th®A- LC test to taskr  separated tasks for a lower-priority task. Finally, theadst
assuming higher priorities for all other (priority-unagsed) ~ Of our novel priority-assignment policy, based on the new
tasks. It is proved in[13] that the combination of OPA andseparation criterion, is proposed in subseckion JV-C.

DA- LCis the optimal fixed-priority assignment policy when o Overview offPT Test

using theDA- LC test. . . . . .
Our proposed priority-assignment policy assigns priesiti

C. Hybrid Priority AssignmentHPA) Policy to the tasks startirfigfrom lowest-priority levelPL=1 to the

Pathan and Jonsson recently observed[id [17] that, ipighest priority levelPL=n. .At each priority levelPL, all
not all the higher-priority tasks and all the processors aréa_Sks_’ that are not yet aSS|gneq any prlorlty are ca.lleld the
included when applying thBA- LC test to a lower-priority pnonty-unasmg_ned task@u_r objective is to assign priority
task, the pessimism in the estimation of interference due t6° one of the pno_nty—unasag_ned tasks at each prioritgllev
the higher-priority tasks may be reduced. Based on this find- Each of the priority-unassigned tasks when selected as a

ing, a new priority-assignment policy and a correspondingcandidate for priority assignment is called ttaeget task.

schedulability test, thelPDALC test, is proposed i [17]. ~ CIVen a target task at priority levefL, we temporarily
The priority assignment for thePDALC test is based separaten’ processors and separate tasks from the set of

: L C other priority-unassigned tasks where< m’ < m. Unlike
(6 keep Some. ks and prosessors separaie” flom thdeHPDALCIESL, ther! Separated tasks anetassigned any
schedulability analysis of a lower priority taskhe priority- priority w_hen separated, and more importantly, the _cmen
assignment policy of thelPDAL C test works as follows [17]: for se_lectmg the separated tasksiat b"?‘se.d on the “h|ghest
(i) a total of m’ highest-densityasks are given the highest density”. We havg proposed a new criterion for selt_act_lng the
fixed priority, and (ii) the priority ordering of the remaig tasks for separation for each target task at each prionis/ le

(n — m’) lowest-density tasks are determined based on th&h€ criterion will be presented in subsectlon TV-B).

combination of the OPA algorithm in Figufd 1 and the Af‘?r _separatlngm’ tasks for a _parhcular target task
DA- LC test using(m — m’) processors) < m’ < m. A at priority level PL, we check (using thdZ)A- LC_ te_st)

task setl’ passes théiPDALC test, if and_only it all the whether or not the target task can be assigned priority level
tasks are assigned priority using this scheme. PL. The separated tasks and separated processors are not

Notice that theHPDALC test “separates’ a total of/ considered while evaluating theA- LC test for the target

highest-density tasks, here referred to sesgarated tasks, faSkl' IIthhteh tar%ﬁt tf‘Skk passes. tﬁé‘é LC_ te_?t ?tvpé:_lorll';y
and “separates” a total of.’ processors, here referred to as tﬁvet ,t tenk de as tIS ass'gtgz ch):r'(t)”i/ ? o
“separated processors from the schedulability analysis of € larget task does not pass » est at priority
the remaining(n — m’) lowest-density tasks. The separatedlevel PL, then anot.he.r pr|or|-ty—unaSS|gne(.j t‘.%k Is selected
tasks and separated processors are not considered wHile e th? t"?“ge‘ for prlorlty assignment at prlorlty Ie‘.Rﬂ.. I
uating theDA- LC test for a lower-priority task. Therefore, no pnorlty?ur]ass,lgn.ed task can be assigned pr|or!ty level
the number ofCl tasks when applying th®A- LC test PL_’ t_h_e priority ass'gnme”‘a"?- If all tasks are assigned
to each of the(n — m') lower-priority tasks is limited to priorities, then the priority asagnmes_ucceeds_ .
(m—1—m'). At present time thélPDAL C test is the state-of- When a target task can not be assigned priority 15|

the-art iterative test for global FP multiprocessor schiadu the correspondmg_ separ?ted tasks"and separated pracessor
are no more considered “separated”. These tasks along with

In this paper, we have developed a new criterion to o . . 4
determine the set of tasks that are separated when analyzié) hireliz r(':?irr:g'tl;‘r;aﬁ23”;?;;5{(;?rztC;?;;g;rliﬁs gﬁdlda

the schedulability of a lower-priority task. Our proposed i . : A
criterion is special in the sense that it ot based on larly, if a target task is assigned priority leveL, then the

“higheSt denSiFy”. and separatedi;fferent S_et of tasks for 1in this paper, we assume without loss of generality that a haskng
each lower priority tasks. The “separation” of tasks andpriority level 1 (n) has the lowest (highest) fixed priority.



corresponding separated tasks and separated processors arNow, separatingn’ tasks from set and separatingn’
no more considered “separated”. And, these tasks are algocessors may able task to pass theDA- LC test. Our
considered as candidates for target tasks at next prioritpbjective is to separate those’ tasks from¢ such that the
level. Thus, the separated tasks and separated processm&arferenceL )J is maximallyreduced. We also separate
for each target task are temporary in the sense ghatity m/ processors IfSEP is the set ofm’ separated tasks
assignment for each new target task always starts with alkelected from set, then the value of (new) interference on
m processors and all the priority-unassigned tasks any job of taskr, (after separation) i§ 26=5P) | where
Ik(f SEP) considers(m — 1 — m’) carry-in tasks from

et(¢ — SEP). In other words, the problem we are trying to

In this subsection, we propose an elegant criterion fo Solve is the following:What is the best way to separate
separating the tasks for each target taskRemember that oy from set (i.e., finding setSEP) such that the value
HPDALCtest separatem.’ highest—densityasks fromI" and of I,,(€) is maximally reduced fom’ > 0?
Eﬂgnre?r?gilrﬁrsrqtzi g?r%&ii?ge%fsigigsi?ﬁ;i&(gntis:nft)o Note that when task; fails to pass th@A- LCtest before

/ , . separation of any task fror, the value ofl;(¢) depends

processors for some’, 0 < m’ < m. However, by studying on (m — 1) carry-in tasks from set. We denote byci s
the details of theHPDALC test, we find a very interesting and ncs, respectively, the sets (fril. tasks andNC tasks
fact: it is not necessarily the pessimism of the interferencecrom set¢ such thatgl (cis U ncs). According to
estimation of the highest-density tasks that may cause sonEeq [8), we havei s — Maz (¢, m—1), and then obviously
Iower priority taSk7.']€ to fail the DA- LC test To see why, ncs — (¢ —ci s). Separating ’each of the/ tasks fromé
consider the follor/vrng example: _ is equivalent to separating the task either froirs or ncs.
Example 1: Consider four tasks i = {r,...74} to be We first develop the criterion for separating exaatiye

scheduled onm = 3 processors using global FP scheduling. . . ;
The parameter€C;, D;, T;) of the four tasks are as follows: task from¢, particularly, separating one task either from set

(26,51, 54), (11, 14, 25), (32, 33,37), and(19, 25,29). Theden-  ci S or ncs. Then, based on the criterion of separating one
sities of the tasks ar€”’i/D1 = 0.509, C2/D2 = 0.785,  task, the criteria for separating subsequent tasks is miese

B. New Criterion for Separation

C3/D3 = 0.967, andC4/D4 = 0.760. . ;o

The tasksel” does not pass thePDALC test. In particular, none _(Separatlon of one task)Whenm' = 1, we separate
of the tasks inl' can be assigned the lowest priority levl=1 either oneCl -task or oneNC-task that needs to be selected
by separatingn’ highest-density tasks for any’ = 0, 1, 2. either from setci s or ncs, respectively. Remember that

However, there exits a valid priority assignment farWe sepa-  we also separaten’ = 1 processor. Thus, the number of
rate the two task§7s, 74} and also separate’ = 2 processors. (] tasks after separation is at m@st — 1 —m’) = (m —2)
The other two taskgr, 7} are schedulable ofm —m’) =1 = \yhan applying theDA- LC test to taskr, considering the

processor by assigning priority leve®.=1 and PL=2 to tasks . )
71 and, respectively. Then, the two separated tasksnd 74 non-separated tasks frognusing (m —m') processors.

are assigned priority leveBL=3 andPL=4, respectively. These When separating €l -taskr; wherer; € cis C¢, the
two highest priority taskss andr, are trivially schedulable since  value of I (¢) is reduced by]CI (i.e., the carry-inl Wof
we havem = 3 processors; and these two highest priority tasks task ;) according to Eq.[{6). In order to maximally reduce

uses at most two processors at any time. Consequently, the entir
taskset is global FP schedulablote that the two separated ? .(5).by separatlng exactly oné@ tf"ISk fromci s, the best
tasks 73 and 7, are not the two highest density tasks. 0 criterion is to select the task fromi s that has thdargest

The lesson learned from this example is that “separation¥@lu€ Of carry-inl W The largest value of carry-ih\W of

cr
based on the HPA policy is effective; however, the bes@nY taskinci s is max I

criterion to separate the tasks from the schedulability-ana  Separating eNC-task 7; wherer; € ncs C ¢ hastwo
ysis of the lower priority tasks is not necessarily based oreffects. First, separating theC task 7; from ncs reduces
“highest density”. The crucial observations we make is thathe value ofI;(£) by INC (i.e., the non carry-in W of
the (constan} set of m’ highest-density tasks may not be 7;). Second, one of thé?l tasks fromci s becomes a new
the bestset of separated tasks for the schedulability of theNC task since, after separation, we have at most— 2)
lower-priority tasks. As will be evident nowur proposed carry-in tasks. Th€l task fromci s that becomes BIC task
criterion separates different sets of tasks for each pdssib is the one with theninimumvalue of the difference between
target task at each priority level its carry-in and non carry-ihWamong all the tasks ini s.
Proposed Separation Criterion. Consider a target task This is because, after separation, fe. function in Eq. [(6)
74 at priority level PL such that¢ is the set of all higher- considers(m —2) carry-in tasks that have the largest values
priority tasks ofr.. Assume that task; does not pass the Of the difference between the carry-in and non carry-Wi

DA- LCtest when considering all the tasks frgnand all the ~ Thus, separati\r;g BIC-task 7; ]fjrofrzr}ncs reduces th%)/la}ue
m processors in th®A- LC test. So, according to Eq(7), Of Lk(§) by ([} + min I ) Where Jmin 17,
the upper bound on interference, i. elk 5>j that taskry is the m|n|mumvalue of the dlfference between the carry-in

suffers due to the tasks ifis greater tha{D,. — Cy). and non carry-in Wfor any task inci s.



Note that the value of mm IPFE is completely  Ii(€). If O taskr, is separated, i.e., condition in line 7 is

independenbf the NC task 7 “that is selected for separatlon true, thenr, is removed from seti s in line 8. If NCtaskr,
from ncs. Thus, in order to maximally reducé,(¢) b is separated, i.e., condition in line 7 is false, then@heask
separating exactly onC task fromncs, the best criterion 7. determined in line 6 becomesNC task, and thus task.
is to select theNC task fromncs that has thdargestvalue 1S first removed from seti s in line 10. Then, taskr. is
of non carry-inl W The largest value of non carry-inwof ~ included in sencs, and finally, theNC task 7, is removed

any task imcs is maz I]C,f Whether to separate@ task from se_tncs_ in line 11. Separation of the subsequent task
TiEnes T ) in next iteration uses these updated set€lofand NC tasks.
or aNC task, whenm' = 1, is determined as follows. When the for loop exits, the set of total’ separated tasks
Criterion For Separating One Task: The taskr, € Ci's  jn ¢ (ci s Uncs) is returned in line 14.

isfies/ 1 CI ; i
that satisfied;’; Ttrécczlms I;7}; is selected for separation if Now we will show in Lemm41L that our proposed sepa-

magz IS > maz I & min IDIFF gy  ration criterion isbetterthan the separation criterion that is
Ti€cis jEncs Ta€cis based on the “highest-density”.
otherwise, task, € ncs satisfying Ilkac = maz INC is Lemma 1. If task T passes théA- LC_Z test by sgparating
selected for separation. A m’ highest-density tasks from sgof higher priority tasks,

(Separation of more than one task)If m’ > 1, we thenT, also passes thBA- LC test by separating the tasks
first separate one task from set= (ci s Uncs) using the  returned by algorithnBel ect (£, m/, 7;) from set, where
criterion in Eq. [8). Then, this separated task, say task DA-LC test in both cases after separation uges — m')
is removedfrom eitherci s or ncs depending on whether Processors and the non-separated tasks frontset
7, € Ci s or 7, € ncs, respectively. Now separating the Proof: Let SEPjcnsiry is the set ofm’ highest density
next task is the same as separating one task from the updaté@m seté and Hicpsity = (§ — SEPgcnsity). L€t SEPyy,
set(ci suncs) = ¢ — {r,} using Eq. [B). is the set ofm’ tasks returned bySel ect (&, m/, 1)

The pseudocode for selecting the’ tasks from set and Hour = (£ — SEPo,). If task 7, passes the
¢ for separation is given in Figur€l 2. The algorithm DA- LC test by separating the tasks 8EPc;,sity from &,

Sel ect (&, m/,7;) returns m/ separated tasks selected thenHaccor;jlng toDA- LC test in Eq. [[¥), we must have
k(Hdaensity

from set¢ considering the target task;,. | et | < (D — Cy).
Algorithm Sel ect (&, m/, &) Since our separation criterion maximally reduces the
1. cis = Mazx(&,m—1) value of I;(¢) by separatingm’ tasks from setg¢,
2. ncs =¢ —ci s - we have Iy(Hour) < Ip(Hgensity). Consequently,
i. Fo'!gd: :]to mkr //_eachh|terz?tlccin_separatelscgne task L%J < (D — Cy) which implies thatr;, also passes

Ind the taskr, € ci s wherel, = maz I; the DA- LC test whenn' tasks are separated using algorithm
5 Find the taskr, € ncs where I} = = maz Ifk Sel ect (&, m/, 1) from seté. |

T ncs Y
6.  Find the taskr, € ci s where[2{FF = T maz  IPIFF The two ta_sks (i.eq3 and7,), separation of which make_s
o1 DIFFE Tagels the taskset in Example 1 schedulable, can be determined

7. (IS > IS + 1577 Then ; : iterion: b be d ined
g cid Zeis {Ta’} using our separation criterion; but can not be determine
9. Else using the “highest-density” based separation criteridrus]
10. cis=cis— {7} our proposed separation criteriontistter We now present
11 ncs = (ncs U {r.}) — {m} the details of our priority assignment policy for global
12. EndIf FP scheduling based on this new separation criterion.
13. End For ] o ) )
14. Returné — (ncs Uci s) C. New Fixed-Priority Assignment Algorithm

Figure 2. Algorithm for selecting the tasks for separation The development of our priority assignment algorithm

We determine the set @l tasks and\NCtasks from sef  takes the advantage of the HPA policy, applies the
in line 1-2 of Figurd R where sét/ax (¢, m — 1) is defined DA- LC test to each target task and uses the basic idea
in Eq. [@). Each iteration of the loop in line 3-13 selectsof OPA algorithm. The priority assignment to the tasks in
one task from(ci s U ncs) for separation. TheCl task I starts from the lowest priority levéPL = 1 ends at the
Ta € Ci S having thelargest carry-in | Wis determined in  highest priority levePL = n. The pseudocode of the priority
line 4. TheNC taskt, € ncs having thelargestnon carry-  assignment policy of th€PT test is presented in Figuié 3.

in | Wis determined in line 5. Thel taskr. € ci s having Initially, all tasks are considered as potential targekgas
the smallestvalue of the difference between its carry-in and for priority assignment at the lowest priority level=1. All
non carry-inl Wis determined in line 6. the tasks in sel’ are stored in variabl&; (set of priority-

The condition in line 7 (based on the criterion in Ed. (8)) unassigned tasks) in line 1. Each iteration of the loop ia lin
determines whether separation of {@le taskr, or separa- 2-22 represents one priority level starting from the lowest
tion of the NC task 7, would maximally reduce the value of priority level PL=1 to the highest priority levePL=n.



At each priority levelPL, the loop in line 3-20 considers
one-by-one priority-unassigned task Ih; until one such
task is assigned the priority leveL. During each iteration
of the loop in line 3-20, a new task, € I'y is selected as

a target task in line 3. The set of other priority-unassignec-
tasks¢ = (I'y — {7 }) is determined in line 4. If the target ©

taskr is eventually assigned the priority leveL, then the
tasks in¢ will have higher priorities than task;.

For a given target task;,, we (temporarily) separate:’
tasks from sef and we also separaie’ processors. During
each iteration (using the variabte’ = 0,...(m—1)) of the
loop in line 5-19 a total ofn’ tasks from sef are separated
in line 6 by calling algorithnBel ect (&, m’, 1) . The other
non-separated, priority-unassigned tasks are stored iH se
in line 6 whereH = (£ — Sel ect (&, m/, %) ). Notice that
the separated tasks for each target task mayifferent
Next theDA- LC test is applied in line 7 to determine if the
target task, can be assigned priority leveL by assuming
the higher priorities of the tasks in sét. In such case, the
DA- LC test usegm — m’) processors.

If the DA- LC test in line 7 is satisfied, then task is
assigned priority levelPL in line 8 and removed from the set
of priority-unassigned tasks in line 9. If the current pitipr
level PL is equal to(n—m), i.e., condition in line 10 is true,
then there are exacthy (priority-unassigned) tasks ihiy
after 1, is removed fromI';; in line 9. And, each of these
m priority-unassigned tasks ifi;; is assigned one unique
priority level betweerPL=(n- mt1) andPL=n in line 12—
13 (note that these are the highest priority tasks and are

Algorithm FPT(T" , m)
1. T'y=T
2. ForPL=1to (n—m)
3. For eachr, € I'y
4. §=I'v—{m}
Form’ =0to (m — 1) //m’ tasks from¢ will be separated
H=¢ — Sel ect (&, m', 1)
If (| 24D | 4+ ¢y < D) Then

m—m

Taskry, is assigned priority levelPL

/la new task is selected as target task

9. FU = FU — {Tk}

10. If (PL=n —m) Then

11. [lthere aren tasks left in["ys

12. Each task il'y; is assigned one unique
13. priority level betweerin —m + 1) to n
14. Return “Schedulable”

15. Else

16. Break and Go to next priority level (line 2)
17. End If

18. End If

19. End For

20. End For

21. Return “Unschedulable”

22. End For

Figure 3. TheFPT test

Correctness ofFPT: We now prove the correctness of the
priority assignment policy of th&PT test in Theoreni]1.

Theorem 1. If algorithm FPT in Figure[3 returns “schedu-
lable”, then all the tasks in sdt meet deadlines using global
FP scheduling onn processors according to the priorities
assigned byFPT.

Proof: If algorithm FPT in Figure[3 returns “schedula-
ble”, then each of the tasks Inis assigned a unique priority

always schedulable). At this point, all tasks are assignegevel between ton. We prove that each task that is assigned

priorities and the algorithm returns “schedulable” in libg
If the current priority levePL is less thar(n —m), i.e., the
condition in line 10 is false, then the priority assignmeont f
next priority level starts (jumping from line 16 to line 2).
If the DA- LC test for taskr; in line 7 is never satisfied
for any m’, 0 < m’ < m, then the for loop in line 5-19

exits; and the loop in line 3-20 begins by selecting another o consider a task,
new target task. If no new task can be selected as a targgh ore pL < (
task at line 3, then the for loop in line 3—-20 exits. Since ati,» deadlines. SinceL <(n—m+1)

a priority level using algorithnfrPT meets all the deadlines.
If a task 7, is assigned any priority levePL between
(n —m + 1) andn in line 12-13 of Figurd13, then task
T 1S one of them highest-priority tasks. Since we have
m processors, each task assigned any priority level between

(n —m+ 1) andn meets all its deadlines.

that is assigned priority levetL
n —m+ 1). We show that task; meets all
, task 7, is assigned

this stage there isotask that is assigned the current priority priority in line 8 of the FPT algorithm in FigurelB. This

level PL, the algorithm returns “unschedulable” in line 21.

implies that the condition in line 7 is true, and we have:

Notice that if a target task can not be assigned prior-
ity level PL, the corresponding separated processors and {LH,J +Cy < Dy
separated tasks aro more considered “separated”. And, mem
these tasks along with other priority-unassigned tasks are where H = & — Sel ect (§,m/,7;) and the set (de-
considered as candidates for selecting the next target tagkrmined in line 4) is the set of all tasks that are assigned
at the current priority level. Similarly, if a target task is higher priorities than that of task,.
assigned priority levePL, the separated tasks along with  Since Egq. [[P) holds, the maximum interference that
other priority-unassigned tasks are considered as camdida any job of task 7, suffers due to the higher pri-
for selecting the target tasks at next priority level. Inasth ority tasks in H is LI‘“(H)J. Eg. @) holds, if and

m—m/

words,the priority assignment for each new target task startsonly if, I,(H) < [(m —m/) - (Dy, — Cx + 1) — 1]. There-

9)

with all the priority-unassigned tasks, i.e., dét;, and all
the m processors It is not difficult to see that the time
complexity of algorithmFPT is polynomial.

fore, the upper bound on thdl W due to the tasks in
H within the scheduling window of any job of task is
[(m—=m') (D —Cr+1)—1].



Notice that after task; is assigned priority levelPL, its  setsF andP. Let 7, be a common task both iaandP such
corresponding separated tasks are considered as target tathat no other such common task fhis assigned a priority
at next priority level, and hence assigned higher prioritylower than that of taskr, in the HPDALC test. Therefore,
levels. Thus, task;, suffers interference not only from the each of the tasks ifiF — {r,.}) is assigned higher priority
tasks in sefd but also from the “separated” tasks returned bythan that of taskr, in the HPDALC test. In other words,
Sel ect (¢, m/, 7). The upper bound ohWdue to each of (F—{7.}) C ¢ where¢ is the set of tasks that are assigned
the tasks irSel ect (&, m/, ;) is (D, — Cx, + 1) according  higher priorities than task, in the HPDALC test.
to Eq. [3) and Eqg.[{4). Thus, th&l Wdue to all them’ Since 7, € P, task 7, passesDA- LC when assigning
tasks inSel ect (¢, m’, 1) isatmos{m’ - (D, — C, +1)].  priority using theHPDALC test. Note that sep includes
Consequently, thd'1 Wdue to all the higher priority tasks them’ highest-density tasks that are separated and assigned

in £ =HU Sel ect (§,m/,7) on any job of task, is: the highest fixed-priority irHPDALC test. If taskr, passes
[(m—m') - (Dy —Cx +1) = 1]+ [m' - (D — Cx + 1)] the DA- LC test, wherem' highest-density tasks from set
=m- (Dx — Cy) + (m —1) ¢ are separated, then according to Lenitha 1, tasknust

Because interference is an integer and albthprocessors ~ Pass theDA- LC test by separating:’ tasks using algorithm
are simultaneously busy executing the tasks¢irwhen — Sel ect (¢,m', 7;) from setp. Consequently, task, must

task 75, is interfered, the interference that any job of taskPass theDA- LC test by separating:’ or lower number of
7, suffers is at mosf ™ 2e=Cutm=1 | _ (p _ ).  tasks from set(F’ — {r,}) using theSel ect algorithm

Consequently, any job of task meets its deadline. m  since(F — {r.}) C ¢. Therefore, théPT test that uses the
Sel ect algorithm for separation of the tasks can not fall

to assign priority to task,, at priority level PL if I' passes
the HPDALC test. Therefore, any taskset that passes the
HPDALC test also passes thePT test.

The taskset in Example 1 passes BT test but not the
PDALC test. Therefore, FPT test strictly dominates the

Domination of FPT: Now we will prove in Theorenf]2
that theFPT test dominates the state-of-the-dARDAL C test.
Remember thatHPDALC test assigns the highest fixed
priority to the m’ highest-density tasks and the remaining
(n—m’) lowest-density tasks are assigned priorities based op,
the OPA andDA- LC test, for somen’ where0 < m/ < m.

) ) state-of-the-art HPDALC test. [ ]
Theorem 2. If taskset I' is schedulable using the
HPDAL C test, therT" is also schedulable using tHePT test, V. EXPERIMENTAL RESULTS
and not conversely. As shown in Theorerl 2, thHePT test dominates the state-

Proof: Assume a contradiction that taskdetloes not  of-the-artHPDAL C test. The question is how much better the
pass theFPT test but passes thdPDALC test. Note that FPT test is in comparison to thelPDALC test. To answer
FPT testcan notfail to assign priorities between priority this question, we conducted simulation experiments using
levels (n —-—m + 1) and n because thé&PT algorithm in random|y-generated task sets.

Figure[3 assigns these highest priority levels inline 11-12 e use the well-known metric, calledcceptance ra-

and returns “schedulable” in line 13. tio, to compare theFPT test with theHPDALC test. The
Therefore, the=PT test can fail to assign priority only at acceptance ratio of a schedulability test is the percentage

some priority level betweeh and(n —m). Let theFPT test  of the randomly generated tasksets that pass the test at a

first fails to assign priority at some priority levelL, where  given utilization level. One of the major findings of our

1 < PL < (n—m). Thus, whenFPT test fails at priority  experimental evaluation is that thaskset sizeoften not

level PL, there are total PL- 1) priority-assigned tasks considered in many simulation studies) is one of the most

and there are totaln — PL + 1) priority-unassigned tasks. important parameters to determine the schedulability of a

Consequently, theninimumnumber of priority-unassigned taskset using global FP scheduling. Before we present our

tasks wherFPT fails is (m + 1) sincel <PL < (n—m).  results, we present the taskset generation algorithm.

We denote- as the set of all priority-unassigned tasks when Taskset Generation Algorithm. To generate random

FPT fails and we haveF| > (m + 1). tasksets, we used ttdni f ast - Di scar d algorithm [13]
Sincel passes thelPDALCtest, there arén—m’) lowest-  proposed by Davis and Burns. Th#ni f ast - Di scard

density tasks that are successfully assigned prioritigsgus algorithm with two parameter@:, U) generates utilization

the combination of OPA and thBA- LC test for somem/,  values forn tasks with total utilization equal to'.

0 <m/ < m. In other words, each of the: —m') lowest- Once a set of, utilizations {uy, us, . .. u, } of a taskset is

density tasks passes thé- LCtest (because algorithm OPA generated, the minimum inter-arrival tirfié of each taskr;

in Figure[1 and théA- LC test is applied). We denofas s generated from the uniform random distribution withig th

the set of thesén — m/) lowest-density tasks and we have range[3ms, 500ms]. The inter-arrival time of the tasks in

IP| > (n—m+1) since0 < m’ < m. many practical real-time systems (e.g., robotics and obntr
BecausgF|+|P| > (m+1)+(n—m+1)=n+2and applications) often belong to this interval. For example t

IT'| = n, there are at least two tasks that are common to botiperiods of the tasks of some avionics application as used
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Figure 4. Acceptance ratio of tHePT and theHPDALC tests

by Vestal in his work in[[21l] ranges fror@5ms to 200ms. eters (n = 4,n = 20), (m =4,n =40), (m =6,n = 20)
Finally, the WCET of task is set toC; = u; - T; and the and (n = 6,n = 80) in Figure[4(a)E4(d), respectively (the
relative deadlind); of taskr; is generated from the uniform results of the other experiments follow similar trends).
random distribution within the rang€;, T;]. Each graph in Figurl4(d)-4(d) presents the acceptance
Given the applicability of global FP scheduling in a wide ratio for both tests. The x-axis is the system utilization
ranges of actual real-time systems, evaluating the perfort//m for utilization level U and the y-axis represents the
mance of thé=PT test using randomly generated task sets isacceptance ratio. The acceptance ratios of BIBibALC and
reasonable as long as the effect of one parameter to generdtPT tests are around 100% at relatively low utilization level
the random task sets is not confounded with another pafe.g.,U < 0.5m) and 0% at very high utilization level (e.g.,
rameter. It has been proved that teni f ast - Di scard U > 0.8m). We plot the acceptance ratio in Figlile 4{&)—4(d)
algorithm generates an unbiased taskset in the sense tHart the utilization levels betwee®.5m and 0.8m.
the utilizations of then tasks of a task set are uniformly ~ Observation 1. The acceptance ratios fdoth FPT test
distributed (Theorem 12 in_[13]). Another reason for usandHPDALC test are higher when the task set size increases
to use theUUni f ast - Di scar d algorithm is to have the for a givenm. Notice that the acceptance ratio for both
ability to control the parameter when generating a taskset HPDALC and FPT tests in Figure[}4(b) and Figurld 4(d)
at some utilization level. are relatively “healthier” than that of in Figuid 4(a) and
Each of our experiments is characterized by a paifFigure[4(c), respectively.
(m,n) wherem is the number of processors andis the A taskset with smaller cardinality having total utilizatio
task set size. We considered 40 different utilization level U has relatively higher number of high-utilization tasks
{0.025m, 0.5m, ...0.975m, m} for each experimer(tn,n).  in comparison to that of a taskset with larger cardinality
We generate 1000 task sets at each of these 40 utilizatidmaving total utilizationUU. With higher number of high-
levels using theUUni f ast - Di scar d algorithm with pa-  utilization tasks, the global FP scheduling suffers from so
rameters, and U, whereU is the utilization level. Each of called “Dhall's effect” [14], and consequently, relatiyel
the 1000 task sets generated at a particular utilizatiosl,lev smaller number of (low cardinality) tasksets passes both
say U, has cardinalityr and total utilization equal t@. HPDALC and FPT tests in Figuré(a) and Figuré 4(c).
Result Analysis. We conducted 15 experiments with  Observation 2. The improvementin acceptance ratio of
m € {2,4,6} and n € {10,20,40,60,80} to com- the FPT test over theHPDALC test is noticeable at higher
pare the acceptance ratios BPT and HPDALC tests. We utilization level (e.g.,0.55m < U < 0.75m) in all the
present the acceptance ratios of the experiments with pararfour cases in Figuré]4(d}-4(d). Both priority assignment
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