
An intuitive explanation of gradient boosting
Richard Johansson

1 Introduction

This document gives an introduction to the basic ideas of gradient boosting, the learning algo-
rithm used in scikit-learn’s GradientBoostingRegressor and GradientBoostingClassifier,
or in the XGBoost software library. We first show how gradient boosting works in a special
case: regression with squared error loss, when the loss gradients correspond to residuals. We
finally state the general gradient boosting algorithm.

Before reading this, you may want to refresh your knowledge of decision trees. Decision
trees are less useful on their own than in ensemble models. For instance, random forests are
popular tree-based ensembles for classification and regression. Boosting, and in particular
AdaBoost and gradient boosting (the topic of this text), are also important types of ensembles
that often use decision trees as the base model. For classification, an ensemble of trees will
typically produce their output by voting or averaging the outputs of the base classifiers. For
regression, the average is used.

2 Boosting decision trees for a regression problem

In boosting, we build an ensemble of classifiers or regressors incrementally. In each step, we
add a new sub-model that tries to compensate for the errors made by the previous sub-models.
To avoid overfitting, boosting is typically done using fairly simple sub-models: the classical
choice is small decision trees (“decision stumps”).

Let’s see a simple idea how boosting can be done for a regression task. The first sub-model
is a “dummy regressor”: just a constant, such as the mean of the output values. We then
compute the residuals (differences between desired values and predicted values), and train
a second sub-model, which is a small decision tree that tries to model these residuals. This
process can be repeated: compute the latest residuals, and train another sub-model to try to
fix the errors.1 Figure 1 shows an example of how this boosting procedure gradually improves
the fit, as we add more and more sub-models.

Figure 1: Example of boosting for a regression problem.

If we try to formalize this procedure, we get something like Algorithm 1.

1For an example where these steps are carried out in detail, see
http://www.cse.chalmers.se/~richajo/dit866/backup_2019/lectures/l8/Step-by-step%20toy%

20boosting%20walkthrough.html.

http://www.cse.chalmers.se/~richajo/dit866/backup_2019/lectures/l8/Step-by-step%20toy%20boosting%20walkthrough.html
http://www.cse.chalmers.se/~richajo/dit866/backup_2019/lectures/l8/Step-by-step%20toy%20boosting%20walkthrough.html


Algorithm 1 Simple boosting algorithm for regression.

let h0 be a “dummy” constant model
let F0 be an ensemble just consisting of h0
for m = 1, . . . , M

for each pair (xi,yi) in the training set
compute the residual R(yi, Fm−1(xi)) = yi − Fm−1(xi)

train a regression sub-model hm on the residuals
add hm to the ensemble: Fm(x) = Fm−1(x) + hm(x)

return the ensemble FM

3 Gradient boosting

The algorithm that we just described can be generalized, so that we optimize the boosted
ensemble with respect to some loss function: currently, our algorithm is trying to minimize the
squared error, which makes sense, since it’s a regression problem. But what if we’d like to
optimize some other loss, such as the log loss or cross-entropy for a classification problem, or
another regression loss (e.g. absolute error)? This is where gradient boosting comes in.

The boosting procedure describes in Algorithm 1 can be seen as a form of gradient descent.
As you recall, gradient descent optimizes a loss function by applying the following update
rule repeatedly:

x = x− η∇Loss(x)

where ∇Loss(x) is the gradient of the loss function that we’re trying to optimize, and η is a
step length (learning rate). What does this have to do with the boosting algorithm? The key
observation is that the (negative) gradient of the squared error loss function, evaluated at the
output value ŷ, is the same as the residual (multiplied by 2):

Loss(yi, ŷ) = (yi − ŷ)2 −∇Loss(ŷ) = 2 · (yi − ŷ)

So the boosting algorithm can be seen as a form of gradient descent that optimizes the squared
error loss function, because in each step, it adds a sub-model that tries to mimic the negative
gradient of this loss. (The learning rate η would be 1

2 in this case.) We have previously seen
gradient descent in the context of linear models and neural networks: the difference here is
that we now update the model by adding new sub-models, while previously we updated
the model by changing the weights. Figure 2 shows this intuition pictorially: the gradient
boosting algorithm adds sub-models to the ensemble incrementally to minimize the loss
function (in our case, the squared error loss).

So what if we’d like to optimize some other loss function? In that case, we apply the same
recipe: for each training instance, we compute the negative gradient of the loss; then we train
a sub-model that tries to imitate this gradient. The difference compared to Algorithm 1 is that
these negative gradients are no longer interpretable as residuals: instead, they are now called
pseudo-residuals.



Figure 2: Gradient boosting adds sub-models incrementally to minimize a loss function.

Algorithm 2 Gradient boosting.

let F0 be a “dummy” constant model
for m = 1, . . . , M

for each pair (xi,yi) in the training set
compute the pseudo-residual R(yi, Fm−1(xi)) = negative gradient of the loss

train a regression sub-model hm on the pseudo-residuals
add hm to the ensemble: Fm(x) = Fm−1(x) + η · hm(x)

return the ensemble FM

Algorithm 2 shows the pseudocode of the general gradient boosting algorithm. A few things
to keep in mind here:

• Note that gradient boosting always uses regression trees, even if we are solving a classi-
fication problem. For classification, we convert the output scores into probabilities by
applying the sigmoid or softmax.

• The learning rate η can be controlled to reduce the risk of overfitting. (In scikit-learn, the
default value is 0.1.) In practice, it is often adjusted automatically.


	Introduction
	Boosting decision trees for a regression problem
	Gradient boosting

