# Machine Learning for Natural Language Processing Generating Text from a Language Model



CHALMERS

#### **Richard Johansson**

richajo@chalmers.se

## generating text from a language model

• assuming we have P(X), how do we generate or "decode"?



- we will discuss the most common algorithms for autoregressive LMs
- there are several algorithms: this is an active research area

#### use cases: generating from a prompt

• given a prefix or "prompt", how do we find

 $\mathsf{text}^* = \arg\max_{\mathsf{text}} P(\mathsf{text}|\mathsf{prompt})$ 

generated\_ids = generate("NLP stands for natural", greedy\_strategy, stopping\_criterion=partial(has\_n\_sentences, n=2),

NLP stands for natural language processing. It is a method of processing language by using a computer to learn the mea



#### use cases: sampling

- if we have P(X), how can we generate random texts?
- again, we might want to use a prompt

 $\mathsf{text} \sim P(\mathsf{text}|\mathsf{prompt})$ 

generated\_ids = generate("Meatballs", random\_strategy, stopping\_criterion=partial(has\_n\_sentences, n=2))
Meatballs are a well-loved family recipe that typically serve as the centerpiece of spring gatherings in
generated\_ids = generate("Meatballs", random\_strategy, stopping\_criterion=partial(has\_n\_sentences, n=2))
Meatballs. I made a weekly ritual of "drilling" out new ones, starting with how-to guides and deciding or
generated\_ids = generate("Meatballs", random\_strategy, stopping\_criterion=partial(has\_n\_sentences, n=2))
Meatballs. Go for junk food and chips, no way you can show some athletic skill with a mound of food.
generated\_ids = generate("Meatballs", random\_strategy, stopping\_criterion=partial(has\_n\_sentences, n=2))
Meatballs, fried crickets and soggy greens. Another favourite – a crab-stuffed baked potato and chutney p

#### unsupported use cases

- it is difficult to solve "fill-in-the-blank" tasks with autoregressive LMs
- what is the most likely missing text?

NLP stands for \_\_\_\_\_. It is a method...

## first idea: greedy decoding



• select the highest-scoring alternative at each step



#### greedy decoding: pseudocode

initialize  $X = x_1, \ldots, x_m$  to some token sequence for  $i = m + 1, \ldots$  until some stopping criterion met  $x_i \leftarrow \arg \max_x P(x|X)$ append  $x_i$  to Xreturn X

# <**B**>



#### pros and cons of greedy decoding

fast and easy to implement



#### pros and cons of greedy decoding

fast and easy to implement

#### BUT: does not find the highest-scoring sequence



















#### beam search decoding

problem: we can't consider all possible sequences



#### beam search decoding

problem: we can't consider all possible sequences

as an approximation, let's keep k candidates at each step this idea is called beam search



#### beam search decoding: pseudocode

set the beam width kinitialize  $X = x_1, \ldots, x_m$  to some token sequence  $B \leftarrow [X]$ for  $i = m + 1, \ldots$  until some stopping criterion met  $C \leftarrow []$ for each b in Bcompute P(x|b)add b + [x] to C for all x in the vocabulary  $B \leftarrow$  select k top-scoring candidates from Creturn top-scoring beam from B

# drawbacks of greedy and beam search decoding

- generated texts can be bland and uninformative
- the generation often has problems with repetition



# drawbacks of greedy and beam search decoding

- generated texts can be bland and uninformative
- the generation often has problems with repetition

```
input_ids = tokenizer('Hello', return_tensors='pt').input_ids
outputs = model.generate(input_ids, num_beams=8, max_length=50, pad_token_id=0)
print(tokenizer.decode(outputs[0]))
```

Hello

I've been working on this project for a while now. I've been working on this project for a while now. I've

- some research describing these problems: (Holtzman et al., 2020), (Kulikov, 2022)
- repetition poorly understood theoretically (Fu et al., 2021)

#### THE CURIOUS CASE OF NEURAL TEXT *De*GENERATION

#### ABSTRACT

Despite considerable advances in neural language modeling, it remains an open question what the best decoding strategy is for text generation from a language model (e.g. to generate a story). The counter-intuitive empirical observation is that even though the use of likelihood as training objective leads to high quality models for a broad range of language understanding tasks, maximization-based decoding methods such as beam search lead to degeneration — output text that is bland, incoherent, or gets stuck in repetitive loops.



#### sampling

initialize  $X = x_1, \ldots, x_m$  to some token sequence for  $i = m + 1, \ldots$  until some stopping criterion met  $x_i \sim P(x|X)$ append  $x_i$  to Xreturn X

# drawbacks of sampling

input\_ids = tokenizer('Hello', return\_tensors='pt').input\_ids outputs = model.generate(input\_ids, do\_sample=True, max\_length=50, pad\_token\_id=0) print(tokenizer.decode(outputs[0]))

Hello - this is a big win for everyone of you who support C++11!

The winner of this week's poll will be taken here in June 2016.

If you enjoyed this article you will like my Facebook Page.<|endoftext|>



# improving sampling: truncating the distribution (1)

in **top-***k* sampling, we only include the *k* most probable words when sampling:



# improving sampling: truncating the distribution (2)

in top-*p* or nucleus sampling (Holtzman et al., 2020), we select the most probable tokens with a probability mass of at least *p*:



#### improving sampling: temperature

#### temperature T: divide the logits by T before applying the softmax



#### conclusion

#### 左 Free, Unlimited OPT-175B Text Generation

Warning: This model might generate something offensive. No safety measures are in place as a free service.

| W Fact                                   | Chatbot     Airport Code       | Translation       | Cryptocurrency    | Code Math                                       |                               |
|------------------------------------------|--------------------------------|-------------------|-------------------|-------------------------------------------------|-------------------------------|
| Students at Chalmers like to             |                                |                   |                   |                                                 |                               |
| Res                                      | ponse Length:                  |                   | 64                |                                                 |                               |
| I'm not a robot                          | Тор-р:                         | •                 | 0.5               |                                                 |                               |
| Students at Chalmers like to jo<br>team. | the that the only thing that k | eeps the school f | rom being a unive | rsity is that it doesn<br>v focused on their si | 't have a football<br>cudies. |



- Z. Fu, W. Lam, A. M.-C. So, and B. Shi. 2021. A theoretical analysis of the repetition problem in text generation. In AAAI.
- A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. 2020. The curious case of neural text degeneration. In *ICLR*.
- I. Kulikov. 2022. Characterizing and Resolving Degeneracies in Neural Autoregressive Text Generation. Ph.D. thesis, New York University.

