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generating text from a language model

· assuming we have P (X), how do we generate or “decode”?

· we will discuss the most common algorithms for
autoregressive LMs

· there are several algorithms: this is an active research area
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use cases: generating from a prompt

· given a prefix or “prompt”, how do we find

text∗ = arg max
text

P (text|prompt)
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use cases: sampling

· if we have P (X), how can we generate random texts?

· again, we might want to use a prompt

text ∼ P (text|prompt)
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unsupported use cases

· it is difficult to solve “fill-in-the-blank” tasks with
autoregressive LMs

· what is the most likely missing text?
NLP stands for ___ . It is a method…
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first idea: greedy decoding

· select the highest-scoring alternative at each step
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greedy decoding: pseudocode

initialize X = x1, . . . , xm to some token sequence
for i = m+ 1, . . . until some stopping criterion met

xi ← arg maxx P (x|X)
append xi to X

return X
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pros and cons of greedy decoding

fast and easy to implement

BUT:
does not find the highest-scoring sequence
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beam search decoding

problem: we can’t consider all possible sequences

as an approximation, let’s keep k candidates at each step

this idea is called beam search
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beam search decoding: pseudocode

set the beam width k
initialize X = x1, . . . , xm to some token sequence
B ← [X]
for i = m+ 1, . . . until some stopping criterion met

C ← [ ]
for each b in B

compute P (x|b)
add b+ [x] to C for all x in the vocabulary

B ← select k top-scoring candidates from C
return top-scoring beam from B
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drawbacks of greedy and beam search decoding

· generated texts can be bland and uninformative

· the generation often has problems with repetition
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· some research describing these problems: (Holtzman et al.,
2020), (Kulikov, 2022)

· repetition poorly understood theoretically (Fu et al., 2021)
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sampling

initialize X = x1, . . . , xm to some token sequence
for i = m+ 1, . . . until some stopping criterion met

xi ∼ P (x|X)
append xi to X

return X
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drawbacks of sampling
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improving sampling: truncating the distribution (1)

in top-k sampling, we only include the k most probable words
when sampling:
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improving sampling: truncating the distribution (2)

in top-p or nucleus sampling (Holtzman et al., 2020), we select the
most probable tokens with a probability mass of at least p:
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improving sampling: temperature

temperature T : divide the logits by T before applying the softmax

T = 0.5 T = 1 T = 2
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conclusion
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